
1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

Distributed algorithms for array signal processing
Po-Chih Chen, Student member, IEEE and P. P. Vaidyanathan, Life Fellow, IEEE

Abstract—Distributed or decentralized estimation of covari-
ance, and distributed principal component analysis have been
introduced and studied in the signal processing community in
recent years, and applications in array processing have been
indicated in some detail. Inspired by these, this paper provides
a detailed development of several distributed algorithms for
array processing. New distributed algorithms are proposed for
DOA estimation methods like root-MUSIC, total least squares-
ESPRIT, and FOCUSS. Other contributions include distributed
design of the Capon beamformer from data, and distributed
implementation of the spatial smoothing method for coherent
sources. A distributed implementation of a recently proposed
beamspace method called the convolutional beamspace (CBS) is
also proposed. The proposed algorithms are fully distributed –
an average consensus (AC) is used to avoid the need for a fusion
center. The algorithms are based on a recently reported finite-
time version of AC which converges to the exact solution in a finite
number of iterations. Numerical examples are given throughout
the paper to show the effectiveness of the proposed algorithms.

Index Terms—Distributed or decentralized DOA estimation,
Capon beamforming, convolutional beamspace, root-MUSIC,
ESPRIT, FOCUSS, spatial smoothing.

I. INTRODUCTION

BEAMFORMING and direction-of-arrival (DOA) estima-
tion are two important areas of sensor array processing

[1]–[5]. Popular algorithms include the Capon method for
beamforming [1] and MUSIC [2], root-MUSIC [3], ESPRIT
[4], and FOCUSS [6], [7] for DOA estimation. Traditionally,
these algorithms require data collection and centralized com-
putation at a fusion center. However, following the pioneer-
ing work of Scaglione, et al. [8], distributed algorithms for
DOA estimation and beamforming have gained more research
interest. In these algorithms, the sensor array is partitioned
into subarrays. The data in subarray i is available only to
the processor in that subarray, and between the processors
there is some minimal exchange of intermediate results, in
order to implement an average consensus. Based on such local
computations and limited data exchange between processors,
the goal is to perform usual array processing tasks such as
DOA estimation and beamforming. Thus, such arrays work
without the help of a central processor or fusion center. The
communication bottleneck that is present in the case of large
arrays with a central processor is thus mitigated in these
decentralized (or distributed) systems. A detailed discussion
of the relevance and advantages of such distributed processors
can be found in [9] and references therein.

An excellent overview of distributed implementations of
principal component methods is presented in [9], with a

This work was supported in parts by the ONR grant N00014-18-1-2390,
the NSF grant CCF-1712633, and the California Institute of Technology.

The authors are with the Department of Electrical Engineering, Cal-
ifornia Institute of Technology, Pasadena, CA 91125, USA (email:
pochih@caltech.edu; ppvnath@systems.caltech.edu).

mention of applications in array processing as well. In the
above papers for distributed array processing, a network
gossiping protocol called average consensus (AC) [10]–[12]
is extensively used as a backbone algorithm to avoid the
need of fusion centers. AC is a method for computing the
average of some values stored at all the subarrays. Subspace-
based methods for DOA estimation, including MUSIC [2],
root-MUSIC [3], and ESPRIT [4], require the computation
of the eigenvalue decomposition (EVD) of the covariance
matrix of the array output. To compute the EVD in a fully
distributed manner, a distributed power method is proposed in
[8]. In [13], Suleiman, et al. propose a distributed algorithm
for ESPRIT based on least-squares estimates (LS-ESPRIT),
although the total least squares (TLS) ESPRIT is not consid-
ered. All the above are AC-based methods and apply to any
network structure. Bertrand, et al. [14] propose a non-AC-
based method that uses an alternating optimization procedure
to estimate covariance matrix eigenvectors. The communica-
tion cost is reduced by sending array data projected onto lower
dimensional subspaces. However, this method applies only to
fully connected networks or networks with a tree topology.
Using a similar idea, a distributed DOA estimation method
which applies only to fully connected networks is presented
in [15]. Partially distributed algorithms for MUSIC and root-
MUSIC are introduced in earlier literature [16] and [17], but
fusion centers are still required therein. We focus on AC-
based methods in this paper as it applies to any network
structure. The main goal of this paper is to show how to use
the distributed power method and AC to implement several
important array processing algorithms, but not to compare
different kinds of distributed eigenvector estimation methods
or AC methods.

Importantly, there are two families of AC methods, asymp-
totic convergence [10] and the recently introduced finite-time
convergence methods [11], [12]. Asymptotic AC is used for the
distributed DOA estimation algorithms in previous works [8],
[9], [13], [18]. In these methods, one uses only finite but suf-
ficiently many iterations to approximate asymptotic behaviors,
so additional estimation errors arise from the use of asymptotic
AC. This kind of error is analyzed in [18] for distributed LS-
ESPRIT. By contrast, finite-time AC offers exact convergence
in a finite number of iterations, so no additional estimation
errors are introduced. Hence, we choose to use finite-time AC
in this paper, and this is why our distributed algorithms can
achieve the same performance as the centralized counterparts.
Finite-time AC can be applied without any limitations, so they
are readily applicable to the previous works [8], [9], [13], [18]
as well. Exact convergence is guaranteed in finite iterations as
long as the subarray network is connected [11]. The finite-time
AC methods [11], [12] are based on the idea of linear graph
filters. When we are allowed to use a large enough filter order,
i.e., a sufficient number of AC iterations, these finite-time AC

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

2

methods already yield zero MSE due to exact convergence.
We consider this scenario in the paper. If one wants to use
fewer iterations while sacrificing some MSE, a new finite-
time AC method [19] may be considered. The new method
extends the idea to nonlinear graph filters and designs filter
coefficients using a learning framework of graph convolutional
neural networks.

Although there are several inspiring papers on distributed
algorithms for array processing, distributed algorithms have
not yet been reported for a number of well-known methods for
DOA estimation and beamforming. In this paper we develop
distributed algorithms for DOA estimation methods such as
root-MUSIC, and total least squares (TLS) ESPRIT which
is known to be more accurate than LS-ESPRIT [13]. We
also derive distributed versions of the Capon beamformer
and the well-known FOCUSS method for sparse-solver based
DOA estimation. The above DOA estimation methods are
classical methods, and we only consider these. More recent
methods like grid-based Lasso [20] and grid-less atomic norm
minimization [21] are left as future work. Besides, beamspace
processing is a well-known technique in array processing [5],
[22]–[32], and in Sec. IV we propose distributed algorithms for
a beamspace method called convolutional beamspace (CBS)
recently introduced in [31], [32]. We will show that distributed
DOA estimation algorithms, including root-MUSIC, TLS-
ESPRIT, and FOCUSS, can be applied either directly to the
original array domain, called element-space, or in series with
a beamspace method like CBS. We also propose a distributed
algorithm for spatial smoothing [33], which is a technique
used for DOA estimation when there are coherent or correlated
sources.

All the proposed algorithms are fully distributed in that a
fusion center is not required. The novelties of the proposed
algorithms mainly lie in finding a way to implementing the
algorithm so that all the data exchange among subarrays
can be realized using AC. This is achieved by transforming
problems at hand into steps where computing the average
of some values across the network is the only step that
involves data exchange among subarrays. In particular, we
often transform the problems into a series of linear operations
on the involved distributed variables, such as array outputs
and signal eigenvectors. For instance, in Capon beamforming,
it would not be easy if one tries to compute the inverse of the
covariance matrix directly when the array output is distributed.
The novelty of our distributed Capon beamforming is to
propose to use the conjugate gradient method [34] to replace
the inversion of the covariance matrix with linear operations on
array outputs. Likewise, only linear operations on array outputs
are needed in distributed FOCUSS. As another example, in
root-MUSIC, it would not be easy if one tries to explicitly
compute ÊsÊ

H
s when the eigenvectors are distributed, where

the columns of Ês are the estimates of the signal eigenvectors.
The novelty of our distributed root-MUSIC is to propose
to avoid explicit computation of ÊsÊ

H
s and use the Aberth

method [35] for rooting polynomials in root-MUSIC to ensure
that only linear operations on signal eigenvectors are involved.
That is, many of the algorithms in their original form require
operations other than weighted averages of the involved data,
and we show how to transform those operations into a series

…N sensors

…Processor
0

data exchange

Processor
1

Processor
P – 1

Subarray 0 Subarray 1 Subarray P – 1

Fig. 1. Schematic of distributed array processing. The N -sensor linear array is
divided into P subarrays. The sensor data from subarray i is directly available
only to processor i, corresponding to node i in a communication network
modeled by an undirected graph G. Between the processors there is some
minimal exchange of intermediate results, in order to implement an average
consensus.

of weighted averages. In order to put the new methods in the
right context, this paper includes short reviews of all important
techniques which form the backbone of the new methods.
Moreover, the existing and new, centralized and distributed
methods are presented in a unified framework. In this sense
the paper is self contained and has some tutorial value as well.

The system model used throughout the paper is shown
in Fig. 1. This is a network composed of P nodes, each
of which is a Q-sensor linear subarray [8], [13]. For ease
of presentation, we assume that each subarray has the same
number of sensors, but many algorithms in this paper can
be readily extended to subarrays with different numbers of
sensors. The sensor data from subarray i is directly available
only to a local processor at node i. Between the processors
there is some minimal exchange of intermediate results, in
order to implement an average consensus. The communication
network is modeled by an undirected graph G = (V, E), where
V is the set of the P nodes, and E is the set of edges. Each
node represents a set of sensors and the edges represent the
communication links. If there is an edge between two nodes,
then two way communication is allowed between these nodes
(for average consensus and so forth). The P subarrays, which
do not have overlapping sensors, collectively form a linear
array with N = PQ sensors. That is, all the subarrays are on
the same vertical positions. The unit sensor spacing is λ/2,
and monochromatic plane waves of wavelength λ arrive from
D directions. Assume all the subarrays are located not too far
away, and they receive the same set of source amplitudes. Let
xp ∈ CQ be the output of the pth subarray. Then the array
output is

x = [xT
0 xT

1 · · ·xT
P−1]T = Ac + e, (1)

where c contains source amplitudes ci, e contains additive
noise terms, and A = [aN (ω1) aN (ω2) · · ·aN (ωD)] with

aN (ω) = [ejωz0 ejωz1 · · · ejωzN−1]T . (2)

Here zi ∈ Z is the ith sensor location. Without loss of
generality, assume z0 = 0. In (2), ω = π sin θ, with DOA
θ ∈ [−π/2, π/2) measured from the normal to the line of
array. We assume E[c] = 0, E[|ci|2] = pi, E[e] = 0,
E[eeH] = σ2

eI, and E[ceH] = 0. In this paper, we consider in
general non-uniform linear arrays, but some of the proposed
algorithms only apply to uniform linear arrays (ULAs), and
we will mention it whenever it is the case.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

3

Paper outline: The distributed power method and average
consensus are reviewed in Sec. II. The proposed distributed al-
gorithms for Capon beamforming, root-MUSIC, TLS-ESPRIT,
and FOCUSS are introduced in Sec. III. Then distributed
convolutional beamspace methods, along with a variation
called the “robust Capon beamspace filter” are introduced in
Sec. IV. Distributed spatial smoothing is described in Sec. V.
Sec. VI concludes the paper.

Notations: Boldfaced capital letters denote matrices and
boldfaced lowercase letters are reserved for column vectors.
We use (·)∗, (·)T , (·)H , and (·)+ to denote complex conjugate,
transpose, conjugate transpose, and pseudoinverse, respec-
tively. The identity matrix is denoted by I, and E[·] is the
expectation operator.

II. REVIEW OF DISTRIBUTED POWER METHOD AND
AVERAGE CONSENSUS

In this section, the distributed power method [8] and average
consensus (AC) [10]–[12] are reviewed. The distributed power
method is the first step for subspace-based DOA estimation
algorithms as it estimates the eigenvectors of the covariance
matrix of the array output. AC is a backbone subroutine for
the distributed power method and other algorithms proposed
in this paper.

Subspace-based methods for DOA estimation, including
MUSIC [2], root-MUSIC [3], and ESPRIT [4], require the
computation of the eigenvalue decomposition (EVD) of the
covariance matrix Rxx of the array output x. In practice, we
use K snapshots to get the covariance estimate

R̂xx =
1

K

K∑
k=1

x[k]xH [k]. (3)

To compute the EVD of R̂xx in a fully distributed manner, a
distributed power method was proposed in [8]. The method
uses average consensus (AC) [10]–[12] as a subroutine to
compute the average of some values stored at all the subarrays.
For average consensus, one can use methods which have either
asymptotic convergence [10] or finite-time convergence [11],
[12]. We propose to use finite-time AC in this paper since it
offers exact convergence in a finite number of iterations. A
numerical example in Sec. III-A also shows that finite-time
AC performs better than asymptotic AC. As shown below, as
long as G is a connected graph, exact convergence can be
achieved in at most P − 1 iterations [11].

A. Average Consensus

The aim of AC is to compute the average of some initial
scalar values up(0) stored at nodes p = 0, . . . , P − 1. Nodes
communicate with their neighbors and update their values
through distributed linear iterations of the form

up(t+ 1) = Wpp(t)up(t) +
∑
i∈Np

Wpi(t)ui(t), (4)

where Wpi(t) is the weight on ui(t) at node p for iteration t,
and Np = {i | {p, i} ∈ E} is the set of neighbors of node p.

The weights Wpi(t) are in general complex-valued and time-
varying, though they are restricted to be time independent in
some papers [8], [10]. We can write (4) in the vector form

u(t+ 1) = W(t)u(t). (5)

The goal of finite-time AC is to achieve

u(Iac) = 11Tu(0)/P (6)

after a finite number of iterations Iac, while the goal of
asymptotic AC is to achieve limt→∞ u(t) = 11Tu(0)/P . We
propose to use finite-time AC in this paper. In [11], it was
shown that if G is a connected graph, then there exist weight
matrices W(0), . . . ,W(Iac − 1) with Iac ≤ P − 1 such that
(6) holds. Such weights are not unique, but one way to get a
feasible solution is to start from the Laplacian L of G. Suppose
the distinct eigenvalues of L are λ1, . . . , λR, where R ≤ P .
Since G is connected, L must have the simple eigenvalue 0
[36]. Without loss of generality, assume λR = 0. It is shown
in [11] that if we take

W(0) =
(−1)R−1

λ1λ2 · · ·λR−1
(L− λ1I) (7)

and

W(t) = L− λt+1I (8)

for t = 1, . . . , R − 2, the iteration (5) converges after Iac =
R− 1 ≤ P − 1 steps.

B. Distributed Power Method
Now we summarize the distributed power method [8]. We

first consider the derivation of the first eigenvector of R̂xx.
Let e1(0) ∈ CN be an initial random vector. Suppose all
eigenvalues are distinct. Then the power iterations [37]

e1(n+ 1) = R̂xxe1(n) (9)

will converge to the first eigenvector as n→∞. Let e1(n) =
[eT

1,0(n) eT
1,1(n) · · · eT

1,P−1(n)]T with each e1,p(n) ∈ CQ

stored locally at node p. Using (1) and (3), we can rewrite
(9) as

e1(n+ 1) =
1

K

K∑
k=1

x[k]
P−1∑
p=0

xH
p [k]e1,p(n) (10)

=
P

K

K∑
k=1

x[k] ACp(xH
p [k]e1,p(n)), (11)

where ACp(up) denotes the average consensus of the scalar
values up with enough iterations so that the output is the
exact average of up’s. Hence, by first computing b[k] =
ACp(xH

p [k]e1,p(n)), node p can locally compute

e1,p(n+ 1) =
P

K

K∑
k=1

xp[k]b[k]. (12)

Note that here we use the notation b[k] instead of bp[k] because
each node obtains a copy of the exact average, but one should
understand that node p is using its own copy of b[k] to compute
(12). Suppose we run (9) for Ipm iterations. Then we do
normalization ê1 = e1(Ipm)/‖e1(Ipm)‖ to obtain our final

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

4

estimate ê1 of the normalized first eigenvector. The norm
‖e1(Ipm)‖ can also be computed via AC since

‖e1(Ipm)‖2 = P ·ACp(eH
1,p(Ipm)e1,p(Ipm)). (13)

To derive the qth eigenvector êq of R̂xx, we note that êq

is the eigenvector corresponding to the largest eigenvalue of
(I−

∑q−1
i=1 êiê

H
i)R̂xx, where êi is the ith eigenvector of R̂xx.

Thus, it can be obtained by running the power iterations

eq(n+ 1) =

(
I−

q−1∑
i=1

êiê
H
i

)
R̂xxeq(n). (14)

Note that ēq(n) , R̂xxeq(n) can be computed in a manner
similar to (11). Then,

eq(n+ 1) = ēq(n)− P
q−1∑
i=1

êi ACp(êH
i,pēq,p(n)), (15)

where êi,p, ēq,p(n) ∈ CQ are subvectors of êi and ēq(n), re-
spectively, corresponding to node p. Hence, by first computing
fi,q = ACp(êH

i,pēq,p(n)), node p can locally compute

eq,p(n+ 1) = ēq,p(n)− P
q−1∑
i=1

êi,pfi,q, (16)

which is the subvector of eq(n + 1) corresponding to node
p. Finally, after Ipm iterations, we do normalization êq =
eq(Ipm)/‖eq(Ipm)‖ to obtain our final estimate êq of the
normalized qth eigenvector. The norm ‖eq(Ipm)‖ can be com-
puted in a manner similar to (13). The total communication
cost per edge for estimating D eigenvectors is O(D(D +
K)IacIpm) ≈ O(DKIacIpm) if D � K. The cost is mainly
dominated by computing ēq(n) and (15). For comparison, the
communication cost of the method in [14] applied to a fully
connected network is O(DKIao), where Iao is the number
of iterations for alternating optimization. When the distributed
power method is applied to a fully connected network, Iac = 1,
so the communication cost is O(DKIpm). The communication
costs of the two methods have the same dependence on D and
K. We use distributed power method in this paper as it applies
to any network structure.

The existence of êi, i < q in (14) implies that we can start
the power iterations for êq only after the first q−1 eigenvectors
are obtained. That is, the eigenvectors are updated sequentially.
Alternatively, we can replace each êi by ei(n + 1), so the
power iterations for all eigenvectors can be done in parallel.
This can reduce time complexity. However, the modified
method typically requires more iterations to compute each
eigenvector, as shown later in Fig. 5. The total computational
and communication costs are thus increased. Hence, we use
only the original method in all other examples in this paper.

III. DISTRIBUTED DOA ESTIMATION AND BEAMFORMING

In this section, we propose distributed algorithms for Capon
beamforming [1], root-MUSIC [3], ESPRIT [4] based on
total least-squares estimates (TLS-ESPRIT), and FOCUSS
[6], [7]. (Note that LS-ESPRIT has been reported [13] and
analyzed [18].) The distributed DOA estimation algorithms,
including root-MUSIC, TLS-ESPRIT, and FOCUSS, can be

applied either directly to element-space or in series with a
beamspace method, such as CBS presented in Sec. IV. In
the following, we first show how to do distributed Capon
beamforming in Sec. III-A. Distributed root-MUSIC, ESPRIT,
and FOCUSS are presented in Secs. III-B, III-C, and III-D,
respectively. FOCUSS is a method to obtain sparse solutions
to underdetermined equations, so distributed FOCUSS has
applications much broader than distributed DOA estimation.
The communication, computation, and storage costs of the
proposed distributed methods are compared to centralized
methods in Sec. III-E.

A. Distributed Capon Beamforming

In traditional beamforming, we consider a linear array
output

x = c0aN (ω0) + u, (17)

where u = Ac+e is the interference plus noise. The quantity
ω0 represents the “look direction,” i.e., the direction in which
we want to point the beam, c0 is the amplitude of the signal
coming from that direction, and A, c, e are as defined in
(1), with ω1, . . . , ωD representing D interferer directions. The
output of the beamformer can be expressed as

zBF = hHx (18)

where h = [h(0) · · ·h(N−1)]T is a complex weighting vector.
The output signal-to-interference-plus-noise ratio (SINR) of
the beamformer is defined as

SINR =
E[|c0hHaN (ω0)|2]

E[|hHu|2]
=
p0|hHaN (ω0)|2

hHRuuh
, (19)

where p0 = E[|c0|2] and Ruu = E[uuH]. When the signal is
uncorrelated with the interference, the Capon beamformer [1],
[5], which is the solution to the optimization problem

min
h

hHRxxh

subject to hHaN (ω0) = 1, (20)

maximizes the SINR, where Rxx = E[xxH]. The solution to
this problem is given by

h = c ·R−1xxaN (ω0), (21)

where c = 1/(aH
N (ω0)R−1xxaN (ω0)). In practice, Rxx is

replaced by its estimate R̂xx as in (3).
Now we show how to compute the Capon beamformer

in our distributed setting, where the array output x =
[xT

0 xT
1 · · ·xT

P−1]T with xp ∈ CQ stored locally at node p.
The crucial step is to compute the inverse of the covariance
estimate (3) appearing in (21). Instead of directly computing
this inverse, we propose to use the conjugate gradient (CG)
method [34] to compute

w = R̂−1xxaN (ω0). (22)

Equivalently, we want to solve the system of linear equations

R̂xxw = aN (ω0), (23)

where R̂xx = R̂H
xx is assumed to be positive definite (it is

generally true if K ≥ N). The CG method is a method for

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

5

Algorithm 1 Conjugate gradient method
1: r0 = aN (ω0)
2: p0 = r0
3: w0 = 0
4: for i = 0 to N − 1 do
5: αi = (rHi ri)/(p

H
i R̂xxpi)

6: wi+1 = wi + αipi

7: ri+1 = ri − αiR̂xxpi

8: if ‖ri+1‖2 < ε then
9: break . End iteration if residual approaches zero

10: end if
11: βi = (rHi+1ri+1)/(rHi ri)
12: pi+1 = ri+1 + βipi

13: end for
14: return wi+1

solving a set of positive definite linear equations [38]. Hence,
(23) can be solved by the CG method, which is summarized
as a pseudocode in Algorithm 1 shown in the table. In the
CG method, we construct a set of vectors p0, . . . ,pN−1 that
form a basis for CN and are mutually conjugate with respect
to R̂xx, i.e., pH

i R̂xxpk = 0 for all i 6= k. Then the final
solution w can be expressed as

w =
N−1∑
i=0

αipi (24)

for some αi. The basis vectors pi and coefficients αi are
obtained iteratively as in Algorithm 1. The quantity wi+1 =∑i

k=0 αkpk is the partial solution in iteration i + 1, and
ri+1 = aN (ω0) − R̂xxwi+1 is the corresponding residual.
Line 9 serves as a checkpoint for ending the CG iterations. If
the residual ri+1 = 0, the CG iterations should be terminated.
In practice, we check if ‖ri+1‖2 < ε for some small positive ε.
For more details of the CG method, one may refer to [34]. The
key point of using the CG method here is that R̂xx appears
only in the linear operation qi = R̂xxpi in Lines 5 and 7.
This can be computed using AC in a way similar to (11).

The proposed distributed Capon beamforming based on CG
method is presented in Algorithm 2 shown in the table. It is
essentially using the CG method to solve (23) and making the
algorithm distributed. Some new variables are defined in Algo-
rithm 2 so that some partial results can be reused. Throughout
the algorithm, the vectors pi,p,qi,p, ri,p,wi,p ∈ CQ are
subvectors of pi,qi, ri,wi ∈ CN , respectively, corresponding
to node p, and are accessible only to node p. Moreover, the
computations in Lines 10, 15, 16, and 24 are done locally at
each node in parallel. AC appears in the algorithm in three
places, Lines 7, 12, and 18. The inner products in the AC
arguments are also computed locally at node p in parallel.
Line 7 is the dominant operation for communication, leading
to O(KNIac) communication cost per edge, where Iac is
the number of AC iterations. After computing the Capon
beamformer (21) using Algorithm 2, we simply have to apply
the beamformer as in (18). This can be also done using AC
since

zBF = P ·ACp(hH
p xp). (25)

Here hp ∈ CQ is the subvector of h corresponding to node p.

Algorithm 2 Distributed design of Capon beamformer
1: r0 = aN (ω0)
2: a0 = rH0 r0
3: p0 = r0
4: w0 = 0
5: for i = 0 to N − 1 do
6: for k = 1 to K do
7: t[k] = P ·ACp(xH

p [k]pi,p)
8: end for
9: for p = 0 to P − 1 do

10: qi,p = 1
K

∑K
k=1 xp[k]t[k] . Compute qi = R̂xxpi

11: end for
12: bi = P ·ACp(pH

i,pqi,p)
13: αi = ai/bi
14: for p = 0 to P − 1 do
15: wi+1,p = wi,p + αipi,p

16: ri+1,p = ri,p − αiqi,p

17: end for
18: ai+1 = P ·ACp(rHi+1,pri+1,p)
19: if ai+1 < ε then
20: break . End iteration if residual approaches zero
21: end if
22: βi = ai+1/ai
23: for p = 0 to P − 1 do
24: pi+1,p = ri+1,p + βipi,p

25: end for
26: end for
27: return wi+1

Our idea of using the CG method to compute the inverse
of the covariance matrix can be applied to situations other
than Capon beamforming. It can be used for any problem
that requires the inversion of an array output covariance. For
example, we can derive a distributed algorithm for the method
of space-time adaptive processing (STAP) for MIMO radar
systems proposed in [39].

A numerical example is next given to demonstrate the
effectiveness of the proposed distributed Capon beamforming.
We consider the network as in [13] composed of P = 6 nodes,
and the neighboring sets are

N0 = {1, 2},N1 = {0, 2},N2 = {0, 1, 3},
N3 = {2, 4, 5},N4 = {3, 5},N5 = {3, 4}. (26)

For this network, using the finite-time AC method in [11],
we can achieve exact convergence in 3 iterations. This is
because, in this case, the Laplacian L has R = 4 distinct
values. The weight matrix W(t) of each iteration can be
found using (7) and (8). We compare this finite-time AC
method with the asymptotic AC method using the optimal
symmetric weight matrix proposed in [10]. Each node is a
ULA with Q = 2 sensors and they together form a 12-
sensor ULA. The signal of interest is at angle θ = 5◦,
which is assumed known. There are 5 interfering sources
with DOAs ω = 0.5π, 0.62π, 0.74π, 0.86π, and 0.98π. (Recall
ω = π sin θ.) All sources are uncorrelated with power 1. The
noise variance is σ2

e = 1. Output SINRs for various number
of iterations for asymptotic AC are shown in Fig. 2(a). It does
not make sense to consider the SINRs of finite-time AC before

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

6

0 5 10 15 20 25 30
Number of Iterations for Asymptotic AC

10-3

10-2

10-1

100

101
S

IN
R

Asymptotic AC
 Finite-time AC, 3 iterations

(a)

-1 -0.5 0 0.5 1
Normalized frequency /

0

0.5

1

1.5

2

2.5

3

3.5

M
ag

ni
tu

de

Asymptotic AC, 3 iterations
Asymptotic AC, 17 iterations
Asymptotic AC, 25 iterations
 Finite-time AC, 3 iterations
Signal
Interferences

(b)

Fig. 2. Distributed Capon beamforming with asymptotic AC and finite-time
AC methods. The number of iterations for finite-time AC is fixed at 3. (a)
Output SINR. (b) Typical beamformer responses.

it reaches exact convergence with a sufficient finite number of
iterations, so we just fix it to be that number, 3 in this example.
We use 500 snapshots and average 2000 Monte Carlo runs to
get the plot. Indeed, finite-time AC converges much faster than
asymptotic AC. Although asymptotic AC gets SINRs similar to
finite-time AC also in some of the small numbers of iterations,
we cannot know which iterations yield larger SINRs if we do
not know the ground truth, so in practice we still have to use
a large enough number of iterations for asymptotic AC, like
20 in this example. Hence, we propose to use finite-time AC
in our distributed algorithms. Note that the centralized Capon
beamformer yields exactly the same SINR as the finite-time
AC method, so it is not plotted. Typical beamformer responses
are also shown in Fig. 2(b). The beam pattern of asymptotic
AC gradually converges to that of finite-time AC as iterations
progress.

B. Distributed MUSIC and Root-MUSIC
In algorithms such as MUSIC [2] and root-MUSIC [3], we

first compute the EVD of the covariance matrix Rxx of the

array output x and obtain

Rxx = EsΛsE
H
s + EnΛnEH

n , (27)

where Es = [e1 · · · eD] and En = [eD+1 · · · eN] contain
the signal and noise eigenvectors respectively with eH

k em =
δ[k − m], and Λs and Λn are diagonal matrices containing
the corresponding eigenvalues. In the MUSIC algorithm, we
evaluate the MUSIC spectrum

P (ω) = (aH
N (ω)EnEH

n aN (ω))−1 (28)

on a dense grid of potential DOAs and identify local maxima
as the DOA estimates. This is because theoretically, if ω is
a true DOA, then the steering vector aN (ω) is orthogonal
to noise subspace En, i.e., aH

N (ω)EnEH
n aN (ω) = 0. The

converse (i.e., if aH
N (ω)EnEH

n aN (ω) = 0, then ω is a true
DOA) is also true for a ULA (given the number of sources
D < N), but not true in general for a non-ULA [40]–[42]. Our
focus here is the development of distributed algorithms. We
will see that these algorithms are insensitive to whether the
array is uniform or not, and we do not focus on well-known
identifiability issues here. In practice, Rxx and ei are replaced
by their finite-snapshot estimates R̂xx and êi respectively.

Root-MUSIC is a variation of the MUSIC algorithm. It
avoids the evaluation of MUSIC spectrum on a dense grid
by computing the roots of a polynomial, thereby improving
accuracy, and reducing complexity. Thus, instead of finding
local maxima of P (ω), we find roots ρi of the polynomial

f(z) = aT
N (z)ÊnÊH

n aN (z), (29)

where aN (z) = zzN−1 [1 z−z1 · · · z−zN−1]T and aN (z) =
[1 zz1 · · · zzN−1]T (with zi denoting sensor locations as be-
fore). This polynomial is obtained by replacing ejω with z in
P−1(ω) and then multiplying it with zzN−1 . The DOAs ωi are
obtained from the arguments of ρi.

Now we show how to do MUSIC and root-MUSIC in our
distributed setting. In this case, the eigenvector estimates are
obtained using the distributed power method in Sec. II, and
the results are êi = [êT

i,0 · · · êT
i,P−1]T with êi,p only known to

node p. Then the MUSIC spectrum can be evaluated as

P (ω) =

(
N∑

i=D+1

∣∣P ·ACp(êH
i,paN,p(ω))

∣∣2)−1 , (30)

where aN,p(ω) ∈ CQ is the subvector of aN (ω) corresponding
to node p. Alternatively, since Ê , [Ês Ên] is a unitary matrix
so that ÊsÊ

H
s + ÊnÊH

n = I, we also have

P (ω) = (aH
N (ω)(I− ÊsÊ

H
s)aN (ω))−1 (31)

= (N − aH
N (ω)ÊsÊ

H
s aN (ω))−1 (32)

=

(
N −

D∑
i=1

∣∣P ·ACp(êH
i,paN,p(ω))

∣∣2)−1 . (33)

Typically, (33) is advantageous over (30) in terms of com-
putation and communication among nodes because dominant
eigenvectors ê1, . . . , êD are obtained first by the distributed
power method, unless D is almost as large as N . The com-
munication cost per edge for evaluating P (ω) using (33) is
O(DGIac), where G is the number of grid points used for ω.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

7

Algorithm 3 Distributed root-MUSIC
1: Randomly initialize z0,1, . . . , z0,2zN−1

2: for i = 0 to Imax do
3: for k = 1 to 2zN−1 do
4: u = P ·ACp(ÊH

s,paN,p(zi,k))

5: u = P ·ACp(ÊT
s,paN,p(zi,k))

6: v = P ·ACp(ÊH
s,pbN,p(zi,k))

7: v = P ·ACp(ÊT
s,pbN,p(zi,k))

8: s = Nz
zN−1

i,k − uTu

9: t = NzN−1z
zN−1−1
i,k − vTu− uTv

10: zi+1,k = zi,k − [t/s−
∑

l 6=k(1/(zi,k − zi,l))]−1
11: end for
12: if

∑
k |zi+1,k − zi,k|2 < ε then

13: break . End iteration if all roots converge
14: end if
15: end for
16: return zi+1,1, . . . , zi+1,2zN−1

For distributed root-MUSIC, we can similarly consider
either (29) or

f(z) = NzzN−1 − aT
N (z)ÊsÊ

H
s aN (z). (34)

In the following, we use the form in (34) to derive our
distributed algorithm because it is easier to obtain Ês than
Ên. A similar algorithm can be derived for (29). To under-
stand the crucial step that is required here, consider Ês =
[ÊT

s,0 · · · ÊT
s,P−1]T , where Ês,p ∈ CQ×D contains the local

subvectors of eigenvectors for node p. To explicitly compute
all entries of ÊsÊ

H
s , we need to compute Ês,pÊ

H
s,q for each

pair of p and q. This cannot be done without a fusion center or
sharing data among all nodes. Instead of explicitly computing
ÊsÊ

H
s , we propose to use the Aberth method [35] as our

polynomial-rooting algorithm and show that the method can
be done in a distributed way based on AC. Given a polynomial
f(z) of degree n, the Aberth method is an algorithm that finds
all roots simultaneously by the iteration

zi+1,k = zi,k −

f ′(zi,k)

f(zi,k)
−

n∑
l=1
l 6=k

1

zi,k − zi,l


−1

(35)

for k = 1, . . . , n. Here zi,k stands for the kth root in
the ith iteration, and f ′(zi,k) is the first derivative of f(z)
evaluated at z = zi,k. The key point of using the Aberth
method is that Ês appears only in f ′(zi,k) and f(zi,k), and
we can show that distributed computation of these can be
done using AC. After plugging (34) into (35) and some
derivations, we can realize distributed root-MUSIC as sum-
marized in Algorithm 3 shown in the table. In this algo-
rithm, aN,p(z),aN,p(z),bN,p(z),bN,p(z) ∈ CQ are subvec-
tors of aN (z),aN (z), d

dzaN (z), and d
dzaN (z), respectively,

corresponding to node p. The vectors aN,p(zi,k), aN,p(zi,k),
bN,p(zi,k), bN,p(zi,k) can be evaluated at node p because each
zi,k is known to all nodes. The matrix multiplications in the
four AC arguments are computed locally at node p in parallel.

The iterative algorithm stops either when all roots converge,
i.e., ∑

k

|zi+1,k − zi,k|2 < ε (36)

for some small positive ε, or when a predefined maximum
number of iterations Imax is reached. The total communication
cost per edge is O(zN−1DIacIab), where Iab is the number of
Aberth iterations. A numerical example is given in Sec. IV-D.

The Aberth method works even for non-distinct roots [35].
One scenario that hinders convergence is when the roots are
symmetrically positioned in the complex plane with respect
to some line, and the initial guess of the roots makes them
also symmetrically placed with respect to the line. However,
this happens with probability zero in our case due to two
reasons. First, the actual roots resulting from a finite number
of snapshots of the array output are not symmetrical with
probability one. Second, we initialize the roots randomly
with some continuous probability distribution, so they are not
symmetrical with probability one. Hence, essentially it will
always converge in our case.

C. Distributed ESPRIT
ESPRIT [4] is another commonly used subspace-based

DOA estimation algorithm. For ESPRIT, we assume that each
node is a Q-sensor ULA with the same sensor spacing λ/2,
but the displacements between the subarrays are unknown,
so the entire array can be non-uniform. This array setting
follows [13]. In [13], ESPRIT based on least-squares estimates
(LS-ESPRIT) was shown to be realizable in this distributed
setting. It is well-known that total least-squares (TLS) ESPRIT
produces more accurate estimates than LS-ESPRIT [43]. In
this subsection, we will show that distributed TLS-ESPRIT
can also be done, and we will present distributed LS-ESPRIT
and TLS-ESPRIT in a unified framework.

In ESPRIT, we require two groups of sensors with a shift
invariance between them. Here we define the first group to be
the first Q−1 sensors of each node and the second group to be
the last Q−1 sensors of each node. Hence, the shift invariance
is the unit sensor spacing λ/2. Equivalently, consider the
selection matrices

J̄1 = [IQ−1 0Q−1] (37)

and

J̄2 = [0Q−1 IQ−1], (38)

where 0Q−1 is the (Q− 1)× 1 zero vector. Moreover, let

Jl = IP ⊗ J̄l (39)

for l = 1, 2, where ⊗ denotes the Kronecker product. Then
in ESPRIT, we have to select the rows of signal eigenvectors
Ês corresponding to each group, i.e., Êl = JlÊs for l = 1, 2.
Ideally, Ê1 and Ê2 have the same column space if we have
infinite snapshots. In practice, we find the LS or TLS solution
[4] to Ê1Ψ = Ê2. The LS solution is

ΨLS = (ÊH
1 Ê1)−1(ÊH

1 Ê2). (40)

Then the DOA estimates of LS-ESPRIT are [4]

ω̂LS,k = arg(λk(ΨLS)), (41)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

8

the argument of the kth eigenvalue of ΨLS. To compute the
TLS solution, we consider

F =

[
F1,1 F1,2

F2,1 F2,2

]
, (42)

where Fl,m = ÊH
l Êm for l = 1, 2 and m = 1, 2, and compute

its EVD

F = ĒΛ̄ĒH , (43)

with the eigenvalues in descending order. Then we decompose
the matrix Ē ∈ C2D×2D into D ×D submatrices, i.e.,

Ē =

[
Ē1,1 Ē1,2

Ē2,1 Ē2,2

]
. (44)

The TLS solution is then

ΨTLS = −Ē1,2Ē
−1
2,2, (45)

and the DOA estimates of TLS-ESPRIT are

ω̂TLS,k = arg(λk(ΨTLS)). (46)

Now we show how to do ESPRIT in our distributed setting.
In [13], the authors showed how to do this for LS-ESPRIT. We
now give a unified derivation for distributed ESPRIT, which
works whether it is LS- or TLS-ESPRIT. For l = 1, 2 and
m = 1, 2, we have

[ÊH
l Êm]i,k =

P−1∑
p=0

(J̄lêi,p)H(J̄mêk,p) (47)

= P ·ACp((J̄lêi,p)H(J̄mêk,p)) (48)

for each (i, k)-entry. Again, êi = [êT
i,0 · · · êT

i,P−1]T is the ith
eigenvector with êi,p ∈ CQ being the subvector corresponding
to node p. Thus, (J̄lêi,p)H(J̄mêk,p) can be computed locally
at node p. Then with AC, each node can obtain the entire
matrix F. Hence for LS-ESPRIT, we can compute

ΨLS = F−11,1F1,2 (49)

and then (41) locally at each node. Likewise, for TLS-ESPRIT,
(43) through (46) can also be realized locally at each node.
This leads to an increase in the total computational complexity
since all the nodes are performing the same operations. An
alternative would be for one node to do the computations
and then send the final DOA estimates to the other nodes.
This is a tradeoff between computation and communication.
The communication cost per edge for both LS-ESPRIT and
TLS-ESPRIT is O(D2Iac), though TLS-ESPRIT has twice
communication cost of LS-ESPRIT because TLS-ESPRIT
requires the entire matrix F while LS-ESPRIT requires only
F1,1 and F1,2. This is a tradeoff for getting better DOA
estimates with TLS-ESPRIT.

A numerical example is given next to demonstrate the effec-
tiveness of the proposed distributed TLS-ESPRIT. We consider
the same network (26) and use the finite-time AC method with
3 iterations as explained in Sec. III-A. We compare distributed
TLS-ESPRIT with distributed LS-ESPRIT [13] and centralized
TLS-ESPRIT [4]. Here the distributed power method shown
in Sec. II is used to estimate eigenvectors of the array output
covariance for distributed TLS-ESPRIT and distributed LS-
ESPRIT, whereas ideal EVD of the covariance is assumed for

40 50 60 70 80 90 100
Number of snapshots

0.01

0.015

0.02

0.025

0.03

0.035

0.04

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

LS-ESPRIT, distributed
TLS-ESPRIT, distributed
TLS-ESPRIT, centralized & ideal EVD

Fig. 3. RMSE of DOA estimates using distributed LS-ESPRIT, distributed
TLS-ESPRIT, and centralized TLS-ESPRIT.

centralized TLS-ESPRIT. The sensor locations of the pth node
are 15p, 15p + 1, . . . , 15p + 9, so each node is a ULA with
Q = 10 sensors, and there are 60 sensors in total. Note that
the entire array is not a ULA. The displacement 15 between
the subarrays is arbitrary and assumed unknown. There are 6
DOAs at angles θ = −5◦,−3◦ − 1◦, . . . , 5◦. The sources are
uncorrelated with power −5 dB. The noise variance is σ2

e = 1.
We assume the number of DOAs is known. The number
of power iterations is Ipm = 5. Root mean square errors
(RMSEs) of DOA estimates for various number of snapshots
are shown in Fig. 3. In this paper, whenever we mention
RMSEs in detected source angles, we refer to averaging square
errors measured in ω over all involved DOAs. We average
5000 Monte Carlo runs to get the plot. As expected, the RMSE
of distributed TLS-ESPRIT is smaller than that of distributed
LS-ESPRIT. The RMSE of centralized TLS-ESPRIT is even
smaller at 40 snapshots because ideal EVD is used for it.
However for 50 or more snapshots, distributed TLS-ESPRIT
using only 5 power iterations performs almost the same as
centralized TLS-ESPRIT.

D. Distributed FOCUSS

The FOCUSS algorithm [6], [7] for finding sparse solutions
to an underdetermined system can also be used to estimate
DOAs. We first briefly review the centralized FOCUSS for the
case of multiple measurement vectors [7], or multiple snap-
shots in our language. To use FOCUSS for DOA estimation,
a dictionary D of steering vectors aN (ω̄i) on a dense grid of
potential DOAs {ω̄i}di=1 is considered, and the goal is to find
sparse signals Q = [q(1) q(2) · · ·q(K)]T that well represent
the K snapshots of array output

X = [aN (ω̄1) aN (ω̄2) · · · aN (ω̄d)]︸ ︷︷ ︸
dictionary D

Q + E. (50)

Here X = [x(1) x(2) · · ·x(K)] and E = [e(1) e(2) · · · e(K)]
are the K snapshots of array outputs and noise, respectively.
The number of grid points d is typically much larger than D,
the number of sources. If D is not too large [7] (the exact

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

9

TABLE I
COMMUNICATION COSTS OF DISTRIBUTED AND CENTRALIZED DOA ESTIMATION METHODS

Algorithm Communication cost Typical numbers
Distributed MUSIC O(DKIacIpm +DGIac) 3000

Distributed root-MUSIC O(DKIacIpm + zN−1DIacIab) 8940

Distributed TLS-ESPRIT O(DKIacIpm +D2Iac) 1812

Distributed FOCUSS O(dKIacIfo) 9× 105

All centralized methods O(KN) 12000

bound depending on N and K), there exists a solution to
(50) such that q(k) has a common sparse pattern across all
snapshots. The locations of nonzero entries of q(k) reveal
the DOAs, and the values represent the source amplitudes.
FOCUSS is an iterative algorithm for solving such a problem.
It is initialized with

Q0 = D+X. (51)

Then we iterate

Wn+1 = diag(‖qn,1‖1−p/2, . . . , ‖qn,d‖1−p/2) (52)
Qn+1 = Wn+1(DWn+1)+X (53)

for n = 0, 1, . . . , until convergence. Here qT
n,i is the ith row

of Qn, and p ∈ [0, 1] is a parameter to be chosen so that the
solution aims to minimize the `p diversity measure [7], i.e.,
the `p pseudo-norm of the vector whose elements are the `2
norms of the rows of Q.

Now we show how to do FOCUSS in our distributed setting,
where

X = [XT
0 XT

1 · · ·XT
P−1]T (54)

with Xp ∈ CQ×K stored locally at node p. Let B0 =
D+ = [B0,0 · · ·B0,P−1] with each B0,p ∈ Cd×Q. Since the
dictionary D is known to all nodes, B0,p can also be obtained
at node p. Hence, (51) can be computed from

Q0 = P ·ACp(B0,pXp). (55)

Let Bn+1 = Wn+1(DWn+1)+ = [Bn+1,0 · · ·Bn+1,P−1]
with each Bn+1,p ∈ Cd×Q. Then (53) can be computed from

Qn+1 = P ·ACp(Bn+1,pXp). (56)

Since each Qn+1 is the result of AC, it is known to all
nodes, so (52) can also be formed at each node. Thus, each
Bn+1,p can indeed be obtained at node p. The fact that only
linear operations on array outputs are involved in the iterations
makes FOCUSS readily realizable using AC. As in distributed
ESPRIT, computing (DWn+1)+ at all the nodes leads to an
increase in the total computational complexity since they are
performing the same operations. An alternative would be for
one node to do the computations and then send the results
to the other nodes. This is a tradeoff between computation
and communication. The communication cost per edge is
O(dKIacIfo), where Ifo is the number of FOCUSS iterations.
A numerical example is given in Sec. IV-D.

Distributed FOCUSS evidently has broader applications
than DOA estimation. It can be used for any problem that
requires a sparse solution to an underdetermined system [7].

E. Communication, Computation, and Storage

We now compare the communication costs of the proposed
distributed algorithms and centralized algorithms. Using the
results in Sec. II-B for distributed power method and in this
section for the DOA estimation methods, the communication
costs per edge for the various distributed algorithms are
summarized in Table I. For a ULA, zN−1 = N −1. Typically,
the number of DOAs D is much smaller than either of the
number of grid points G used for ω in MUSIC, number of
sensors N , number of snapshots K, and number of grid points
d used for ω in FOCUSS. How we choose the numbers of
iterations Ipm, Iab, and Ifo depends on the particular DOA
problem settings, but empirically we need a relatively small
Ipm. Also, according to Sec. II-A, Iac < P , and the exact
number of Iac depends on the network structure. Hence, the
communication cost of TLS-ESPRIT is typically the smallest.
That is, TLS-ESPRIT is the DOA estimation method partic-
ularly suitable for distributed implementations. On the other
hand, to implement any centralized DOA estimation method,
each node always sends the raw data to a fusion center to
do centralized computation. Thus, the communication cost of
any centralized DOA estimation method is the same. Given
K snapshots of the array output x, the total communication
cost across the sensor network is O(KNT), where T is the
average distance between each node and the fusion center.
The distance between two nodes is the number of edges in
a shortest path connecting them. In other words, we have
assumed that an efficient routing protocol is used so that
each node can send its raw data to the fusion center via a
shortest path. In this case, the average communication cost per
edge for any centralized algorithm is O(KNT/|E|). Since we
assume the network is a connected graph, O(1) ≤ T ≤ O(P)
and O(P) ≤ |E| ≤ O(P 2). The possible range of the
average communication cost per edge is thus O(KNP r),
where −2 ≤ r ≤ 0. Hence, whether the communication
cost of a distributed algorithm is smaller than the average
communication cost of a centralized one depends on the values
of the parameters and on the connectivity of the network.
Distributed algorithms are typically more advantageous given
larger arrays or more snapshots, especially for distributed TLS-
ESPRIT.

Besides the average communication cost per edge, another
important metric is the maximum communication cost among
all the edges because it can determine the existence of
a communication bottleneck. Unless the network is almost
fully connected, the maximum communication cost for any
centralized algorithm is typically close to O(KN), due to
an edge nearby the fusion center. By contrast, the maximum
communication costs of the distributed algorithms follow

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

10

the same expressions in Table I because each edge has the
same communication cost. Therefore, distributed algorithms
are more likely to be better than centralized ones in terms
of maximum communication costs, which can determine a
communication bottleneck. For comparison, the maximum
communication cost of centralized methods is also listed in
Table I. Also, we give an example of typical numbers by
setting P = 6, Q = 20, D = 2,K = 100, d = G = 200, Iac =
Ipm = 3, Iab = 10, Ifo = 15, and zN−1 = 119. The numbers
of iterations are set according to empirical results. We see
that distributed TLS-ESPRIT has the smallest communication
cost. All the distributed algorithms have smaller costs than
centralized ones, except distributed FOCUSS. The large com-
munication cost of FOCUSS is mainly due to the factor dK in
the expression. Unless there is some other prior information
(e.g., DOAs known to be in some range so that a smaller d
can be used), distributed FOCUSS would not be advantageous
in terms of communication cost. The numbers in Table I are
typical when we assume the number of sources D � N .
The small-D assumption is also made in the literature [14]
to show the advantage in communication costs for distributed
methods. However, even when this assumption does not hold
so that distributed methods do not lower communication costs,
other issues can still prevent the use of centralized methods
in the first place, as explained in the following.

In the proposed distributed algorithms, the local compu-
tation cost at a node depends on the amount of local array
data and the number of its neighbors, but not directly on
the size of the network. Take TLS-ESPRIT as an example.
The computational complexity of (48) locally at node i is
O(D2Q + D2Iac|Ni|), where |Ni| is the number of its
neighbors. Besides, each node only has to store its local array
data and AC weights for each edge between each neighbor and
itself. It is unlike centralized systems where the fusion center
has to store the array data collected from all the nodes to do
centralized computation. Therefore, the proposed distributed
systems should scale better than centralized systems with
fusion centers, as the sensor network expands. The requirement
of local storage space and computation power that grow with
the network size makes it very challenging to implement
centralized algorithms for large networks.

In summary, we have the following key observations.

1) TLS-ESPRIT typically has the smallest communication
cost among the proposed distributed algorithms.

2) There are two ways to measure communication cost:
average communication cost per edge and maximum
communication cost among all the edges. The maximum
communication cost can determine a communication
bottleneck, so it is more important for the system to be
scalable. The two measures do not make a difference
for distributed algorithms, but centralized algorithms
have larger maximum communication cost than average
communication cost. Hence, distributed algorithms are
more likely to be better than centralized ones in terms
of maximum communication costs.

3) In the proposed distributed algorithms, the local com-
putation and storage at a node depend on the amount
of local array data and the number of its neighbors, but
not directly on the network size. Thus, these distributed

systems should scale better than centralized systems.

IV. DISTRIBUTED CONVOLUTIONAL BEAMSPACE

In this section, we propose distributed algorithms for a
recently introduced beamspace method called convolutional
beamspace (CBS) [31], [32], and for its variant Capon-CBS
[44]. Given an N -sensor array with output x ∈ CN , the idea
of beamspace is to compute a transformation y = Tx ∈ CB ,
where B < N , and estimate DOA using y. (For clarity, DOA
estimation using x directly is called element-space method.)
With a properly designed T, the DOAs falling outside a chosen
subband are attenuated, and we focus on estimating only the
DOAs in the subband. A bank of transformations {Ti} can be
operated in parallel to cover all subbands. One major advan-
tage of beamspace processing is the lowered complexity due to
dimensionality reduction (B < N). Beamspace methods also
tend to have smaller SNR threshold for resolution of closely
spaced sources [5], [25], [26] and smaller bias [27], [31].

Classical beamspace methods compromise the Vander-
monde structure in the output of a uniform linear array
(ULA), so elaborate steps have to be taken to apply root-
MUSIC [27] or ESPRIT [28]. By contrast, CBS methods
allow root-MUSIC and ESPRIT to be performed directly for
ULAs without additional preparation since the Vandermonde
structure is preserved. This is achieved by convolving the ULA
output with an FIR filter H(z). In traditional CBS [31], the
filter H(z) was predefined as a standard lowpass filter, such as
the Parks-McClellan filter [45]. But the filter was not designed
by taking input statistics into account. In Capon-CBS [44],
the filter is designed based on data using the idea of Capon
beamforming, so it should do a better job of suppressing
the sources falling in the stopband, as they are treated as
interference in the Capon method.

The CBS methods have two stages. Stage 1 is the con-
volutional beamspace (CBS) stage, where the ULA output
is convolved with an FIR filter H(z). Stage 2 is the DOA
estimation stage. The filter in Stage 1 needs to have a flat
passband, and it is a standard lowpass filter in traditional CBS
or the robust Capon beamspace filter in Capon-CBS. The
robust Capon beamspace filter is based on the robust version
[46] of Capon beamformer, as proposed in [44] to get a flat
passband. Distributed implementation of the CBS filter, i.e.,
distributed convolution, is introduced in Sec. IV-A. Distributed
design of the robust Capon beamspace filter is presented in
Sec. IV-B. The DOA estimation algorithms proposed in Sec.
III can be used in Stage 2 to form an overall distributed system
together with the Stage 1 methods in Secs. IV-A and IV-B.
This distributed DOA estimation in Stage 2 is presented in
IV-C. Numerical examples are given in Sec. IV-D.

A. Distributed Implementation of the CBS Filter

Convolutional beamspace (CBS) [31], [32] methods are
used for ULAs. That is, we assume the sensor locations
zi = i in (2). We convolve the N -sensor ULA output sequence
x(n), 0 ≤ n ≤ N − 1 with an FIR filter

H(z) =

L−1∑
n=0

h(n)z−n (57)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

11

with length L < N and retain steady state output samples:

y , [y(L− 1) y(L) · · · y(N − 1)]T

= H[x(0) x(1) · · ·x(N − 1)]T = Hx, (58)

where H is a (N − L+ 1)×N banded Toeplitz matrix with
first row [h(L− 1) h(L− 2) · · ·h(0) 0 · · · 0] and first column
[h(L− 1) 0 · · · 0]T . One can show that [31]

y = ALd + He, (59)

where AL is a Vandermonde matrix obtained from A (defined
in (1), (2)), by keeping the first N − L + 1 rows, and d has
elements dk = cke

j(L−1)ωkH(ejωk). The arriving signals with
DOAs ωk are thus filtered by the response H(ejω). The filter
is designed as a standard lowpass filter such as the Parks-
McClellan filter [45] in traditional CBS [31], and as a Capon
beamspace filter in Capon-CBS [44]. The design of the Capon
beamspace filter will be discussed in Sec. IV-B. Assuming
signals in the stopband are well attenuated so that y contains
only those DOAs that fall in the passband of H(ejω), we
have y ≈ AL,0d̄0 + He. Here AL,0 has D0 columns of AL

corresponding to the D0 sources that fall in the passband, and
d̄0 has the corresponding D0 rows of d.

To achieve complexity reduction in CBS, we decimate y(n)
with a uniform downsampler [31]. If the passband of H(z) has
width ≈ 2π/M , we can decimate y(n) by the integer M . Let
v(n) = y(n+L− 1) so that y = [v(0) v(1) · · · v(N −L)]T .
Then we take the polyphase components of v(n) [47]. That
is, we define

vl = [v(l) v(l +M) · · · v(l + (J − 1)M)]T , (60)

for l = 0, . . . ,M − 1, where J = b(N − L+ 1)/Mc. It can
then be verified that [31]

vl = Adecdl + DlHe, (61)

where

Adec = [aJ(Mω1) aJ(Mω2) · · · aJ(MωD)] , (62)

dl has elements dl,k = cke
j(L−1+l)ωkH(ejωk) and Dl =

[δl δl+M . . . δl+(J−1)M]T is a decimation matrix, with δl
being the lth standard basis vector for the (N − L + 1)-
dimensional space. The noise term DlHe can be whitened by
making DlHHHDH

l = I. This is achieved by choosing H(z)
as a spectral factor of a Nyquist(M) filter [31]. Since vl is
represented in terms of the Vandermonde matrix Adec just like
the original ULA output x, standard DOA estimation methods
such as root-MUSIC or ESPRIT can be directly applied [31].
Details will be shown in Sec. IV-C. The columns of Adec

are aJ(Mωk) rather than aJ(ωk), so ωk can be determined
only up to Mωk mod 2π, creating ambiguity. But since ωk

are known to be in the passband of H(ejω) which has width
2π/M , the ambiguity can be resolved [31].

Now we show how to implement the convolution (58) in the
CBS stage in our distributed setting. Once we can do this, there
is no difficulty in doing decimation. We make the following
assumptions to simplify our distributed algorithm.
• Assumption 1: The CBS filter has order L − 1 ≤ Q.

Since CBS is typically used for large arrays (large N),
this assumption is reasonable.

• Assumption 2: There is an edge between each pair of
adjacent nodes p− 1 and p.

The method described in the following applies to CBS using
any kinds of filters, including Capon-CBS [44]. With y and
H defined as in (58), let y0 ∈ CQ−L+1 and yp ∈ CQ, p =
1 . . . , P−1 so that y = [yT

0 yT
1 · · ·yT

P−1]T . Since L−1 ≤ Q,
we have

H =



H0,0 0 · · · 0

H1,0 H1,1 0 · · ·
...

0 H2,1 H2,2
. . .

...
.

0
0 · · · 0 HP−1,P−2 HP−1,P−1


. (63)

Here H0,0 is a (Q−L+1)×Q Toeplitz matrix with first row
[h(L − 1) h(L − 2) · · ·h(0) 0 · · · 0] and first column [h(L −
1) 0 · · · 0]T . Besides,

Hp,p−1 =


0

h(L− 1) h(L− 2) · · · h(1)
0 h(L− 1) · · · h(2)
...

.
...

0 · · · 0 h(L− 1)
0 0


are Q × Q Toeplitz matrices, and Hp,p are Q × Q Toeplitz
matrices with first row [h(0) 0 · · · 0] and first column
[h(0) h(1) · · ·h(L− 1) 0 · · · 0]T , for p = 1, . . . , P − 1. Thus,
we have y0 = H0,0x0, which can be computed locally at node
0. Besides, since L− 1 ≤ Q, we have

yp = Hp,p−1xp−1 + Hp,pxp, (64)

which can be computed locally at node p once node p−1 sends
the last L−1 entries of xp−1, i.e., x(pQ−L+1), . . . , x(pQ−
1), to node p, for p = 1, . . . , P − 1. This can be done without
using AC because we assume that there is an edge between
nodes p − 1 and p. The communication cost per edge is
O(KL), where K is the number of snapshots.

If no assumption is made on the filter length L, then in the
most general case, we can compute

y(i+ L− 1) = hT
i x = ACp(hT

i,pxp), (65)

where hT
i is the ith row of H, and hi,p ∈ CQ is the subvector

of hi corresponding to node p, for i = 0, . . . , N − L. The
communication cost per edge is O(K(N − L)Iac).

B. Distributed Design of the Capon-CBS Filter

In [31], the CBS filter is a standard lowpass filter, such
as the Parks-McClellan filter. In this case we simply assume
all nodes have the filter coefficients available. It is beneficial
to replace such a standard filter with a data-dependent filter
based on the idea of Capon beamforming [44]. Among all
the unknown DOAs, those falling in the stopband are treated
as interferers (or jammers). We call this the Capon-CBS filter.
This is nothing but a sliding Capon beamspace generator. This
will provide optimal attenuation of the stopband signals.

Note that the output of this Capon-CBS filter will be
used to estimate the DOAs in its passband. Thus, unlike in

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

12

traditional beamforming applications, this Capon-CBS filter
should be designed to have a flat passband. Since the tra-
ditional Capon filter does not yield a flat passband around
ω0 although H(ejω0) = 1, we will use the robust Capon
beamforming method reported in [46]. This is a method to
ensure that H(ejω) ≈ 1 in a specified passband range,
while at the same time optimally rejecting the interferers
in the stopband. We call this CBS filter the robust Capon
beamspace filter [44]. For purposes of computation [46],
this filter will be expressed explicitly in terms of real and
imaginary components: [Re{hT } Im{hT }]T , h̃ where
h = [h∗(L − 1) h∗(L − 2) · · · h∗(0)]T . The CBS filter
coefficients h̃ are designed as a robust Capon beamspace
generator, which is the solution to

min
h̃

h̃T R̃Lh̃

subject to h̃Ta ≥ 1 ∀a ∈ E , (66)

where

R̃L =
1

N − L+ 1

N−L∑
i=0

E[x̃L,ix̃
T
L,i] (67)

with x̃L,i = [Re{xT
L,i} Im{xT

L,i}]T and

xL,i = [x(i) x(i+ 1) · · ·x(i+ L− 1)]T . (68)

Here, E is an 2L-dimensional ellipsoid that covers the range
of values of ãL(ω) = [Re{aL(ω)T } Im{aL(ω)T }]T in the
passband. The low-complexity algorithm given in [46] can be
used to solve the problem.

Now we show how to compute h̃ in our distributed setting.
We make the same Assumptions 1 and 2 as in Sec. IV-A to
simplify the algorithm. Then, with K snapshots, we estimate

̂̃
RL =

1

K(N − L+ 1)

K∑
k=1

N−L∑
i=0

x̃L,i[k]x̃T
L,i[k] (69)

=
P

N − L+ 1
ACp(R̃L,p), (70)

where

R̃L,0 =
1

K

K∑
k=1

Q−L∑
i=0

x̃L,i[k]x̃T
L,i[k] (71)

and

R̃L,p =
1

K

K∑
k=1

(p+1)Q−L∑
i=pQ−L+1

x̃L,i[k]x̃T
L,i[k] (72)

for p = 1, . . . , P − 1. Considering (68), we see that (71)
can be computed locally at node 0 since it involves only
x(0), . . . , x(Q−1). To compute (72), since it involves x(pQ−
L+ 1), . . . , x((p+ 1)Q−1), node p−1 has to send the L−1
samples x(pQ−L+1), . . . , x(pQ−1) to node p. Then (72) can
be computed at node p. Note that these samples to be sent are
exactly the same as those we need to send for the distributed
implementation of the CBS filter. In other words, there is no
additional communication cost for the “convolution” part of
CBS if we already did the “Capon design” of Capon-CBS.
After each node obtains ̂̃RL via AC in (70), the problem (66)

can be solved locally at each node using the method in [46].
The total communication cost per edge for the design of the
Capon-CBS filter is O(KL+L2Iac), where Iac is the number
of AC iterations.

C. Distributed DOA Estimation in Stage 2
For subspace-based methods such as MUSIC, root-MUSIC,

and ESPRIT, we estimate the average of the J×J covariances
of all the polyphase components [31]

R̂ave =
1

KM

K∑
k=1

M−1∑
l=0

vl[k]vH
l [k], (73)

where the polyphase components vl are defined in (60). Then
we only have to compute the signal and noise eigenvectors
of (73), and the remaining steps just follow Secs. III-B and
III-C. Note that (73) is similar to (3). The elements of each
vector vl are distributed among the P nodes in exactly the
same way that the elements of x were distributed in (3). The
eigenvectors of R̂ave can therefore be computed exactly as
we computed eigenvectors of R̂xx in Sec. II-B. From these
the DOAs can be estimated unambiguously as described in
[31]. The summation over l in (73) leads to an increase
in communication cost compared to element-space, but CBS
offers a smaller computational complexity. It is a tradeoff
between computation and communication.

FOCUSS introduced in Sec. III-D can also be used to esti-
mate the DOAs in Stage 2. How we use FOCUSS with CBS
is similar to the formulation of the Lasso problem with CBS,
described in Sec. IV of [31]. We just replace D and X in (51)
and (53) by DL,0 = [aJ(Mω̄1) aJ(Mω̄2) · · ·aJ(Mω̄d0

)] and
V0 = D0HX, respectively. Here D0 is the decimation matrix
as in (61), and {ω̄1, . . . , ω̄d0

} is the grid of frequencies within
the passband of H(ejω). If the grid is uniform, d0 ≈ d/M .
Note that since the passband width is 2π/M , the arguments
Mω̄k span a range of 2π. The rows of V0 are distributed
among the P nodes in the same way that the rows of X
were distributed in (54). Hence, the FOCUSS iterations can
be done using AC in a similar way. Significant reduction in
computational complexity is obtained due to the smaller size
of the dictionary DL,0. Moreover, the communication cost
per edge is O(d0KIacIfo), smaller than O(dKIacIfo) for the
element-space FOCUSS. Thus, among the distributed DOA
estimation methods, FOCUSS gets more benefits when used
with CBS.

D. Simulations
We now present numerical examples to demonstrate the ef-

fectiveness of the proposed distributed CBS methods together
with distributed DOA estimation algorithms in Sec. III. We
again consider the same network (26) with P = 6, and use the
finite-time average consensus (AC) method with 3 iterations
as explained in Sec. III-A. The noise variance is σ2

e = 1.
Example 1: Distributed root-MUSIC with distributed CBS.

We show the DOA estimation performance of distributed
root-MUSIC when it is used together with distributed CBS
(both traditional and Capon). The results are also compared
to element-space and the centralized counterparts. Again, the
distributed power method is used to estimate eigenvectors of

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

13

1 2 3 4 5 6
Number of power iterations

10-3

10-2

10-1

100
R

oo
t m

ea
n

sq
ua

re
 e

rr
or

Element-space, centralized & ideal EVD
Element-space, distributed
Traditional CBS, centralized & ideal EVD
Traditional CBS, distributed
Capon-CBS, centralized & ideal EVD
Capon-CBS, distributed

(a)

-1 -0.5 0 0.5 1
Normalized frequency /

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (

dB
)

Traditional CBS
Capon-CBS
True DOAs
Passband edge
Stopband edge

(b)

Fig. 4. Distributed root-MUSIC and centralized root-MUSIC for element-
space, traditional CBS, and Capon-CBS. (a) RMSE of in-band DOA estimates.
(b) Typical filter responses. The distributed and centralized algorithms result
in the same filter for each system, so only one curve is plotted for each system.

the array output covariance for distributed algorithms, whereas
ideal EVD is assumed for centralized algorithms. Each node
is a ULA with Q = 8 sensors and they together form a 48-
sensor ULA. For CBS methods, the filter length is L = 9,
and the decimation ratio is M = 4. The traditional CBS
filter is designed to be a lowpass Parks-McClellan filter [45],
with passband edge π/2M and stopband edge 3π/2M . The
Capon-CBS filter is the solution to Problem (66) with E
designed as in [44] using r = 10 equally spaced samples
of the array response in the passband. Note that the two
assumptions L − 1 ≤ Q and that there is an edge between
each pair of adjacent nodes p − 1 and p are satisfied, so
the distributed CBS methods with lower communication costs
can be used for both traditional and Capon CBS. There
are 2 in-band sources (sources in the passband) with power
−5 dB and DOAs θ = −5◦, 5◦. There are 3 out-of-band
sources (sources in the stopband) with power 15 dB and
DOAs ω = 0.5π, 0.74π, 0.98π. Each pair of the 5 sources has
correlation coefficient 0.6, except that the two in-band sources
are uncorrelated. We assume the number of DOAs is known.
RMSEs of in-band DOA estimates for various number of
power iterations are shown in Fig. 4(a). We use 100 snapshots
and average 2000 Monte Carlo runs to get the plot. With only
a few power iterations, all distributed algorithms converge to

1 2 3 4 5 6
Number of power iterations

10-3

10-2

10-1

100

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

Element-space, method 1
Element-space, method 2
Traditional CBS, method 1
Traditional CBS, method 2
Capon-CBS, method 1
Capon-CBS, method 2

Fig. 5. RMSE of in-band DOA estimates for distributed root-MUSIC using
the two distributed power methods. Method 1 is the traditional power method
[8], where eigenvectors are updated sequentially. Method 2 is a modified
version where all eigenvectors are updated in parallel.

the centralized counterparts. Given enough number of power
iterations, distributed traditional CBS and Capon-CBS perform
significantly better than element-space. As shown in [44],
in this harsh environment with powerful out-of-band sources
correlated with in-band ones, centralized Capon-CBS has even
smaller RMSE than centralized traditional CBS. This behavior
is also true for distributed counterparts here. Fig. 4(b) also
shows that the Capon-CBS filter indeed has a flat passband
while suppressing the out-of-band sources. Capon-CBS filters
keep a balance between attenuating interference and noise,
which is the benefit of design based on data. The distributed
and centralized algorithms result in the same filter for each
of the two systems, traditional CBS and Capon-CBS, so only
one curve is plotted for each system.

The results in Fig. 4 are obtained when we estimate eigen-
vectors of the array output covariance using the traditional
distributed power method [8], where eigenvectors are updated
sequentially (method 1). As mentioned in the end of Sec.
II-B, we can also update the eigenvectors in parallel (method
2). For the same example, we compare the two distributed
power methods in Fig. 5. We see that method 2 requires
more iterations than method 1 to compute each eigenvector.
This can be expected because we do not use the finally
converged results of the first q − 1 eigenvectors to update the
qth eigenvector in method 2. Thus, we choose to use method
1 in all other examples in this paper.

Example 2: Distributed FOCUSS with distributed CBS.
Next we show the DOA estimation performance of distributed
FOCUSS when it is used together with distributed CBS.
The results are also compared to element-space and the
centralized counterparts. For FOCUSS, the number of DOAs
and their locations are estimated together. Specifically, after
getting the estimate Q̂ in (50), we plot the FOCUSS spectrum
P (ω̄i) =

∑
n |Q̂in|2 for 1 ≤ i ≤ d. Then, we declare that

there is a source at ω̄i if there is a peak (local maximum)
that is larger than a particular threshold: P (ω̄i) ≥ εfo. Here
we use εfo = 0.1 (with the spectrum normalized to have
a maximum value 1). Each node is a ULA with Q = 16

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

14

0 5 10 15 20 25 30 35 40
Out-of-band source power (dB)

0

0.2

0.4

0.6

0.8

1
S

up
po

rt
 r

ec
ov

er
y

ac
cu

ra
cy

 o
f i

n-
ba

nd
 D

O
A

s
Element-space
CBS

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized freuquency /

0

0.2

0.4

0.6

0.8

1

F
O

C
U

S
S

 s
pe

ct
ru

m

Element-space
True DOAs

(b)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Normalized freuquency /

0

0.2

0.4

0.6

0.8

1

F
O

C
U

S
S

 s
pe

ct
ru

m

CBS
True DOAs

(c)

Fig. 6. Distributed FOCUSS and centralized FOCUSS for element-space and
CBS. (a) Support recovery accuracy (SRC) of in-band DOAs. Both distributed
and centralized algorithms have the same SRC for each system, so only one
curve is plotted for each system. (b)-(c) Typical FOCUSS spectra of element-
space and CBS when the out-of-band source power is 15 dB.

sensors and they together form a 96-sensor ULA. For CBS,
the decimation ratio is M = 4, and the filter is designed to
be a lowpass Parks-McClellan filter [45] of length L = 17,
with passband edge π/2M and stopband edge 3π/2M . A
grid of d = 200 points uniform in ω is used for the potential
DOAs. There are 2 in-band sources with power 1 and DOAs
θ = −0.573◦, 0.573◦. There are 10 out-of-band sources
with identical power (which is varied in the experiment),
with DOAs ω = 0.5π, 0.5π + δ, 0.5π + 2δ, . . . , 0.98π with
δ = 0.48π/9. The in-band DOAs are exactly on the grid
for simplicity. All sources are uncorrelated. Support recovery
accuracy (SRC) of in-band DOAs for various out-of-band
source powers are shown in Fig. 6(a). The SRC is defined
as the probability of recovering the two and only two DOAs
in the passband and without errors among all Monte Carlo

runs. We use 100 snapshots and 2000 Monte Carlo runs to get
the plot. CBS can tolerate more powerful out-of-band sources
than element-space. More importantly, since distributed and
centralized algorithms perform exactly the same for each of
the two systems (i.e., element space and CBS), only one curve
is plotted for each system. That is, the proposed distributed
FOCUSS yields exactly the same solution as centralized
FOCUSS. Typical FOCUSS spectra of element-space and CBS
for a Monte Carlo run are shown in Fig. 6(b)-(c). For CBS,
only the passband part is plotted. The two in-band sources can
clearly be resolved with CBS FOCUSS, but not with element-
space FOCUSS. In the latter the out-of-band sources are too
powerful to allow the in-band sources to be resolved.

V. DISTRIBUTED SPATIAL SMOOTHING

In this section, we propose distributed algorithms for spatial
smoothing [33]. Spatial smoothing is a technique used for
DOA estimation when there are coherent or correlated sources.
Consider a ULA output x as in (1), which has covariance

Rxx = ARccA
H + σ2

eI, (74)

where Rcc = E[ccH]. When there are coherent sources, the
rank of Rcc and hence the rank of ARccA

H will be less than
the number of sources D. Therefore, the signal subspace, i.e.,
the column space of A, cannot be fully identified from the
EVD of Rxx. To overcome this, one computes the spatially
smoothed covariance

Rss =
1

Lss

Lss−1∑
i=0

E[xss,ix
H
ss,i] (75)

where Lss is a parameter and

xss,i = [x(i) x(i+ 1) · · ·x(i+N − Lss)]
T . (76)

It can be shown [33] that the reduced rank due to coherent
sources can be fully restored back to D based on this spatial
smoothing if Lss ≥ D. Thus, more accurate DOA estimates
can be obtained by applying subspace-based methods to Rss,
for at most N − Lss sources [33]. With this method we
can therefore identify D ≤ N/2 sources. Empirically, spatial
smoothing also helps when sources are correlated but not
necessarily coherent [48].

We now show how to do spatial smoothing in our distributed
setting. The task here is to estimate the eigenvectors of R̂ss

instead of R̂xx obtained from K snapshots and then estimate
DOAs using, e.g., root-MUSIC. One may notice that both dis-
tributed design of the Capon-CBS filter and spatial smoothing
involve the average of subarray covariance matrices. More
precisely, R̃L in (67) and Rss in (75) are exactly the same
if L = N −Lss + 1 and x̃L,i is replaced by xL,i. So actually,
the method for dealing with R̃L can be used to deal with Rss

if the assumptions (a) (N − Lss + 1) − 1 ≤ Q (b) that there
is an edge between each pair of adjacent nodes p − 1 and p,
are satisfied. In this case, R̂ss can be computed via average
consensus in a manner similar to (70). Then the eigenvectors
of R̂ss can be computed locally at each node.

Case of unrestricted Lss. If no assumption is made on Lss,
then we can modify the distributed power method in Sec. II-B

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

15

Algorithm 4 Distributed power iteration of spatial smoothing
1: for i = 0 to Lss − 1 do
2: for k = 1 to K do
3: ti[k] = P ·ACp(xH

ss,i,p[k]e1,i,p(n))
4: end for
5: for p = 0 to P − 1 do
6: qi,p = 1

K

∑K
k=1 xss,i,p[k]ti[k]

7: end for
8: end for
9: for m = 0 to L− 1 do

10: for p = 0 to P − 1 do
11: sm,p = 1

Lss

∑
i:pQ≤i+m<(p+1)Q[qi]m

12: end for
13: [e1(n+ 1)]m = P ·ACp(sm,p)
14: end for
15: return e1(n+ 1)

to realize spatial smoothing. If we can show how to compute
the power iterations

e1(n+ 1) = R̂sse1(n) (77)

for the first eigenvector e1, then the remaining steps follow
the same way as in Sec. II-B. The main idea is to clarify what
computations can be done locally at each node p. The detailed
procedure is presented in Algorithm 4 shown in the table. The
vector xss,i,p is the subvector of xss,i ∈ CN−Lss+1 stored at
node p, and its length can vary from 0 to N − Lss + 1 for
different i or p. Then, the vector e1,i,p(n) is the subvector of
e1(n) with entries corresponding to xss,i,p. The inner products
xH
ss,i,p[k]e1,i,p are computed locally at node p in parallel.

The computations in Lines 6 and 11 are also done locally
at each node in parallel. Finally, qi = [qT

i,0 · · ·qT
i,P−1]T , and

the notations [qi]m and [e1(n)]m mean the mth entry of qi

and e1(n), respectively. AC appears in Algorithm 4 in two
places, Lines 3 and 13. Line 3 is the dominant operation
for communication, so the total communication cost per edge
for estimating D eigenvectors is O(DKLssIacIpm). This is
Lss times the cost of the basic distributed power method in
Sec. II-B. This is a tradeoff for getting better DOA estimates
when there are coherent or correlated sources and when
(N − Lss + 1)− 1 > Q.

A numerical example is given to demonstrate the effective-
ness of the proposed distributed spatial smoothing. We con-
sider the same network (26) and use the finite-time AC method
with 3 iterations as explained in Sec. III-A. We show the
DOA estimation performance of distributed spatial smoothing
used with root-MUSIC. Again, the distributed power method is
used to estimate eigenvectors of the covariance for distributed
algorithms, whereas ideal EVD is assumed for centralized
algorithms. Each node is a ULA with Q = 16 sensors and they
together form a 96-sensor ULA. There are 6 DOAs at angles
θ = −10◦,−6◦,−2◦, . . . , 10◦. All sources have power 1, and
each pair of sources have the same correlation coefficient ρ.
The noise variance is σ2

e = 1. The parameter Lss = 17 is used
for spatial smoothing. The assumption (N−Lss+1)−1 ≤ Q is
not satisfied, so Algorithm 4 is used. We assume the number of
DOAs is known. The number of power iterations is Ipm = 5.
RMSEs of DOA estimates for various ρ are shown in Fig.

0.8 0.85 0.9 0.95 1
Correlation coefficient

10-4

10-3

10-2

10-1

100

101

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

No spatial smoothing, centralized & ideal EVD
Spatial smoothing, centralized & ideal EVD
No spatial smoothing, distributed
Spatial smoothing, distributed

Fig. 7. RMSE of DOA estimates with and without spatial smoothing using
distributed root-MUSIC and centralized root-MUSIC.

7. We use 500 snapshots and average 2000 Monte Carlo
runs to get the plot. Spatial smoothing improves performance
significantly, especially for the distributed case. Except for the
coherent case (ρ = 1), RMSE of distributed spatial smoothing
is almost the same as that of centralized spatial smoothing,
though we use a small Ipm = 5. When there is no spatial
smoothing, or when ρ = 1, the distributed algorithm has
larger RMSE than the centralized one because the covariance
is closer to being rank-deficient, so errors due to finite Ipm
are magnified.

VI. CONCLUSION

In this paper we proposed distributed algorithms for several
DOA estimation and beamforming methods, including spatial
smoothing methods and the recently introduced convolutional
beamspace methods. These algorithms are truly distributed
in that a fusion center is not required. The novelties of the
proposed algorithms lie in transforming problems at hand into
steps where computing the average of some values across
the network is the only step that involves data exchange
among subarrays. Using average consensus with finite-time
exact convergence as a subroutine, these distributed algorithms
can achieve the same performance as centralized algorithms
in just a few iterations. The effectiveness of the distributed
algorithms is verified through simulations.

REFERENCES

[1] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[2] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.

[3] B. D. Rao and K. V. S. Hari, “Performance analysis of Root-Music,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 12, pp. 1939–
1949, 1989.

[4] R. Roy and T. Kailath, “ESPRIT – estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[5] H. L. Van Trees, Optimum array processing. John Wiley & Sons, Inc.,
New York, 2002.

[6] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: a re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, 1997.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3101015, IEEE
Transactions on Signal Processing

16

[7] S. F. Cotter, B. D. Rao, Kjersti Engan, and K. Kreutz-Delgado, “Sparse
solutions to linear inverse problems with multiple measurement vectors,”
IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477–2488, 2005.

[8] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation
of the sample covariance,” in Proc. Asilomar Conf. on Signal, Syst.,
Comput., 2008, pp. 1722–1726.

[9] S. X. Wu, H. Wai, L. Li, and A. Scaglione, “A review of distributed
algorithms for principal component analysis,” Proc. of the IEEE, vol.
106, no. 8, pp. 1321–1340, 2018.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[11] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time distributed
consensus through graph filters,” in Proc. IEEE Intl. Conf. Acoust.,
Speech, and Signal Process., 2014, pp. 1080–1084.

[12] S. Safavi and U. A. Khan, “Revisiting finite-time distributed algorithms
via successive nulling of eigenvalues,” IEEE Signal Process. Lett.,
vol. 22, no. 1, pp. 54–57, 2015.

[13] W. Suleiman, M. Pesavento, and A. Zoubir, “Decentralized direction
finding using partly calibrated arrays,” in European Signal Process. Conf.
(EUSIPCO), 2013, pp. 1–5.

[14] A. Bertrand and M. Moonen, “Distributed adaptive estimation of covari-
ance matrix eigenvectors in wireless sensor networks with application
to distributed PCA,” Signal Process., vol. 104, pp. 120–135, 2014.

[15] A. Hassani, A. Bertrand, and M. Moonen, “Cooperative integrated noise
reduction and node-specific direction-of-arrival estimation in a fully
connected wireless acoustic sensor network,” Signal Process., vol. 107,
pp. 68–81, 2015.

[16] M. Wax and T. Kailath, “Decentralized processing in sensor arrays,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 5, pp. 1123–
1129, 1985.

[17] W. Suleiman and P. Parvazi, “Search-free decentralized direction-of-
arrival estimation using common roots for non-coherent partly calibrated
arrays,” in IEEE Intl. Conf. Acoust., Speech, and Signal Process., 2014,
pp. 2292–2296.

[18] W. Suleiman, M. Pesavento, and A. M. Zoubir, “Performance analysis
of the decentralized eigendecomposition and ESPRIT algorithm,” IEEE
Trans. Signal Process., vol. 64, no. 9, pp. 2375–2386, 2016.

[19] B. Iancu and E. Isufi, “Towards finite-time consensus with graph
convolutional neural networks,” in 28th Eur. Signal Process. Conf.
(EUSIPCO), 2021, pp. 2145–2149.

[20] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.
Signal Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[21] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm denoising with
applications to line spectral estimation,” IEEE Trans. Signal Process.,
vol. 61, no. 23, pp. 5987–5999, 2013.

[22] G. Bienvenu and L. Kopp, “Decreasing high resolution method sensi-
tivity by conventional beamformer preprocessing,” in Proc. IEEE Intl.
Conf. Acoust., Speech, and Signal Process., Mar. 1984, pp. 714–717.

[23] K. M. Buckley and X. L. Xu, “Reduced-dimension beam-space broad-
band source localization: preprocessor design,” in Proc. SPIE, Adv.
Algorithms and Architectures for Signal Process. III, Feb. 1988, pp.
368–376.

[24] H. B. Lee and M. S. Wengrovitz, “Improved high-resolution direction-
finding through use of homogeneous constraints,” in Fourth Annual
ASSP Workshop on Spec. Est. and Modeling, Aug. 1988, pp. 152–157.

[25] ——, “Resolution threshold of beamspace MUSIC for two closely
spaced emitters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 38,
no. 9, pp. 1545–1559, Sep. 1990.

[26] X. L. Xu and K. M. Buckley, “Statistical performance comparison of
MUSIC in element-space and beam-space,” in Proc. IEEE Intl. Conf.
Acoust., Speech, and Signal Process., 1989, pp. 2124–2127.

[27] M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, “Beamspace root-
MUSIC,” IEEE Trans. Signal Process., vol. 41, no. 1, pp. 344–364, Jan.
1993.

[28] G. Xu, S. D. Silverstein, R. H. Roy, and T. Kailath, “Beamspace
ESPRIT,” IEEE Trans. Signal Process., vol. 42, no. 2, pp. 349–356,
Feb. 1994.

[29] Z. Guo, X. Wang, and W. Heng, “Millimeter-wave channel estimation
based on 2-D beamspace MUSIC method,” IEEE Trans. Wireless Com-
mun., vol. 16, no. 8, pp. 5384–5394, Aug. 2017.

[30] H. Zhao, N. Zhang, and Y. Shen, “Robust beamspace design for direct
localization,” in IEEE Intl. Conf. Acoust., Speech and Signal Process.,
May 2019, pp. 4360–4364.

[31] P.-C. Chen and P. P. Vaidyanathan, “Convolutional beamspace for linear
arrays,” IEEE Trans. Signal Process., vol. 68, pp. 5395–5410, 2020.

[32] P. P. Vaidyanathan and P.-C. Chen, “Convolutional beamspace for array
signal processing,” in IEEE Intl. Conf. Acoust., Speech, and Signal
Process., 2020.

[33] Tie-Jun Shan, M. Wax, and T. Kailath, “On spatial smoothing for
direction-of-arrival estimation of coherent signals,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 33, no. 4, pp. 806–811, 1985.

[34] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization.
Academic Press, New York, 1981.

[35] O. Aberth, “Iteration methods for finding all zeros of a polynomial
simultaneously,” Mathematics of computation, vol. 27, no. 122, pp. 339–
344, 1973.

[36] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and
its applications, vol. 197, pp. 143–176, 1994.

[37] G. W. Stewart, Matrix Algorithms: Vol. II: Eigensystems. SIAM, 2001.
[38] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for

solving linear systems,” Journal of Research of the National Bureau of
Standards, vol. 49, pp. 409–435, 1952.

[39] C.-Y. Chen and P. P. Vaidyanathan, “MIMO radar space-time adaptive
processing using prolate spheroidal wave functions,” IEEE Trans. Signal
Process., vol. 56, no. 2, pp. 623–635, 2008.

[40] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-
Rao bound,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5,
pp. 720–741, May 1989.

[41] P. P. Vaidyanathan and P. Pal, “Direct-MUSIC on sparse arrays,” in 2012
Intl. Conf. on Signal Process. and Commun. (SPCOM), 2012, pp. 1–5.

[42] ——, “Why does direct-MUSIC on sparse-arrays work?” in 2013
Asilomar Conf. on Signal, Syst., Comput., 2013, pp. 2007–2011.

[43] B. Ottersten, M. Viberg, and T. Kailath, “Performance analysis of the
total least squares ESPRIT algorithm,” IEEE Trans. Signal Process.,
vol. 39, no. 5, pp. 1122–1135, 1991.

[44] P.-C. Chen and P. P. Vaidyanathan, “Sliding-Capon based convolutional
beamspace for linear arrays,” in IEEE Intl. Conf. Acoust., Speech, and
Signal Process., to appear.

[45] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing.
Prentice Hall, 2010.

[46] R. G. Lorenz and S. P. Boyd, “Robust minimum variance beamforming,”
IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–1696, 2005.

[47] P. P. Vaidyanathan, Multirate systems and filter banks. Prentice Hall,
Englewood Cliffs, N.J., 1993.

[48] J. S. Thompson, P. M. Grant, and B. Mulgrew, “Performance of
spatial smoothing algorithms for correlated sources,” IEEE Trans. Signal
Process., vol. 44, no. 4, pp. 1040–1046, 1996.

Po-Chih Chen (S’17) was born in 1993 and received
the B.S. and M.S. degrees in electrical engineer-
ing and communication engineering from National
Taiwan University (NTU), Taipei, Taiwan, in 2015
and 2017, respectively. He is currently pursuing the
Ph.D. degree in electrical engineering at the Califor-
nia Institute of Technology (Caltech), Pasadena, CA.
His research interests are in signal processing, array
processing, sparse arrays, and distributed algorithms
for arrays.

P. P. Vaidyanathan (S’80–M’83–SM’88–F’91) is
the Kiyo and Eiko Tomiyasu Professor of Electrical
Engineering at the California Institute of Technol-
ogy. His research interests are in digital signal pro-
cessing and machine learning. He is a Life Fellow
of the IEEE, and recipient of the IEEE CAS Society
Golden Jubilee Medal, and the Terman Award of
the ASEE. He has received multiple awards for his
papers, and for his teaching at Caltech, including the
Northrop Grumman teaching prize. He is a recipient
of the IEEE Gustav Robert Kirchhoff Award (2016),

and the IEEE Signal Processing Society’s Technical Achievement Award
(2002), Education Award (2012), and Society Award (2016). He has been
selected to received the EURASIP Athanasios Papoulis Award in 2021, and
is a member of the U.S. National Academy of Engineering.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 04,2021 at 23:00:53 UTC from IEEE Xplore. Restrictions apply.

