
ar
X

iv
:2

01
1.

05
08

2v
1

 [
m

at
h.

O
C

]
 1

0
N

ov
 2

02
0

1

Distributed Stochastic Consensus Optimization with

Momentum for Nonconvex Nonsmooth Problems
Zhiguo Wang, Jiawei Zhang, Tsung-Hui Chang, Jian Li and Zhi-Quan Luo

Abstract—While many distributed optimization algorithms
have been proposed for solving smooth or convex problems over
the networks, few of them can handle non-convex and non-
smooth problems. Based on a proximal primal-dual approach,
this paper presents a new (stochastic) distributed algorithm
with Nesterov momentum for accelerated optimization of non-
convex and non-smooth problems. Theoretically, we show that
the proposed algorithm can achieve an ǫ-stationary solution
under a constant step size with O(1/ǫ2) computation complexity
and O(1/ǫ) communication complexity. When compared to the
existing gradient tracking based methods, the proposed algorithm
has the same order of computation complexity but lower order
of communication complexity. To the best of our knowledge,
the presented result is the first stochastic algorithm with the
O(1/ǫ) communication complexity for non-convex and non-
smooth problems. Numerical experiments for a distributed non-
convex regression problem and a deep neural network based
classification problem are presented to illustrate the effectiveness
of the proposed algorithms.

Index Terms—Distributed optimization, stochastic optimiza-
tion, momentum, non-convex and non-smooth optimization.

I. INTRODUCTION

Recently, motivated by large-scale machine learning [1] and

mobile edge computing [2], many signal processing applica-

tions involve handling very large datasets [3] that are processed

over networks with distributed memories and processors. Such

signal processing and machine learning problems are usually

formulated as a multi-agent distributed optimization problem

[4]. In particular, many of the applications can be formulated

as the following finite sum problem

min
x

N∑

i=1

(

fi(x) + ri(x)
)

, (1)

where N is the number of agents, x ∈ R
n contains the

model parameters to be learned, fi(x) : R
n → R is a

closed and smooth (possibly nonconvex) loss function, and

ri(x) is a convex and possibly non-smooth regularization

term. Depending on how the data are acquired, there are two

scenarios for problem (1) [5].

Zhiguo Wang is with College of Mathematics, Sichuan University,
Chengdu, Sichuan 610064, China (e-mail: wangzhiguo@scu.edu.cn). This
work was done in the Chinese University of Hong Kong, Shenzhen.

Jiawei Zhang, Tsung-Hui Chang, and Zhi-Quan (Tom) Luo are with the Chi-
nese University of Hong Kong, Shenzhen 518172, China and also with Shen-
zhen Research Institute of Big Data , Shenzhen, Guangdong Province 518172,
China (e-mail: jiaweizhang2@link.cuhk.edu.cn; tsunghui.chang@ieee.org; lu-
ozq@cuhk.edu.cn). Corresponding author: Zhi-Quan (Tom) Luo.

Jian Li is with Department of Electrical and Computer Engineering,
University of Florida (e-mail: li@dsp.ufl.edu).

• Offline/Batch learning: the agents are assumed to have

the complete local dataset. Specifically, the local cost

functions can be written as

fi(x) =
1

m

m∑

j=1

f ji (x), i = 1, . . . , N, (2)

where f ji (x) is the cost for the j-th data sample at the i-th
agent, and m is the total number of local samples. When

m is not large, each agent i may compute the full gradient

of fi(x) for deterministic parameter optimization.

• Online/Streaming learning: when the data samples follow

certain statistical distribution and are acquired by the

agents in an online/streaming fashion, one can define

fi(x) as the following expected cost

fi(x) = Eξ∼Bi
[fi(x, ξ)], i = 1, . . . , N, (3)

where Bi denotes the data distribution at agent i, and

fi(x, ξ) is the cost function of a random data sample

ξ. Under the online setting, only a stochastic estimate

Gi(x, ξ) for ∇fi(x) can be obtained by the agent and

stochastic optimization methods can be used. Note that

if the agent is not able to compute the full gradient in

the batch setting, a stochastic gradient estimate by mini-

batch data samples can be obtained and the problem is

solved in a similar fashion by stochastic optimization.

These two settings for local cost functions are popularly used

in many machine learning models including deep learning and

empirical risk minimization problems [5]. For both scenarios,

many distributed optimization methods have been developed

for solving problems (1).

Specifically, for batch learning and under convex or strongly

convex assumptions, algorithms such as the distributed sub-

gradient method [6], EXTRA [7], PG-EXTRA [8] and primal-

dual based methods including the alternating direction method

of multipliers (ADMM) [1], [4], [9] and the UDA in [10]

are proposed. For non-convex problems, the authors in [11]

studied the convergence of proximal decentralized gradient

descent (DGD) method with a diminishing step size. Based

on the successive convex approximation (SCA) technique

and the gradient tracking (GT) method, the authors in [12]

proposed a network successive convex approximation (NEXT)

algorithm for (1), and it is extended to more general scenarios

with time varying networks and stronger convergence analysis

results [13], [14]. In [15], based on an inexact augmented

Lagrange method, a proximal primal-dual algorithm (Prox-

PDA) is developed for (1) with smooth and non-convex

fi(x) and without ri(x). A near-optimal algorithm xFilter

http://arxiv.org/abs/2011.05082v1

2

is further proposed in [16] that can achieve the computation

complexity lower bound of first-order distributed optimization

algorithms. To handle non-convex and non-smooth problems

with polyhedral constraints, the authors of [17], [18] proposed

a proximal augmented Lagrangian (AL) method for solving

(1) by introducing a proximal variable and an exponential

averaging scheme.

For streaming learning, the stochastic proximal gradient

consensus method based on ADMM is proposed in [19] to

solve (1) with convex objective functions. For non-convex

problems, the decentralized parallel stochastic gradient descent

(D-PSGD) [20] is applied to (1) (without ri(x)) for training

large-scale neural networks, and the convergence rate is ana-

lyzed. The analysis of D-PSGD relies on an assumption that
1
N

∑N
i=1 ||∇fi(x)−∇f(x)||2 is bounded, which implies that

the variance of data distributions across the agents should be

controlled. In [21], the authors proposed an improved D-PSGD

algorithm, called D2, which removes such assumption and is

less sensitive to the data variance across agents. However,

D2 requires a restrictive assumption on the eigenvalue of

the mixing matrix. This assumption is relaxed by the GNSD

algorithm in [22], which essentially is a stochastic counterpart

of the GT algorithm in [14]. We should emphasize here that

the algorithms in [20], [21], [22] can only handle smooth

problems without constraints and regularization terms. The

work [23] proposed a multi-agent projected stochastic gradient

decent (PSGD) algorithm for (1) but ri(x) is limited to the

indicator function of compact convex sets. Besides, there is

no convergence rate analysis in [23].

In this paper, we develop a new distributed stochastic

optimization algorithm for the non-convex and non-smooth

problem (1). The proposed algorithm is inspired by the

proximal AL framework in [17] and has three new features.

First, the proposed algorithm is a stochastic distributed algo-

rithm that can be used either for streaming/online learning

or batch/offline learning with mini-batch stochastic gradients.

Second, the proposed algorithm can handle problem (1) with

non-smooth terms that have a polyhedral epigraph, which is

more general than [17], [18]. Third, the proposed algorithm

incorporates the Nesterov momentum technique for fast con-

vergence. The Nesterov momentum technique has been applied

for accelerating the convergence of distributed optimization.

For example, in [24], [25], the distributed gradient descent

methods with the Nesterov momentum are proposed, and are

shown to achieve the optimal iteration complexity for convex

problems. In practice, since SGD with momentum often can

converge faster, it is also commonly used to train deep neural

networks [26], [27]. We note that [24], [25], [26], [27] are for

smooth problems. To the best of our knowledge, the Nesterov

momentum technique has not been used for distributed non-

convex and non-smooth optimization.

Our contributions are summarized as follows.

• We propose a new stochastic proximal primal dual algo-

rithm with momentum (SPPDM) for non-convex and non-

smooth problem (1) under the online/streaming setting.

For the offline/batch setting where the full gradients of

the local cost functions are available, SPPDM reduces to

a deterministic algorithm, named the PPDM algorithm.

• We show that the proposed SPPDM and PPDM can

achieve an ǫ-stationary solution of (1) under a constant

step size with computation complexities of O(1/ǫ2)
and O(1/ǫ), respectively, while both have a communi-

cation complexity of O(1/ǫ). The convergence analy-

sis neither requires assumption on the boundedness of
1
N

∑N
i=1 ‖∇fi(x) − ∇f(x)‖2 nor on the eigenvalues of

the mixing matrix.

• As shown in Table I, the proposed SPPDM/PPDM algo-

rithms have the same order of computation complexity as

the existing methods and lower order of communication

complexity when compared with the existing GT based

methods.

• Numerical experiments for a distributed non-convex re-

gression problem and a deep neural network (DNN) based

classification problem show that the proposed algorithms

outperforms the existing methods.

Notation: We denote In as the n by n identity matrix and

1 as the all-one vector, i.e., 1 = [1, . . . , 1]⊤. 〈a, b〉 represents

the inner product of vectors a and b, ‖a‖ is the Euclidean

norm of vector a and ‖a‖1 is the ℓ1-norm of vector a; ⊗
denotes the Kronecker product. For a matrix A, σA > 0
denotes its largest singular value. diag{a1, . . . , aN} denotes

a diagonal matrix with a1, . . . , aN being the diagonal entries

while diag{A1, . . . ,AN} denotes a block diagonal matrices

with each Ai being the ith block diagonal matrix. [A]ij
represents the element of A in the ith row and jth column.

For problem (1), we denote x = [x⊤1 , . . . , x
⊤
N]⊤ ∈ R

Nn,

f(x) =
∑N

i=1 fi(xi), and r(x) =
∑N

i=1 ri(xi). The gradient

of f(·) at x is denoted by

∇f(x) = [(∇f1(x1))⊤, . . . , (∇fN (xN))⊤]⊤,

where ∇fi(xi) is the gradient of fi at xi. In the on-

line/streaming setting, we denote the stochastic gradient es-

timates of agents as

G(x, ξ) = [(Gi(x1, ξ1))
⊤, . . . , (GN (xN , ξN))⊤]⊤,

where ξ = [ξ⊤1 , , . . . , ξ
⊤
N]. Lastly, we define the following

proximal operator of ri

proxαri(x) = argmin
u

α

2
‖x− u‖2 + ri(u),

where α is a parameter.

Synopsis: In Section II, the proposed SPPDM and PPDM

algorithms are presented and their connections with existing

methods are discussed. Based on an inexact stochastic primal-

dual framework, it is shown how the SPPDM and PPDM

algorithms are devised. Section III presents the theoretical

results of the convergence conditions and convergence rate of

the SPPDM and PPDM algorithms. The performance of the

SPPDM and PPDM algorithms are illustrated in Section IV.

Lastly, the conclusion is given in Section V.

II. ALGORITHM DEVELOPMENT

A. Network Model and Consensus Formulation

Let us denote the multi-agent network as a graph G, which

contains a node set V := {1, . . . , N} and an edge set E

3

TABLE I
COMPARISONS OF DIFFERENT ALGORITHMS

Algorithm objective function gradient stepsize momentum computational communication

D-PSGD [20] f(x) stochastic decreasing ✗ O(N
ǫ2

) O(1
ǫ2

)

D2 [21] f(x) stochastic decreasing ✗ O(N
ǫ2

) O(1
ǫ2

)

GNSD [22] f(x) stochastic decreasing ✗ O(N
ǫ2

) O(1
ǫ2

)

PR-SGD-M [27] f(x) stochastic decreasing ✓ O(N
ǫ2

) O(1
ǫ2

)

PSGD [23] f(x) + r(x) stochastic decreasing ✗ ✗ ✗

STOC-ADMM [28] f(x) + r(x) stochastic fixed ✗ O(N
ǫ2

) O(1
ǫ
)

Prox-PDA [15] f(x) full fixed ✗ O(mN
ǫ

) O(1
ǫ
)

Prox-DGD [11] f(x) + r(x) full decreasing ✗ ✗ ✗

Prox-ADMM [17] f(x) + r(x) full fixed ✗ O(mN
ǫ

) O(1
ǫ
)

Proposed f(x) + r(x)
full fixed ✓ O(mN

ǫ
) O(1

ǫ
)

stochastic fixed ✓ O(N
ǫ2

) O(1
ǫ
)

with cardinality |E|. For each agent i, it has neighboring

agents in the subset Ni := {j ∈ V |(i, j) ∈ E} with size

di ≥ 1. It is assumed that each agent i can communicate

with its neighborhood Ni. We also assume that the graph G is

undirected and is connected in the sense that for any of two

agents in the network there is a path connecting them through

the edge links. Thus, problem (1) can be equivalently written

as

min
xi

i=1,...,N

N∑

i=1

(

fi(xi) + ri(xi)
)

(4a)

s.t. xi = xj , ∀(i, j) ∈ E . (4b)

Let us introduce the incidence matrix Ã ∈ R
|E|×n which

has Ã(ℓ, i) = 1 and Ã(ℓ, j) = −1 if (i, j) ∈ E with j > i,
and zero otherwise, for ℓ = 1, . . . , |E|. Define the extended

incidence matrix as A := Ã⊗ In. Then (4) is equivalent to

min
x

f(x) + r(x) (5a)

s.t. Ax = 0. (5b)

B. Proposed SPPDM and PPDM Algorithm

In this section, we present the proposed SPPDM algorithm

for solving (5) under the online/streaming setting in (3). The

algorithm steps are outlined in Algorithm 1. Before showing

how the algorithm is developed in Section II-C, let us make a

few comments about SPPDM.

In Algorithm 1, α, β, γ, c, κ, ηk are some positive constant

parameters that depend on the problem instance (such as the

Lipschitz constants of {∇fi}) and the graph Laplacian matrix).

Equations (7)-(10) are the updates performed by each agent

i within the kth communication round, for k = 1, 2, . . . , and

i = 1, . . . , N . Specifically, step (7) is the introduced Nesterov

momentum term ski for accelerating the algorithm conver-

gence, where ηk is the extrapolation coefficient at iteration

k. Step (8) shows how the neighboring variables {xj}j∈Ni

are used for local gradient update. Note here that in SPPDM

the agent uses the sample average 1
|I|
∑|I|

j=1Gi(s
k
i , ξ

k
ij) to

approximate ∇fi(ski), where ξkij ∼ Bi, j = 1, . . . , |I|, denotes

the samples drawn by agent i in the kth iteration. Besides,

Algorithm 1 Proposed SPPDM Algorithm

Given parameters α, β, γ, c, κ, ηk and initial values of x0i ,

i = 1, . . . , N. Let

ψi = γ + 2cdi + κ (6)

and set s0i = x0i , i = 1, . . . , N. Do

x
1

2

i = (γ + cdi + κ)
x0i
ψi

+
c

ψi

∑

j∈Ni

x0j −
1

ψi
∇fi(x0i),

x1i = proxαi

ri

(

x
1

2

i

)

, i = 1, . . . , N.

for communication round k = 1, 2, . . . do

for agent i = 1, 2, . . . , N (in parallel) do

ski = xki + ηk(x
k
i − xk−1

i), (7)

x
k+ 1

2

i = x
k−1+ 1

2

i +
di
ψi

((c− α)xki − cxk−1
i), (8)

+
1

ψi

∑

j∈Ni

((c+ α)xkj − cxk−1
j)

+
1

ψi

(
γ(ski − sk−1

i) + κ(zki − zk−1
i)

)

− 1

ψi|I|

|I|
∑

j=1

(Gi(s
k
i , ξ

k
ij)−Gi(s

k−1
i , ξk−1

ij)),

xk+1
i = proxψi

ri

(

x
k+ 1

2

i

)

, (9)

zk+1
i = zki + β(xk+1

i − zki). (10)

end for

end for

in (8), both approximate gradients at ski and sk−1
i are used.

Step (9) performs the proximal gradient update with respect

to the regularization term ri(x). In step (8), the variable {zki }
is a “proximal” variable introduced for overcoming the non-

convexity of fi (see (19)), and is updated as in step (10).

By stacking the variables for all i = 1, . . . , N , one can

write (7)-(10) in a vector form. Specifically, step (8) for i =

4

1, . . . , N , can be expressed compactly as

xk+
1

2 = xk−1+ 1

2 +Uxk − Ũxk−1

+ γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)), (11)

where U and Ũ are two matrices satisfying

[U]ij =







di
ψi
(c− α), i = j,

c+α
ψi
, i 6= j and (i, j) ∈ E ,

0, otherwise.

(12)

[Ũ]ij =







dic
ψi
, i = j,

c
ψi
, i 6= j and (i, j) ∈ E ,

0 otherwise.

(13)

for all i, j = 1, . . . , N , Ψ is a diagonal matrix with its ith
element being ψi := γ + 2cdi + κ for i = 1, . . . , N , and

Ḡ(sk, ξk) :=
1

|I|

|I|
∑

j=1

G(sk, ξkj). (14)

When the full gradients ∇fi are available under the of-

fline/batch setting, the approximate gradient Gi in (8) and (11)

can be replaced by ∇fi. Then, the SPPDM algorithm reduces

to the PPDM algorithm.

Remark 1. We show that the PPDM algorithm can have

a close connection with the PG-EXTRA algorithm in [8].

Specifically, let us set ηk = 0 (no Nesterov momentum) and

β = 1 (no proximal variable). Then, we have ski = zki = xki
for all k, i, and the momentum and proximal variable update

in (7) and (10) can be removed. As a result, (11) reduces to

xk+
1

2 = xk−1+ 1

2 +Wxk − W̃xk−1

−Ψ−1(∇f(xk)−∇f(xk−1)), (15)

where W = U + (γ + κ)Ψ−1 and W̃ = Ũ + (γ + κ)Ψ−1.

One can see that (15) and (9) have an identical form as the

PG-EXTRA algorithm in [8, Eqn. (3a)-(3b)]. Therefore, the

proposed PPDM algorithm can be regarded as an accelerated

version of the PG-EXTRA with extra capability to handle non-

convex problems. One should note that, unlike (12) and (13),

the PG-EXTRA allows a more flexible choice of the mixing

matrix W, and thus it is also closely related to the GT based

methods [5].

Remark 2. The PPDM algorithm also has a close connection

with the distributed Nesterov gradient (D-NG) algorithm in

[24]. Specifically, let us set α = c and β = 1 (no proximal

variable) and remove the non-smooth regularization term r(x).
Then, we have zki = xki for all k, i, and the proximal gradient

update (9) and the proximal variable update (10) can be

removed. Under the setting, as shown in Appendix A, one

can write (11) of the PPDM algorithm as

xk+1 = W̃sk −Ψ−1∇f(sk) +Ck, (16)

where Ck = (Ũ(xk−sk)+κ(xk−sk)Ψ−1)−∑k
t=0(I−W̃)xt

can regarded as a cumulative correction term. Note that the D-

NG algorithm in [24, Eqn. (2)-(3)] is

sk = xk + ηk(x
k − xk−1), (17)

xk+1 = W̃sk −Ψ−1∇f(sk). (18)

One can see that (18) and (16) have a similar form except for

the correction term. Note that the convergence of the D-NG

algorithm is proved in [24] only for convex problems with a

diminishing step size. Therefore, the proposed PPDM algo-

rithm is an enhanced counterpart of the D-NG algorithm with

the ability to handle non-convex and non-smooth problems.

C. Algorithm Development

In this subsection, let us elaborate how the SPPDM algo-

rithm is devised. Our proposed algorithm is inspired by the

proximal AL framework in [17]. First, we introduce a proximal

term z to (5) as

min
x,z

f(x) + r(x) +
κ

2
‖x− z‖2 (19a)

s.t. Ax = 0, (19b)

where κ > 0 is a parameter. Obviously, (19) is equivalent

to (5). The purpose of adding the proximal term κ
2 ‖x − z‖2

is to make the objective function in (19a) strongly convex

with respect to x when κ > 0 is large enough. Such

strong convexity will be exploited for building the algorithm

convergence.

Second, let us consider the AL function of (19) as follows

Lc(x, z;λ) =f(x) + r(x) + 〈λ,Ax〉
+
c

2
‖Ax‖2 + κ

2
‖x− z‖2, (20)

where λ ∈ R
|E| is the Lagrangian dual variable, and c > 0 is a

positive penalty parameter. Then, the Lagrange dual problem

of (19) can be expressed as

max
λ

min
x,z

Lc(x, z;λ). (21)

We apply the following inexact stochastic primal-dual updates

with momentum for problem (21): for k = 0, 1, 2, . . .,

λk+1 = λk + αAxk, (22)

sk = xk + ηk(x
k − xk−1), (23)

xk+1 = argmin
x

g(x,xk, sk, zk, ξk;λk+1), (24)

zk+1 = zk + β(xk+1 − zk). (25)

Specifically, (22) is the dual ascent step with α > 0 being the

dual step size. In (23), the momentum variable sk is introduced

for the primal variable x.

5

To update x, we consider the inexact step as in (24) where

g(x,xk, sk, zk, ξk;λk+1) is a surrogate function given by

g(x,xk, sk, zk, ξk;λk+1)

= f(sk) + 〈Ḡ(sk, ξk),x− sk〉+ γ

2
‖x− sk‖2

︸ ︷︷ ︸

(a)

+ r(x) + 〈λk+1,Ax〉
+
c

2
‖Ax‖2 + c

2
‖x− xk‖2B⊤B

︸ ︷︷ ︸

(b)

+
κ

2
‖x− zk‖2. (26)

In (26), the term (a) is a quadratic approximation of f at sk

using the stochastic gradient Ḡ, where γ > 0 is a parameter. In

term (b) of (26), B is the signless incidence matrix of the graph

G, i.e., B = |A|, which satisfies A⊤A+B⊤B = 2D, where

D = diag{d1, . . . , dN} is the degree matrix of G. As shown

in [15], the introduction of c
2‖x−xk‖2

B⊤B
can “diagonalize”

c
2‖Ax‖2 and lead to distributed implementation of (24). In

particular, one can show that (24) with (26) can be expressed

as

xk+1 = proxΨr

(

Ψ−1
(
γsk + cB⊤Bxk + κzk

− Ḡ(sk, ξk)−A⊤λk+1
))

. (27)

As seen, due to the graphical structure of B⊤B, each xk+1
i in

(27) can be obtained in a distributed fashion using only xkj ,

j ∈ Ni from its neighbors. Lastly, we update z by applying

the gradient descent to Lc(x
k+1, z;λk+1) with step size β,

which then yields (25).

To show how (7)-(10) are obtained, let pk = A⊤λk and

define

xk+
1

2 =Ψ−1
(
γsk + cB⊤Bxk + κzk

− Ḡ(sk, ξk)− pk+1
)
. (28)

Then, (22) can be replaced by

pk+1 = pk + αA⊤Axk, (29)

and (27) can be written as

xk+1 = proxΨr
(
xk+

1

2

)
. (30)

Moreover, by subtracting xk−1+ 1

2 from xk+
1

2 , one obtains

xk+
1

2 =xk−1+ 1

2 + γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

+ cΨ−1B⊤B(xk − xk−1)−Ψ−1(pk+1 − pk)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)). (31)

After substituting (29) into (31), we obtain

xk+
1

2 = xk−1+ 1

2 +Uxk − Ũxk−1

+ γΨ−1(sk − sk−1) + κΨ−1(zk − zk−1)

−Ψ−1(Ḡ(sk, ξk)− Ḡ(sk−1, ξk−1)), (32)

which is exactly (11) since U = cΨ−1B⊤B − αΨ−1A⊤A
and Ũ = cΨ−1B⊤B by (12) and (13), respectively.

In summary, (22) and (24) can be equivalently written as

(32) and (30), and therefore we obtain (23), (32), (30) and

(25) as the algorithm updates, which correspond to (7)-(10) in

Algorithm 1

Before ending the section, we remark that it is possible

to employ the existing stochastic primal-dual methods such

as [28] for solving the non-smooth and non-convex problem

(5). However, these methods require strict conditions on A.

For example, the stochastic ADMM method in [28] requires

A to have full rank, which cannot happen for the distributed

optimization problem (5) since the graph incidence matrix A

for a connected graph must be rank deficient.

III. CONVERGENCE ANALYSIS

In this section, we present the main theoretical results of

the proposed SPPDM and PPDM algorithms by establishing

their convergence conditions and convergence rate.

A. Assumptions

We first make some proper assumptions on problem (5).

Assumption 1. (i) The function f(x) is a continuously dif-

ferentiable function with Lipschitz continuous gradients,

i.e., for constant L > 0,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (33)

for all x,y. Moreover, assume that there exists a constant

µ ≥ −L (possibly negative) such that

f(x)− f(y)− 〈∇f(y),x − y〉 ≥ µ

2
‖x− y‖2, (34)

for all x,y.

(ii) The objective function f(x)+r(x) is bounded from below

in the feasible set {x|Ax = 0}, i.e.,

f(x) + r(x) > f > −∞,

for some constant f .

Assumption 2. The epigraph of each ri(xi), i.e.,

{(xi, yi) | ri(xi) ≤ yi}, is a polyhedral set and has a

compact form as

Sx,ixi + Sy,iyi ≥ ζi, (35)

where Sx,i ∈ R
qi×n, Sy,i ∈ R

qi and ζi ∈ R
qi are some

constant matrix and vectors.

By (35), problem (5) can be written as

min
x,y

f(x) + 1⊤y (36a)

s.t. Ax = 0 (36b)

Sxx+ Syy ≥ ζ, (36c)

Here, y = [y1, . . . , yN]⊤, Sx = diag{Sx,1, . . . , Sx,N}, Sy =
diag{Sy,1, . . . , Sy,N}, and ζ = [ζ⊤1 , . . . , ζ

⊤
N]⊤.

Let µ = [µ1, . . . , µq]
⊤ ∈ R

q , q =
∑N
i=1 qi, be the dual

variable associated with (36c). Then, the Karush-Kuhn-Tucker

(KKT) conditions of (36) are given by

∇f(x) +A⊤λ− S⊤
x µ = 0, S⊤

y µ = 1, (37a)

Ax = 0, Sxx+ Syy − ζ ≥ 0, µ ≥ 0, (37b)

µj [Sxx+ Syy − ζ]j = 0, j = 1, . . . , q. (37c)

6

For online/streaming learning, we also make the following

standard assumptions that the gradient estimates are unbiased

and have a bounded variance.

Assumption 3. The stochastic gradient estimate Gi(x, ξ)
satisfies

E[Gi(x, ξ)] = ∇fi(x) (38)

E[‖Gi(x, ξ)−∇fi(x)‖2] ≤ σ2, (39)

for all x, where σ > 0 is a constant, and the expectation E is

with respect to the random sample ξ ∼ Bi.
It is easy to check that the gradient estimate of the mini-

batch samples satisfies

E

[∥
∥
∥
∥

1

|I|

|I|
∑

j=1

Gi(x, ξj)−∇fi(x)
∥
∥
∥
∥

2]

≤ σ2/|I|. (40)

B. Convergence Analysis of SPPDM

We define the following term

Q(x,λ) =‖x− prox1r(x−∇f(x)−A⊤λ)‖2 + ‖Ax‖2 (41)

as the optimally gap for a primal-dual solution (x,λ) of prob-

lem (5). Obviously, one can shown that when Q(x⋆,λ⋆) = 0,

(x⋆,λ⋆) is a KKT solution of (5) which satisfies the conditions

in (37) together with some y⋆ and µ⋆. We define that (x⋆,λ⋆)
is an ǫ-stationary solution of (5) if Q(x⋆,λ⋆) < ǫ.

The convergence result is stated in the following theorem.

Theorem 1. Assume that Assumptions 1-3 hold true, and let

parameters satisfy

κ > −µ, γ > 3L, (42)

ηk ≤
√

κ+ 2c+ γ − 3L

2(γ − µ+ 3L)
:= η̄, (43)

moreover, let 0 < α ≤ c and β > 0 be both sufficiently

small (see (89) and (90)). Then, for a sequence {xk, zk,λk}
generated by Algorithm 1, it holds that

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ C0

(

φ0 − f

K
+
C1Nσ

2

|I|

)

,

(44)

where C0 and C1 are some positive constants depending on

the problem parameters (see (106) and (92)). In addition, φ0

is a constant defined in (73).

To prove Theorem 1, the key is to define a novel stochastic

potential function E[φk+1] in (73) and analyze the conditions

for which E[φk+1] descends monotonically with the iteration

number k (Lemma 6). To achieve the goal, several approx-

imation error bounds for the primal variable xk (Lemma 2)

and the dual variable λk (Lemma 4) are derived. Interested

readers may refer to Appendix B for the details.

By Theorem 1, we immediately obtain the following corol-

lary.

Corollary 1. Let

|I| ≥ 2NC0C1σ
2

ǫ
and K ≥

2C0(φ
0 − f)

ǫ
. (45)

Then,

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ ǫ, (46)

that is, an ǫ-stationary solution of problem (5) can be obtained

in an expected sense.

Remark 3. Given a mini-batch size |I| = Ω(1/ǫ), Corol-

lary 1 implies that the proposed SPPDM algorithm has the

convergence rate of O(1/ǫ) to obtain an ǫ-stationary solution.

As a result, the corresponding communication complexity of

the SPPDM algorithm is O(|E|/ǫ) while the computational

complexity is O(N |I|/ǫ) = O(N/ǫ2). As shown in Table

I, the communication complexity O(1/ǫ) of the SPPDM

algorithm is smaller than O(1/ǫ2) of D-PSGD [20], D2 [21],

GNSD [22] and R-SGD-M [27]. The STOC-ADMM [28] has

the same computation and communication complexity orders

as the SPPDM algorithm, but it is not applicable to (5).

C. Convergence Analysis of PPDM

When the full gradient ∇f(xk) is available for the PPDM

algorithm, one can deduce a similar convergence result.

Theorem 2. Assume Assumptions 1-2 and the same conditions

in (42), (43), (90) and (89) hold true.

• Every limit point of the sequence {xk, zk,λk} generated

by the PPDM algorithm is a KKT solution of (5).

• Given K ≥ C0(φ
0−f)
ǫ

, we have

min
k=0,...,K−1

Q(xk,λk+1) ≤ C0

(

φ0 − f

K

)

≤ ǫ.

The proof is presented in Appendix C..

To our knowledge, Theorem 1 and Theorem 2 are the first

results that show the O(1/ǫ) communication complexity of

the distributed primal-dual method with momentum for non-

convex and non-smooth problems. Numerical results in the

next section will demonstrate that the SPPDM and PPDM

algorithms can exhibit favorable convergence behavior than

the existing methods.

IV. NUMERICAL RESULTS

In this section, we examine the numerical performance of

the proposed SPPDM/PPDM algorithm and present compari-

son results with the existing methods.

A. Distributed Non-Convex Truncated Losses

We consider a linear regression model yj = hj
⊤x∗ + νj ,

j = 1, . . . ,M , where M is the number of data samples. Here

yj is the observed data sample and hj ∈ R
n is the input data;

x∗ ∈ R
n is the ground truth; νj is the additive random noise.

Let H := [h1, . . . , hM]⊤ = [H⊤
1 , . . . , H

⊤
N]⊤ ∈ R

M×n,

where each Hi ∈ R
m×n corresponds to the data matrix owned

by agent i which has m =M/N data points. The entries of H

7

are generated independently following the standard Gaussian

distribution. The ground truth x∗ is a S-sparse vector to be

estimated, whose non-zero entries are generated from the uni-

form distribution U [−1, 1]. The noise νj follows the Gaussian

distribution N (0, 4). Then the data samples yj , j = 1, . . . ,M ,

are generated by the above linear model.

Consider the following distributed regression problem with

a nonconvex truncated loss [29]

min
x∈[−1,1]

N∑

i=1

(
fi(x) + ςi‖x‖1

)
, (47)

where

fi(x) =
ρ

2Ni

Ni∑

j=1

log

(

1 +
‖yj − a⊤j x‖2

ρ

)

,

and ρ is a parameter to determine the truncation level. We

set m = 150, n = 256, S = 16, and ρ = 3. Moreover, we

consider a circle graph with N = 20 agents.

For the online setting, we compare the SPPDM algorithm

(Algorithm 1) with PSGD [23] and STOC-ADMM [28].

For the offline setting, we compare the PPDM algorithm

with Prox-DGD [11], PG-EXTRA [8], Prox-ADMM [17] and

STOC-ADMM [28]. Note that theoretically PG-EXTRA and

STOC-ADMM are not guaranteed to converge for the non-

convex problem (5). We implement these two methods simply

for comparison purpose.

For the PG-EXTRA, we choose the stepsize ℓ = 0.05
according to the sufficient condition suggested in [8]. Accord-

ing to their convergence conditions, the diminishing step size

ℓ = 1
3
√
k+100

is used for the PSGD and Prox-DGD. The primal

and dual stepsize for the STOC-ADMM is chosen according

to the convergence condition suggested in [28].

For PSGD, Prox-DGD and PG-EXTRA, the mixing matrix

follows the metropolis weight

[W]ij ,







1
max{di,dj}+1 , for (i, j) ∈ E ,
0, for (i, j) /∈ E and i 6= j.
1−∑j 6=i wij , for i = j

(48)

If not specified, the parameters of the SPPDM/PPDM and

the Prox-ADMM are given as α = 2, κ = 1, c = 2, γ = 3,

β = 0.91 For the proposed SPPDM, we consider two cases

about ηk, one is ηk = 0 without momentum, and the other is

based on the Nesterov’s extrapolation technique, i.e.,

ηk = θk−1−1
θk

, θk+1 =
1+

√
1+4θ2

k

2 ,

with θ−1 = θ0 = 1. When ηk = 0, we denote SPPDM as

SPPD.

1By analysis, the Hessian matrix for the function fi(x) is

1
Ni

∑Ni
j=1

ρhjh
T
j (ρ−‖hT

j x−yj‖
2)

(ρ+‖hT
j
x−yj‖

2)2
. It shows that the maximum eigenvalue

of this Hessian matrix is smaller than 1 (L < 1) with the given parameter.
Thus, the parameters of SPPDM/PPDM satisfy the conditions stated in
Theorem 1.

0 50 100 150 200
Communication round k

10−2

10−1

100

st
at

io
na

rit
y

er
ro

r

SPPD
SPPDM
PSGD
STOC-ADMM

0 50 100 150 200
Communication round k

10−5

10−4

10−3

10−2

10−1

100

101

102

co
ns

en
su

s e
rro

r

SPPD
SPPDM
PSGD
STOC-ADMM

Fig. 1. Comparison of proposed SPPDM with the PSGD and STOC-ADMM
in terms of stationarity and consensus error; the batch size is |I| = 100.

Define x̄ = 1
N

∑N
i=1 xi. The stationarity error and consen-

sus error are defined below

stationarity error = ‖x̄− proxr[x̄−∇f(x̄)]‖2,

consensus error =
1

N

N∑

i=1

‖xi − x̄‖2.

We run 10 independents trials for each algorithm with ran-

domly generated data and random initial values. The con-

vergence curves obtained by averaging over all 10 trials are

plotted in Figs. 1-3.

In Fig. 1, we observe that the SPPDM, SPPM and STOC-

ADMM all perform better than the PSGD in terms of stationar-

ity error and consensus error. The reason is that these methods

all use constant step sizes rather than the diminishing step size.

In addition, the proposed SPPDM has better performance than

SPPD and STOC-ADMM, due to the Nesterov momentum.

The impact of the mini-batch size |I|, and parameters γ
and c are analyzed in Fig. 2. One can see that the larger mini-

batch size we use, the smaller error we can achieve, which

corroborates Corollary 1. With the same mini-batch size, the

larger values of γ and c correspond to smaller primal and dual

step sizes. Thus, the SPPDM with larger values of γ and c has

slower convergence; whereas as seen from the figures, larger

values of γ and c can lead to smaller stationarity error and

consensus error.

For the offline setting, the comparison results of the pro-

posed PPDM with the existing methods are shown in Fig. 3.

It can be observed that the proposed PPDM enjoys the fastest

convergence. Compared with the Prox-ADMM, it is clear to

see the advantage of the PPDM with momentum for speeding

up the algorithm convergence.

B. Distributed Neural Network

In this simulation, our task is to classify handwritten digits

from the MNIST dataset. The local loss function fi(θi) in each

node is the cross-entropy function. In this example, we do not

consider nonsmooth term and inequality constraint set. Thus,

many existing methods, D-PSGD [20], D2 [21] and PR-SGD-

M [27] can be applied to train a classification DNN.

Assume the neural network contains one hidden layer with

500 neurons. The 6 × 104 training samples are divided into

10 subsets and assigned to the N = 10 agents in two ways.

8

0 50 100 150 200
Communication round k

10−2

10−1

100

st
at

io
na

rit
y

er
ro

r

||=100,c=2,γ=3
||=10,c=2,γ=3
||=100,c=3,γ=6
||=10,c=3,γ=6

0 50 100 150 200
Communication round k

10−5

10−4

10−3

10−2

10−1

100

101

102

co
ns

en
su

 e
rro

r

||=100,c=2,γ=3
||=10,c=2,γ=3
||=100,c=3,γ=6
||=10,c=3,γ=6

Fig. 2. Comparison of the proposed SPPDM with different parameters in
terms of stationarity and consensus error.

0 50 100 150 200
Communication round k

10−2

10−1

100

s
a

io
na

ri
y

er
ro

r

Prox-ADMM
PPDM
Prox-DGD
PG-EXTRA
STOC-ADMM

0 50 100 150 200
Communication round k

10−18

10−15

10−12

10−9

10−6

10−3

100

103

co
ns

en
su

s e
rro

r

Prox-ADMM
PPDM
Prox-DGD
PG-EXTRA
STOC-ADMM

Fig. 3. Comparison of proposed PPDM with the existing methods in terms
of stationarity and consensus error.

The first is the IID case, where the samples are sufficiently

shuffled, and then partitioned into 10 subsets with equal size

(m = 6000). The second is the Non-IID case, where we first

sort the samples according to their labels, divide it into 20

shards of size 3000, and assign each of 10 agents 2 shards.

Thus most agents have samples of two digits only.

The communication graph is also a circle. We compare the

SPPDM with the D-PSGD [20], D2 [21] and PR-SGD-M [27].

The same mixing matrix in (48) is used for the three methods.

Moreover, a fixed step size of ℓ = 0.05 is used to ensure the

convergence of these three methods in the simulation. For the

proposed SPPDM, we set parameter c = 1, γ = 3, α = 0.001,

κ = 0.1, β = 0.9, and ηk = 0.8. The batch size is |I| = 128.

We calculate the loss value and the classification accuracy

based on the average model θ̄ = 1/N
∑N

i=1 θi. Fig. 4 and

Fig. 5 show the training loss and the classification accuracy

for the IID case and Non-IID case by averaging over all

5 trials, respectively. From Fig. 4, we see that D2 and D-

PSGD have a similar performance; meanwhile, the proposed

SPPD performs better than these two methods. Besides, one

can see that SPPDM and PR-SGD-M enjoy fast decreasing of

the loss function and increasing of the classification accuracy,

respectively. The reason is that both SPPDM and PR-SGD-

M use the momentum technique. We should point out that

the communication overhead of PR-SGD-M is twice of the

SPPDM since the PR-SGD-M requires the agents to exchange

not only the variable xi but also the momentum variables.

Lastly, comparing the SPPDM with SPPD, it shows again

that the momentum techniques can accelerate the algorithm

convergence.

From Fig. 5 for the non-IID case, we can observe that

0 20 40 60 80 100
Communication round k

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

SPPD
SPPDM
D-PSGD
PR-SGD-M
D2

0 20 40 60 80 100
Communication round k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SPPD
SPPDM
D-PSGD
PR-SGD-M
D2

Fig. 4. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the IID case.

0 20 40 60 80 100
Communication round k

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

SPPD
SPPDM
D-PSGD
PR-SGD-M
D2

0 20 40 60 80 100
Communication round k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SPPD
SPPDM
D-PSGD
PR-SGD-M
D2

Fig. 5. Comparison of proposed SPPDM/SPPD algorithms with different
methods under the Non-IID case.

the D2 performs better than D-PSGD and SPPD. In fact, by

comparing the curves in Fig. 4 with those in Fig. 5, one can

see that the convergence curve of D2 remains almost the same

due to the use of the variance reduction technique whereas

D-PSGD and SPPD deteriorate under the non-IID setting. As

seen, the convergence of SPPDM is also slowed, but it still

performs best among the methods under test.

V. CONCLUSION

In this paper, we have proposed a distributed stochastic

proximal primal-dual algorithm with momentum for mini-

mizing a non-convex and non-smooth function (5) over a

connected multi-agent network. We have shown (in Remark

1 and Remark 2) that the proposed algorithm has a close

connection with some of the existing algorithms that are for

convex and smooth problems, and therefore can be regarded as

an enhanced counterpart of these existing algorithms. Theoret-

ically, under Assumptions 1-3, we have built the convergence

conditions of the proposed algorithms in Theorem 1 and

Theorem 2. In particular, we have shown that the proposed

SPPDM can achieve an ǫ-stationary solution with O(1/ǫ2)
computational complexity and O(1/ǫ) communication com-

plexity, where the latter is better than many of the existing

methods which have O(1/ǫ2) communication complexity (see

Table 1). Experimental results have demonstrated that the

proposed algorithms with momentum can effectively speed up

the convergence. For distributed learning under non-IID data

distribution (Fig. 5), we have also shown the proposed SPPDM

performs better than the existing methods.

As future research directions, one may further relax As-

sumption 3 to accommodate a larger class of regularization

functions. Besides, it will be also interesting to investigate the

trade-off between the communication complexity (as measured

9

by the number of bits exchanged) and the convergence. More-

over, we will analytically investigate how data distribution

affect the algorithm convergence and improve the robustness

of the algorithms against to unbalanced and non-IID data

distribution in the future.

APPENDIX A

DERIVATION OF (16)

When we remove the non-smooth regularization term r(x),
the proximal gradient update can be removed. Assume β = 1,

then (27) can be written as

xk+1 = Ψ−1
(
γsk + cB⊤Bxk + κxk −∇f(sk)−A⊤λk+1

)

= Ψ−1
(
W̃sk −Ψ−1∇f(sk) +Ck

)
,

where

W̃ = cΨ−1B⊤B+ (γ + κ)Ψ−1, (49)

Ck = Ψ−1(cB⊤B(xk − sk) + κ(xk − sk))−Ψ−1A⊤λk+1.
(50)

Using the definition of Ũ = cΨ−1B⊤B in (13), we rewrite

(49) as

W̃ = Ũ+Ψ−1(γ + κ)I.

According the definition of Ψ = (γ+ κ)I+ c(A⊤A+BTB)
and c = α, we have

I− W̃ = Ψ−1Ψ− W̃ = αΨ−1A⊤A. (51)

Based on

A⊤λk+1 = pk+1 = pk + αA⊤Axk, (52)

if p0 = 0, and applying (51), we obtain

Ψ−1A⊤λk+1 =

k∑

t=0

αΨ−1A⊤Axt =

k∑

t=0

(I− W̃)xt.

By substituting the above equality into (50), we obtain (16).

APPENDIX B

PROOF OF THEOREM 1

Let us recapitulate the augmented Lagrange function in (20)

below

Lc(x, z;λ) =f(x) + r(x) + 〈λ,Ax〉
+
c

2
‖Ax‖2 + κ

2
‖x− z‖2. (53)

We introduce some auxiliary functions as follows

d(z;λ) = min
x
Lc(x, z;λ) (54)

x(z;λ) = argmin
x

Lc(x, z;λ) (55)

P (z) = min
Ax=0

f(x) + r(x) +
κ

2
‖x− z‖2 (56)

x(z) = argmin
Ax=0

f(x) + r(x) +
κ

2
‖x− z‖2. (57)

Besides, we define the full gradient iterate x̂k+1 and ẑk+1,

x̂k+1 := argmin
x

g(x,wk;λk+1) (58)

ẑk+1 := zk + β(x̂k+1 − zk), (59)

where wk = [xk, sk, zk] and

g(x,wk;λk+1)

= f(sk) + 〈∇f(sk),x − sk〉+ γ

2
‖x− sk‖2 + r(x)

+ 〈λk+1,Ax〉+ c

2
‖Ax‖2 + c

2
‖x− xk‖2B⊤B +

κ

2
‖x− zk‖2.

(60)

We also define

g(x,wk, ξk;λk+1) := g(x,xk, sk, zk, ξk;λk+1)

for (26) at our disposal.

A. Some Error Bounds

Firstly, we show the upper bound between xk+1 and x̂k+1.

Lemma 1. Suppose Assumption 3 holds, we have

E[‖xk+1 − x̂k+1‖2] ≤ Nσ2

(γ + 2c+ κ)2|I| . (61)

Proof. According to (38)-(39) in Assumption 3, we know

E

[∥
∥

1

|I|

|I|
∑

j=1

G(sk, ξkj)−∇f(x)
∥
∥
2
]

≤ N

|I|σ
2. (62)

In addition, like (27), the proximity form of (58) is

x̂k+1 = proxΨr

(

Ψ−1
(
γsk + cB⊤Bxk + κzk

−∇f(sk)−A⊤λk+1
))

. (63)

Using (27), (62)-(63) and applying the nonexpansive property

of the proximal operator (see for example [30, p. 340]) we

then obtain (61).

Lemma 2. Suppose κ > −µ. There exists some positive

constants σ1, σ2 such that the following primal error bound

holds

‖xk − x(zk;λk+1)‖ ≤ σ1‖xk − x̂k+1‖+ σ2‖xk − sk‖. (64)

Proof. Based on κ > −µ, we know that Lc in (53) is strongly

convex in x with modulus κ+ µ and Lipschitz constant κ+
L+ cσ2

A, where σA is the spectral norm of the matrix. Thus,

we can apply [31, Theorem 3.1] to upper bound the distance

between xk and the optimal solution x(zk;λk+1)

‖xk − x(zk;λk+1)‖ ≤ ̺‖∇̃xLc(x
k, zk;λk+1)‖, (65)

where ̺ =
κ+L+cσ2

A+1
κ+µ and

∇̃xLc(x, z;λ) = x− proxΨr (x−∇x(Lc(x, z;λ)− r(x)))

is known as the proximal gradient.

10

We can bound ‖∇̃xLc(x
k, zk;λk+1)‖ as follows

‖∇̃xLc(x
k, zk;λk+1)‖

= ‖xk − proxΨr (x
k −∇x(Lc(x

k, zk;λk+1)− r(xk)))‖
≤ ‖xk − x̂k+1‖
+ ‖x̂k+1 − proxΨr (x

k −∇x(Lc(x
k, zk;λk+1)− r(xk)))‖

= ‖xk − x̂k+1‖
+
∥
∥
∥proxΨr (x̂

k+1 −∇x(g(x̂
k+1,wk;λk+1)− r(x̂k+1)))

− proxΨr (x
k −∇x(Lc(x

k, zk;λk+1)− r(xk)))
∥
∥
∥

≤ (2 + 2cdmax + γ + κ)‖xk − x̂k+1‖+ (γ + L)‖xk − sk‖,
where dmax = max{d1, . . . , dN}; the second equality is

obtained by using the optimality condition of x̂k+1 in (58), and

the second inequality is based on the nonexpansive property

of the proximal operator. Denote

σ1 = ̺(2 + 2cdmax + γ + κ), (66)

σ2 = γ + L. (67)

The proof is complete.

Lemma 3. (Lemma 3.2 in [17]) Suppose κ > −µ, and

Assumption 1 holds. There exists some positive constants

σ3, σ4 such that the following error bounds hold

‖λ1 − λ2‖ ≥ σ3‖x(z;λ1)− x(z;λ2)‖ (68)

‖z1 − z2‖ ≥ σ4‖x(z1;λ)− x(z2;λ)‖, (69)

where

σ3 = (κ+ µ)/σA (70)

σ4 = (κ+ µ)/κ. (71)

Lemma 4. Suppose that Assumptions 1-2 hold and κ > µ.

Then, there exist some positive scalars σ5, ∆ such that the

following dual error bound holds

‖x(z,λ)− x(z)‖ ≤ σ5‖Ax(z;λ)‖, for any z, λ. (72)

where σ5 depends only on the constants L, κ, σA, µ and the

matrices A,Sx,Sy .

Proof. The lemma is an extension of [18, Lemma 3.2], where

the non-smooth term r(x) of (5) is limited to an indicator

function of a polyhedral set. Due to limited space, the proof

details are relegated to the supplementary document [32].

B. Decent Lemmas

In order to show the convergence of Algorithm 1, we

consider a new potential function,

E[φk+1] , E[Lc(x
k+1, zk+1;λk+1) + τ‖xk+1 − xk‖2]

+ E[2P (zk+1)− 2d(zk+1;λk+1)], (73)

for some τ > 0. By the weak duality, we have

Lc(x, z;λ) ≥ d(z;λ), P (z) ≥ d(z;λ). (74)

Thus, we have E[φk] ≥ E[P (zk)]. According to the definition

of P (zk) in (56) and Assumption 1 (ii), we obtain P (zk) ≥ f .

As a result, E[φk] is bounded below by f .

Lemma 5. For a sequence {xk, zk,λk} generated by Algo-

rithm 1, if κ > −µ, γ > 3L, 0 < β < 1 and

0 ≤ ηk ≤
√

κ+ 2c+ γ − 3L

2(γ − µ+ 3L)
:= η̄, (75)

there exit some positive constants τ , σ̂1 and σ̂2 such that

σ̂1 ,
κ+ 2c+ γ − 3L

2
− 2τ ≥ 0 (76)

σ̂2 ,
µ− γ − 3L

2
η̄2 + τ ≥ 0, (77)

then

E[Lc(x
k, zk;λk) + τ‖xk − xk−1‖2]

− E[Lc(x
k+1, zk+1;λk+1)− τ‖xk+1 − xk‖2]

≥ −αE[‖Axk‖2] + κ

2β
E[‖zk − zk+1‖2]

+ σ̂1E[‖xk − x̂k+1‖2] + σ̂2E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (78)

Proof. Firstly, according to (20) and (22), we have

E[Lc(x
k, zk;λk)− Lc(x

k, zk;λk+1)] = −αE[‖Axk‖2]. (79)

Secondly, we have

E[Lc(x
k, zk;λk+1)− Lc(x

k+1, zk;λk+1)]

= E[Lc(x
k, zk;λk+1)− g(xk,wk;λk+1)]

+ E[g(xk,wkλk+1)− g(x̂k+1,wk;λk+1)]

+ E[g(x̂k+1,wk;λk+1)− g(xk+1,wk, ξk;λk+1)]

+ E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]. (80)

Next, we bound each of the terms in the right hand side of

(80). Based on the definition of function g in (60), we have

E[Lc(x
k, zk;λk+1)− g(xk,wk;λk+1)]

= E[f(xk)− f(sk)− 〈∇f(sk),xk − sk〉 − γ

2
‖xk − sk‖2]

≥ µ− γ

2
E[‖xk − sk‖2], (81)

where the inequality comes from (34) in Assumption 1.

Using the strongly convexity of the objective function g (with

modulus κ + 2c + γ) and the definition of x̂k+1 in (58), we

can obtain

E[g(xk,wk;λk+1)− g(x̂k+1,wk;λk+1)]

≥ κ+ 2c+ γ

2
E[‖xk − x̂k+1‖2]. (82)

In addition, we have

E[g(x̂k+1,wk;λk+1)− g(xk+1,wk, ξk;λk+1)]

= E[g(x̂k+1,wk, ξk;λk+1)− g(xk+1,wk, ξk;λk+1)]

≥ 0, (83)

11

where the first equality dues to (38) in Assumption 3, and the

above inequality dues to xk+1 is the optimal solution in (24).

Lastly, we can bound

E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]

= E[f(sk)] +
1

|I|

|I|
∑

j=1

E[〈G(sk, ξkj),xk+1 − sk〉]

+ E

[γ

2
‖xk+1 − sk‖2] + c

2
‖xk+1 − xk‖2B⊤B − f(xk+1)

]

≥ 1

|I|

|I|
∑

j=1

E[〈G(sk, ξkj)−∇f(sk),xk+1 − sk〉]

+
γ − L

2
E[‖xk+1 − sk‖2] + c

2
E[‖xk+1 − xk‖2B⊤B]

≥ − Nσ2

2γ|I| −
L

2
E[‖xk+1 − sk‖2], (84)

where the first inequality is obtained by applying the descent

lemma [33, Lemma1.2.3]

f(xk+1) ≤ f(sk) + 〈∇f(sk),xk+1 − sk〉+ L

2
‖xk+1 − sk‖2

owing to gradient Lipschitz continuity in (33); the second

inequality holds by using the Young’s inequality a⊤b ≥
− ‖a‖2

2γ − γ‖b‖2

2 and (39) in Assumption 3. Using the convexity

of the operator ‖ · ‖2, we have

‖xk+1 − sk‖2 ≤3‖xk+1 − x̂k+1‖2 + 3‖x̂k+1 − xk‖2

+ 3‖xk − sk‖2. (85)

Substituting (61) and (85) into (84) gives rise to

E[g(xk+1,wk, ξk;λk+1)− Lc(x
k+1, zk;λk+1)]

≥ −
(

1

2γ
+

3L

2(γ + 2c+ κ)2

)
Nσ2

|I|
− 3L

2
E[‖x̂k+1 − xk‖2]− 3L

2
E[‖sk − xk‖2]. (86)

By further substituting (81)-(83) and (86) into (80), we obtain

E[Lc(x
k, zk;λk+1) + τ‖xk − xk−1‖2

− Lc(x
k+1, zk;λk+1)− τ‖xk+1 − xk‖2]

≥ µ− γ

2
E[‖xk − sk‖2] + κ+ 2c+ γ

2
E[‖xk − x̂k+1‖2]

− 3L

2
E[‖x̂k+1 − xk‖2]− 3L

2
E[‖sk − xk‖2]

−
(

1

2γ
+

3L

2(γ + 2c+ κ)2

)
σ2

|I| + τE[‖xk − xk−1‖2]

− 2τE[‖xk+1 − x̂k+1‖2]− 2τE[‖x̂k+1 − xk‖2]
= σ̂1E[‖xk − x̂k+1‖2] + σ̂2E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| , (87)

where σ̂1 and σ̂2 are defined in (76) and (77), respectively,

and the equality is obtained by applying (23).

Thirdly, according to the definition of the z update in (25),

we have

E[Lc(x
k+1, zk;λk+1)− Lc(x

k+1, zk+1;λk+1)]

≥ κ

2β
(2− β)E[‖zk − zk+1‖2]

≥ κ

2β
E[‖zk − zk+1‖2], (88)

where the last inequality is due to 0 < β < 1. By combining

(79), (87) and (88), we obtain (78). Besides, (76) and (77)

implies (75).

Lemma 6. Under Assumptions 1-3, if κ > −µ, γ > 3L, ηk
is a constant satisfies the condition (43), and

0 < α ≤ min

{
σ̂1

4σAσ2
1

,
σ̂2

4σ2
Aσ

2
2η

2
k

, c

}

, (89)

0 < β < min

{
α

12κσ2
5

,
σ4
36
, 1

}

, (90)

where σ1, σ2, σ4 and σ5 are constants denoted in (66) and

(67), (71) and (72), respectively. Then we have

E[φk − φk+1]

≥ κ(1− β)β

4
E[‖x̂k+1 − zk‖2] + α

2
E[‖Ax(zk,λk+1)‖2]

+
σ̂1
2
E[‖xk − x̂k+1‖2] + σ̂2

2
E[‖xk − xk−1‖2]− C1Nσ

2

|I| ,

(91)

where x̂k+1 and ẑk+1 are defined in (58) and (59), and

C1 =

(
1

2γ
+

6L+ 8τ + κ(1− β)

4(γ + 2c+ κ)2

)

. (92)

Proof. From the definition of d(z;λ) in (54), we have

E[d(zk;λk+1)− d(zk;λk)]

= E[Lc(x(z
k;λk+1), zk;λk+1)− Lc(x(z

k;λk), zk;λk)]

≥ E[Lc(x(z
k;λk+1), zk;λk+1)− Lc(x(z

k;λk+1), zk;λk)]

= αE[〈Axk ,Ax(zk,λk+1)〉],

where the inequality is due to x(zk;λk) =
argminx Lc(x, z

k;λk) and the second equality comes

from the iterates in (22). Using a similar technique, we have

E[d(zk+1 ;λk+1)− d(zk;λk+1)]

≥ κ

2
E[(zk+1 − zk)⊤(zk+1 + zk − 2x(zk+1,λk+1))].

Combing the above two inequalities, we know

E[d(zk+1 ;λk+1)− d(zk;λk)]

≥ αE[〈Axk ,Ax(zk,λk+1)〉] (93)

+
κ

2
E[(zk+1 − zk)⊤(zk+1 + zk − 2x(zk+1,λk+1))].

Based on Danskin’s theorem [34, Proposition B.25] in

convex analysis and P (z) defined in (56) with κ > −µ, we

can have

∇P (zk) = κ(zk − x(zk)).

12

Thus, it shows

‖∇P (zk)−∇P (zk+1)‖
≤ κ‖zk − zk+1‖+ κ‖x(zk+1)− x(zk)‖
≤ κσ̃4‖zk+1 − zk‖,

where σ̃4 = 1+σ−1
4 and the final inequality is due to Lemma 3.

The above inequality shows the gradient of P (zk) is Lipschitz

continuous, which therefore it satisfies the descent lemma

E[P (zk+1)− P (zk)] (94)

≤ E[κ(zk+1 − zk)⊤(zk − x(zk))] +
κσ̃4
2

E[‖zk+1 − zk‖2].

By combining (93), (94) and (78), we obtain

E[φk − φk+1]

≥ −αE[‖Axk‖2] + κ

2β
E[‖zk − zk+1‖2]

+ σ̂1E[‖xk − x̂k+1‖2]− 2E[κ(zk+1 − zk)⊤(zk − x(zk))]

+ σ̂2E[‖xk − xk−1‖2]−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I|
− κσ̃4E[‖zk+1 − zk‖2] + 2αE[〈Axk ,Ax(zk,λk+1)〉]
+ κE[(zk+1 − zk)⊤(zk+1 + zk − 2x(zk+1,λk+1))]

= αE[‖Ax(zk,λk+1)‖2]− αE[‖A(xk − x(zk,λk+1))‖2]
+ σ̂1E[‖xk − x̂k+1‖2] + (

κ

2β
+ κ− κσ̃4)E[‖zk+1 − zk‖2]

+ 2κE[(zk+1 − zk)⊤(x(zk)− x(zk+1;λk+1))]

+ σ̂2E[‖xk − xk−1‖2]−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| ,
(95)

where the equality comes from completing the square

E[‖A(xk − x(zk,λk+1))‖2]
= E[‖Axk‖2 − 2〈Axk,Avx(zk,λk+1) + ‖Ax(zk,λk+1)‖2〉].

We further bound the right-hand-side terms of (95). By

using the Young’s inequality, we have

2(zk+1 − zk)⊤(x(zk)− x(zk;λk+1))

≥ −‖zk+1 − zk‖2
6β

− 6β‖x(zk)− x(zk;λk+1)‖2

≥ −‖zk+1 − zk‖2
6β

− 6βσ2
5‖Ax(z;λ)‖2, (96)

where the lase inequality dues to (72) in Lemma 4. Besides,

using the error bound (69) in Lemma 3, we have

(zk+1 − zk)⊤(x(zk;λk+1)− x(zk+1;λk+1))

≥ −‖zk+1 − zk‖‖x(zk;λk+1)− x(zk+1;λk+1)‖

≥ − 1

σ4
‖zk+1 − zk‖2. (97)

Also, based on the error bound (64) in Lemma 2, we obtain

‖A(xk − x(zk,λk+1))‖2

≤ 2σ2
Aσ

2
1‖xk − x̂k+1‖2 + 2σ2

Aσ
2
2‖xk − sk‖2. (98)

By substituting (96), (97) and (98) into (95), we therefore

obtain

E[φk − φk+1]

≥ (α− 6κβσ2
5)E[‖Ax(zk,λk+1)‖2]

+ (
κ

2β
+ κ− κσ̃5 −

κ

6β
− 2κ

σ4
)E[‖zk+1 − zk‖2]

+
(
σ̂1 − 2ασ2

Aσ
2
1

)
E[‖xk − x̂k+1‖2]

+ (σ̂2 − 2ασ2
Aσ

2
2η

2
k)E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (99)

From (90), we know β < σ4

36 . By recalling σ̃4 = 1+ σ−1
4 , we

have

κ

2β
+ κ− κσ̃4 −

κ

6β
− 2κ

σ4
≥ κ

4β
.

As β < α
12κσ2

5

by (90), we have

α− 6κβσ2
5 ≥ α

2
.

Similarly, based on (89), we have

σ̂1 − 2ασ2
Aσ

2
1 ≥ σ̂1

2
, σ̂2 − 2ασ2

Aσ
2
2η

2
k ≥ σ̂2

2
.

Thus, it follows from (99) that

E[φk − φk+1]

≥ κ

4β
E[‖zk+1 − zk‖2] + α

2
E[‖Ax(zk,λk+1)‖2]

+
σ̂1
2
E[‖xk − x̂k+1‖2] + σ̂2

2
E[‖xk − xk−1‖2]

−
(

1

2γ
+

3L+ 4τ

2(γ + 2c+ κ)2

)
Nσ2

|I| . (100)

Note that by using the definition of ẑk+1 in (59) and by (25),

we have

ẑk+1 = zk+1 + β(x̂k+1 − xk+1). (101)

Thus, we can bound E[‖zk+1 − zk‖2] as

E[‖zk+1 − zk‖2]

≥ (1− 1

β
)E[‖zk+1 − ẑk+1‖2] + (1 − β)E[‖ẑk+1 − zk‖2]

= β(β − 1)E[‖xk+1 − x̂k+1‖2] + (1− β)E[‖ẑk+1 − zk‖2]

≥ β(β − 1)

(γ + 2c+ κ)2
Nσ2

|I| + (1 − β)β2
E[‖x̂k+1 − zk‖2],

where the last inequality comes from (61) and (59). By

substituting the above inequality (100), we obtain (91).

13

C. Proof of Theorem 1

We are ready to prove Theorem 1. By summing (91) for

k = 0, 1, . . . ,K − 1, we obtain

E[φ0 − φK]

≥ κ(1− β)β

4

K−1∑

k=0

E[‖x̂k+1 − zk‖2]−K
C1Nσ

2

|I|

+
α

2

K−1∑

k=0

E[‖Ax(zk,λk+1)‖2] + σ̂1
2

K−1∑

k=0

E[‖xk − x̂k+1‖2]

+
σ̂2
2

K−1∑

k=0

E[‖xk − xk−1‖2]. (102)

Recall the definition of Q(x,λ) in (41)

Q(x,λ) =‖x− prox1r(x−∇f(x) −A⊤λ)‖2 + ‖Ax‖2.
(103)

To obtain the desired result, we first consider

E[‖xk − prox1r(x
k −∇xf(x

k)−A⊤λk+1)‖2]
≤ 2E[‖xk − x̂k+1‖2] (104)

+ 2E[‖x̂k+1 − prox1r(x
k −∇xf(x

k)−A⊤λk+1)‖2]
where the inequality dues to ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2. Notice

E[‖x̂k+1 − prox1r(x
k −∇xf(x

k)−A⊤λk+1)‖2]
= E[‖prox1r(x̂

k+1 −∇xg(x̂
k+1,wk;λk+1))

− prox1r(x
k −∇xf(x

k)−A⊤λk+1)‖2]
≤ E[‖x̂k+1 − xk −∇xg(x̂

k+1,wk;λk+1)

+∇xf(x
k) +A⊤λk+1‖2]

≤ 2E[‖x̂k+1 − xk‖2]
+ 2E[‖∇xg(x̂

k+1,wk;λk+1)−∇xf(x
k)−A⊤λk+1‖2],

= 2E[‖x̂k+1 − xk‖2] + 2E[‖∇xf(s
k)−∇xf(x

k)

+ γ(x̂k+1 − sk) + cD(x̂k+1 − xk) + cATAxk

+ κ(x̂k+1 − zk)‖2]
≤ 2E[‖x̂k+1 − xk‖2] + 10E[‖∇xf(s

k)−∇xf(x
k)‖2

+ ‖γ(x̂k+1 − sk)‖2 + ‖cD(x̂k+1 − xk)‖2 + ‖cATAxk‖2

+ ‖κ(x̂k+1 − zk)‖2]
≤ (2 + 10c2d2max + 20γ2)E[‖x̂k+1 − xk‖2] + 10c2σ2

AE[‖Axk‖2]
+ (10L2 + 20γ2)E[‖xk − sk‖2] + 10κ2E[‖x̂k+1 − zk‖2],

where dmax is the largest value of matrix D, the first equal-

ity is due to the optimal condition for (58), i.e., x̂k+1 =
prox1r(x̂

k+1 − ∇xg(x̂
k+1,wk;λk+1); the first inequality is

owing to the nonexpansive property of the proximal operator;

the second inequality dues to ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2; the

second equality is obtained by the definition of function g in

(60); the last inequality dues to the L-smooth in (33).

Next, we show the upper bound for ‖Axk‖ as

E[‖Axk‖2]
≤ 2E[‖Ax(zk,λk+1)‖2] + 2σ2

AE[‖xk − x(zk,λk+1)‖2]
≤ 2E[‖Ax(zk,λk+1)‖2] + 4σ2

Aσ
2
1E[‖xk − x̂k+1‖2]

+ 4σ2
Aσ

2
2E[‖xk − sk‖2], (105)

where the last inequality comes from Lemma 2. Now, we con-

sider the upper bound of (103). Using the above inequalities

(104)-(105), we can obtain

min
k=0,...,K−1

E[Q(xk,λk+1)]

≤ 1

K

K−1∑

k=0

E[‖xk − prox1r(x
k −∇xf(x

k)−A⊤λk+1)‖2]

+
1

K

K−1∑

k=0

E[‖Axk‖2]

≤ K1

K

K−1∑

k=0

E[‖xk − x̂k+1‖2 + K2

K

K−1∑

k=0

‖xk − xk−1‖2]

+
K3

K

K−1∑

k=0

E[‖x̂k+1 − zk‖2] + K4

K

K−1∑

k=0

E[‖Ax(zk,λk+1)‖2].

where

K1 = 6 + 40γ + 20c2d2max + 4(20c2σ2
A + 1)σ2

Aσ
2
1 ,

K2 = (20L2 + 20γ2)η̄2 + 4(20c2σ2
A + 1)σ2

Aσ
2
2 η̄

2,

K3 = 20κ2, K4 = 2(20c2σ2
A + 1).

Further applying (102), we have

min
k=0,...,K−1

E[Q(xk,λk+1)] ≤ C0

(
E[φ0 − φK]

K
+
C1Nσ

2

|I|

)

≤ C0

(

φ0 − f

K
+
C1Nσ

2

|I|

)

,

where f is the lower bound of φ and C0 is defined as follows,

C0 ,
2K1

σ̂1
+
K2

σ̂2
+

4K3β

κ(1− β)
+

2K4

α
, (106)

APPENDIX C

PROOF OF THEOREM 2

Proof. If we know the full gradient ∇f(xk), i.e., G(xk, ξk) =
∇f(xk), then σ2 = 0. Substituting it into (91), we have

φk − φk+1

≥ κ(1− β)β

4
‖x̂k+1 − zk‖2 + α

2
‖Ax(zk,λk+1)‖2

+
σ̂1
2
‖xk − x̂k+1‖2 + σ̂2

2
‖xk − xk−1‖2 ≥ 0.

Thus φk is monotonically decreasing and it has lower bound

f . This implies that

max{‖xk − x̂k+1‖, ‖zk − x̂k+1‖, ‖Ax(zk;λk+1)‖} → 0.

Thus, according to [18, Theorem 2.4], every limit point

generated by PPDM algorithm is a KKT point of problem

(5). In addition, substituting σ2 = 0 into (44) and picking

K ≥ C0(φ
0−f)
ǫ

, we have

min
k=0,...,K−1

Q(xk,λk+1) ≤ C0

(

φ0 − f

K

)

≤ ǫ.

Therefore, the proof is completed.

14

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex
environments–Part I: Agreement at a linear rate,” arXiv preprint

arXiv:1907.01848, 2019.
[4] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-

mization via inexact consensus ADMM,” IEEE Transactions on Signal

Processing, vol. 63, no. 2, pp. 482–497, 2015.
[5] T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, and S. Lu, “Distributed

learning in the non-convex world: From batch to streaming data, and
beyond,” IEEE Signal Processing Magazine, vol. 37, pp. 26–38, 2020.

[6] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[7] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on

Optimization, vol. 25, no. 2, pp. 944–966, 2015.
[8] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algorithm

for decentralized composite optimization,” IEEE Transactions on Signal

Processing, vol. 63, no. 22, pp. 6013–6023, 2015.
[9] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear

convergence of the ADMM in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[10] S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed, “Decentralized
proximal gradient algorithms with linear convergence rates,” arXiv
preprint arXiv:1909.06479, 2019.

[11] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,”
IEEE Transactions on Signal Processing, vol. 66, no. 11, pp. 2834–
2848, 2018.

[12] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, 2016.

[13] G. Scutari and Y. Sun, “Parallel and distributed successive convex
approximation methods for big-data optimization,” in Multi-agent Opti-
mization, pp. 141–308, Springer, 2018.

[14] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization
over time-varying digraphs,” Mathematical Programming, vol. 176,
no. 1-2, pp. 497–544, 2019.

[15] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in Proceedings of the 34th International

Conference on Machine Learning, pp. 1529–1538, JMLR, 2017.
[16] H. Sun and M. Hong, “Distributed non-convex first-order optimization

and information processing: Lower complexity bounds and rate optimal
algorithms,” IEEE Transactions on Signal Processing, vol. 67, no. 22,
pp. 5912–5928, 2019.

[17] J. Zhang and Z.-Q. Luo, “A proximal alternating direction method of
multiplier for linearly constrained nonconvex minimization,” Accepted

for publication in SIAM Journal on Optimization, 2020.
[18] J. Zhang and Z. Luo, “A global dual error bound and its application

to the analysis of linearly constrained nonconvex optimization,” arXiv
preprint arXiv:2006.16440, 2020.

[19] M. Hong and T.-H. Chang, “Stochastic proximal gradient consensus over
random networks,” IEEE Transactions on Signal Processing, vol. 65,
no. 11, pp. 2933–2948, 2017.

[20] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in

Neural Information Processing Systems, pp. 5330–5340, 2017.

[21] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” arXiv preprint arXiv:1803.07068,
2018.

[22] S. Lu, X. Zhang, H. Sun, and M. Hong, “GNSD: A gradient-tracking
based nonconvex stochastic algorithm for decentralized optimization,” in
2019 IEEE Data Science Workshop, DSW 2019, pp. 315–321, Institute
of Electrical and Electronics Engineers Inc., 2019.

[23] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE Trans-

actions on Automatic Control, vol. 58, no. 2, pp. 391–405, 2012.

[24] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, 2014.

[25] H. Li, C. Fang, W. Yin, and Z. Lin, “A sharp convergence rate
analysis for distributed accelerated gradient methods,” arXiv preprint

arXiv:1810.01053, 2018.
[26] Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang, “A unified analysis

of stochastic momentum methods for deep learning,” arXiv preprint

arXiv:1808.10396, 2018.
[27] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of

communication efficient momentum SGD for distributed non-convex
optimization,” in Proceedings of the 36th International Conference on

Machine Learning, 2019.
[28] F. Huang and S. Chen, “Mini-batch stochastic ADMMs for nonconvex

nonsmooth optimization,” arXiv preprint arXiv:1802.03284, 2018.
[29] Y. Xu, S. Zhu, S. Yang, C. Zhang, R. Jin, and T. Yang, “Learning with

non-convex truncated losses by SGD,” arXiv preprint arXiv:1805.07880,
2018.

[30] R. T. Rockafellar, Convex Analysis. Princeton University
Press,Princeton, NJ, 1970.

[31] J.-S. Pang, “A posteriori error bounds for the linearly-constrained
variational inequality problem,” Mathematics of Operations Research,
vol. 12, no. 3, pp. 474–484, 1987.

[32] Z. Wang, J. Zhang, T.-H. Chang, J. Li, and Z.-Q. Luo,
“Supplementary material for distributed consensus optimization
with momentum for nonconvex nonsmooth problems,”
https://www.researchgate.net/publication/343418255, 2020.

[33] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course. Kluwer Academic,Dordrecht, 2004.
[34] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

http://arxiv.org/abs/1907.01848
http://arxiv.org/abs/1909.06479
http://arxiv.org/abs/2006.16440
http://arxiv.org/abs/1803.07068
http://arxiv.org/abs/1810.01053
http://arxiv.org/abs/1808.10396
http://arxiv.org/abs/1802.03284
http://arxiv.org/abs/1805.07880

	I Introduction
	II Algorithm Development
	II-A Network Model and Consensus Formulation
	II-B Proposed SPPDM and PPDM Algorithm
	II-C Algorithm Development

	III Convergence Analysis
	III-A Assumptions
	III-B Convergence Analysis of SPPDM
	III-C Convergence Analysis of PPDM

	IV Numerical Results
	IV-A Distributed Non-Convex Truncated Losses
	IV-B Distributed Neural Network

	V Conclusion
	Appendix A: Derivation of (16)
	Appendix B: Proof of Theorem 1
	B-A Some Error Bounds
	B-B Decent Lemmas
	B-C Proof of Theorem 1

	Appendix C: Proof of Theorem 2
	References

