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Phase Transitions in Frequency Agile Radar Using

Compressed Sensing
Yuhan Li, Tianyao Huang∗, Xingyu Xu, Yimin Liu, and Yonina C. Eldar

Abstract—Frequency agile radar (FAR) has improved anti-
jamming performance over traditional pulse-Doppler radars
under complex electromagnetic circumstances. To reconstruct the
range-Doppler information in FAR, many compressed sensing
(CS) methods including standard and block sparse recovery
have been applied. In this paper, we study phase transitions
of range-Doppler recovery in FAR using CS. In particular, we
derive closed-form phase transition curves associated with block
sparse recovery and complex Gaussian matrices, based on prior
results of standard sparse recovery under real Gaussian matrices.
We further approximate the obtained curves with elementary
functions of radar and target parameters, facilitating practical
applications of these curves. Our results indicate that block
sparse recovery outperforms the standard counterpart when
targets occupy more than one range cell, which are often referred
to as extended targets. Simulations validate the availability of
these curves and their approximations in FAR, which benefit the
design of the radar parameters.

Index Terms—Frequency agile radar, phase transition, block
sparse recovery, ℓ2,1 norm minimization.

I. INTRODUCTION

Frequency agile radar (FAR) varies its carrier frequencies

randomly in a pulse by pulse manner. It synthesizes a wide

bandwidth by coherently processing echoes of different fre-

quencies, achieving high range resolution (HRR) while requir-

ing only a narrow-band hence low-cost receiver [2]. This fa-

cilitates applications including synthetic aperture radar (SAR)

[3] and inverse SAR (ISAR) imaging [4], [5]. In addition,

FAR possesses excellent electronic counter-countermeasures

performance [2], supports spectrum sharing [6], and enhances

spectrum efficiency [7]. Owing to these advantages, FAR has

drawn considerable attention in the radar community [8], [9].

FAR relies on signal processing algorithms to recover the

range-Doppler parameters of observed targets and clutter.

Early works [2] employed the traditional matched filtering for

range-Doppler reconstruction, which led to significant sidelobe

pedestal. As a consequence, weak targets could be covered

by the sidelobe of dominant ones or strong clutter [10]. To

alleviate the sidelobe pedestal problem, compressed sensing

(CS) methods (also known as sparse recovery [11]) have been

suggested, which exploit the inherent sparsity of the targets

[10], [12]. The authors in [13] further extended the standard

sparse recovery approach to block sparse recovery to account

for the situation of extended targets, where a target may be
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larger than the range resolution and therefore can occupy more

than one range cell [14]. In this situation, the scatters of a

target share the same Doppler effect and gather along range,

leading to block sparsity [15]. When confronted with such

block sparse situations including extended targets, block sparse

recovery is considered to perform better than the conventional

sparse recovery [16], [17].

Precise conditions that guarantee reconstruction in FAR

have been considered in several papers. In [12] and [13], the

authors provided sufficient conditions (in terms of the numbers

of targets K , radar pulses N and available frequencies M ) that

guarantee successful reconstruction of target scenes with high

probability using standard and block sparse recovery, respec-

tively. Nevertheless, those conditions, based on the well-known

coherence property, are generally loose and pessimistic [18],

and are therefore not accurate enough to predict the actual

recovery performance given the radar and target parameters.

To obtain a tighter bound, we study here the phase transi-

tion, which emerges in many convex optimization problems

[19]. In the content of CS, phase transition means that there

exist thresholds that divide the plane of parameters, i.e., the

number of observations and the sparsity level, into regions,

where recovery succeeds and fails with high probability [20].

These thresholds are called phase transition curves. Finding

analytical expression of these curves is an active area. For

standard sparse recovery, bounds on the phase transition curve

of ℓ1 norm minimization under standard Gaussian matrices

were established in [21], [22]. Generalization to block sparse

recovery and for complex number form were given in [23] and

[24], respectively. However, these approximate results assume

the observation matrices to be large, and have complicated

form, resulting in difficulty to apply in practice. A more

concise and tight bound, which has no requirement on the

size of the observation matrix, was given in [19] using inte-

gral geometry. Nevertheless, it is confined to standard sparse

recovery under real-valued Gaussian matrices.

In FAR, block sparse recovery is preferred, and measure-

ment matrices are complex-valued. Therefore, we first extend

the results of [19] to block sparse situations and complex

Gaussian matrices. While existing analyses are based on the

Gaussian assumption, measurement matrices in FAR are not

Gaussian but structured. Empirical experiments show that

many random matrices exhibit identical phase transition curves

as Gaussian matrices [25]. We demonstrate numerically in

Section VI that the obtained bounds derived from Gaussian

matrices are tight and accurate for FAR. Thus our results

provide more precise conditions for exact range-Doppler re-

construction, compared to former works [12], [13].
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Next, we approximate the obtained bounds, which involve

minimization over an integral function, with some elemen-

tary functions. In particular, under relatively sparse scenes

where there are only a few extend targets, we show that

the required numbers of measurements when using the block

and standard sparse recovery are on the order of 2MK +

O
(

K
√

M log N
K

√
M

)

and 2MK + O
(

KM log N
K

)

, respec-

tively. The former requires less radar measurements for exact

reconstruction of extended targets, since
√

M log N
K

√
M

<

M log N
K for reasonably large N and M . The accuracy of

these approximations is validated by simulations. These ap-

proximations not only simplify the calculation of the bounds,

facilitating their use in practical scenarios, but also explicitly

and quantitatively reveal the dependency of the required num-

ber of measurements on the radar and target parameters. These

explicit results enable theoretical performance comparison

between the block and standard sparse recovery methods,

which demonstrate the superiority of block sparse recovery.

We summarize the main contributions of this paper as

follows.

• We derive the phase transition curves under Gaussian

matrices for block sparse recovery, which are also nu-

merically accurate for FAR, associated with structured

and non-Gaussian matrices. Therefore, we provide more

precise conditions on exact range-Doppler reconstruction

than previous works.

• We approximate the phase transition curves of both

block and standard sparse recovery with some elementary

functions, facilitating their use in practical FAR, and

demonstrating that block sparse recovery outperforms the

standard one when reconstructing extended targets.

The rest of the paper is structured as follows. Section II

introduces the signal model of FAR. In Section III, we briefly

review basic concepts of standard and block sparse recovery

as well as phase transitions for standard sparse recovery. Sec-

tion IV extends the results of phase transitions in Section III

to block sparse recovery and complex problems and Section V

analyzes phase transitions for the FAR model, which are

verified by simulations in Section VI. Section VII concludes

the paper.

Throughout the paper, we use R and C to denote the real and

complex number set, respectively. For x ∈ R, ⌊x⌋, represents

the largest integer no greater than x. Vectors are written as

lowercase boldface letters (e.g., a), while matrices are written

as uppercase boldface letters (e.g., A). For a vector a, ‖a‖i
denotes the ℓi norm of a and j :=

√
−1. Given a matrix A,

[A]m,n is the (m,n)-th entry of A. The transpose operator is

(·)T and E(·) means the expectation of a random value. The

real and imaginary parts of a complex-valued argument are

written as ℜ· and ℑ·, respectively. We use N (0, 1) to denote

standard Gaussian distribution.

II. FAR SIGNAL MODEL

We begin by reviewing the signal model of FAR in Subsec-

tion II-A, followed by its matrix form in Subsection II-B.

A. Radar Model

We introduce the signal model of FAR following [12] and

[13]. We start with the expressions of the transmissions and

the received echoes from a single scattering point, representing

target or clutter. We then extend the echo model to the case

of multiple targets/clutter.

A FAR system changes the frequencies from pulse to pulse.

Suppose that the radar transmits N monotone pulses during

a coherent processing interval (CPI). The carrier frequency of

the n-th pulse can be written as fn = fc + Cn∆f , where fc
represents the initial frequency, ∆f represents the frequency

step, and Cn is the n-th random modulation code. We assume

that all the modulation codes are independently and identically

distributed (i.i.d.) random variables with uniform density on

M := {0, 1, . . . ,M − 1}, i.e., Cn ∼ U(M). Then the n-th

transmitted pulse, n ∈ N := {0, 1, . . . , N − 1}, is written as

ST (n, t) = rect ((t− nTr)/Tp) e
j2πfn(t−nTr), (1)

where Tr is the pulse repetition interval (PRI), Tp is the

pulse duration, and rect(t) equals 1 when 0 ≤ t ≤ 1 and

0 otherwise.

The received echoes can be seen as delays of transmissions.

To clearly present the signal model, we assume that there exists

only one ideal scatterer with complex scattering coefficient ζ,

which has an initial range r from the radar and is moving

along the radar’s line of sight at a fixed speed of v. The time

delay between the received and the transmitted signal at time

instant t takes the form τ(t) := 2(r+vt)
c , where c is the velocity

of light. Under the stop-and-hop assumption [26], it holds that

τ(t) ≈ τ(nTr) during the n-th pulse. Thus, the received echo

of the n-th transmission can be expressed as

SR(n, t) = ζST (n, t− τ(t)) ≈ ζST (n, t− τ(nTr)). (2)

After down-conversion, the received echoes become

SD(n, t) = SR(n, t)e
−j2πfn(t−nTr). (3)

Substituting (2) and (1) into (3) and rearranging, we obtain

SD(n, t) = ζrect

(

t− nTr − τ (nTr)

Tp

)

e−j2πfnτ(nTr)

= ζ̈rect

(

t− nTr − τ (nTr)

Tp

)

ej2πfrCn+j2πfvǫnn,

(4)

where ǫn := 1 + Cn∆f
fc

. The parameters ζ̈ := ζe−j4πfcr/c,

fr := − 2∆fr
c and fv := − 2fcvTr

c , representing the effective

intensity, range frequency and velocity frequency, respectively,

are unknown and need to be estimated.

The down-converted echoes are sampled at the Nyquist rate

of a single pulse, fs = 1
Tp

, at time instances, t = nTr +
ls
fs

,

ls = 0, 1, . . . , ⌊Trfs⌋. Each sample corresponds to a coarse

range resolution (CRR) bin. The coarse range will be refined

by estimating fr or r from the echoes. Here, fr and r are

referred as the HRR information. Since data from those bins

are processed identically and individually, without loss of

generality, we assume that the target is located in the ls-th

CRR bin, and that the target does not move outside the bin

during the CPI. Consequently, the rect(·) term in (4) at the ls
sampling instance equals 1, so that sampled SD(n, t) becomes

SS(n) := SD (n, nTr + ls/fs) = ζ̈ej2πfrCn+j2πfvǫnn. (5)

The model (5), derived for the case of a single scatterer, can

be extended to the setting in which K targets/clutter exist in
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a CRR bin. Particularly, we denote by vk and fvk the velocity

and velocity frequency of the k-th target (or clutter unit),

respectively, with k = 0, 1, . . . ,K − 1, and assume that the

k-th target is composed of Qk scatterers, moving at the same

speed while the ranges and scattering intensities are different.

For the i-th scatterer of the k-th target, ζ̈ki, rki and frki
denote

the scattering coefficient, initial range and range frequency,

respectively. We then extend (5) into a model for multiple

targets as follows,

SS(n) =
K−1
∑

k=0

Qk−1
∑

i=0

ζ̈kie
j2πfrki

Cn+j2πfvk ǫnn. (6)

Here, {ζ̈ki, frki
, fvk} are unknown and need to be estimated

from SS(n).
In the next subsection, we arrange the signal model in matrix

form, which suggests a block sparse recovery approach for

range-Doppler reconstruction.

B. Signal Model in Matrix Form

To write (6) in matrix form, we first divide the continuous

fr and fv, representing range and Doppler parameters into

grid points. In particular, since (fr, fv) is unambiguous in

the domain [0, 1)2 and their resolutions are 1/M and 1/N ,

respectively, we discretize fr and fv at the rates of 1/M
and 1/N , respectively, resulting in a series of grid points

(p/M, q/N), p ∈ M, q ∈ N .

We consider a discrete model, which assumes that all

scatterers are situated exactly on the grid points, and use the

matrix X ∈ CM×N to encapsulate the scattering intensities,

given by

[X]p,q :=

{

ζ̈ki, ∃(k, i), s.t. (frki
, fvk) = ( p

M , q
N ),

0, otherwise.
(7)

In practical scenes, scatterers of targets and clutter may be

continuously distributed rather than located on the discrete

grid. It is shown in [13] that radar returns of the discrete

model well approximate the counterparts scattered from con-

tinuously located scatterers. Let xq ∈ CM denote the q-th

column of X , representing the HRR profile of the target

with Doppler frequency q/N , q ∈ N . Vectorizing X yields

x := [xT
0 ,x

T
1 , . . . ,x

T
N−1] ∈ CMN . Thus, x contains N

blocks each having M entries, which represent the HRR

profile corresponding to a unique Doppler frequency [13], and

is called as having a block structure. For the scenario that

includes K targets, at most K blocks in x are nonzero, and

x is a so-called K block sparse vector.

Following [13], we now write (6) in matrix form as

y = Θx, (8)

where the n-th entry of the measurement vector y ∈ CN

is given by [y]n := SS(n). The observation matrix Θ ∈
CN×MN , in accordance with x, is separated into N blocks as

Θ := [Θ0,Θ1, . . . ,ΘN−1], (9)

where each block Θq ∈ CN×M has (n, p)-th entry given by

[Θq]n,p = ej2π
p
M Cn+j2π q

N ǫnn, q, n ∈ N , p ∈ M. (10)

In some scenarios, only a random selection out of all N
pulses are transmitted (in the aim of, e.g., reducing power

consumption), or partial observations in y are abandoned and

not processed because they have a strong interferer. This will

lead to a compressive observation model, where only randomly

selected entries of y and ω, as well as the corresponding rows

of Ψ, remain.

The matrix Θ has more columns than rows, hence recov-

ering x from y is an under-determined problem. Generally,

there are only a small amount of targets occurring in a certain

CRR, which means that K is small, causing x to be block

sparse [16]. Therefore, block sparse recovery can be utilized

to recover x and henceforth the target parameters. We will

review some basic concepts on sparse recovery in Section III,

and analyze the recovery performance in Section IV.

Since the purpose of this paper is to identify the fundamental

limits on the recovery performance of FAR using sparse

recovery methods, throughout the paper we focus on the noise

free model (8), following typical approaches [19]–[24].

III. PRELIMINARIES ON COMPRESSED SENSING

In this section, we briefly introduce some preliminaries on

CS and its phase transitions. In Section III-A, CS methods

including non-block and block sparse recovery are reviewed.

Then in Section III-B, we introduce the phase transition

phenomenon in sparse recovery, which serves as a theoretical

tool for performance analysis. To distinguish between the

specific radar parameters like N , we use lower case letters

such as n to denote the dimensions of matrices associated with

a more general sparse recovery problem. Since some variables

in this section can be either real or complex valued, and will

be specified in later discussions, we use S to represent R or

C for convenience.

A. Sparse Recovery

Consider an under-determined problem y = Ψx, where

y ∈ Sn, Ψ ∈ Sn×d and x ∈ Sd. Here, x has no more than s
nonzero entries, and is called an s sparse vector. CS recovers

x by harnessing the sparsity as in the following optimization

program:
x̂ = argmin

x

‖x‖0, s.t. y = Ψx. (11)

Since the ‘ℓ0 norm’ optimization (11) is NP-hard [11], un-

der appropriate conditions, the problem can be solved more

efficiently by ℓ1 norm minimization, i.e.,

x̂ = argmin
x

‖x‖1, s.t. y = Ψx. (12)

The standard sparse recovery problem (12) can be extended

to block sparse recovery. With some abuse of notation, we

consider a block-structured vector x ∈ Smd consisting of d
blocks where each block has m entries, denoted by x :=
[

xT
0 ,x

T
1 , . . . ,x

T
d−1

]T
. Here, xq ∈ S

m denotes the q-th block.

We use sB to represent the block sparsity, i.e., at most sB
blocks in x are nonzero. Similarly, we redefine Ψ ∈ Sn×md

as the measurement matrix. To solve for x from observations

y = Ψx, we exploit the block sparsity in x by considering

an ℓ2,1 minimization problem [16]

x̂ = argmin
x

‖x‖2,1, s.t. y = Ψx. (13)

Here, the ℓ2,1 norm, given by ‖x‖2,1 :=
∑d−1

q=0 ‖xq‖2, is

defined with respect to the block width m. When m = 1,

(13) reduces to (12).

Both standard and block sparse recovery, i.e., (12) and

(13), can be applied to FAR, and provide unique solutions

with high probability under certain conditions [12], [13].

Particularly, the recoverable number of targets K is on the
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order of O(
√

N
log(MN) ) using ℓ1 norm minimization [12]

and O( N
M log(MN) ) using ℓ2,1 norm minimization [13], where

we recall that N and M are the numbers of pulses and

available frequencies, respectively. These obtained conditions

are sufficient yet too pessimistic, as discussed in Section VI.

Consequently, these conditions are difficult to use directly

in practical FAR systems to guide the waveform design

under given parameters. To seek appropriate conditions that

guarantee exact recovery with high probability and are tight

enough to provide design criterion for radar systems, we resort

to phase transition curves, which we introduce next.

B. Phase Transition Phenomenon

In this section, we briefly introduce the phase transition

phenomenon, following the ideas in [19].

Many CS works have focused on when exact recovery is

possible using (12) and how these conditions change as a

function of the problem parameters. Early works such as [21]

observed that the probability of exact recovery possesses a

phase transition with respect to the number of measurements,

n, and the sparsity of the signal, s. Here, a phase transition

means a dramatic change in the probability of exact recovery

when these parameters, n and s, vary around certain values.

To illustrate the phase transition phenomenon associated with

the probability of exact recovery, we empirically present in

Fig. 1 the probabilities of exact recovery, assuming an under-

determined real-valued Gaussian measurement matrix Ψ, ap-

plying (12) under different pairs (n, s). The corresponding

phase transition points (n, s) where phase transitions hap-

pen, compose what we call the phase transition curve. This

curve precisely characterizes the required conditions for exact

recovery. While empirically calculating the curve is usually

time consuming, expressions of the theoretical curve have been

given in certain cases as we discuss next.
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Fig. 1. Probabilities that (12) exactly solves x simulated from 50 trials. Here,
d = 100, Ψ ∈ Rn×d has entries obeying i.i.d. N (0, 1), and the nonzero
entries of x are randomly 1 or -1. Exact recovery is proclaimed when the
estimate x̂ satisfies ‖x̂ − x‖2 ≤ 10−5. The theoretical curve is calculated
analytically and is introduced in Proposition 2.

The paper [19] identified a theoretical phase transition curve

for a more general optimization problem of the form

x̂ = argmin
x

f(x), s.t. y = Ψx, (14)

under a real-valued Gaussian measurement matrix Ψ, based

on integral geometry techniques. Here, f(·) is restricted to

be convex and does not take the value −∞. In general, f(·)
indicates the ‘structure’ in a vector. For example, f(·) = ‖·‖1
characterizes the standard sparsity of a vector, and in this case

(14) reduces to (12). To calculate the number of measure-

ments n which causes a phase transition, two concepts are

introduced, the descent cone and the statistical dimension. The

descent cone of a proper convex function f : Rd → R at the

point x ∈ R
d is defined as

D(f,x) :=
⋃

τ>0

{y ∈ R
d : f(x+ τy) ≤ f(x)}. (15)

It depicts the conic hull of the perturbations which decrease or

maintain f around x. The number of measurements n which

causes a phase transition, representing the phase transition

curve, depends on the descent cone at the point x, given by

n = δ(D(f,x)) = E
[

dist2(g, D(f,x))
]

. (16)

Here, δ(·) is called the statistical dimension of a cone, the

expectation is taken over the random vector g ∈ Rd, obeying

the Gaussian distribution g ∼ N (0, I), and dist(x, S) de-

notes the Euclidean distance from a vector x ∈ R
d to a set

S ⊂ Rd

dist(x, S) := inf{‖x− y‖2 : y ∈ S}. (17)

Now, identifying the phase transition curve becomes calculat-

ing the statistical dimension with respect to the ℓ1 norm.

Directly calculating the statistical dimension is difficult, a

tight upper bound on it is used instead in [19]. To obtain

the bound, we first introduce the following definition. For an

appropriate convex function f : Rd → R, e.g., ℓ1 norm of

a d dimensional vector, the subdifferential ∂f(x) at a point

x ∈ Rd is defined as

∂f(x) := {s ∈ R
d : f(y) ≥ f(x) + 〈s,y − x〉, ∀ y ∈ R

d},
(18)

where 〈·, ·〉 denotes the dot product between two vectors. Next,

the following upper bound is derived in Proposition 4.1 of

[19]:

Proposition 1 ([19]). For x ∈ Rd and a convex function f :
R

d → R, demanding the subdifferential ∂f(x) to be compact,

nonnull, and not containing the origin, the following function

J(x, f) := inf
τ≥0

E[dist2(g, τ · ∂f(x))] (19)

upper bounds δ(D(f,x)), where the expectation in (19) is

taken over the random vector g ∈ Rd, obeying the Gaussian

distribution g ∼ N (0, I).

To apply Proposition 1, we substitute f(·) with ‖ · ‖1 in

(19) and calculate the infimum distance expectation J(x, ‖ ·
‖1), which implies the upper bound on δ(D(‖ · ‖1,x)). We

then express the upper bound as a function of the sparsity

and the dimension of x, s and d, as claimed in the following

proposition:

Proposition 2 ([19]). Given an s sparse signal x ∈ Rd,
ϕ(s, d), defined as

ϕ(s, d):=inf
τ≥0

{

s(1 + τ 2) + (d− s)

∫ ∞

τ

(u− τ )2φ(u)du

}

, (20)

upper bounds δ(D(‖ · ‖1,x)), where φ(u) :=
√

2
π exp(−u2

2 ), u ≥ 0, is the probability density function of

the folded normal distribution.

Proposition 2 offers a way to calculate the location of the

phase transitions without performing complicated simulations

running ℓ1 norm minimization algorithms. The upper bound

ϕ(s, d) in (20) is tight, as shown in Fig. 1, denoted by

‘theoretical curve’.
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IV. PHASE TRANSITIONS IN BLOCK SPARSE RECOVERY

Here we extend the result of [19] to the block sparse setting.

We present the theoretical results for real-valued Gaussian

matrices in Subsection IV-B, and complex Gaussian matrices

in Subsection IV-B.

A. Real-valued Cases

Consider the model in (13) with y ∈ Rn, Ψ ∈ Rn×md and

x ∈ Rmd. Here, we assume that Ψ is a real-valued Gaussian

matrix and x is block sparse with sparsity sB . According

to Proposition 1, we let f(x) be the ℓ2,1 norm of x with

a block size m. Thus, the phase transition curve becomes

δ(D(‖ · ‖2,1,x)) and can be achieved by calculating the term

in the right hand side of (19) with respect to f(x). Following

the steps used for the derivation of Proposition 2, we obtain

the following proposition, which provides an upper bound on

δ(D(‖ · ‖2,1,x)) in terms of sB and d.

Proposition 3. Given an sB block sparse signal x ∈ Rmd

having a block size m, the function ϕm(sB , d), defined as
ϕm(sB, d) :=

inf
τ≥0

{

sB(m+ τ 2) + (d− sB)

∫ ∞

τ

(u− τ )2φm(u)du

}

,
(21)

upper bounds δ(D(‖·‖2,1,x)). Here, φm(u) is the probability

density function of the χ-distribution with m degrees of

freedom, given by

φm(u) :=

{

um−1e−u2/2

2m/2−1Γ(m
2 )

, u ≥ 0,

0, otherwise,

(22)

where Γ(·) is the gamma function.

Proof. See Appendix A.

Proposition 3 offers a theoretical bound on the phase transi-

tion curve in block sparse recovery, which is empirically tight

as will be shown in Section VI by experiments. It generalizes

Proposition 2, because standard ℓ1 norm minimization can

be regarded as a special case of block sparse recovery with

m = 1 and sB = s. In this case, the curve ϕm(sB , d) becomes

identical to ϕ(s, d) in Proposition 2. Proposition 3 also paves

the way to discussing sparse recovery with complex-valued

measurement matrices. This is because both ℓ1 and ℓ2,1 norm

minimization under complex-valued measurement matrices

can be expressed by ℓ2,1 norm minimization in real-valued

formulations, as discussed in the next subsection.

B. Complex-valued Cases

It is well known that complex-valued sparse recovery

problems can be reformulated into real-valued ones [24].

We use the same model (13) with Subsection IV-A except

that variables are complex valued: y ∈ Cn, x ∈ Cmd,

and Ψ ∈ Cn×md being a complex-valued Gaussian ma-

trix. The model can be converted into a real-valued form

yr = Ψrxr by introducing notations: yr :=
[

ℜyT ,ℑyT
]T ∈

R2n, Ψr :=

[

ℜΨ −ℑΨ
ℑΨ ℜΨ

]

∈ R2n×2md and xr :=
[

ℜxT ,ℑxT
]T ∈ R2md. The q-th block in x is rewritten as

x̄q =
[

ℜxT
q ,ℑxT

q

]T ∈ R2m. We then exchange the entries

in xr such that we obtain x̄ :=
[

x̄T
0 , . . . , x̄

T
d−1

]T ∈ R2md.

Applying the same arrangement to the columns of Ψr yields

Ψ ∈ R2n×2md, and we have yr = Ψx̄. Here, the real-

valued vector x̄ has d blocks, which each contains 2m
entries. The block sparsity of x̄ remains unchanged, sB .

Define the ℓ2,1 norm of x̄ with respect to the block size

2m, i.e., ‖x̄‖2,1 :=
∑d−1

q=0‖x̄q‖2. Then, it can be verified that

‖x̄q‖2 = ‖xq‖2 and hence ‖x̄‖2,1 = ‖x‖2,1, where we recall

that the latter ℓ2,1 norm is defined with respect to the block

size of m. Consequently, the original complex-valued model

(13) is equivalent to the optimization problem
ˆ̄x = argmin

x̄

‖x̄‖2,1, s.t. yr = Ψx̄. (23)

Since ℓ1-norm based sparse recovery is a special case of

block sparse recovery, following the same steps, we find that

complex-valued ℓ1 norm minimization is equivalent to a real-

valued ℓ2,1 norm minimization with block width of 2.

We now calculate the bound on δ(D(‖ · ‖2,1,x)) for the

complex-valued case, based on the real-valued representation

(23). Proposition 1 assumes that entries in the measurement

matrix are mutually independent Gaussian variables, while

Ψr or Ψ has duplicate entries, which are not independent.

However, the dependence introduced by Ψr has little impact

on its phase transition curve according to the empirical results

in [24], which inspires us to apply Proposition 3, derived from

Proposition 1, for the real-valued optimization problem (23).

Therefore, the phase transitions of the optimization problem

(23) emerge when 2n = ϕ2m(sB , d), where ϕm(s, d) is

defined in (21). We then denote by
ϕc
m(sB, d) := ϕ2m(sB , d)/2 (24)

an approximate bound on the phase transition curve. The

accuracy of (24) will be verified in Section VI. It provides the

location of phase transitions in complex-valued block sparse

recovery, which can be applied to standard sparse recovery as

well.

V. PHASE TRANSITION IN FAR

In this section, we adapt the derived phase transition curves

to FAR. We first present phase transition curves of FAR

using block sparse recovery, followed by the counterpart using

standard sparse recovery. We approximate and simplify the

expressions of these curves under certain assumptions, which

facilitates the calculation of these curves. In Subsection V-A

and V-B, we show the results of block and standard sparse re-

covery, respectively. A discussion of these results is presented

in Subsection V-C.

Phase transition curves of FAR are inspired by Proposi-

tions 2, 3 and (24), which however are given under Gaus-

sian matrices. Generally, these curves are not theoretically

applicable to FAR (10), because the measurement matrix in

(10) is not Gaussian but highly structured. Currently, there

is no theoretical evidence that Proposition 1 holds for such

structured measurement matrices. However, we will show in

the next section by simulations that (24) accurately indicates

phase transitions in FAR.

Consider a FAR radar with the number of pulses and

available frequencies being N and M , respectively. The radar

illuminates K targets/clutter, of which each occupies all the

M HRR bins and is regarded as a block of size M . These

results can be simply extended to the special case when some

targets only occupy partial HRR bins.
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A. Block Sparse Recovery

Assuming only Nb observations out of the whole N radar

echoes are available, we use (24) to identify the required

Nb for exact target reconstruction with block sparse recovery.

Substituting n = Nb, m = M , d = N and sB = K into (24),

we have

Nb=
1

2
inf
τ≥0

{

K(2M+τ 2)+(N−K)

∫ ∞

τ

(u−τ )2φ2M (u)du

}

. (25)

The curve indicated in (25) fits the phase transitions in FAR,

as numerically verified in Section VI.

The tightness of (25) makes it a powerful tool for guiding

waveform design and evaluating recovery performance of

FAR. For given system parameters M and N , as well as

K , which means that we have some prior knowledge on

the number of targets in a single CRR bin, (25) provides

the minimum requirement on the number of observations to

guarantee unique recovered targets. This is particularly useful

when one aims to reduce the number of transmitted pulses Nb

out of N , for the purposes of lowering power consumption [6],

facilitating spectrum sharing between radar and communica-

tion [27], or interference rejection [26]. For a given tuple of

parameters (M,N,Nb), (25) implies an equation with respect

to K , the maximum number of recoverable targets, evaluating

the performance of radars equipped with these parameters.

This equation with respect to K can be efficiently solved by

iterative methods, e.g., the bisection method [28], because Nb

is a monotonic function with respect to K , as stated below.

Proposition 4. The right hand side of (25) increases mono-

tonically with K .

Proof. See Appendix B.

Numerical calculation of (25) involves complicated integra-

tion operation, and when M is a slightly large number, the

precise calculation of (25) is difficult. To avoid the compu-

tational burden and allow real-time calculation in practical

scenarios, we approximate and simply (25) under different

quantitative relations between N and K , as given in the

following proposition.

Proposition 5. For large M and different orders of magnitude

of N
K , Nb in (25) can be approximated by:

i) when N
K ≫

√
M ,

Nb ≈ Nb1 = 2MK − K

4
+

√
2

2
·K

√

(4M − 1) log
N −K

K
√
4M − 1

. (26)

ii) when N
K ≈

√
M ,

Nb ≈ Nb2 = KM +
K

2
xb(τ∗), (27)

where

xb(τ∗) = 2M − 3

4
+

N

4K
− (4M − 1)K

N +K

+
(N −K)2

2Kπ(N +K)
− (

√
2 + 1)(N −K)

2(N +K)

√

4M − 1

π
. (28)

iii) when N
K ≪

√
M ,

Nb ≈ Nb3 = MN − (4M − 1)(N −K)2

4N
. (29)

Proof. See Appendix C.

We will show in the next section that when M ≥ 4, these

approximations are quite accurate. Among these three relations

between N and K , the case of N/K ≫
√
M is of particular

interest, representing that the observed target scene is relatively

sparse. We will compare this curve with the counterpart of

standard sparse recovery in the next subsection.

B. Standard Sparse Recovery

To compare FAR’s recovery performance between non-

block and block sparse recovery, i.e., (12) and (13), we also

use (24) to indicate the required minimum number of radar

echoes, denoted by Ns, when applying (12). In this case, the

“block” size is m = 1, and the length of x is md = d = MN .

The ‘block’ sparsity becomes sB = KM , because each target

leads to M nonzero entries in x. Substituting these variables

into (24), we obtain

Ns=
M

2
inf
τ≥0

{

K(2+τ2)+(N−K)

∫ ∞

τ

(u−τ)2φ2(u)du

}

. (30)

Particularly, (25) and (30) are identical when M = 1.

Similarly to Proposition 5, we have the following proposi-

tion that present approximations to (30).

Proposition 6. When N
K ≫ 1 and N

K ≈ 1, (30) is approxi-

mated by

Ns ≈ Ns1 = 2MK +
MKτ2⋆

2
, (31)

and

Ns ≈ Ns2 = MN − πM(N −K)2

4N
, (32)

respectively, where τ⋆ is the solution of the following equation

log(τ2⋆ + 1) = log
N −K

K
− τ2⋆

2
. (33)

Proof. See Appendix D.

This proposition, like the counterpart for block sparse re-

covery, intuitively reveals the relationship between Ns and

parameters (M,N,K), facilitating the comparison between

block and standard sparse recovery.

C. Discussion

In the sequel, we discuss the obtained bounds when M
is reasonably large and the observed target scene is relatively

sparse, i.e., N ≫ K , which occurs in many practical scenarios.

Under such conditions, we adopt the approximations (26) and

(31).

We first note that the obtained conditions that guarantee

unique recovery are tighter than the previous counterparts pre-

sented in [12], [13]. The previous results, Kb = O( N
M log(MN) )

and Ks = O(
√

N
M2 log(MN) ), (the subscripts denote block and

standard sparse recovery, respectively), are based on coherence

techniques, which lead to pessimistic bounds. To facilitate

the comparison between our results and Kb, Ks, we set

Nb1 = N and Ns1 = N in (26) and (31), respectively,

because the intact observation models are considered in [12],
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[13], where all N pulses are transmitted, received and pro-

cessed. Regarding (26), we have Kib ≈ N
2M+

√
2M log N

2
√

M

for intact block sparse recovery (hence the subscript ‘ib’).

Since in practice N is usually not extremely larger than M ,

we have 2M ≥
√
2M log N

2K
√
M

. As a consequence, Kib

scales as O (N/M), larger than O( N
M log(MN) ), indicating

the tightness of Kib over Kb. Similarly, from (31), we have

Kis ≈ N
2M+M logN for intact standard sparse recovery (hence

the subscript ‘is’), which is simplified as Kis = O( N
M logN ).

In comparison with Ks, we find Kis scales larger than Ks.

We will show by simulations in the next section that the

approximations we derive in this section are tight for FAR,

while the previous bounds [12], [13] are quite pessimistic.

The tightness enables these approximations to accurately

characterize the recovery performance, and facilitates the

performance comparison between block and standard sparse

recovery for extended targets. In particular, from (26) and (31),

we have Nb = 2MK + O
(

K
√

M log N
K

√
M

)

and Ns =

2MK + O
(

KM log N
K

)

, respectively, suggesting Nb < Ns

for reasonably large M . This means that for given (M,N,K),
i.e., under the same system settings and sparse target scene,

block sparse recovery requires less observations to guarantee

unique recovery of extended targets, implying that block sparse

recovery is generally more suitable for recovering extended

targets with FAR.

VI. SIMULATION RESULTS

In this section, simulations are conducted to verify the

theoretical curves derived for Gaussian matrices to Section IV

and test their application in FAR. In Section VI-A and Section

VI-B, we measure the success rates of recovering x. We assert

that x is recovered successfully when x̂, the estimation of x,

satisfies ‖x̂−x‖2 ≤ 10−5. In last Section VI-C, we examine

the proximity of our approximations to the theoretical results.

A. Phase Transitions under Gaussian Matrices

This subsection carriers out simulation experiments to in-

spect the phase transitions on block sparse recovery and the

phase transitions in complex-valued Gaussian matrices.

The first experiment considers real-valued block sparse

recovery described in (13), where the entries of the observation

matrix Ψ ∈ Rn×md obey i.i.d. N (0, 1). The nonzero entries

in x ∈ Rmd are 1 or -1 randomly with an identical probability

1/2. We set m = 4 and d = 32, and vary (sB, n) to

calculate the probabilities of exact recovery. In the second

simulation, we test the phase transition in complex-valued non-

block sparse recovery (12), which can be solved by real-valued

block sparse recovery as discussed in Subsection IV-B. Here,

the entries of Ψ ∈ C
n×d have their real and imaginary parts

obeying i.i.d. N (0, 1). There are s nonzero entries in x ∈ Cd,

whose phases are i.i.d. U([0, 2π]) and amplitudes equal 1. We

set d = 100. In both experiments, 50 trials are performed on

each pair (sB, n) or (s, n) to calculate the success rates. The

results for these two experiments are shown in Fig. 2 (a) and

(b). The theoretical curves in (a) and (b) are computed by (21)

and (24) with corresponding m and d, respectively.

Fig. 2 shows that the theoretical curves conform to empirical

phase transitions, which verifies Proposition 3 and (24).
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Fig. 2. Phase transitions under real and complex-valued Gaussian matrices
using block and non-block sparse recovery, respectively.

B. Phase Transition in FAR Model

We next verify existence of phase transitions in FAR. Both

standard and block sparse recovery methods are tested.

To inspect the phase transition in FAR (10), we randomly

select n rows from Θ ∈ CN×MN to form a partial measure-

ment matrix Θ̂ ∈ C
n×MN . The phases of nonzero entries in

x are i.i.d. U([0, 2π]) and the amplitudes equal 1. Given the

observations y = Θ̂x, we use both standard (12) and block

(13) sparse recovery to estimate x. Recall that in standard

sparse recovery, the sparsity is KM . We set the parameters

M = 4, N = 128, ∆f
fc

= 0.02, and use 50 trials to calculate

the success rates. The results of (12) and (13) are shown

in Fig. 3 (a) and (b), respectively. The theoretical curves

are calculated with corresponding M and N by (30) and

(25), denoted by ‘Ns’ and ‘Nb’, representing standard and

block sparse recovery, respectively. For the sake of comparison

between these two sparse recovery methods, we depict both

theoretical curves in each figure of phase transition results.
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Fig. 3. Phase transitions in FAR using standard and block sparse recovery.

From Fig. 3, we see that both theoretical curves well

match their corresponding phase transition curves of FAR. Let

Ns = Nb = N . The predicted numbers of recoverable targets

under this setting are K = 11.1 and K = 14.7 for standard

and block sparse recovery, respectively, whose corresponding

success rates are 0.54 (K = 11, n = 128 in Fig. 3 (a)) and

0.50 (K = 14, n = 128 in Fig. 3 (b)). These rates are close to

the threshold 1/2 that divides the parameter plane into regions

of success and failure, indicating that the obtained values of

K are tight. However, the counterparts obtained from [12] and

[13] are pessimistically K = 0.4 and K = 0, respectively. We

also find that the curve of ‘Nb’ is generally lower than that of

‘Ns’, revealing that block sparse recovery behaves better than

standard sparse recovery in the tested cases.
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C. Approximation of Phase Transition

In this subsection, we will show by simulations that our

approximations of the phase transition curves are sufficiently

close to the theoretical results, so that we can use them in

practical applications to avoid time-consuming calculation.

We compute Nb and Ns versus K with (25) and (30) to

represent the theoretical results under different N and M .

Then we calculate the values of Nb1, Nb2 and Ns1 in (26),

(27) and (31), respectively, to compare with the theoretical

results. We set the parameters (N,M) to be (128,4), (128,6),

(256,10) and (256,12), and the corresponding results are shown

in Fig. 4 (a-d), respectively. Since Nb and Ns cannot exceed

N , we restrict their scales between 0 and N in these figures.
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Fig. 4. Comparison between Nb, Ns, Nb1, Nb2 and Ns1.

From Fig. 4, we see that Ns1 well approximates Ns under

all the tested scenarios. As expected in the discussions over

Proposition 5, when both M and K are small, Nb1 is closer

to Nb than Nb2, while Nb2 behaves better in fitting Nb when

either M or K increases. Fig. 4 also shows that the larger

M grows, the more block sparse recovery outperforms the

standard counterpart, which is in accordance with our analysis

in Section V-C.

VII. CONCLUSION

In this paper, standard and block sparse recovery for FAR

are studied from the perspective of phase transitions. We

generalize the phase transitions of standard sparse recovery

under real Gaussian matrices to the cases associated with

block sparse recovery and complex-valued Gaussian matrices,

which numerically conform to phase transitions existing in

FAR. We then approximate the obtained phase transition

curves with some elementary functions, explicitly revealing

the quantitative relationship between the required number of

measurements and the numbers of radar pulses, frequencies

and targets, as well as facilitating the calculation of these

curves. These approximations with analytical expressions are

tighter than previous results in [12], [13], and indicate that

block sparse recovery requires less measurements to exactly

reconstruct extended targets. Numerical results demonstrate

the accuracy of the derived curves and their approximations.

APPENDIX A

PROOF OF PROPOSITION 3

In this section, we prove Proposition 3. According to

Proposition 1, we first calculate the subdifferential of the

ℓ2,1 norm defined in (18), and then the distance between the

subdifferential and a Gaussian vector, as indicated in (19).

Regarding the subdifferential of ℓ2,1 norm of a sB block

sparse vector x ∈ Rmd, we first reorganize the vector x for

notation convenience. Without loss of generality, we assume

that the support set of x is B = {0, 1, . . . , sB − 1}, such that

xT =
[

xT
0 ,x

T
1 , . . . ,x

T
sB−1,0

T , . . . ,0T
]

.

Here, the first sB blocks xi ∈ Rm, i ∈ B, are nonzero. We

use xi,j to represent the j-th element of the i-th block xi, i.e.,

the (im+ j)-th entry of x. Let Bc := {sB , sB + 1, . . . , d} be

the complementary set of B.

We link the subdifferential of ‖x‖2,1 and that of ‖xi‖2 by

introducing the following lemma.
Lemma 1. Given two block vectors x =
[

xT
0 ,x

T
1 , . . . ,x

T
d−1

]T
, s =

[

sT0 , s
T
1 , . . . , s

T
d−1

]T ∈ Rmd

with xi, si ∈ Rm, the following two statements are

equivalent:

1) s ∈ ∂‖x‖2,1,

2) si ∈ ∂‖xi‖2, i = 0, 1, · · · , d− 1.

Proof. According to (18), the definition of subdifferential, we

rewrite the above statements into inequalities, respectively:

1) for ∀y ∈ R
md, ‖y‖2,1 ≥ ‖x‖2,1 + 〈y − x, s〉,

2) for ∀yi ∈ Rd, ‖yi‖2 ≥ ‖xi‖2 + 〈yi − xi, si〉, i =
0, 1, · · · , d− 1.

To prove 2) → 1), we set y = [yT
0 ,y

T
1 , · · · ,yT

d−1]
T . By

summing both sides of the inequality in 2) with respect to i,
we have

d
∑

i=0

‖yi‖2 ≥
d

∑

i=0

‖xi‖2 +
d

∑

i=0

〈yi − xi, si〉, (34)

where the summation terms are equal to ‖y‖2,1, ‖x‖2,1 and

〈y − x, s〉, respectively, implying 1).

For the other direction 1) → 2), we construct y =
[xT

0 , · · · ,xT
i−1,y

T
i ,x

T
i+1, · · · ,xT

d−1]
T . Due to the arbitrari-

ness of y, the inequality in 1) still holds, directly yields

the i-th inequality in 2) with some simple arrangement,

i = 0, 1, · · · , d− 1.

Therefore, these two statements are equivalent.

Lemma 1 facilitates the calculation of ∂‖x‖2,1: we just

need to calculate ∂‖xi‖2. For a convex function f(·), if it

is differentiable at a certain point p, then the subdifferential

of f(·) at p contains only one element, the differential of

f(·) at p [29, §35]. Therefore, we discuss ∂‖xi‖2 when xi

is a nonzero or zero block, respectively. In the former case,

the function ‖xi‖2 is differentiable with respective to xi. The

partial differential of ‖xi‖2 with respective to an entry xi,j is

given by
xi,j

√

∑m−1
k=0 x2

i,k

, i ∈ B, j ∈ M. (35)

In the latter case, the partial differential of ‖xp‖2, p ∈ Bc,

does not exist, and we will calculate its subdifferential with

the following lemma.
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Lemma 2. Given the function f(x) = ‖x‖2, x ∈ Rd, the

subdifferential of f(·) at x = 0 is {s ∈ R
d : ‖s‖2 ≤ 1}.

Proof. Let S = {s ∈ Rd : ‖s‖2 ≤ 1}. To prove S = ∂f(0),
we need to show that S ⊂ ∂f(0) and ∂f(0) ⊂ S.

We first consider S ⊂ ∂f(0). Recall the definition of the

subdifferential, ∂f(x) := {s ∈ Rd :
f(y) ≥ f(x) + 〈s,y − x〉, ∀ y ∈ Rd}. For ∀s ∈ S,

using the Cauchy-Buniakowsky-Schwarz inequality, we have

the following inequality

‖0‖2 + 〈s,y − 0〉 ≤ ‖s‖2‖y‖2 ≤ ‖y‖2, (36)

being true for ∀y ∈ Rd, which proves S ⊂ ∂f(0).

We then state ∂f(0) ⊂ S by proving its contrapositive: for

∀s ∈ Rd, if s 6∈ S, then s 6∈ ∂f(0). For s ∈ Rd, ‖s‖2 > 1,

we choose y = s

‖s‖2
, and obtain the following inequality

f(y) = ‖y‖2 = 1 < ‖s‖2 = 〈y, s〉 = 〈y−0, s〉+f(0), (37)

implying s 6∈ ∂f(0).

With the two parts above, we prove ∂f(0) = S.

Lemma 2 completes the subdifferential of ‖xp‖2 for p ∈ Bc.

Recall that when i ∈ B the subdifferential is given by (35).

We are now ready to derive ∂‖x‖2,1. Let v ∈ Rmd denote
an element in the subdifferential of ‖x‖2,1, i.e., v ∈ ∂‖x‖2,1,
with its i-th block denoted by vi ∈ Rm and (im+ j)-th entry
by vi,j . The subdifferential ∂‖x‖2,1 forms a cone, given by

∂‖x‖2,1 =

{

v ∈ R
md :vi,j =

xi,j
√

∑m−1
k=0 x2

i,k

,
m−1
∑

q=0

v2p,q ≤ 1,

i ∈ B, j ∈ M, p ∈ Bc

}

. (38)

We then calculate the distance between a standard normal

vector g ∈ Rmd, g ∼ N (0, Imd), and the set ∂‖x‖2,1. Let

gi ∈ R
m and gi,j represent the i-th block and (im+j)th entry

in g, respectively. The distance is then calculated block-wise,

given by

dist2 (g, τ · {v}) =
d−1
∑

i=0

dist2 (gi, τ · {vi}) . (39)

For i ∈ B, dist2 (gi, τ · vi) =
∑m−1

j=0 (gi,j − τvi,j)
2, because

the subdifferential reduces to a single point. When p ∈ Bc, we

have {vp} = {s ∈ Rm : ‖s‖2 ≤ 1}. Therefore, the distance

is given by

dist2 (gpu · {vp}) = inf
‖vp‖2≤1

m−1
∑

q=0

(gp,q − τvp,q)
2, (40)

which equals zero when ‖gp‖2 ≤ τ and (‖gp‖2 − τ)2 other-
wise, hence is expressed by Gp(τ) := max((‖gp‖2 − τ)2, 0).
From the above discussion, we have

dist2 (g, τ · {v}) =
sB−1
∑

i=0

m−1
∑

j=0

(gi,j − τvi,j)
2 +

d−1
∑

p=sB

Gp(τ). (41)

We next calculate the expectation. We have E
[

g2i,j
]

= 1,

E [gi,jvi,j ] = 0 and
∑m−1

j=0 v2i,j = 1, i ∈ B, j ∈ M. The
expectation of the first term in (41) is rewritten as follows

E

[

sB−1
∑

i=0

m−1
∑

j=0

(gi,j − τvi,j)
2

]

= E

[

sB−1
∑

i=0

m−1
∑

j=0

g2i,j

]

− 2τE

[

sB−1
∑

i=0

m−1
∑

j=0

gi,jvi,j

]

+ τ 2
sB−1
∑

i=0

m−1
∑

j=0

v2i,j

= sB
(

m+ τ 2
)

. (42)

Let up = ‖gp‖2, which obeys the χ-distribution with m
degrees of freedom. The expectation of the second term can

be calculated as

E

[

d−1
∑

i=sB

Gp(τ)

]

= (d− sB)E
[

max((up − τ)2, 0)
]

= (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du

+ (d− sB)

∫ τ

0

0 · φm(u)du

= (d− sB)

∫ ∞

τ

(u− τ)2φm(u)du, (43)

where φm(u) is the probability density function of the χ-

distribution with m degrees of freedom. With the above results,

the expectation is given by

E
[

dist2 (g, τ · {ṽ})
]

= sB
(

m+ τ2
)

+ (d− sB)

∫ ∞

τ

(u − τ)2φm(u)du. (44)

According to Proposition 1, we obtain the upper bound on
δ(D(‖·‖2,1 ,x)) as

ϕm(sB, d) = inf
τ≥0

E[dist2(g, τ · ∂‖x‖2,1)]

= inf
τ≥0

{sB(m+ τ 2) + (d− sB)

∫ ∞

τ

(u− τ )2φm(u)du}, (45)

which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 4

Here, we prove the monotonicity of Nb in (25) with respec-

tive to K . For convenience, we define H(K, τ) as

H(K, τ) :=K(2M + τ2)

+ (N −K)

∫ ∞

τ

(u− τ)2φ2M (u)du, (46)

where τ ≥ 0, such that

Nb =
1

2
inf
τ≥0

H(K, τ). (47)

To reveal the monotonicity, we regard the integer K as a

real number, and calculate the partial derivative of H(K, τ)
with respect to K , given by

∂H(K, τ)

∂K
= 2M + τ2 −

∫ ∞

τ

(u− τ)2φ2M (u)du, (48)

which is non-negative as shown below.
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Since (u − τ)2 ≤ u2 for u ≥ τ ≥ 0 and φ2M (u) ≥ 0 for
u ≥ 0, we have

∫ ∞

τ

(u− τ )2φ2M (u)du ≤
∫ ∞

τ

u2φ2M (u)du

≤
∫ ∞

0

u2φ2M (u)du, (49)

which leads to

∂H(K, τ )

∂K
≥ 2M + τ 2 −

∫ ∞

τ

u2φ2M (u)du

≥ 2M + τ 2 −
∫ ∞

0

u2φ2M (u)du. (50)

Recall that φ2M (u) denotes the probability density function of

the χ-distribution with 2M degrees of freedom. The integral

term in (50) represents the second moment of χ-distribution,

which equals the first moment of χ2-distribution, i.e., the

degrees of freedom 2M [30]. Therefore, (50) results in

∂H(K, τ)

∂K
≥ 2M + τ2 − 2M = τ2 ≥ 0. (51)

As a consequence, H(K, τ) is monotonically non-decreasing

with the increase of K , which proves H(K1, τ) ≥ H(K2, τ),
when K1 >= K2. Take the infimum of τ on both sides of

the inequality, we have Nb(K1) >= Nb(K2), completing the

proof.

APPENDIX C

PROOF OF PROPOSITION 5

To simplify Nb in (25), we first introduce

xb(τ) := τ2 +
N −K

K

∫ ∞

τ

(u−τ)2φ2M (u)du, (52)

such that

Nb = KM +
K

2
inf
τ≥0

xb(τ). (53)

In the following, we approximate xb(τ) with a conciser form
in Appendix C-A. We then seek the value of τ ≥ 0 that
leads to the infimum of xb(τ) in Appendix C-B, followed by
the calculation of infτ≥0 xb(τ) in Appendix C-C. Among the
derivatives, some formulas corresponding to the integral over
a normal distribution will be used [30], given by

∫ ∞

y

u3e−
u2

2 du = y2e−
y2

2 + e−
y2

2 , (54)

∫ ∞

y

u2e−
u2

2 du =

√

π

2
erfc

(

y√
2

)

+ ye−
y2

2 , (55)
∫ ∞

y

ue−
u2

2 du = e−
y2

2 , (56)

∫ ∞

y

e−
u2

2 du =

√

π

2
erfc

(

y√
2

)

, (57)

where erfc(x) = 2√
π

∫∞
x

e−η2dη is the complementary error

function.

A. Approximation of xb(τ)

The approximation of xb(τ) is based on the central limit

theorem [30], indicating that the χ-distribution probability

density function φ2M (u) can be well approximated by a

probability density function of a normal distribution when M
is reasonably large. Particularly,

φ2M (u) ≈ 1

σM

√
2π

e
− 1

2

(

u−µM
σM

)2

, (58)

where the mean and variance are denoted by µM and σ2
M ,

respectively, given by

µM =

√
2Γ(M + 1/2)

Γ(M)
, (59)

σ2
M = 2M − µ2

M . (60)

We note that for sufficiently large M , the mean and variance
in (59) and (60) lead to

µ2
M ≈ 2M − 1/2, (61)

σ2
M ≈ 1/2, (62)

respectively [31]. In this case, µM/σM = O(
√
M).

By substituting (58) into (52), we approximate the integral
term in the right hand side of (52) by

∫ ∞

τ

(u−τ)2φ2M (u)du ≈ 1

σM

√
2π

∫ ∞

τ

(u−τ)2e
−

(u−µM )2

2σ2
M du. (63)

Now,

∫ ∞

τ

(u− τ )2e
−

(u−µM )2

2σ2
M du

=

∫ ∞

τ

(u− µM + µM − τ )2e
−

(u−µM )2

2σ2
M du, (64)

which can be expanded into a summation of three terms

∫ ∞

τ

(u− µM )2e
−

(u−µM )2

2σ2
M du

+ 2(µM − τ )

∫ ∞

τ

(u− µM )e
−

(u−µM )2

2σ2
M du

+

∫ ∞

τ

(µM − τ )2e
−

(u−µM )2

2σ2
M du. (65)

We next calculate these terms by using formulas (55)-(57)
individually. The first term in (65) can be rewritten as

∫ ∞

τ

(u− µM )2e
−

(u−µM )2

2σ2
M du

= σ2
M

∫ ∞

τ

(u− µM )2

σ2
M

e
−

(u−µM )2

2σ2
M du

(a)
= σ3

M ·
(

√

π

2
erfc

(

τ − µM√
2σM

)

+
τ − µM

σM

e
−

(τ−µM )2

2σ2
M

)

, (66)

where (a) is a consequence of (55). The integral in the second
term of (65) can be simplified by (56), implying

∫ ∞

τ

(u− µM )e
−

(u−µM )2

2σ2
M du = σM

∫ ∞

τ

u− µM

σM

e
−

(u−µM )2

2σ2
M du

= σM · σMe
−

(τ−µM )2

2σ2
M . (67)

With (57), we rewrite the integral of the third term in (65) as

∫ ∞

τ

e
− (u−µM )2

2σ2
M du = σM

√

π

2
erfc

(

τ − µM√
2σM

)

. (68)
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Substituting (66)-(68) into (65) yields

∫ ∞

τ

(u− τ )2e
−

(u−µM )2

2σ2
M du

=
(

σ3
M + (µM − τ )2σM

)

√

π

2
erfc

(

τ − µM√
2σM

)

+
(

σ2
M (τ − µM ) + 2(µM − τ )σ2

M

)

e
−

(τ−µM )2

2σ2
M

=
(

σ3
M + (µM − τ )2σM

)

√

π

2
erfc

(

τ − µM√
2σM

)

+ (µM − τ )σ2
Me

−
(τ−µM )2

2σ2
M . (69)

Plugging this integral into (52), yields

xb(τ ) = τ 2 +
N −K

KσM

√
2π

∫ ∞

τ

(u− τ )2e
−

(u−µM )2

2σ2
M du

= τ 2 +
N −K

2K

(

σ2
M + (µM − τ )2

)

erfc

(

τ − µM√
2σM

)

+
N −K

K
√
2π

(µM − τ )σMe
−

(τ−µM )2

2σ2
M . (70)

B. Minimizer of xb(τ)

We denote by τ∗ the minimizer of xb(τ). Taking partial

derivatives over both sides of (52) and letting
∂xb(τ)

∂τ = 0, we

have

τ∗ =
N −K

K

∫ ∞

τ∗

(u− τ∗)φ2M (u)du. (71)

In this subsection, we simplify the integral function (71), and

then substitute the result into (70) to facilitate the calculation

of xb(τ∗).
Using (58), we approximate the integral in (71) by

∫ ∞

τ∗

(u− τ∗)e
−

(u−µM )2

2σ2
M du

=

∫ ∞

τ∗

(u− µM + µM − τ∗)e
−

(u−µM )2

2σ2
M du

= σ2
Me

−
(τ∗−µM )2

2σ2
M + (µM − τ∗)σM

√

π

2
erfc

(

τ∗ − µM√
2σM

)

, (72)

from (67) and (68). Hence, we rewrite (71) as

τ∗ =
N −K

KσM

√
2π

∫ ∞

τ∗

(u− τ∗)e
−

(u−µM )2

2σ2
M u

=
N −K

2K
(µM − τ∗)erfc

(

τ∗ − µM√
2σM

)

+
N −K

K
√
2π

σMe
−

(τ∗−µM )2

2σ2
M . (73)

Denote the solution to (73) by τ∗ = µM − ασM , where α
is unknown indicating the normalized difference between τ∗
and µM . Substituting τ∗ = µM − ασM into (73), we obtain

µM − ασM =
N −K

2K
ασM erfc

(

− α√
2

)

+
N −K

K
√
2π

σM e−
α2

2 . (74)

After some arrangement, (74) leads to

α−
(

α

2
erfc

(

− α√
2

)

+
1√
2π

e−
α2

2

)

=
µM

σM

− N

K

(

α

2
erfc

(

− α√
2

)

+
1√
2π

e−
α2

2

)

, (75)

which can be rewritten as

α

2
erfc

(

− α√
2

)

+
1√
2π

e−
α2

2 =

(

µM

σM

− α

)

· K

N −K
. (76)

Note that the function on the left hand side is monotonically
increasing with respect to α while the one on the right hand
side is monotonically decreasing. Therefore, there is only one
solution to (76). We will substitute the values of α, i.e., α ≫ 1,
α ≈ 0 and α ≪ −1, into (75), respectively, in order to check
whether (75) holds and reveal the dependency between α and
(K,N,M). We resort to series expansions of erfc(·) at ±∞,
respectively, given by

α

2
erfc

(

−α√
2

)∣

∣

∣

∣

α=+∞

≈ α− 1√
2π

e−
α2

2 , (77)

α

2
erfc

(

−α√
2

)∣

∣

∣

∣

α=−∞

≈ − 1√
2π

e−
α2

2 (1− 1/α2). (78)

i) We first consider the case α ≪ −1. Substitute (78) into

(75), leads to

α ≈ µM

σM
− N −K

K

e−
α2

2√
2πα2

, (79)

which indicates that satisfying α ≪ −1 requires N
K ≫ µM

σM
.

After arrangement of (79), we take logarithm on both sides of

approximation, resulting in

log
N −K

K
− α2

2
− log

√
2πα2 ≈ log

(

µM

σM
− α

)

. (80)

This implies

α ≈ −
√
2

√

log
N −K

K
− log

(

µM

σM

− α

)

− log
√
2πα2

≈ −
√
2

√

log
(N −K)σM

KµM

. (81)

Since in practice, neither N or M would be extremely large,

µM/σM is comparable or larger than logN/K , and therefore

α = −O
(

log NσM

KµM

)

from (81).

ii) In the second case α ≈ 0, which requires N
K ≈ µM

σM
such

that (76) may hold. Applying Taylor expansion at α = 0, we

approximate (76) with

1√
2π

+
α

2
≈

(

µM

σM
− α

)

K

N −K
, (82)

implying

α ≈ 2(N −K)

N +K

(

µM

σM

K

N −K
− 1√

2π

)

, (83)

or simply α = O
(

µMK
σMN

)

.

iii) We finally consider the third case α ≫ 1. Substituting

(77) into (75) implies

α ≈ KµM

NσM
≫ 1, (84)

which requires that N
K ≪ µM

σM
.

Summarizing the three cases above, we find that: i) When
N
K ≫ µM

σM
, we have α ≪ −1 and (81); ii) When N

K ≈ µM

σM
, we

have α ≈ 0 and (83); iii) When N
K ≪ µM

σM
, we have (84). We

note that these three cases are generally complete, representing

three kinds of relationship between the relative sparsity (N/K)

and the number of available frequencies (µM/σM ≈ 2
√
M ).

With the obtained α, implying the miminizer τ∗, we next

calculate the limit inferior xb(τ∗).
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C. The infimum infτ≥0 xb(τ)

Comparing xb(τ) in (70) and τ∗ in (73), we find the right

hand side of (73) also appears in (70). We replace this term

in (70) by τ∗, so that (70) becomes

xb(τ∗) = τ2∗ +
N −K

2K
σ2
Merfc

(

τ∗ − µM√
2σM

)

+ (µM − τ∗)τ∗

= µMτ∗ +
N −K

2K
σ2
Merfc

(

τ∗ − µM√
2σM

)

. (85)

Substituting τ∗ = µM − ασM , we rewrite (85) as

xb(τ∗) = µM (µM − ασM ) +
N −K

2K
σ2
Merfc

(

− α√
2

)

. (86)

For the three cases considered below (83), we calculate the

limit inferior xb(τ∗) with the obtained α, respectively.

1) In the first case when N
K ≫ µM

σM
, we have α ≪ −1.

Using Taylor expansion, we approximate (86) by

xb(τ∗) ≈ µM (µM − ασM )− N −K

2K
σ2
M

√
2e−

α2

2√
πα

, (87)

which can be further simplified by replacing the exponent term

according to (79), given by

xb(τ∗) ≈ µM (µM − ασM )− N −K

2K
σ2
M

√
2e−

α2

2√
πα

= µM (µM − ασM ) + ασ2
M

(

α− µM

σM

)

= (µM − ασM )2. (88)

Plugging (61), (62) and (81) into (88), we have
xb(τ∗) ≈ µ2

M − 2αµMσM

≈ 2M − 1

2
+
√
2

√

(4M − 1) log
(N −K)

K
√
4M − 1

. (89)

Thus, the final Nb is

Nb ≈ Nb1 = 2MK − K

4
+

√
2K

2

√

(4M − 1) log
(N −K)

K
√
4M − 1

. (90)

2) The second case corresponds to N
K ≈ µM

σM
, leading to

α ≈ 0. Expanding the erfc(·) term at α = 0, we approximate
(86) by

xb(τ∗) ≈ µM (µM − ασM ) +
N −K

2K
σ2
M

(

1−
√

2

π
α

)

. (91)

Substituting (83), (61) and (62) into (91) yields

xb(τ∗) = 2M − 3

4
+

N

4K
− (4M − 1)K

N +K

+
(N −K)2

2Kπ(N +K)
− (

√
2 + 1)(N −K)

2(N +K)

√

4M − 1

π
. (92)

Plugging the above result into (53), we have

Nb ≈ Nb2 = KM +
K

2
xb(τ∗). (93)

3) In the third case when N
K ≪ µM

σM
, we substitute (84) into

(86), and obtain

xb(τ∗) =
N −K

N
µ2
M +

N −K

2K
σ2
Merfc

(

− KµM√
2NσM

)

. (94)

Plugging (61) and (62) into (94), we have the approximation

xb(τ∗) ≈
N −K

N

(

2M − 1

2

)

+
N −K

2K

= 2M − 1− K

N

(

2M − 1

2

)

+
N

2K
. (95)

With (95), we rewrite (53) approximately as

Nb ≈ Nb3 = KM +
K

2
·
(

2M − 1− K

N

(

2M − 1

2

)

+
N

2K

)

=

(

2M − 1

2

)

K − (4M − 1)K2

4N
+

N

4

= MN − (4M − 1)(N −K)2

4N
. (96)

Summarizing the three cases above, we have that i) N
K ≪

µM

σM
, ii) N

K ≈ µM

σM
, or iii) N

K ≫ µM

σM
, Nb is approximated

by (90), (93) or (96), respectively, completing the proof of

Proposition 5.

APPENDIX D

PROOF OF PROPOSITION 6

For notation purposes, we use xs(τ) to represent the term

inside the limit inferior operation of (30) as

xs(τ) := τ2 +
N −K

K

∫ ∞

τ

(u−τ)2φ2(u)du (97)

= τ2 +
N −K

K

∫ ∞

τ

(u−τ)2ue−u2/2du

(a)
= τ2 +

N −K

K

[

2e−τ2/2 −
√
2πτerfc(τ/

√
2)
]

, (98)

where (a) comes from (54), (55) and (56). Then, Ns in (30)

is given by

Ns = KM +
KM

2
inf
τ≥0

xs(τ). (99)

Taking partial derivatives over both sides of (97) and letting
∂xs(τ)

∂τ = 0, we find the minimizer that leads to the limit

inferior of xs(τ)

τ⋆ =
N −K

K

∫ ∞

τ⋆

(u−τ⋆)φ2(u)du

=
N −K

K

∫ ∞

τ⋆

(u−τ⋆)ue
−u2/2du

(a)
=

N −K

K
·
√

π

2
erfc

(

τ⋆/
√
2
)

, (100)

where (a) holds according to (55) and (56). Similarly to the

technique used in Appendix C, we first approximately solve

(100), and then calculate xs(τ⋆).
The value τ⋆ relies on N and K . Since N ≥ K (otherwise

the unique recovery of the K extended targets is not possible),

we consider two cases i) N
K ≈ 1 and ii) N

K ≫ 1, representing

the less sparse and relatively sparse cases, respectively.

i) In the first case, N
K ≈ 1, it is deduced from (100) that τ⋆

takes values around 0. Approximating erfc
(

τ/
√
2
)

at τ = 0
with first order Taylor expansion, we rewrite (100) as

τ⋆ ≈ N −K

K
· (
√

π/2− τ⋆), (101)

which implies

τ⋆ ≈ N −K

N
·
√

π/2. (102)
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ii) In the second case, when N
K ≫ 1, we have that τ⋆ is also

sufficiently large τ⋆ ≫ 1. Therefore, we expand the erfc(·)
function at +∞, and rewrite (100) as

τ⋆ ≈ N −K

K
·
√

π

2
·
√

2

π
e−τ2

⋆/2(
1

τ⋆
− 1

τ3⋆
)

≈ N −K

K
e−τ2

⋆/2
τ⋆

τ2⋆ + 1
, (103)

implying

log(τ2⋆ + 1) ≈ log
N −K

K
− τ2⋆

2
. (104)

This yields τ⋆ = O
(

√

log(N/K)
)

.

We then calculate xs(τ⋆) with the substitution of τ⋆. Note

that the erfc term in (98) can be replaced by linear term

according to (100), which simplifies (98) into

xs(τ⋆) = −τ⋆
2 +

N −K

K
· 2e−τ2

⋆/2. (105)

We analyze the results in both cases i) N
K ≫ 1 and ii) N

K ≈ 1,

respectively.

1) when N
K ≫ 1, we have that τ⋆ is sufficiently large.

Replacing the exponent term in (105) with a quadratic term

according to (103), we simplify (105) into

xs(τ⋆) ≈ τ2⋆ + 2. (106)

Considering (104), we substitute (106) into (99), yielding

Ns ≈ Ns1 = 2MK +
MKτ2⋆

2
, (107)

where τ2⋆ can be calculated from (104).

2) When N
K ≈ 1, we have τ⋆ ≈ 0, thus we approximate

e−τ2
⋆/2 at τ⋆ = 0, i.e., e−τ2

⋆/2
∣

∣

∣

τ⋆=0
≈ 1 − τ2

⋆

2 , and rewrite

(105) as

xs(τ⋆) ≈ −Nτ2⋆
K

+
2(N −K)

K
. (108)

Substituting (102) into (108) yields

xs(τ⋆) ≈ −π(N −K)2

2NK
+

2(N −K)

K
. (109)

Together with (99), this implies

Ns ≈ Ns2 = MN − πM(N −K)2

4N
. (110)

Combining the two cases above, we have approximations

of Ns given by (107) or (110), respectively when i) N
K ≪ 1

or ii) N
K ≈ 1 holds, completing the proof of Proposition 6.
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