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Computational Array Signal Processing
via Modulo Non-Linearities

Samuel Fernández-Menduiña , Felix Krahmer , Geert Leus , and Ayush Bhandari

Abstract—Conventional literature on array signal processing
(ASP) is based on the “capture first, process later” philosophy and
to this end, signal processing algorithms are typically decoupled
from the hardware. This poses fundamental limitations because if
the sensors result in information loss, the algorithms may no longer
be able to achieve their guaranteed performance. In this paper,
our goal is to overcome the barrier of information loss via sensor
saturation and clipping. This is a significant problem in applica-
tion areas including physiological monitoring and extra-terrestrial
exploration where the amplitudes may be unknown or larger than
the dynamic range of the sensor. To overcome this fundamental
bottleneck, we propose “computational arrays” which are based
on a co-design approach so that a collaboration between the sensor
array hardware and algorithms can be harnessed. Our work is
inspired by the recently introduced unlimited sensing framework.
In this context, our computational arrays encode the high-dynamic-
range information by folding the signal amplitudes, thus intro-
ducing a new form of information loss in terms of the modulo
measurements. On the decoding front, we develop mathematically
guaranteed recovery algorithms for spatio-temporal array signal
processing tasks that include DoA estimation, beamforming and
signal reconstruction. Numerical examples corroborate the appli-
cability of our approach and pave a path for the development of
novel computational arrays for ASP.

Index Terms—Array signal processing, direction of arrival
(DoA) estimation, multi-channel sampling, non-linear sensing.

I. INTRODUCTION

IN THE context of his pioneering apparatus for transatlantic
wireless communication, G. Marconi also invented heuristics

for direction-of-arrival (DoA) estimation [5]. Over the course of
the century, these accomplishments were catalyzed by different
breakthroughs in the fields of physics, mathematics and engi-
neering and culminated in to what is known as array signal
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processing (ASP). At the heart of ASP [6] is the idea that
spatio-temporal signal acquisition using multiple sensors offers
unprecedented advantages when combined with high-resolution
algorithms. Fast-forward to the last decade, several research con-
tributions have led to advancements when it comes to exploring
new array geometries [7]–[9] and developing high-resolution
algorithms [10], [11]. That said, many of these advances are
pivoted towards the development of the algorithmic machinery.
Despite the remarkable progress on this front, algorithms are
often decoupled from the sensor array hardware. In contrast, in
this paper, we propose computational arrays where a part of the
algorithmic intelligence is built-in to the hardware, which results
in non-linearly encoded measurements. For the decoding step,
we propose an algorithm that is referred to as Unlimited Sensing
based Array Signal Processing or US-ASP. As we will see, the
rationale behind this approach is that it allows us to recover
signals that are much larger in amplitude than the dynamic range
of the conventional sensor array.

A fundamental bottleneck in Array Signal Processing. In
sensor arrays, digitization of the impinging signals is carried
out by analog-to-digital converters (ADCs). This is what has
revolutionized the field of ASP because digital signal processing
algorithms can be employed for ASP related tasks such as DoA
estimation, beamforming and denoising. In practice, however, a
signal’s amplitude range may be unknown and possibly, much
larger than the dynamic range of the ADC. These scenarios result
in clipping and saturation at the sensor array. In such cases it is
natural that the algorithms, that are typically decoupled from
the hardware, would completely deviate from their theoretically
guaranteed performance. This is illustrated by the following two
examples.
• Scientific probes in space exploration rely on sensor arrays for

source localization and sub-surface mapping [12]. Nonethe-
less, in foreign environments, the range of signal amplitudes
is unknown, which is typically handled by employing au-
tomatic gain control (AGC) systems. In this sense, NASA’s
Apollo Mission report [13] highlights the sensor saturation
problem (cf. pg 43, [13]) and elaborates on the omnipresent
use of AGCs. Even if the ADCs (equipped with AGCs) are
calibrated, bursts and spikes [14] can saturate the sensor array,
resulting in clipped measurements and permanent information
loss.

• Another example of sensor array saturation stems from the
near-far problem. Consider the case when two emitters are
present; one of them being much closer to the receiver than
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Fig. 1. Computational array signal processing setup using the unlimited sensing architecture [2]–[4]. Modulo non-linearity maps high-dynamic-range, sensor
array samples into low-dynamic-range folded samples. While the modulo operation prevents the sensor saturation problem, it leads to a new form of information
loss which can be efficiently handled by capitalizing on the joint application of unlimited sampling and array signal processing techniques. This unified approach
allows to carry out the estimation of the directions of arrival, beamforming and sample reconstruction from the folded samples.

the other. Then, the sensor can either focus on the near-
field emitter, drowning the far-field emitter in quantization
noise, or aim at retrieving the information of the far-field
emitter, clipping the samples of the near-field emitter [15].
A general trend in the recent years— especially in wireless
communications—has been to use ADCs which can work with
wideband receivers. It is well established that this requires a
higher dynamic range [16], [17]. For instance, in GSM sys-
tems, to be able to cope up with the near-far problem, ADCs
are required to digitize signals in the interval [−104,−13]
dBm, that is 91 dB dynamic range, thus posing serious hard-
ware constraints.
Despite the pervasiveness of the sensor saturation problem

and the significant advancements in ASP, very few papers tackle
the problem of dynamic range constraints. In fact, existing
approaches are mainly focused on the idea of one-bit ADC
based DoA estimation [18]. However, due to the loss of crucial
information, signal recovery and beamforming are hindered,
affecting the channel capacity of the system [19]. This class of
low-complexity solutions may be aptly justified for localization
purposes, but in many applications, signal recovery is of utmost
importance. For example, in space exploration, experiments
entail exorbitant costs and are non-repeatable. Similarly, in
bio-medical [20] and ultrasound [21] applications, the signal
itself encodes important information.

A. Towards Computational Arrays via Unlimited Sensing

Our computational arrays overcome the limitations in the
existing literature by relying on the co-design of the sensor
array hardware and the algorithms, which is inspired by the
unlimited sensing approach [2]–[4]. Instead of working with
conventional, point-wise samples which may be clipped, we
propose computational arrays that are capable of folding ampli-
tudes in the interval [−λ, λ]. This is accomplished by injecting a
modulo non-linearity in the sensing process that results in folded
measurements, as shown in Fig. 1. Mathematically, this can be
written as a folding operator,

Fλ : x �→ 2λ

([[
x

2λ
+

1

2

]]
− 1

2

)
,

where Fλ(·) is the conventional, centered modulo operation,

and [[x]]
def
= x− �x� denotes the fractional part of x. Thanks

to the recent advances in ADC design technology, such non-
linearities can be implemented by re-purposing folding or self-
reset ADCs [22], [23]. Recently, a modulo sampling ADC was
reported in [24] which also provides a first validation of the
unlimited sensing approach. Even when the amplitude of a ban-
dlimited signal significantly exceeds the modulo threshold, the
following sampling theorem guarantees recovery of the signal
from modulo samples via an appropriate algorithm.
Theorem 1 (Unlimited Sampling Theorem [2], [3]): Let x(t)
be a continuous-time, finite-energy, bandlimited function with
maximum frequencyΩ and let y[n] = Fλ(x(nT )) be its modulo
samples with sampling rate T . Then, a sufficient condition for
recovery of x(t) from its modulo samples (up to an additive
multiple of 2λ) is T � 1/2Ωe.

A distinct feature of this sampling theorem is that only de-
pends on the bandwidth and is independent of λ, retaining the
simplicity of the Nyquist-Shannon sampling theorem. In this
work, we capitalize on the modulo architecture and the under-
pinning sampling theorem to develop theory and algorithms for
array signal processing. In particular, we study spatio-temporal
recovery conditions with respect to modulo samples that allow
for a general solution to the DoA estimation problem and
beamforming. Our setup is flexible in that it covers the case
of arbitrary array geometries, including linear, non-linear and
sparse arrays [7].

B. Advantages of Computational–Array Signal Processing

Our novel computational-array based approach enjoys several
advantages, both at the encoding and the decoding fronts.

1) Encoding via Computational-Arrays: This novel ap-
proach allows us to encode high-dynamic-range samples as
low-dynamic-range measurements in the interval [−λ, λ], thus
circumventing the saturation or clipping problem.

2) Decoding via US-ASP: Our approach tailored for ASP,
henceforth US-ASP, has the following advantages,
� Decoding without Unfolding. We are able to perform ASP

tasks such as DoA estimation and beamforming without
having to recover the signal from folded samples.
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� Backwards compatibility with conventional ASP. Our re-
covery approach can be combined with any known ASP
technique. Coprime arrays are an example of this property.

C. Contributions

The overarching goal of this paper is to formalize the in-
verse problem of modulo sensing based computational arrays.
Our work develops a theoretical framework for mathematically
guaranteed recovery algorithms. We study both spatial and
temporal ASP methods comprising of three components: (1)
DoA estimation, (2) beamforming and (3) signal reconstruction.
Our key contributions are as follows:
C1) Recovery guarantees: In Theorem 2 and Theorem 3, we

establish recovery guarantees for temporal and spatial do-
mains, respectively, so that conventional ASP methods can
be readily applied. An interesting aspect of our work is that
the spatial and temporal sampling rates are independent of
the modulo threshold λ.

C2) Recovery algorithms: We develop an efficient and empir-
ically stable algorithmic framework for DoA estimation,
beamforming and signal recovery from modulo samples,
relying on the properties of the array response.

C3) Extension to sparse arrays: We consider sparse arrays
showing that our methods are backwards compatible with
existing array signal processing approaches.

II. PRELIMINARIES

Notation: We use R,Z,C and N to denote the set of re-
als, integers, complex and natural numbers, respectively. For
x ∈ R, we define the floor and the ceiling operations by �x� =
sup{n ∈ Z : n � x} and �x� = inf{n ∈ Z : n � x}, respec-
tively. For I ∈ R, we use �I� to denote the non-negative integers
until I , that is, {n : n ∈ Z ∩ [0, I)}. The cardinality of a set
I is denoted by #I. We write the complex number x ∈ C as
x = Re(x) + jIm(x), and the complex conjugate is denoted as
x∗. Continuous functions and discrete sequences are represented
by x(t), t ∈ R and x[n], n ∈ Z, respectively. Matrices and vec-
tors are written in capital and small boldface fonts, respectively.
Vectors are assumed to be arranged in columns. Matrix element
of X at index (m,n) is denoted as [X]m,n and similarly, [x]m
for vector x. We use XH and X� to denote conjugate-transpose
and transpose of matrix X, respectively. We use span(X) to
denote the column span of a matrix. The maximum value of X
is denoted by, |||X||| = max|[X]m,n|. For complex-valued matri-
ces, we also define, |||X|||Re = max|[Re(X)]m,n| and |||X|||Im =
max|[Im(X)]m,n| for the real and imaginary parts of X, respec-
tively. The Kronecker product between vectors is denoted as⊗,
and the Hadamard product is denoted as ◦. The covariance of a
random matrix X is written as R(X) = E(XXH), where E(·)
denotes the expectation operator. Function and sequence spaces
are denoted by Lp and �p, respectively and the corresponding
norms are defined by ‖·‖Lp(R) and ‖·‖�p(R). When p =∞,
the norms denote the max-norm. A function x bandlimited to
maximum frequency Ω is denoted by x ∈ BΩ while x ∈ PWΩ

denotes a function in the Paley–Wiener class of bandlimited
and square-integrable functions, that is, x ∈ BΩ ∩ L2. Let CK

denote the space of functions with K continuous derivatives.
The Kth order derivative of x(t) ∈ CK is denoted as x(K)(t).
Similarly, the K th order finite difference of the sequence x[n]
is recursively defined as, (ΔKx)[n] = ΔK−1(Δx)[n], K >
1 and for K = 1, (Δx)[n] = x[n+ 1]− x[n]. More directly,

(ΔKx)[n]
def
=

∑K
k=0(−1)K−k

(
K
k

)
x[n+ k] where

(
K
k

)
is the bi-

nomial coefficient. For implementing differences using matri-
ces, we define the right difference matrixD1

N ∈ RN×(N−1) with
matrix element, [D1

N ]m,n = δ[m− n− 1]− δ[m− n] where
δ[n] is the Kronecker Delta symbol. Higher order difference
matrix of order K is obtained via the recursion,

DK
N = DK−1

N D1
N−K+1 ∈ RN×(N−K). (1)

For a matrix X ∈ CL×N , the K th order finite-difference over its
rows and columns is given by,XDK

N and (DK
L )�X, respectively.

For α ∈ (0, 1) and β > λ, we define a quantity we refer to as
the packing quotient,

Lλ (α, β)
def
=

⌈
log (λ)− log (β)

log (α)

⌉
. (2)

Problem Setup for ASP: Mathematical models for ASP are well
investigated. Typically, the lth sensor input is modeled as a linear
combination of M narrow band sources, {sm(t)}m∈�M�, with
wavelength ν = (2πc)/ω. More precisely, one assumes that

xl(t) =
∑

m∈�M�
al (θm, φm) sm(t) (3)

where the elevation Φ = {φm}m∈�M� and the azimuth Θ =
{θm}m∈�M�, θm �= φm, are the unknown parameters that encode
the DoAs and the array steering vector a = [a0, . . . , aL−1]� is
defined below. We assume ideal sampling, that is, x[n] = x(nT )
where T > 0 is the sampling interval. For M sources, L sensors
and N time-domain samples this assumption gives rise to the
matrix equation

X︸︷︷︸
CL×N

= A︸︷︷︸
CL×M

S︸︷︷︸
CM×N

, (4)

where
1) xl[n] = xl(nT ), n ∈ �N�, is the sampled waveform stacked

in the data matrix X as [X]l,n = xl[n].
2) al(θm, φm) = [a(θm, φm)]l is the lth entry of the array

steering vector which is defined using the convention,

a (θm, φm) =
[
ejd

�
0u(θm,φm) . . . ejd

�
L−1u(θm,φm)

]�
where u(θ, φ) = (2π/ν)[sin θ cosφ cos θ cosφ sinφ]�

and dl = [dl,x dl,y dl,z]
�, l ∈ �L� denote the 3D co-

ordinates. The resulting matrix is,

A =
[
a (θ0, φ0) · · · a (θM−1, φM−1)

]
. (5)

3) sm[n] = sm(nT ), m ∈ �N�, is the narrowband waveform
stacked in the source matrix S as [S]m,n = sm[n].

• Linear arrays: When working with linear arrays, elements
are placed along the x-axis i.e., ∀l, dl,y = dl,z = 0. In case
of Uniform Linear Arrays (ULAs), we will assume that the
elements are equally spaced, i.e., dl,x = ld, with d the constant
spacing. Furthermore, when working with linear arrays we will
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assume that the impinging signals have zero elevation i.e.,
∀m we have φm = 0. This results in the simplified notation
A = AΘΘΘ,

[a (θm)]l = ξ2 l
m ∀l ∈ �L�, where ξm = ej

πd
v sin(θm) (6)

AΘΘΘ =
[
a (θ0) · · · a (θM−1)

]
. (7)

In the conventional ASP setup (4), the goals are to,
1) Estimate the DoAs Θ (and Φ for non-linear arrays) from the

data matrix X.
2) Reduce interference by means of beamforming defined by,

B : X ∈ CL×N �→WHX ∈ CL′×N , (8)

where L′ is the number of desired sources.
• Sparse arrays: In the context of our US-ASP, we will
also consider sparse arrays—linear arrays whose inter-element
spacing is larger than ν/2. Namely, we will focus on coprime
arrays [7] and two level nested arrays [9]. In the coprime
case, we will follow the difference coarray approach. Let La

and Lb be two coprime integers with La < Lb and let d be
the inter-sensor spacing. Let L be the set with sensor po-

sitions, L
def
= {dLan : n ∈ �Lb�} ∪ {dLbm : m ∈ �La�}. Let-

ting lp ∈ L for all p ∈ [0, La + Lb − 1], the response is given
by [AΘΘΘ]p,m = ejlp/ν sin(θm), for all m ∈ �M�, and X = AΘΘΘS.
Then, the entry at the position (i, k) of the covariance matrix
R(X) is phased as in an array with an element in li − lk. Thus,
we can access a virtual array with elements at the difference set,
which allows us to extend the number of degrees of freedom or
DoF, henceforth.

Two level nested arrays [25] represent the union of a dense
ULA with La elements, and a sparse ULA with Lb elements,
such that L = La + Lb − 1. The spacing of the sensors in the
sparse subarray equals the aperture of the dense subarray. Hence,
the difference coarray has elements at P = {nd1}|n|�LT

, with
LT = Lb(La + 1)− 1.

For these array constructions, vectorizing the covariance
shows the link between data and the DoAs [26],

z = vec (R (X)) = ÃΘΘΘb, ÃΘΘΘ =
[
ã (θ0) · · · ã (θM−1)

]
(9)

where, ã(θ) = a∗(θ)⊗ a(θ), and [b]m = E(|sm[n]|2) for all
m ∈ �M�. Given z, methods such as spatial smoothing [9] allow
conventional algorithms to retrieve the DoAs.

III. TOWARDS UNLIMITED SENSING BASED ASP

Departing from the conventional ASP setup, here we consider
modulo measurements that are based on the acquisition model
shown in Fig. 1. Mathematically, we have

yl [n] = Mλ (xl(nT )) , T > 0, (10)

where Mλ(·) is the complex–valued variant of the modulo
operation in [3] which is defined by the non-linear mapping,

Mλ(z) : z ∈ C → Fλ (Re(z)) + jFλ (Im(z)) . (11)

The mapping Mλ(·) in (10) ensures that the resulting modulo
samples ‖yl‖�∞(C) ≤ λ. In our case, the inverse problem boils
down to efficiently recovering the received signal and some or

TABLE I
US–ASP: MODEL SETUP

all of the transmitted sequences, in its sampled (X and S) or
continuous-time versions, from modulo measurements,

Y
def
= Mλ (X) = Mλ (AS) . (12)

In what follows, we will develop mathematically guaranteed
techniques that allow for recovery of X and parameters thereof,
so that conventional, spatio-temporal, Array Signal Processing
techniques can be applied.

A. Overview of Our Approach

Here, we briefly explain the mechanistic principles that allow
us to access the signal or its subspaces from the data matrix
Y in (12), despite the loss due to the modulo operation. This
is crucial for the subsequent ASP tasks to be meaningful. We
proceed along similar lines as in [3], but adapted to matrices,
and state the following observation.
Proposition 1 (Modulo Decomposition Property): Let X be
an arbitrary matrix, Y = Mλ(X) where λ is a fixed, non-zero
constant. Then, X admits a unique decomposition,

X = Mλ (X) + Π(X) = Y +Π(X) (13)

where Π(X) is a matrix such that, [Π(X)]m,n ∈ 2λZ.
There on, our strategy is to apply a discrete differentiation

operator (denoted by D(·)), followed by a modulo operation
exploiting that Z = Mλ(D(Y)) has the same column space or
row space (depending on the nature of the difference operator
and assuming that N > L) as the original signal X but not
necessarily agrees with X itself. In contrast to [3], we do not
proceed by reconstructing X but rather apply ASP tools and
techniques directly to Z, most notably DoA estimation and
beamforming. The intuition behind the subspace preservation
is the following. As X is a smooth signal, its columns (temporal
ASP) and rows (spatial ASP) are highly correlated. This implies
that the finite differences between its samples (column-wise or
row-wise) are going to result in a shrinkage of amplitudes. The
extent of shrinkage depends on the normalized sampling rate
(cf. Lemma 1). In particular, as shown in [3], applying a finite
difference of order K shrinks the amplitude by TK . This allows
for the finite difference and the modulo operator to commute
in a certain sense. As a result of this commutativity, we can
directly access the row or column space of the signal. The
special structure of the matrix A in (4) allows for the recovery
of the DoAs just from this subspace information without first
recovering X. In what follows, we will formally develop our
results for the temporal and spatial cases in Sections III-B
and III-C, respectively. The data model for the spatio-temporal
approaches is summarized in Table I.
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Algorithm 1: Temporal US-DoA Estimation.
Data: Matrix of modulo samples Y in (12).

Number of sources M .
An estimate on the supreme,
Bx ≥ ‖{xl}L−1l=0 ‖L∞(R).

Result: Θ = {θm}M−1m=0 , Φ = {φm}M−1m=0 .

Step 1 Compute K ≥
⌈
log λ−logBx

log(TΩe)

⌉
.

Step 2 Compute XK
def
= XDK

N = Mλ(YK).
Step 3 Obtain the covariance matrix R(XK) = VΛVH.
Step 4 Let the eigenvalues be sorted in decreasing order

and V = [v1 v2 . . . vL].
Step 5 Compute

P (θ, φ) =

(∑L

l=L−M vH
l a(θ, φ)

)−1
.

Step 6 Set ΘΘΘ and ΦΦΦ to the M sets of azimuth and
elevation angles that maximize P (θ, φ).

B. Temporal Approach to US-ASP

In this section, we will consider finite differences along the
temporal dimension of the sensor array. The model setup is
depicted in Table I.

1) Recovery Conditions: The starting point for formalizing
recovery guarantees is the following lemma that relates the max-
norm of continuous derivatives (x(K)) to the max-norm of finite-
differences (ΔKx) in terms of sampling rate T . Here, we will
consider a real-valued signal x ∈ R and later, the same approach
is adapted to complex-valued X in (4).
Lemma 1 (Difference-Derivative Inequality [2]): For any
x(t) ∈ CK(R) ∩ L∞(R), its samples x[n] = x(nT ) satisfy,
‖ΔKx‖�∞(R) � (Te)K‖x(K)(t)‖L∞(R).

This result shows that oversampling (Te < 1) shrinks the
upper bound on‖ΔKx‖�∞(R). For practical purposes, estimating
the maximum value of a function is easier than accessing its
derivatives. To this end, we bound the max-norm of x(K)(t) by
invoking the Bernšteı̆n’s inequality,

x ∈ BΩ, ‖x(K)‖L∞(R) � ΩK‖x‖L∞(R). (14)

This result when combined with Lemma 1 yields [3],

‖ΔKx‖�∞(R) � (TΩe)K ‖x‖L∞(R). (15)

Let Bx, an upper bound on |x(t)|, be known. ChoosingTΩe < 1
implies that (TΩe)KBx � λ, for K given by

K ≥
⌈
log λ−logBx

log(TΩe)

⌉
= Lλ (TΩe,Bx). (16)

Therefore, with T < 1/Ωe and K in (16), it follows that,

‖ΔKx‖�∞(R) � λ⇒ ΔKx = Mλ

(
ΔKx

)
. (17)

To relate higher order differences of x with the measurements
y, we use the following proposition [3].
Proposition 2 Let x[n] = x(nT ) be samples of a bounded,
bandlimited function x ∈ BΩ with sampling rate T < 1/Ωe.
Then, Mλ(Δ

Kx) = Mλ(Δ
K(Mλ(x))) with K in (16).

Our objective now is to generalize this theory to the array
scenario. Since the time-domain samples are arranged along
the row-dimension of the L×N matrix [X]l,n = xl(nT ), the
difference operator acts over each row independently,(

ΔKxl

)
(nT ) = [XK ]l,n =

[
XDK

N

]
l,n

(18)

where DK
N is the difference matrix defined in (1). Combining

the result of Proposition 2 and (18), we obtain the link between
higher order differences and the modulo samples,

ΔKx = Mλ

(
ΔKy

) (18)←→ XK = Mλ (YK) , YK = YDK
N .
(19)

By combining the key ingredients of modulo sampling theory
for the case of sensor arrays, we arrive at the following recovery
guarantee that will be at the heart of the ASP tasks, in particular,
multi-channel signal recovery.
Theorem 2 (Temporal US–ASP): Let N > K +M and let
sm[n] = sm(nT ), n ∈ �N�, be the samples of {sm}m∈�M� ∈
BΩ with sampling rate T . Also, let Y = Mλ(AS) in (12) be
the modulo samples with A defined in (5). Provided that T �
1/2Ωe, choosing K � Lλ(TΩe,Bx) guarantees that XK =
Mλ(YK).

Combined with existing results on unlimited sensing, this
theorem directly yields a first recovery guarantee. As here,
unlike the infinite-dimensional scenario in [3], we are working
with finite-dimensional vectors, we will apply a local version
of the unlimited sampling theorem as derived in [27], [28] in
the context of recovery of sparse and parametric signals. More
precisely, Theorem 2 in [27] establishes that

T � 1

2Ωe
and Ñ � N + 7

Bx

λ
(20)

guarantees recovery of N , finitely many, contiguous samples of
x ∈ BΩ from Ñ modulo samples. Combining this result with
Theorem 2 yields the following recovery condition.
Corollary 1: Let {sm(t)}m∈�M� ∈ PWΩ with [S]m,n =
sm(nT ), T > 0, n ∈ �N�. Then, a sufficient condition for re-
covery of {xl(nT )}l∈�L�, as in (4), from its modulo samples (up
to an additive multiple of 2λ) is given by

T ≤ 1

2Ωe
and Ñ > K +M + 7

Bx

λ
(21)

Here, in the spirit of Theorem 1, the sampling rate is still
independent of λ, however, the number of modulo samples (Ñ)
depends on the global dynamic range (Bx/λ).

2) DoA Estimation: To use Theorem 2 for DoA estimation,
we build on the observation that the discrete derivative of the
samples, as obtained by (19) gives rise to a DoA estimation
problem with the same array response matrix, regardless of the
geometry of the array. Indeed, we can write

XK
def
= Mλ (YK) = XDK

N = A
(
SDK

N

)
= ASK , (22)

and R(XK) = AR(SK)AH , where SK
def
= SDK

N . Thus, con-
ventional approaches to DoA estimation can be directly applied
to XDK

N without recovering X, saving computations in the
reconstruction step. This will yield meaningful DoA estimates
provided that k ≤ K, span(R(X)) = span(R(Xk)), which is
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the case when bothS andSk = SDk
N have full rank. A necessary

condition to satisfy this property is N −K > M , which puts an
additional constraint on the finite order differenceK < N −M .
As an example, the procedure to estimate the DoAs from modulo
samples is shown in Algorithm 1 for the case of the MUSIC
algorithm. In a similar fashion, other competitive algorithms are
an equally viable option provided that specific conditions over
M , N and L are satisfied [5]. For instance, for both MUSIC
and ESPRIT algorithms, one needs that L > M . We remind the
reader that when Theorem 2 is applicable, the sampling rate
is independent of λ and hence, a constant-factor oversampling
suffices for DoA estimation (directly from the folded measure-
ments).

3) Beamforming and Recovery: Having estimated the DoAs,
beamforming (B) can be performed. Instead of recovering data
matrixX fromXK (as in [27]), we can directly apply beamform-
ing and recover the filtered signal. Provided that the conditions
of Theorem 2 hold, the linearity of the beamforming operator
allows us to write,

B (X) = U (B (Mλ (YK))) , (23)

whereU(·) is some properly chosen reconstruction operator such
that U(XK) = X and B is the beamformer defined in (8). De-
spite the reconstruction operator may be highly non-linear, the
property U(XK) = X allows us to swap both operators without
loss of information. The recovery approach in [29] is an example
of such an operator when the signals are bandlimited. This result
guarantees that the beamformed signal can be directly retrieved
from the folded samples, saving computational time as compared
to the full recovery method based on unfolding summarized in
Corollary 1 above. On the other hand, the full recovery approach
has the advantage that none of the rich signal features beyond the
beamformed signal are lost in the algorithmic reconstruction.

4) Sparse Arrays: To extend our theory to sparse arrays,
we first seek the conditions under which estimation from the
covariance matrix of XK is possible. To this end, consider the
following result.
Corollary 2: Let X = AΘΘΘS, where S comprises of sampled
bandlimited vectors {sm}m∈�M� and where AΘΘΘ is the sparse
array response. Then, ∀m ∈ �M�, E(|ΔKsm[n]|2) �= 0 is a
sufficient condition guaranteeing E (X) = E (XK) where E (·)
represents a DoA estimator for sparse arrays.

This corollary is aptly justified by taking into account the
expression for the coarray approach in (9), but considering
ΔKsm[n] as the source signals. The above result in conjunction
with Theorem 2 guarantees that the coarray approach can be
applied to the folded measurements as well, leading to the
following equation

{sm ∈ BΩ}m∈�M�, E (X) = E (Mλ (YK)) , (24)

provided that T < 1/2Ωe. This result allows to perform DoA
estimation using any sparse array from the folded samples.
Hence, sparsity-based DoA methods (including the ones based
on compressed sensing) can straightforwardly be adapted to our
new model since not only the signal subspace is retained but also
the sparsity pattern revealing the DoAs.

C. Spatial Approach to US-ASP

In this section, we consider the application of finite differences
along the spatial dimension of the signal.

1) Recovery conditions: The first key point of this approach
is preservation of the array response under the difference oper-
ator. The result is stated in the following lemma.
Lemma 2: Let ξm = exp(jπdν sin θm) and let AΘΘΘ denote the
array response matrix with elements [AΘΘΘ]l,m = ξ2 l

m . Then, for
all K ∈ N such that K < L, we have,(

DK
L

)�
AΘΘΘ = IKAΘΘΘE

K (25)

where, IK ∈ R(L−K)×L with [IK ]k,l = δ[k − l] and E ∈
CM×M is a diagonal matrix, its diagonal elements are given
by [E]m,m = (−j2Im(ξm))ξm.

Proof: See Section VI. �
The implication of Lemma 2 is that we are able to write,

XK =
(
DK

L

)�
X = IKAΘΘΘE

KS. (26)

This result is instrumental in ensuring that XK can be up-
per bounded by λ or, |||XK |||Re < λ and |||XK |||Im < λ for l ∈
�L−K� and n ∈ �N�. The formal statement is as follows.
Lemma 3: Let X = AΘΘΘS where S is an arbitrary ma-
trix and AΘΘΘ a matrix with [AΘΘΘ]l,m = ξ2 l

m , where ξm =
exp(jπdν sin θm). Then, XK in (26) admits the upper-bound,

K < L, |||XK ||| �
√
2M

(
2 sin

(
πd
ν

))K |||S|||.
Proof: See Section VI. �
The implication of Lemma 3 is that by suitably choosing

the inter-element spacing d and difference order K, we can
arbitrarily shrink |||XK |||Re and |||XK |||Im. We would like to
upper-bound them with λ. To this end,

2 sin (πd/ν) < 1⇒ d < ν/6 (27)

and this provides an upper-bound on d, the spatial sampling
frequency. Now, suppose that Bs ≥ maxm∈�M� ‖sm‖L∞(R), is
known. Then, using d in (27) and K given by,

K ≥
⌈
log(λ)− log(MBs)

log (2 sin (πd/ν))

⌉
= Lλ

(
2 sin

(
πd

ν

)
,MBs

)
(28)

guarantees that |||XK |||Re � λ and |||XK |||Im � λ. We can sum-
marize our result in the following theorem.
Theorem 3 (Spatial US-ASP): Let X = AΘΘΘS, where,
� AΘΘΘ ∈ CL×M is a matrix with elements [AΘΘΘ]l,m = ξ2 l

m ,
where ξm = exp(jπdν sin θm).

� S ∈ CM×N is an arbitrary matrix, such that Bs ≥ |||S|||.
Furthermore, let Y = Mλ(X). Then, provided that d <

ν/6 and choosing, L > K ≥ Lλ(2 sin(πd/ν),MBs) results in
Mλ(YK) = XK , with YK = (DK

L )�Y.
Proof: See Section VI. �
Theorem 3 in conjunction with Lemma 2 yields,

Mλ (YK)
(26)
= IKAΘΘΘE

KS. (29)

This gives a direct relationship between the folded samples Y
and a scaled version of the transmitted symbolsEKS. It is worth
highlighting that no row of the matrix EKS will be zero as long
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as [S]m,n �= 0 for all n ∈ �N� and the DoAs are different than
0. Moreover, the array response is preserved, saving for the loss
of the last K rows.

Remark on Array Spacing Criterion: With reference to
the conventional half-wavelength spacing criterion (d < ν/2),
our condition d < ν/6 in Theorem 3 requires spatial oversam-
pling. In application areas such as bio-signal processing, seismic
array processing and phased arrays, the recent trend has been
to leverage spatial oversampling. This has been catalysed by
advances in sensor design and availability of cheaper, more
capable and efficient hardware. Concrete examples include,
(a) Electroencephalography wherein Robinson et al. [30] use
“super-Nyquist” density sensor placement and report its unique
advantages. Similarly, “high density” electrode placement has
been used in ECG acquisition [31]. (b) Seismic Imaging where
“dense arrays” have enabled new applications [32]–[34] and (c)
Phased Arrays where spatial oversampling [35] is used to exploit
degrees of freedom while relaxing the circuit constraints.

2) DoA estimation: From our result above in (29), we can
conclude that the information about the directions of arrival in
X is still accessible from Y. By defining ÂΘΘΘ

def
= IKAΘΘΘ, we can

model Mλ(YK) as an equivalent system, where weighted ver-
sions of the original transmitted signals impinge on a ULA with
the same inter-element separation and response ÂΘΘΘ, counting
L−K rows. Therefore, the DoAs can be estimated from the
difference samples (29), as long as the corresponding relation
between the parameters L−K and M holds for the considered
DoA estimation method. In this sense, our method is backwards
compatible with any existing DoA estimation technique. For
example, methods as MUSIC and ESPRIT can be readily applied
if the condition L > M +K holds.

3) Different approaches to recovery: Here, we leverage our
previously estimated DoAs to address the recovery process for
two different scenarios, namely, (a) beamformed version of X
or (b) X itself. As will be shown, the latter is important due to
stability issues related with the former.

Recovery via beamforming: Having estimated the DoAs,
provided that ∀ml ∈ �M�, θm1

�= θm2
�= 0, we can recover the

samples via beamforming. In this setting, the structure of AΘΘΘ

allows us for a non-iterative reconstruction from the modulo
samples. However, operations have to be performed on the

modified data model AKS, where AK
def
= IKAΘΘΘE

K . Then,
given a matrix beamformer constructed for AK , call it WE,
we can obtain the beamformed signal via

WH
EMλ (YK) = WH

EAKS. (30)

In practice, one option is to consider a zero-forcing beamformer
and hence compute WH

E as the pseudo-inverse of IKAΘΘΘE
K . In

this case, we can write

WH
E Mλ (YK) = E−K (IKAΘΘΘ)

†Mλ (YK)
(26)
= S. (31)

The construction of more sophisticated beamformers, that can
handle the effects of the noise on modulo samples, is an open
problem that we plan to tackle in the future.

Recovery via unfolding: Recovery in (30) relies on invert-
ing EK . According to (32), the diagonal elements in E−K

Algorithm 2: Matrix Unfolding (Closed-Form).
Data: Matrix of modulo samples Y.

Number of sources M .
Packing quotient K.
Difference matrix XK .

Step 1: Obtain the covariance matrix R(XK) = VΛVH.
Step 2: Estimate the number of sources M ′ = rank(Λ).
Step 3: Estimate the M ′ DoAs Θ.
Step 4: Recover the samples, X̂, as in (30), using M ′.
Step 5: If M ′ = M , then X← X̂ and halt.
Step 6: Otherwise, let Q← Y − X̂.
Step 7: Take a decision in the 2λ grid about Q to obtain
G.

Step 8: Set X← X̂+G.

contain (2 sin(πd/ν sin(θm)))−K which may be ill-conditioned
for higher difference orders required for processing of modulo
samples. This problem can be circumvented by resorting to an
alternative recovery approach that can handle finite-dimensional
vectors [28] as long as the DoAs are non-zero. To this end,
we again use the local reconstruction theorem stated in [27],
[28], but applied to the spatial sampling case (unlike (20)).
Having obtainedXK fromY, we can recoverL′ unfolded spatial
samples of X, provided that

d < ν/6 and L > L′ + 7Bx/λ.

This allows us to recoverL′ spatial samples ofX before applying
any beamformer, leading to a more stable recovery algorithm
because the inversion avoids computation of the ill-posed matrix
E−K and uses the recovery method in [3].

Zero recovery: Given M , XK , we can estimate the number of
sources, say M ′ ∈ N, using XK . Since M = M ′ ⇒ θm �= 0
and hence the process can be performed normally. In case
M ′ < M , one of the angles is zero. Then, we can follow the same
algorithm, but considering onlyM ′ sources, thus retrievingX′ ∈
CL×N . When θm = 0, the array response is an all-ones vector
and the term Q = Y −X′ = (X−X′) + Π(X) has constant
columns. Then, by making a decision in the value of each column
of Q, we obtain G and the unfolded matrix X = X′ +G can be
recovered up to additive integer multiples of 2λ. The complete
recovery process is summarized in Algorithm 2. This prior
knowledge of row/column structure of Q allows us to enhance
algorithmic capability by using techniques such as projection
over convex sets (POCS) [36].

Recovery of bandlimited signals: Theorem 3 provides all the
necessary tools for guaranteeing the recovery of continuous
bandlimited waveforms from folded samples, provided that
the temporal sampling rate satisfies the conventional Nyquist
criterion. This yields the following result.
Corollary 3: Let {sm(t)}m∈�M� ∈ PWΩ with Bs ≥
maxm∈�M� ‖sm‖L∞(R) and also let [S]m,n = sm(nT ), T > 0.
Under the conditions of Theorem 3, a sufficient condition for
recovery of {x(nT )}l∈�L�, as in (3), from its modulo samples
(up to an additive multiple of 2λ) is that T � π/Ω.
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TABLE II
US–ASP: UNLIMITED SENSING BASED ARRAY SIGNAL PROCESSING AND OVERVIEW OF MAIN RESULTS

Fig. 2. Architectures for US-ASP using ULAs and nested arrays, for K = 2.
The spacing between sensors is normalized by d. The information provided
by the auxiliary sensors (sensors lost when performing the spatial difference)
is employed to access the unfolded samples. (Top) ULA array with L = 11
physical sensors and 9 effective elements. (Bottom) Nested Array with 4 effective
elements in the first level and 4 effective elements in the second level. As it
comes clear from the figure, the auxiliar elements are only required in the sparse
subarray.

Remarkably, both the spatial and the temporal sampling rate
required in this result are agnostic to λ. Only the recovery
procedure will crucially rely on the knowledge of λ.

Besides, as the functions in the Paley-Wiener class constitute
a subspace, this result can be applied to any beamformed version
of the rows of X or XK .

4) Sparse Arrays: Despite being stated for ULAs, Theorem 3
can be generalized to be backwards compatible with any array
geometry. The following result develops this idea.
Corollary 4 (Arbitrary array geometry): Consider a sensor ge-
ometry formed by L sensors at positions dl, l ∈ �L�, with array
response Ã. Then, L ULAs counting with (K + 1) physical sen-
sors each, with K � Lλ(2 sin(

πd
ν ),MBs), inter-element spac-

ing d < ν/6 and array response Al, are sufficient for obtaining
X̃ = ÃS̃, where S̃ is a version of S where the rows are scaled,
from the L sets of λ-folded samples {Yl = Mλ(AlS)}l∈�L�.

The main drawback of this approach is the loss of KL
degrees of freedom with respect to a ULA with the same num-
ber of physical sensors. However, a US-enabled nested array
only needs (K + 1)(L2 − 1) + L1 physical sensors, instead of
(K + 1)(L1 + L2), due to its special geometry. As explained in
Fig. 2, we only require the auxiliary subarray in the sparse sec-
tion of the nested array, simplifying the architecture. US enabled
nested arrays have the advantage of enhancing the number of
degrees-of-freedom retaining the flavor of conventional nested
arrays.

For reader’s convenience, we summarize our temporal and
spatial domain results in Table II.

IV. NUMERICAL DEMONSTRATION

In this section, we provide examples of DoA estimation that
confirm our theoretical results. Furthermore, we consider the
case of noise, showing the empirical stability of our approach
in the presence of perturbations. We mainly focus on subspace-
based methods to illustrate the proposed ideas, which can be
extended to compressed sensing based methods.

Experimental protocol: We consider 800 temporal samples.
The bounds on the amplitude fulfill |||X|||Im = |||X|||Re = 2 for
the time domain approach and |||S|||Im = |||S|||Re = 2 for the
spatial approach. The maximum frequency is set to Ω = π
rads/s. We list the experimental parameters in Table III. For each
experiment, we start from the modulo data matrix Y. Using the
mathematically guaranteed methods presented in our discussion,
we extract the DoA information from Y. We compare our
approach with the case when the conventional data matrix X
is available.

A. Time Domain US-ASP

Experiment A: non-linear arrays: We consider a Uniform
Circular Array with M = 4 sources arriving with non-zero
azimuth and elevation. The result of MUSIC-based recovery
using X and Y is shown in Fig. 3(A). The resulting spectrums
were smoothed with a Gaussian kernel (3 samples width) to
ease the visibility. These results confirm that temporal US-ASP
is able to find sources in the 2D space using non-linear arrays.
Experiment B: empirical stability in presence of noise: An
interesting aspect of our work is that without any algorithmic
modifications, our approach is empirically stable in the presence
of noise. We demonstrate this by comparing the mean squared
error (MSE) between the ground-truth and the estimated values
using Y = Mλ(X) +N, where N is additive white Gaussian
noise. We perform the experiments with two different values
of λ. The results using the ESPRIT algorithm are shown in
Fig. 3(B). For low SNRs, we observe the “threshold effect” [38]
in computational arrays. Because our algorithm is not yet de-
signed to tackle noise, this effect arises because (16) does not
hold for any value ofK. However, the thresholding point is more
favorable to larger λ: while for λ = 0.2we note an improvement
from SNR = 20 dB onward, for λ = 0.5 it lies closer to SNR
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TABLE III
EXPERIMENTAL SETUP. UCA STANDS FOR UNIFORM CIRCULAR ARRAY. WHEN WORKING WITH LINEAR ARRAYS (ULA, NESTED, COPRIME), THE ELEVATION

ANGLE IS ASSUMED TO BE ZERO. FOR SPARSE ARRAYS, THE NUMBER OF ELEMENTS IS SHOWN IN FORMAT L1/L2. FOR US ENABLED ULAS, THE NUMBER OF

SENSORS, INCLUDING THE NUMBER OF ELEMENTS LOST WHEN PERFORMING THE SPATIAL DIFFERENCE OPERATION, K, IS SHOWN AS L (K). FOR US-ENABLED

NESTED ARRAYS, WE USE THE NOTATION L1/(L2(K + 1)) (K) TO DENOTE THE NUMBER OF ELEMENTS. TA STANDS FOR TEMPORAL APPROACH AND SA
DENOTES SPATIAL APPROACH. THE TEMPORAL SAMPLING RATE IS SET TO BE 1/2Ωe− 1/100 = 0.0485 s

Fig. 3. Unlimited Sensing based Array Signal Processing (US–ASP). Temporal and spatial approaches are shown in subfigures (A, B, C) and (D, E, F), respectively.
(A) Smoothed MUSIC pseudo-spectrum for DoA estimation in the 2D azimuth-elevation plane based onX andY. The difference between both estimators is almost
negligible. (B) MSE vs SNR for DoA estimation using the ESPRIT algorithm with λ = 0.2 and λ = 0.5. For low SNRs, we observe the “threshold effect” [38]
in computational arrays. (C) MUSIC pseudo-spectrum for the coprime scenario, using the covariance of X and Y. A slight difference using US-ASP appears due
to the distortion introduced by the difference operator in the power of the sources. (D) MUSIC pseudo-spectrum for an 11 element ULA with K = 3, obtained
using X and Y, which shows that both methods reach the same results, but the loss of receiving elements increases the noise-floor, and the effect of the difference
operator reduces the amplitude of the peaks. (E) Maximum value of the MUSIC pseudo-spectrum as a function of the azimuth using X and Y. The notching effect
of the difference filter in the space domain is visible which almost vanishes for |θm| > 20 deg. (F) MUSIC pseudo-spectrum using a US-enabled nested array of
11 elements; 5 in the dense part, 3 in the sparse part and K = 1 additional sensors for each element in the sparse subarray, hence using 3 sensors more, which will
be used to obtain the differences, as shown in Fig. 2, for both X and Y. The results are close to the pseudo-spectrum of the conventional approach, as the sparse
section enhances the performance of the algorithm.

= 10 dB. For large SNRs, the remaining gap, due to the noise
amplification via ΔK operator, is also larger for smaller values
of λ.

Experiment C: compatibility with coprime arrays: As men-
tioned, our approach can be integrated with coprime arrays. The
upshot being, we can resolve more sources than physical sensors.
To this end, the MUSIC pseudo-spectrum is shown in Fig. 3(C),
where the difference between the results obtained by using X

and Y stem from the weaker power of the signal part in XDK
N ,

which play a key role in forming the difference coarray. As we
can see, 14 sources can be resolved with only 12 sensors.

B. Spatial Domain US-ASP

Experiment D: uniform linear arrays: For the spatial domain
approach, we compare the MUSIC pseudo-spectrum for modulo
samples with that of X as benchmark. As shown in Fig. 3(D),
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the MUSIC pseudo-spectrum of Mλ(YK) matches that of X as
the two subspaces contain the same information. That said, there
is a scaling factor due to the effect of E, which will be explored
in the next experiment.
Experiment E: directional discrimination: As shown in (29),
the application of difference filter scales the magnitude of the
spectrum by | sin(πd/ν sin θm)|K creating a notch at θ = 0. In
Fig. 3(E), we show the MUSIC pseudo-spectrum as a function
of the azimuth obtained from X, and processing Y, for K = 3.
The gray curve shows a notch or blind spot at θ = 0. However,
this degradation is localized (for instance, spectral components
above 20 degrees are left almost unaffected), and depends on K.
Experiment F: nested arrays: With nested arrays, we focus on
mitigating the performance degradation arising from the inter-
spacing of sensors. To this end, we consider a 11 sensor array
forming a two level nested array, as in Fig. 2, using 5 elements
in the dense part, 3 elements in the sparse part and with K = 1
additional sensors for each element in the sparse subarray, hence
employing 3 sensors more, which will be used to obtain the
differences, as shown in Fig. 2. We perform DoA estimation
using the MUSIC algorithm [25]. The pseudo-spectrum is shown
in Fig. 3(F). Note that spatial US-ASP (cf. Fig. 3(D)) entails
ΔK operation along the spatial dimension. This implies that we
are left with L−K samples. However, with sparse subarrays,
this loss in samples can be compensated, resulting in superior
performance.

V. CONCLUSION

In this paper, we introduced the idea of “computational ar-
rays” that harness a synergistic tandem between hardware and
algorithms. Our core novelty is the conceptualization of a sensor
array which records modulo encoded measurements. This acqui-
sition protocol circumvents the sensor saturation. By leveraging
insights from the unlimited sensing framework, we develop
mathematically guaranteed recovery algorithms for ASP tasks
such as (a) DoA estimation, (b) beamforming and (c) signal
reconstruction. In effect, our work allows for a high-dynamic-
range sensing strategy and this is particularly well suited for
scenarios where dynamic range is unknown or there are strong
interferers in the sensing environment. An interesting feature
of our work is that our method is backwards compatible with
conventional ASP techniques.

Our paper raises a number of interesting questions around
the topic and inspires new hardware architectures for ASP. We
briefly cover a few directions that will bring our work closer to
practice.
1) Stability and robustness in presence of noise remains an

important topic of investigation. For instance, performance
analysis in terms of the Cramér-Rao bounds for DoA esti-
mation will provide guidelines for practical implementation.
This will also clarify the role of λ when observing the
“threshold effect” [38].

2) Our current approach relies on row-wise or column-wise
operations. We believe that designing algorithms that jointly
exploit spatio-temporal information may lead to robust so-
lutions for ASP. The problem of detecting the number of

sources or the compatibility with off-the-grid methods [10]
also remain to be explored.

3) The temporal sampling condition T ≤ 1/2Ωe directly fol-
lows from our earlier result in [3] where we also observed
that (a) reconstruction is possible with sampling intervals
larger than 1/2Ωe, and (b) modulo samples are injective just
above the Nyquist rate. For the latter part, provided that a
subset of unfolded samples is known a priori, a recovery
method for functions on the real-line has been presented
in [39]. Exploring tight sampling bounds and correspond-
ing recovery algorithms, specially in the context of finite
sample regime (cf. (21)) is a topic that will benefit practical
implementations.

4) Low-complexity DoA estimation based on one-bit
ADCs [18] has seen a surge of recent interest in the
past decade. As shown in [40], one-bit approaches can
also be integrated with unlimited sensing, resulting in new
architectures for ASP in the future.

VI. PROOFS

Proof of Lemma 2: To prove this result, it suffices to eval-
uate the differences with respect to the spatial dimension,
ΔKξ2 l

m . Since ΔK is a convolution operator and the complex-
exponentials {ξm}m∈�M� are eigen-functions of linear systems,
we have,ΔKξ2 l

m = (exp(j 2πdν sin θm)− 1)Kξ2 l
m .The eigenval-

ues (ξ2m − 1)K can be simplified by using the factorization,

m ∈ �M�, (ξ2m − 1
)
= −j2ξmIm (ξm) = [E]m,m , (32)

where Im(·) denotes the imaginary part. Consequently, for l =
0, . . . , L−K−1,

[
(
DK

L

)�
AΘΘΘ]l,m = [AΘΘΘ]l,m(−j2ξmIm (ξm))K ⇔ IKAΘΘΘE

K ,

which proves our result. �
Proof of Lemma 3: According to (26), we have, XK =

IKAΘΘΘE
KS. We will upper-bound XK element-wise and for

this purpose, for any K < L, let us define, M–dimensional
vectors for all l, n, cl,n ∈ CM and dK ∈ RM given by,

[cl,n]m = −jKξ2l+K
m [S]m,n and [dK ]m = (2Im(ξm))K

respectively. This allows us to write,

[XK ]l,n =
∑

m∈�M�
[AΘΘΘ]l,m

[
EK

]
m,m

[S]m,n = d�Kcl,n.

Now since, [Re(XK)]l,n = d�KRe(cl,n), we can bound its
maximum by writing,∣∣∣[Re(XK)]l,n

∣∣∣ =
∣∣d�KRe (cl,n)

∣∣ ≤ ||dK ||∞‖Re (cl,n)‖�1(R)

where the upper-bound is a result of applying Hölder’s
inequality. To bound ‖Re(cl,n)‖�1(R), we write [S]m,n =

|[S]m,n|ej∠[S]m,n and notice that cl,n is obtained by phase-
modulation of S or,

K < L, [cl,n]m = −jKe
+j

(
πd
ν (2l+K) sin θm+∠[S]m,n

)

︸ ︷︷ ︸
Phase Modulation

∣∣∣[S]m,n

∣∣∣
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and it follows that ‖Re(cl,n)‖�1(R) ≤M |||S|||. Furthermore,

[dK ]m = 2K sinK(πdν sin θm) with |θm| ≤ π/2 and hence, the
upper bound, ||dK ||∞ ≤ 2K sinK(πdν ). By combining the re-
spective upper-bounds on ||dK ||∞ and ‖Re(cl,n)‖�1(R), we
obtain, an element-wise upper bound and hence,

|||XK |||Re ≤M
(
2 sin

(
πd
ν

))K |||S|||. (33)

The same applies to |[Im(XK)]l,n| and the result follows. �
Proof of Theorem 3: Let ΠK(X) = (DK

L )�Π(X). Ac-
cording to Proposition 1, (13) holds and, YK = XK +
ΠK(X). Since Mλ(a+ b) = Mλ(Mλ(a) + Mλ(b)), ∀a, b ∈
C, we have, Mλ(YK) = Mλ(Mλ(XK) + Mλ(ΠK(X))).
Thus, setting d < ν/6 and choosing K using (28) ensures that
|||XK |||Re � λ and |||XK |||Im � λ and hence, Mλ(XK) = XK .
Moreover, the integer-valued coefficients in DN

L preserve the
ring structure or ΠK(X) ∈ 2λZ and therefore, Mλ(ΠK(X)) =
0. This yields Mλ(YK) = XK , which proves the result. �

REFERENCES

[1] S. Fernandez-Menduina, F. Krahmer, G. Leus, and A. Bhandari, “DoA
estimation via unlimited sensing,” in Proc. 28th Eur. Signal Process. Conf.,
2021, pp. 1866–1870. doi: 10.23919/Eusipco47968.2020.9287595

[2] A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling,” in
Proc. 12th Int. Conf. Sampling Theory Appl., Jul. 2017, pp. 31–35.

[3] A. Bhandari, F. Krahmer, and R. Raskar, “On unlimited sampling and
reconstruction,” IEEE Trans. Signal Process., vol. 69, pp. 3827–3839,
Dec. 2020, doi: 10.1109/TSP.2020.3041955.

[4] A. Bhandari, F. Krahmer, and R. Raskar, “Methods and apparatus for
modulo sampling and recovery,” U.S. Pat. US20 190 103 876A1, 2020.

[5] T. E. Tuncer and B. Friedlander, Eds., Classical and Modern Direction-
of-Arrival Estimation. Academic Press, 2009.

[6] H. Krim and M. Viberg, “Two decades of array signal processing research:
The parametric approach,” IEEE Signal Process. Mag., vol. 13, no. 4,
pp. 67–94, Jul. 1996.

[7] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers
and arrays,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573–586,
Feb. 2011.

[8] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compressive co-
variance sensing: Structure-based compressive sensing beyond sparsity,”
IEEE Signal Process. Mag., vol. 33, no. 1, pp. 78–93, Jan. 2016.

[9] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to
array processing with enhanced degrees of freedom,” IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[10] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing off the
grid,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7465–7490, Nov. 2013.

[11] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[12] J. Lai, Y. Xu, X. Zhang, and Z. Tang, “Structural analysis of lunar
subsurface with chang E-3 lunar penetrating radar,” Planet. Space Sci.,
vol. 120, pp. 96–102, Jan. 2016.

[13] R. H. Dietz, D. E. Rhoades, and L. J. Davidson, “Apollo experience report-
lunar module communications system,” Nat. Aeronaut. Space Admin.,
Tech. Rep. TN D-6974, Sep. 1972.

[14] R. Cao, S. Earp, S. A. L. de Ridder, A. Curtis, and E. Galetti, “Near-
real-time near-surface 3D seismic velocity and uncertainty models by
wavefield gradiometry and neural network inversion of ambient seismic
noise,” Geophysics, vol. 85, no. 1, pp. KS 13–KS27, Nov. 2019.

[15] B. Wang, Y. Zhao, and J. Liu, “Mixed-order MUSIC algorithm for lo-
calization of far-field and near-field sources,” IEEE Signal Process. Lett.,
vol. 20, no. 4, pp. 311–314, Apr. 2013.

[16] B. Brannon, “Wideband radios need wide dynamic range converters,”
Analog Dialogue, vol. 29, no. 2, pp. 11–12, 1995.

[17] W. Oberhammer and B. Li, “Dynamic range extension of wideband
receiver,” U.S. Pat. US6 333 707B1, 2001.

[18] O. Bar-Shalom and A. Weiss, “DOA estimation using one-bit quantized
measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 868–884, Jul. 2002.

[19] J. Mo and R. W. Heath, “Capacity analysis of one-bit quantized MIMO
systems with transmitter channel state information,” IEEE Trans. Signal
Process., vol. 63, no. 20, pp. 5498–5512, Oct. 2015.

[20] P. J. Soh et al., “A smart wearable textile array system for biomedical
telemetry applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5,
pp. 2253–2261, May 2013.

[21] M. Allam and J. Greenleaf, “Isomorphism between pulsed-wave doppler
ultrasound and direction-of-arrival estimation. I. Basic principles,” IEEE
Trans. Ultrason., Ferroelect., Freq. Control, vol. 43, no. 5, pp. 911–922,
Sep. 1996.

[22] J. Rhee and Y. Joo, “Wide dynamic range CMOS image sensor
with pixel level ADC,” Electron. Lett., vol. 39, no. 4, pp. 360–361,
2003.

[23] S. Hirsch, M. Strobel, W. Klingler, J. D. S. Spüntrup, Z. Yu, and J. N.
Burghartz, “Realization and opto-electronic characterization of linear self-
reset pixel cells for a high dynamic CMOS image sensor,” Adv. Radio Sci.,
vol. 17, pp. 239–247, Sep. 2019.

[24] A. Bhandari, F. Krahmer, and T. Poskitt, “Unlimited sampling
from theory to practice: Fourier-Prony recovery and prototype
ADC,” IEEE Trans. Sig. Proc., vol. 70, pp. 1131–1141, Sep. 2021,
doi: 10.1109/TSP.2021.3113497.

[25] P. P. Vaidyanathan and P. Pal, “Direct-MUSIC on sparse arrays,” in Proc.
Int. Conf. Signal Process. Commun., 2012, pp. 1–5.

[26] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC al-
gorithm,” in Proc. Digit. Signal Process. Signal Process. Educ. Meeting,
2011, pp. 289–294.

[27] A. Bhandari, F. Krahmer, and R. Raskar, “Unlimited sampling of sparse
sinusoidal mixtures,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2018,
pp. 336–340.

[28] A. Bhandari, F. Krahmer, and R. Raskar, “Unlimited sampling of sparse
signals,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal. Process.,
Apr. 2018, pp. 4569–4573.

[29] A. Bhandari and F. Krahmer, “On identifiability in unlimited sampling,”
in Proc. Int. Conf. Sampling Theory Appl., Jul. 2019, pp. 1–4.

[30] A. K. Robinson, P. Venkatesh, M. J. Boring, M. J. Tarr, P. Grover,
and M. Behrmann, “Very high density EEG elucidates spatiotemporal
aspects of early visual processing,” Sci. Rep., vol. 7, no. 1, pp. 1–11,
Nov. 2017.

[31] Y. Zhu et al., “Analyzing high-density ECG signals using ICA,”
IEEE Trans. Biomed. Eng., vol. 55, no. 11, pp. 2528–2537, Nov.
2008.

[32] P. Goldstein and R. J. Archuleta, “Deterministic frequency-wavenumber
methods and direct measurements of rupture propagation during earth-
quakes using a dense array: Theory and methods,” J. Geophysical Res.:
Solid Earth, vol. 96, no. B4, pp. 6173–6185, Apr. 1991.

[33] D. A. Quiros et al., “Reflection imaging with earthquake sources and dense
arrays,” J. Geophysical Res.: Solid Earth, vol. 122, no. 4, pp. 3076–3098,
Apr. 2017.

[34] C. W. Johnson, D. Kilb, A. Baltay, and F. Vernon, “Peak ground velocity
spatial variability revealed by dense seismic array in southern California,”
J. Geophysical Res.: Solid Earth, vol. 125, no. 6, Jun. 2020, Art. no.
e2019JB019157.

[35] C.-P. Yeang, G. W. Wornell, L. Zheng, and J. Krieger, “Dense transmit
and receive phased arrays,” in Proc. IEEE Int. Symp. Phased Array Syst.
Technol., Oct. 2010, pp. 934–939.

[36] C. Byrne, “Iterative oblique projection onto convex sets and the split
feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441–453,
2002.

[37] C. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing
step in coarray MUSIC,” IEEE Signal Process. Lett., vol. 22, no. 9,
pp. 1438–1442, Sep. 2015.

[38] D. Rife and R. Boorstyn, “Single tone parameter estimation from discrete-
time observations,” IEEE Trans. Inf. Theory, vol. 20, no. 5, pp. 591–598,
Sep. 1974.

[39] E. Romanov and O. Ordentlich, “Above the nyquist rate, modulo folding
does not hurt,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1167–1171,
Aug. 2019.

[40] O. Graf, A. Bhandari, and F. Krahmer, “One-bit unlimited sampling,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 2019,
pp. 5102–5106.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 14,2022 at 10:13:43 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.23919/Eusipco47968.2020.9287595
https://dx.doi.org/10.1109/TSP.2020.3041955
https://dx.doi.org/10.1109/TSP.2021.3113497


FERNÁNDEZ-MENDUIÑA et al.: COMPUTATIONAL ARRAY SIGNAL PROCESSING VIA MODULO NON-LINEARITIES 2179

Samuel Fernández Menduiña received the B.Sc.
degree in telecommunications engineering from the
University of Vigo, Vigo, Spain, in 2019 and the
M.Sc. degree in communications and signal process-
ing from Imperial College London, London, U.K., in
2020. Since October 2020, he has been a Research En-
gineer with AtlanTTic Research Center. His research
interests include computational sensing, multimedia
forensics, and statistical signal processing. He was
awarded the Extraordinary B.Sc. Prize in 2020 by the
University of Vigo and the Xunta de Galicia. For the

M.Sc. work and thesis, he was awarded the Outstanding Achievement Award in
Communications and Signal Processing by Imperial College London.

Felix Krahmer received the B.Sc. degree in math-
ematics from International University Bremen, Bre-
men, Germany, and the M.Sc. and the Ph.D. degrees
in mathematics from New York University, New York
City, under the supervision of Percy Deift and Sinan
Güntürk. From 2009 to 2012, he was a HCM Post-
doc with the Group of Holger Rauhut, University of
Bonn, Bonn, Germany. In 2012, he moved to the
University of Göttingen, Göttingen, Germany as an
Assistant Professor for mathematical data analysis,
where he was awarded an Emmy Noether Junior

Research Group. In 2015, he joined the Department of Mathematics, Technical
University of Munich, Munich, Germany, as a tenure-track Assistant Professor
for optimization and data analysis, he was tenured and promoted to the level of
Associate Professor in 2021. His research interests include mathematical signal
and data processing, in particular the theory of computational sensing, applied
harmonic analysis, and random matrix theory.

Geert Leus received the M.Sc. and Ph.D. degree in
electrical engineering from the KU Leuven, Leuven,
Belgium, in June 1996 and May 2000, respectively.
He is currently a Full Professor with the Faculty
of Electrical Engineering, Mathematics, and Com-
puter Science, Delft University of Technology, Delft,
The Netherlands. He was the recipient of the 2021
EURASIP Individual Technical Achievement Award,
a 2005 IEEE Signal Processing Society Best Paper
Award, and a 2002 IEEE Signal Processing Society
Young Author Best Paper Award. He is a Fellow

of the EURASIP. He was a Member-at-Large of the Board of Governors of
the IEEE Signal Processing Society, the Chair of the IEEE Signal Processing
for Communications and Networking Technical Committee, and the Editor in
Chief of the EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING. He
is currently the Chair of the EURASIP Technical Area Committee on Signal
Processing for Multisensor Systems and the Editor-in-Chief of the EURASIP
Signal Processing.

Ayush Bhandari received the Ph.D. degree from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2018, for his work on
computational sensing and imaging which is being
shaped as a forthcoming, coauthored book in MIT
Press (2022). He is currently a Faculty Member with
the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London, U.K. He has
held research positions with INRIA, Rennes, France,
Nanyang Technological University, Singapore, the
Chinese University of Hong Kong, Hong Kong, and

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
among other institutes. In 2019, he was appointed the August–Wilhelm Scheer
Visiting Professor with the Department of Mathematics, Technical University of
Munich, Munich, Germany. His research interests include mathematical signal
processing, inverse problems, and computational sensing and imaging. He was
a tutorial speaker at various venues, including the ACM Siggraph in 2014
and 2015 and the IEEE ICCV in 2015. Some aspects of his work have led
to new sensing and imaging modalities which have been widely covered in
press and media including BBC news. Applied aspects of his research have led
to more than ten US patents. His scientific contributions have led to numerous
prizes, most recently, the Best Paper Award at IEEE ICCP 2020 (International
Conference on Computational Photography) and the Best Student Paper Award
(senior coauthor) at IEEE ICASSP 2019 (International Conference on Acoustics,
Speech and Signal Processing). His doctoral work was awarded the 2020 IEEE
Best Ph.D. Dissertation Award from the Signal Processing Society. In the same
year, he was awarded the UKRI Future Leaders Fellowship. In 2021, he was the
recipient of the President’s Medal for Outstanding Early Career Researcher at
Imperial College London.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 14,2022 at 10:13:43 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


