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Abstract. Modern time series are usually composed of multiple oscillatory

components, with time-varying frequency and amplitude contaminated by
noise. The signal processing mission is further challenged if each component

has an oscillatory pattern, or the wave-shape function, far from a sinusoidal

function, and the oscillatory pattern is even changing from time to time. In
practice, if multiple components exist, it is desirable to robustly decompose the

signal into each component for various purposes, and extract desired dynamics

information. Such challenges have raised a significant amount of interest in
the past decade, but a satisfactory solution is still lacking. We propose a novel

nonlinear regression scheme to robustly decompose a signal into its constitut-

ing multiple oscillatory components with time-varying frequency, amplitude
and wave-shape function. We coined the algorithm shape-adaptive mode de-

composition (SAMD). In addition to simulated signals, we apply SAMD to
two physiological signals, impedance pneumography and electroencephalog-

raphy. Comparison with existing solutions, including linear regression, recur-

sive diffeomorphism-based regression and multiresolution mode decomposition,
shows that our proposal can provide an accurate and meaningful decomposi-

tion with computational efficiency.

Keywords: wave-shape functions, signal modeling, instantaneous frequency,

biomedical signals

1. Introduction

Modeling real-world oscillatory signals in a compact and physically meaningful
manner and developing a suitable algorithm to analyze such signals remain a chal-
lenging topic in signal processing. Among various challenges, one shared by many
real-world signals is that the amplitude and frequency of each oscillatory compo-
nent is time-varying, and the oscillatory pattern is usually not sinusoidal. With
the advance of sensor technology, examples can be found in various areas, such as
biomedicine [1–3], physics [4, 5], to name but a few.

One model that has been widely considered in the scientific community in the
last decades is the superimposition of amplitude- and frequency-modulated (AM-
FM) components. We call a signal satisfying the following condition an intrinsic
mode type (IMT) function:

(1) A(t) cos(2πφ(t)) ,
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where t ∈ R, A ∈ C1(R) is a positive smooth function indicating the time-varying
amplitude called the “amplitude modulation” (AM), φ ∈ C2(R) is a smooth and
monotonically increasing function quantifying how fast the signal oscillates called
the phase function, and φ′ is a positive function called the instantaneous frequency
(IF). If a function can be represented as a superimposition of multiple IMT func-
tions with some growth conditions and possibly noises, we say that it satisfies the
adaptive harmonic model (AHM) [6,7]. Other models are also possible, for example,
the famous analytic signal model [8], the time-varying autoregressive model [9], the
TBATS (Trigonometric seasonality, Box-Cox transformation, ARIMA errors, Trend
and Seasonal components) model [10], or the wave-shape oscillatory model [11].
We mention that the analytic model is recently extensively studied via the complex
analysis perspective [12].

While the AHM and other models have been widely applied, they usually ignore
a critical aspect – in many real signals, the waveform morphology can be more
complicated than a sinusoidal oscillation. We could model the oscillatory pattern
by the wave-shape function (WSF) s(t) [13], which is a 1-periodic function, i.e.
minτ>0{s(t) = s(t + τ)| t ∈ R} = 1. For example, the function cos(2π·) in (1) is
the typical WSF that is sinusoidal. However, in general the oscillatory pattern is
far from being sinusoidal. See Fig. 10 for two example signals, including one elec-
trocardiogram (ECG) and one respiratory signal. Such complicated non-sinusoidal
oscillation usually encodes significant information for practitioners. For example,
physicians identify myocardial infarction by reading if the ST segment is elevated
from the electrocardiograph signal. See Fig. 10 (a). From this example, we also see
that the WSF is not fixed but changes with time [14]. Another example is that the
inspiration expiration ratio (IER) [15] changes from cycle to cycle, which reflects
and also impacts the physiological systems. See Fig. 10 (b) for an illustration
of IER. If a signal is the superimposition of multiple AM-FM components with
non-sinusoidal oscillation, that is, the cos(2π·) in an IMT function is replaced by a
non-sinusoidal function, we say that the signal satisfies the adaptive non-harmonic
model (ANHM). Mathematical details will be provided below. See Fig. 10 (b) for
an example that is composed of two non-sinusoidal oscillatory components; one is
the respiratory component, and one is the cardiac component usually called the
cardiogenic artifact. In the past few years, how to model and analyze this kind of
signal has attracted a lot of attention [16–20], from both theoretical and algorithmic
perspectives.

With the ANHM, there are several common signal processing missions, includ-
ing but not exclusively, how to estimate the IF, AM and the phase, how to extract
the WSF of each oscillatory component, how to decompose the signal into each
oscillatory component, how to achieve the above missions robustly, efficiently, or
even in real time, etc. There have been several solutions toward these missions. For
example, de-shape algorithm was proposed to estimate IF [14]; the synchrosqueez-
ing transform (SST) was applied to extract phase [21]; the manifold learning idea
was applied to estimate the WSF [11]; the linear regression [22] and optimization
approaches [18–20] were proposed to decompose signals. Among these missions, in
general the signal decomposition mission so far remains a challenging one, partic-
ularly when the WSF is complicated.

In this paper, we focus on the signal decomposition mission. We propose a new
approach to robustly decompose signals composed of time-varying WSF into its
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Figure 1. An illustration of two complicated non-sinusoidal oscil-
latory signals, an electrocardiogram (ECG) (a) and a respiratory
signal (b). In (a), the ECG signal suggests a migration into my-
ocardial infarction (colored by red). Two red crosses on the left
hand side indicates a ST segment. Clearly, the ST segments in-
dicated by blue arrows elevate in the second half. The numbers
are the length of R peak to R peak intervals, with the unit ms. In
(b), the inspiration and expiration periods are marked by dashed
vertical lines. The three blue arrows indicate the second oscillatory
component, the cardiogenic artifact.

components. It is motivated by noticing the success of the linear regression ap-
proach [22], and its limitation coming from the fixed WSF assumption. In our
approach, which we coined Shape-adaptive mode decomposition (SAMD), we gen-
eralize the linear regression approach to a nonlinear regression problem to accom-
modate time-varying WSFs. The design of the algorithm balances between the
decomposition accuracy and computational complexity.

The rest of the paper is organized as follows. In Sec. 2, we recall the basic con-
cepts of WSF giving its definition, along with a model for time-varying WSFs, and
we clearly state the problem we are tackling. In Sec. 3 we review existing algorithms
and introduce our nonlinear regression approach. Numerical results are presented
in Sec. 4, where we analyze simulated signals and offer two real-world examples by
processing electroencephalography and impedance pneumography signals. Sec. 5
concludes the paper. More numerical results, including a three-component signal
decomposition, can be found in the Supplemental Material.

2. Models

Before introducing our proposed algorithm, we summarize the ANHM with time-
varying WSF.

2.1. Wave-shape Functions. We start with the traditional model [13]. It was
proposed to model (trend- and noise-free) oscillatory signals as a pair amplitude-
oscillation of the form,

(2) ffix(t) = A(t)s(φ(t)) ,
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where A(t) and φ(t) are the same as those shown in (1), and s(t) is a 1-periodic
WSF. We need some conditions for (2). First, the model in (2) must fulfill the
following slowly varying conditions [13]:

C1. For ε > 0, we have |A′(t)| ≤ εφ′(t) and |φ′′(t)| ≤ εφ′(t) for all t ∈ R.
C2. ‖φ′′‖∞ ≤M , with M ≥ 0.

To put some conditions on s(t), note that its Fourier series satisfies s(t) =
∑
`∈Z ŝ(`)e

i`2πt,
where ŝ(`) are the Fourier coefficients. In [13], a class of functions was considered:

Definition 2.1. Analytic shape function class Sδ,D,θ. [13] Given δ ≥ 0,
D ∈ N, and θ ≥ 0, the class Sδ,D,θ is defined as the 1-periodic functions of zero-
mean (ŝ(0) = 0), with unit L2-norm, and satisfying:

S1. for all ` ∈ Z, with |`| 6= 1, |ŝ(`)| ≤ δ|ŝ(1)|
S2.

∑
|`|>D |`ŝ(`)| ≤ θ

The parameters δ, D and θ characterize the “shape” of the function. The condi-
tion S1 says that the strength of the fundamental component cannot be zero. The
condition S2 says that the shape does not oscillate too fast; that is, even if it is
not necessarily a bounded-bandwidth function, their coefficients decay fast enough.
Such idea was applied to sleep apnea events detection [23] and blood pressure
analysis [22]. This model and its generalizations have been considered to design
different algorithms [18–20]; for example, the case ŝ(1) = 0 is discussed in [20], but
to simplify the discussion, we focus on the above assumption.

2.2. Time-varying Wave-shape Functions and the proposed adaptive non-
harmonic model. The model (2) is however limited when it is applied to study
more complicated signals. Specifically, in biomedical signals, the oscillatory pat-
terns change from time to time, and a generalization is necessary. To this end, note
that by replacing s(t) ∈ Sδ,D,θ by its Fourier series in (2), the signal (2) can be
rewritten as

(3) ffix(t) = A(t)

∞∑
`=−∞

ŝ(`)ei2π`φ(t)

= A(t)

∞∑
`=1

(α` cos(2π`φ(t)) + β` sin(2π`φ(t))) ,

where α` = 2<(ŝ(`)), β` = −2=(ŝ(`)), ŝ(0) = 0 by assumption, and < and =
mean taking the real and imaginary parts. The form (3) could be trivially further
rewritten as

(4) ffix(t) = A(t)

∞∑
`=1

a` cos(2π`φ(t) + b`) ,

where a` = |ŝ(`)|/2 and b` = arctan(=(ŝ(`))/<(ŝ(`))). Physically, the model (2)
could be understood via the lens of (4), that is, it is composed of possibly infinitely
many oscillatory functions, where the `-th component is [a`A(t)] cos(2π`φ(t) + b`)
with the AM a`A(t) and the phase 2π`φ(t)+b`. However, when ` is large and a` > 0,
in general [a`A(t)] cos(2π`φ(t) + b`) is not an IMT function since the condition C2
may not hold on ‖`φ′′‖∞.
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To accommodate time-varying WSF, in this paper the model (4) was generalized
to

(5) fvar(t) := A(t)

∞∑
`=1

a` cos(2πφ`(t)) ,

where {a`}∞`=1 ⊂ R is an `1 sequence, A(t) and φ1(t) satisfy the slowly varying
condition C1 and C2, and φ`(t) satisfy the condition C3:

C3. |φ′`(t) − `φ′1(t)| ≤ εφ′1(t), for all ` = 1, . . . ,∞. This condition ensures the
IFs are not far from a multiple of the fundamental frequency.

The condition C3 says that the IF of multiples, φ′` for ` > 1, are no longer necessarily
multiples of the fundamental frequency φ′1(t). As a result, we cannot use one WSF
to describe the signal and the WSF is time-varying, and it cannot be represented
by few sinusoidally oscillatory components due to the time-varying IF. We abuse
the notation and still call a function of the format (5) an IMT function, or simply
a mode.

The ANHM we consider in this paper satisfies

(6) Fvar(t) =

I∑
i=1

fvar,i(t) ,

where fvar,i(t) = Ai(t)
∑∞
`=1 ai,` cos(2πφi,`(t)) satisfies (5) and we further assume

that

C4. there exists d > 0 so that inft |φ′i,1(t)− φ′j,1(t)| ≥ d when i 6= j;
C5. φi,1(t) 6= kφj,1(t) for k ∈ N for any i 6= j.

Here, the condition C4 is about the separation of fundamental IFs (` = 1). Note
that we do not put any separation condition on the multiple IFs. This is because
when i 6= j, `φ′i,1(t) and `′φ′j,1(t) will be as close as possible for some `, `′ ≥ 1
and ` 6= `′ by the Weyl’s equidistribution theorem, and hence φ′i,`(t) and φ′j,`′(t).
We mention that when I > 1, if we want to keep physical interpretation, we shall
define the phase of Fvar(t) to be a set of functions {φi,1}Ii=1 but not a single function.
We refer readers with interest to [21] for further discussion. The condition C5 is
critical, as it guarantees the identifiability of the proposed multiple components
model. Indeed, if φi,1(t) = kφj,1(t), the summation of fvar,i and fvar,j becomes

Ãj(t)
∑∞
`=1 ãj,` cos(2πφj,`(t)) for some Ãj(t) and {ãj,`}. The mission is how to

decompose each mode fvar,i(t), with i = 1, . . . , I, from Fvar(t), which is possibly
contaminated by an independent noise.

Remark. It is possible to consider a more general time-varying WSF model. For
example, the model considered in [14] allows more freedom on the AMs, which
reads

(7) fmore(t) =

∞∑
`=1

B`(t) cos(2πφ`(t)) ,

where B1(t) and φ1(t) satisfy the slowly varying condition C1 and C2, φ` ∈ C2(R)
satisfies C3, and B` ∈ C1(R) further satisfies B`(t) ≤ c(`)B1(t), for all ` = 1, . . . ,∞,
and with c = {c(`)}∞`=0 a non-negative `1 sequence, and |B′`(t)| ≤ εc(`)φ′1(t) and
|φ′′` (t)| ≤ ε`φ′1(t), for all ` = 1, . . . ,∞. This model is clearly more complicated than
(5) since the AMs are further assumed to vary independently from each other. From
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the perspective of algorithm design for signal decomposition, the main difference
between (7) and (5) comes from the complication of parameters to be estimated.
In (7), we need to estimate many functions, while in (5) we only need to estimate
fewer functions and some sequences. To balance between the number of parameters
to be estimated and the purpose of tracking time-varying WSF, we focus on (5).

Remark. The considered ANHM is in the real form since most practical signals
are real. We can also consider the ANHM in the complex form; for example,
fCvar(t) := A(t)

∑∞
`=1 a`e

i2πφ`(t), where A(t), a` and φ` fulfill the same conditions
as those for (5). Clearly, (5) can be recovered from taking the real part of fCvar,
while recovering fCvar from (5) is in general challenging. See [24] for example. Note
that handling signals in the complex form is in general easier, particularly in the
low frequency region. Indeed, when analyzing fvar, the spectral leakage from the
negative frequencies via the uncertainty principle is inevitable.

3. Algorithms

The proposed algorithm is composed of two parts. The first part is the estimation
of AM and phase, which has been well developed in the literature. Below, we
detail this part for the sake of self-containedness. The second part is the novel
optimization algorithm we propose in this work. Below, denote the recorded signal
as y(t) = f(t) + ε(t), where f(t) will be assigned later and ε(t) is an independent
stationary noise with zero mean and finite variance.

3.1. Part 1: Estimation of amplitude and phase modulations.

3.1.1. Recall SST and its variation. For a properly behaved function f , like a
bounded distribution, the short-time Fourier transform (STFT) is defined as

(8) V gf (t, η) =

∫ +∞

−∞
f(u)g(u− t)e−i2πη(u−t)du ,

where g(t) is the kernel function chosen by the user. Usually we consider a smooth
and fast decaying function as the kernel, like a Gaussian function. The STFT
offers a time-frequency (TF) representation of the signal [25]. If f(t) is modeled
by (6), then its STFT has a specific TF structure – each sinusoidal oscillation,
Ai(t)ai,` cos(2πφi,`(t)), occupies a “ribbon” around its instantaneous frequency (IF)
φ′i,`(t), with i = 1, . . . , I [26]. The width of those ribbons is determined by the
support of the Fourier transform of g.

A common procedure to obtain more concentrated TF domains for each oscilla-
tion is SST [27,28]. The method consists of locally estimate the IF as

ω̃f (t, η) =

{
<
(

1
2π∂t arg(V gf (t, η))

)
, if V gf (t, η) 6= 0

−∞, otherwise
,

where arg is interpreted as a smooth argument function respecting its multi-valued
nature, and use it to vertically reassign (or synchrosqueeze) the STFT:

(9) Sf (t, ω) =
1

g(0)

∫
V gf (t, η)δ(ω − ω̃f (t, η))dη ,

where δ(·) is the Dirac delta measure. The synchrosqueezed STFT Sf (t, ω) offers
a more concentrated TF representation, but it is accurate enough only for slowly
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varying IF [29]. In order to improve the accuracy of SST, an estimator of the group
delay is necessary:

(10) τ̃f (t, η) =
1

2π
∂η arg(V gf (t, η)).

Then, a new IF estimator can be built as

ω̃
[2]
f (t, η)

=

{
ω̃f (t, η) + < (q̃f (t, η)(t− τ̃f (t, η))) if ∂tτ̃f (t, η) 6= 0

ω̃f (t, η) otherwise,

where q̃f (t, η) =
∂tω̃f (t,η)
∂tτ̃f (t,η) , and whose real part constitutes an estimate of the so-

called chirp rate [30]. An efficient way to compute all the operators is by using five

different STFTs V gf , V
tg
f , V g

′

f , V g
′′

f and V tg
′

f , without the need for any differentiation

[29,31,32]. Then, the second-order SST (SST2) is obtained replacing ω̃f by ω̃
[2]
f in

standard SST [29]:

(11) S
[2]
f (t, ω) =

1

g(0)

∫
V gf (t, η)δ(ω − ω̃[2]

f (t, η))dη.

Compared with STFT, the TF representation provided by SST is sharper and more
concentrated around IFs. With this feature, we can apply a ridge detection algo-
rithm [33, 34] to extract the ridge associated with the first oscillatory component,
denoted as c11(t). According to established theory [6], we have c1,1(t) ≈ φ′1,1(t);
that is, c1,1 constitutes an approximation to the IF φ′1,1.

An important feature of SST is that the TF representation remains invertible.
Therefore, a reconstruction of A1(t)a1,1 cos(2πφ1,1(t)) is possible via

(12) f̃C1 (t) =

∫
|ω−c1,1(t)|<∆

S
[2]
f (t, ω)dω ,

where ∆ is a positive small constant chosen by the user. By [6], we have f̃C1 (t) ≈
A1(t)a1,1e

i2πφ1,1(t).
The robustness of SST deserves some discussion, since the differentiation step

might cause some alarms. As indicated above, the nature of SST does not depend
on any differentiation [29,35]. Theoretically, it has been shown that SST is robust to
various kinds of noises, even non-stationary [7], and the asymptotic distribution of
Gaussian random process has been established for the statistical inference purpose
[36].

3.1.2. Estimate Ai(t) and φi,1(t) from y(t). With the above described SST and its
properties, we could now estimate Ai(t) and φi,1(t) from y(t). Indeed, the modulus

and phase of the complex signal f̃C1 (t) offer estimations of the AM and phase of the
first oscillatory component:

(13) Ã1(t)ã1,1 = |f̃C1 (t)|, φ̃1,1(t) = phase(f̃C1 (t)).

The procedure continues with a peeling scheme. Denote S̃
[2]
y,1 := S̃

[2]
y . For each

j > 1 and the extracted ridge cj,1, a new TF representation is defined as

(14) S̃
[2]
y,j+1(t, ω) =

{
0, if |ω − k cj,1(t)| < ∆, k ∈ N
S

[2]
y,j(t, ω), otherwise

,
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and a new ridge is extracted from it (this time, cj+1,1(t) ≈ φ′j+1,1(t)), which leads to
the estimates of Aj+1(t)aj+1,1 and φj+1,1(t). The procedure continues sequentially,
until there is no more ridge to extract [33, 37]. As a result, we obtain an estimate
of I, and all I fundamental amplitudes and phases are estimated.

We should comment that SST is not the only possible choice for the phase and
amplitude estimation. Any algorithms that can estimate the phase and ampli-
tude accurately and robustly could be considered; for example, the empirical mode
decomposition [38], the widely applied continuous wavelet transform [32] and the
Blaschke decomposition [12]. See [3] for a summary of various choices in the liter-
ature. We consider SST due to two reasons. First, it has been reported that the
ridge detection performance is better compared with linear-type TF analysis tools
when SST is applied [33] due to the sharper TF representation. Second, there is
more freedom for the selection of the ∆ parameter in (12), since the modes occupy
a narrower space on the TF plane [27, 28]. See Fig. 2 for an example with details
in Sec. 4.1.

Remark. There are several works mainly focusing on the IF estimation mission, for
example, the improved sliding pairwise ICI rule approach [39] and the multiview TF
distributions based on the adaptive fractional spectrogram [40], among others [41].
However, we should comment that estimating the IF and estimating the phase are
two related but different missions. It is possible to estimate the phase first and
then obtain the IF by a direct differentiation. But estimating the phase from the
estimated IF might not be an easy job due to the potential accumulated error from
the numerical integration and the potential error from the initial phase estimation.

Remark. We just described a procedure in which φ′i1(t) are “dominant” in the TF
representation; i.e. they are the most energetic ridges. When this is not the case,
particularly when the fundamental frequency is not “dominant” or the correspond-
ing ridge is not the one with the most energy, the IF estimation can be difficult
when using a peeling scheme for ridge extraction [26,34]. In this case, tools such as
de-shape [14] could be applied, prior to ridge detection, to estimate the fundamental
IF of each component. This is however out of the scope of this paper.

3.2. Part 2: Shape-adaptive mode decomposition (SAMD). We now intro-
duce our proposed decomposition algorithm, shape-adaptive mode decomposition
(SAMD), based on the the estimates Ãi(t) ≈ Ai(t) and Φ̃i1(t) ≈ 2πφi,1(t), for
i = 1, . . . , I. Consider the following optimization problem:

(15)

min
ci`,di`

Φi`

∥∥∥y(t)−
I∑
i=1

Ãi(t)

Di∑
`=1

(ci` cos(Φi`(t))

+ di` sin(Φi`(t)))
∥∥∥2

2
.

where the phases Φi` must be fitted and Di should be estimated. We propose here
to fit these phases as

(16) Φi` =

K∑
k=1

ei`kΦ̃ki1, i = 1, . . . , I, ` ≥ 2, k = 1, . . . ,K,

where ei11 = 1 and ei1k = 0 for i = 1, . . . , I and k ≥ 2, since we use the estimations
as the first harmonic of each mode, i.e. Φi1 = Φ̃i1. We propose here to model
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the phases Φi` as linear combinations of the power k of the estimations Φ̃i1, in
a “polynomial fitting” fashion. This allows us to accommodate for more complex
phases than those merely being integer multiples. Then, the evidently nonlinear
regression problem reads

(17)

min
ci`,di`
ei`k

∥∥∥∥∥y(t)−
I∑
i=1

Ãi(t)

Di∑
`=1

(
ci` cos

(
K∑
k=1

ei`kΦ̃ki1

)

+di` sin

(
K∑
k=1

ei`kΦ̃ki1

))∥∥∥∥∥
2

2

.

The trigonometric functions, sine and cosine, applied to some of our regression
coefficients (linear combinations involving ei`k) make this problem nonlinear. In
general, there is no closed-form expression for the optimal parameters (as opposed
to linear regression in Sec. 3.4.1), and iterative algorithms are needed to solve
the problem. As with every iterative method, there is a need for initial values.
We consider a warm-start strategy [42], using the solution of the linear regression
approach (see Section 3.4.1 below) as initial guess for the coefficients ci` and di`.
As for the coefficients ei`k, we use the condition

(18) |Φ̃′i`(t)− `Φ′i1(t)| ≤ εΦ′i1(t)

and set ei`1 = `, and ei`k = 0, for i = 1, 2, ` = 1, . . . , Di, and k = 2, . . . ,K,
as initial values. In the following, we will call this method shape-adaptive mode
decomposition (SAMD).

3.3. Numerical implementation. Suppose the signal y(t) is discretized with the
sampling frequency fs = 1/∆t, with ∆t > 0 the sampling period, over the interval
[∆t,N∆t]. Then, we end up with a (column) vector y ∈ RN , with y(n) = y(n∆t)
for n = 1, . . . , N , which is composed of the clean signal f ∈ RN , with f(n) =
Fvar(n∆t) for n = 1, . . . , N and the observational noise εΞ(n), where ε ∈ R and
var(Ξ(n)) = 1 for all n. The estimated AMs and phases from Part 1 are denoted

as Ãi ∈ RN , with i = 1, . . . , I such that Ãi(n) is an estimate of Ai(n∆t) and

Φ̃i1 ∈ RN , with i = 1, . . . , I such that Φ̃i1(n) is an estimate of 2πφi,1(n∆t). Then,
(17) is discretized accordingly. We can construct the following matrix

(19) Q(e) = [Q1(e) Q2(e) · · ·Qi(e)]T ∈ R(2
∑I
i=1Di)×N ,

with e = {ei,`,k}, Qi(e) = [pi1, . . . ,piDi ,qi1,qiDi ]
T ∈ R2Di×N , and the N -dim

vectors

pi`(n) := Ãi(n) cos

(
K∑
k=1

ei,`,kΦ̃
k
i1(n)

)
,

qi`(n) := Ãi(n) sin

(
K∑
k=1

ei,`,kΦ̃
k
i1(n)

)
,

for n = 1, . . . , N . Then, our recorded observation can thus be written as

(20) y = cTQ(e) + εΞ,

where c = [cT1 cT2 · · · cTi ]T ∈ R2
∑I
i=1Di , with ci = [ci1, . . . , ciDi , di1, . . . , diDi ]

T ∈
R2Di , for i = 1, . . . , I.
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Then, estimate c and e by solving the following optimization problem (remember

that E(∆tΞQ(e)
T

) = 0):

(21) min
c,e
‖y − cTQ(e)‖22,

where ‖ · ‖2 stands for the `2 norm. Denote the minimizers as c̃ and ẽ. We solve
our nonlinear problem (21) with MATLAB’s nlinfit function. We use the Cauchy
weight function for robust fitting: options.RobustWgtFun = ’cauchy’. In this
case, the function uses an iterative reweighted least squares algorithm [43, 44]. At
each iteration, the robust weights are recomputed according to the residual of each
observation (discrete sample) from the previous iteration. In this way, the influence
of the outliers on the fit is decreased. Finally, a decomposition might be achieved
by

(22) f̃var,i(n∆t) = c̃Ti Qi(ẽ),

where i = 1, . . . , I, and the clean signal f(t) can be approximated as F̃var(n∆t) =
c̃TQ(ẽ).

The pseudo-code for SAMD can be found in Algo. 1. The discretization and
implementation parameters for Part 1 and Part 2 will be detailed in the next section,
and for the reproducibility purpose, our codes can be found in https://github.

com/macolominas/SAMD.

Algorithm 1 Shape-adaptive mode decomposition (SAMD)
1: Input: signal y(t), and K (for phases estimations).

2: Estimate the amplitudes Ãi(t) and phases φ̃i1(t) from second-order SST, ridge
detection, and partial reconstruction (Sec. 3.1), which also give an estimate of
I.

3: Solve the linear regression problem to obtain the coefficients ĉi,` and d̂i,`, which
also give an estimate of parameters Di (Sec. 3.4.1).

4: Solve the nonlinear regression problem from Eq. (17) using ĉi,` and d̂i,`, and
ei`1 = `, ei`k = 0 for k = 2, . . . ,K, as initial values.

5: With the coefficients c̃i,`, d̃i,` and ẽi`k synthesize the modes fvar,i(t).
6: Output: modes fvar,i(t), i = 1, . . . , I.

3.4. Existing algorithms.

3.4.1. Linear regression (LR). We summarize the LR algorithm designed to handle

(2) with fixed WSFs [22]. Suppose y(t) =
∑I
i=1 ffix,i(t) + ε(t), where ffix,i(t) =

Ai(t)si(φi(t)) and Ai(t)si(φi(t)) satisfies (2) and ε(t) is an independent stationary
noise with zero mean and finite variance. By (3) and (4), we have

(23) y(t) =

I∑
i=1

Di∑
`=1

Ai(t)ai,` cos(2π`φi(t) + bi,`) + ε(t),

where we approximated si(t) by its first Di harmonics. Define D := {D1, . . . , DI}
to be the set of parameters Di. Given estimates Ãi(t) ≈ Ai(t) and Φ̃i(t) ≈ 2πφi(t)+
bi,1, for i = 1, . . . , I, a decomposition of the signal can be obtained. The problem
can be formulated in terms of sines and cosines, with coefficients ci` and di`, for

https://github.com/macolominas/SAMD
https://github.com/macolominas/SAMD
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i = 1, . . . , I, and ` from 1 to Di, where it is enough for the coefficients to be real:

(24)
min
ci`,di`

∥∥∥∥∥y(t)−
I∑
i=1

Ãi(t)

Di∑
`=1

(
ci` cos(`Φ̃i(t))

+ di` sin(`Φ̃i(t))
)∥∥∥2

2
.

With the same discretization scheme of Sec. 3.3, following [22], we construct a
matrix that plays a similar role to Q(e),

(25) S = [S1 S2 · · ·Si]T ∈ R(2
∑I
i=1Di)×N ,

with Si = [ri1, . . . , riDi , si1, siDi ]
T ∈ R2Di×N , and the N -dim vectors

ri`(n) := Ãi(n) cos(`Φ̃i(n)), si`(n) := Ãi(n) sin(`Φ̃i(n)),

for n = 1, . . . , N , and solve the linear regression problem minc ‖y−cTS‖22, where c
is defined as before and y is the discretization of y(t). This problem can be solved
precisely by ĉ := (yST )(SST )−1, from which the decomposition might be achieved

by f̃Dfix,i = ĉTi Si, where i = 1, . . . , I, and denote F̃D
fix = ĉTS as an estimation of

the clean signal.

3.4.2. Recursive diffeomorphism-based regression. A different method that looks
for a solution to the model (23) is the so-called recursive diffeomorphism-based
regression (RDBR) [20]. For each i = 1, . . . , I, denote the estimators of Ai(t) and

φi(t) as Ãi(t) and φ̃i(t), and set r(0) = y. For each iteration j = 0, 1, 2, . . . , J − 1,
where J ∈ N is determined by the user, the demodulated (unwrapped) r(j) is
calculated

(26) h
(j)
i (t) =

r(j)(φ̃−1
i (t))

Ãi(φ̃
−1
i (t))

,

which, ideally, constitute constant-amplitude 1-periodic functions. The folding map

(t, h
(j)
i (t)) 7→ (mod(t, 1), h

(j)
i (t)) allows rough estimations of the fixed WSFs s̃

(j)
i (t)

through functional regression. Then the method continues in a deflationary manner

on r(j+1) := r(j) −
∑
i Ãi(t)s̃

(j)
i (φ̃i(t)) to refine the WSFs estimations.

3.4.3. Multiresolution mode decomposition. The multiresolution mode decomposi-
tion (MMD) [19], is an effort to generalize RDBR. In the particular case of model

(6), MMD would look for a decomposition of the form f(t) =
∑I
i fi(t), where

(27)

fi(t) =

N/2∑
n=−N/2

an,i cos(2πnφ(t))scn,i(2πNiφ(t))

+

N/2∑
n=−N/2

bn,i sin(2πnφ(t))ssn,i(2πNiφ(t)),

for i = 1, . . . , I, where an,i, bn,i ∈ R are coefficients, and scn,i and ssn,i are real
value functions modeling nonlinear and non-stationary data with time-dependent
amplitudes, frequencies, and WSF. Note that this model is closer to the model (7).
MMD applies the same deflationary algorithm as RDBR to estimate an,i, bn,i, scn,i
and ssn,i, but to only phase-demodulated versions of the signal (as before, using

estimations of the phases φ̃i(t)) multiplied by a particular function, so we omit
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details and refer readers to [19]. Roughly speaking, from f(φ̃−1
i (t)) cos(2πmφ̃i(t)),

the method estimates am,i and scn,i, and from f(φ̃−1
i (t)) sin(2πmφ̃i(t)), it estimates

bm,i and ssn,i.

3.5. Comparison of existing algorithms and our proposal. Even though the
four described algorithms need estimations of the amplitudes Ai(t) and phases
φi,1(t), there are important differences that must be remarked. The first point is
regarding the model they aim to solve. For LR and RDBR, they both try to solve
the model (23), i.e. a model with fixed WSF. While RDBR proposes an iterative
scheme demodulating the signal and using some functional regression (which must
be prescribed a priori), LR uses a direct approach to estimate the Fourier coef-
ficients of the WSFs. This results in a significant computational load for RDBR
when compared to LR.

The methods of SAMD and MMD try, instead, to solve the more general model
(6), i.e. a model which allows for time-varying WSFs. To do this, MMD proposes a
generalization of RDBR, estimating functions scn,i and ssn,i that describe the time-
varying WSF. As with RDBR, an iterative deflationary scheme is needed, along with
a functional regression proposal. A significant amount of time is needed, and for
some signals the method might not converge.

Our SAMD proposal is a direct generalization of LR. Using the output of LR
as initial values, along with a more general model for the phase functions (they
no longer need to be an integer multiple of a fundamental phase), a flexible tool
is achieved. We will show that our proposal is able to estimate modes with time-
varying WSFs with good accuracy, and in a reasonable time.

Last but not the least, we mention that in the particular case where I = 1, the
decomposition mission is reduced to a denoising problem. In the next section, the
performance of the proposed SAMD and other algorithms for this purpose will also
be demonstrated.

4. Numerical Results

4.1. A database of simulated signals. Let us consider F (t) = s1(t)+s2(t), with

(28)

s1(t) = 1.5 cos(φ11(t)) + 0.25 cos((2.05 + ξ2)φ11(t))

+

10∑
p=3

0.1 cos((p+ 0.05 + ξp)φ11(t) + 0.01φ2
11(t)),

where φ11(t) = 2π6t + 2π6t2 + Y (t), Y (t) is a random process and ξp ∈ R will be
specified later, and

(29) s2(t) = cos(φ21(t))+

10∑
p=2

cos((p+ 0.01 + ζp)φ21(t))
√
p

,

where φ21(t) = 2π10t+2π7t2 +0.5 cos(2πt)+Y (t)+Z(t), Z(t) is a different random
process and ζp ∈ R will be specified later. The signals are defined on t ∈ [0, 1] and
sampled at 1000 Hz. Clearly, when ξp = ζp = 0 for p = 2, . . . , 10 and Y (t) =
Z(t) = 0, F satisfies the ANHM and the condition C4 is satisfied. Also, neither
s1(t) nor s2(t) can be written as a single waveform modulated by the phase function,
and they cannot be written as a sum of a few sinusoidal oscillatory components.
Moreover, it is evident that φ′13(t) = 3.05φ′11(t) and φ′22(t) = 2.01φ′21(t) cross each
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Table 1. Errors and computation times for simulated signal from
Eqs. (31) and (32) with ξp = ζp = 0 for p = 2, . . . , 10. *Out of the
100 realizations, MMD converged on 96 occasions.

Noiseless Noisy (10 dB; 100 realizations)
RMSE mean(RMSE) std(RMSE) mean time (s)

s1 (SAMD) 0.206 0.288 0.017
43.210

s2 (SAMD) 0.501 0.542 0.039
s1 (LR) 0.328 0.349 0.019

0.003
s2 (LR) 0.627 0.638 0.043
s1 (RDBR) 0.330 0.355 0.021

14.245
s2 (RDBR) 0.631 0.638 0.042
s1 (MMD*) 0.483 0.646 0.473

462.786
s2 (MMD*) 0.483 0.611 0.063

other. The same happens for φ′14(t) and φ′23(t). The changes on the waveforms
can be appreciated on the second row of Fig. 3. The situation is more complicated
when ξp, ζp, Y (t) and Z(t) are not zero. Such complicated signals constitute a good
example to compare different algorithms.

We evaluate the performance of four methods: LR, SAMD, RDBR and MMD.
For RDBR and MMD, we use the codes available at https://github.com/HaizhaoYang.
The amplitudes and phases are estimated with the following setup (see Sec. 3.1).

For the STFTs, we use a Gaussian window g(t) = σe−
πt2

σ2 , with σ = 0.25 (which
minimizes the criterion of the Rényi entropy [1, 2]). We apply the second-order
SST, and detect the ridges with the algorithm from [33] (allowing a maximum
jump of 2 Hz between consecutive time instants). For the estimation of the com-

plex function f̃C1 (t) (12), we use ∆ = 0.5 Hz. Regarding parameters Di, we
estimate them by adapting trigonometric regression tools, where we minimize a
criterion which is a function of the model order, looking for a trade-off between
error and model order [3, 47]. Specifically, we can construct a criterion of the form

Ω(D) = ‖y − F̃D
fix‖2 + G(

∑
iDi), where G(

∑
iDi) is an increasing functional pe-

nalizing the model size. Then, the solution of minD Ω(D) is the set of parameters
to be used. Promising results of applications of these criteria on the WSF model
can be found in [3].

An example of the TF representations of a noisy F (t) (Gaussian white noise at
10 dB level) determined by STFT and SST2 can be appreciated in Fig. 2, where
we superimpose the ground truth as thin lines and detected ridges as thick dashed
lines. The enhancement of the TF representations, and hence the separation of the
two modes, can be found around the fundamental IFs that are indicated by red
arrows. Due to the sharpness of both modes by SST2, the ridges associated with
their multiples are less dominant as is indicated by blue arrows.

4.1.1. Fixed ξj, ζp, Y (t) and Z(t). In this case, ξp = ζp = 0 for p = 2, . . . , 10 and
Y (t) = Z(t) = 0. We used K = 3 for the estimations of the phases for SAMD as in
Eq. (16). D1 = D2 = 10 were obtained for both LR and SAMD.

In order to compare the robustness of different methods, we realized a noisy
version of the signal at 10 dB for 100 times. The noise is assumed to be Gaussian
white. We present these results on Fig. 3. For each mode, we show the mean
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Figure 2. STFT and SST2 from noisy version of the sum
of (31) and (32). Left: modulus of the STFT. Middle: modulus
of SST2. Right: modulus of SST2 with the ground truth and
detected ridges superimposed.

and the 95% confidence interval of the root mean squared errors (RMSE). The
mean and standard deviation of the RMSEs can be found at Table I, along with
the averaged computational time. We see that SAMD has not only a better mode
recovery performance, but also a comparable computational load when compared
to RDBR, and a significantly lower burden compared to MMD (at least one order
of magnitude).

We also tested robustness at different SNRs. We performed 50 decompositions
of noisy versions of the signal at 20, 10, 0, and -5 dB, and computed the RMSEs for
s1(t) and s2(t). Results can be appreciated on Fig. 4, where we present the mean
and standard deviation of RMSEs over the 50 decompositions. For s1(t), the results
of SAMD are the best for 20 and 10 dB and slightly worse than LR and RDBR for
0 and -5 dB. For s2(t), the results of SAMD are comparable to those of MMD for
20 dB, the best for 10 dB, comparable to those of LR and RDBR for 0 dB, and
slightly worse than LR and RDBR for -5 dB. Out of the four analyzed methods,
MMD seems to be by far the most sensitive to noise (and it did not converge for
all 50 realizations).

The evaluation of the group delay estimation (10) necessary for SST2 is shown in
Fig. 5. We evaluated this two-variable complex function (R2 7→ C) on the detected
ridge, and computed the error against the ideal group delay on the theoretical ridge
(i.e. on the theoretical IF): ‖τ̃F (t, φ′i,1(t))− τ̃F+ε(t, ci,1(t))‖2, where F is the clean
signal, and ε is the independent Gaussian white noise. As expected, the RMSE of
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Figure 3. Simulated signal (noisy signals at 10 dB; 100
realizations). First row: a typical noisy example of signal F (t) =
s1(t) + s2(t) + ε(t) from Eqs. (31) and (32) with ξp = ζp = 0 for
p = 2, . . . , 10. Second row: true components. Third row: extracted
modes with our proposal SAMD. Fourth row: extracted compo-
nents with LR. Fifth row: extracted components with RDBR.
Sixth row: extracted components with MMD. (black solid line:
mean estimated components; shaded gray area: 95% confidence
interval).

the group delay is linearly correlated with the RMSE of s1(t). The departure from
the linear relation observed for s2(t) in some realizations is due to the errors on
the ridge detection, which is expected since the extraction of the first ridge might
create some residues.



16 MARCELO A. COLOMINAS AND HAU-TIENG WU

20 10 0 -5
SNR in (dB)

0

0.5

1

1.5

2

2.5
R

M
S

E
RDBR
SAMD
LR
MMD

20 10 0 -5
SNR in (dB)

0.5

1

1.5

2

2.5

R
M

S
E

RDBR
SAMD
LR
MMD

Figure 4. Errors for the simulated signal with ξp = ζp = 0
for p = 2, . . . , 10 (different SNRs; 50 realizations). Left:
mean errors and standard deviations for s1(t). Right: mean errors
and standard deviations for s2(t). For the MMD method, we con-
sidered only those decompositions that converged (between 45 and
48 times out of the 50 realizations, depending on the input SNR).
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Figure 5. Errors for the group delay with ξp = ζp = 0 for
p = 2, . . . , 10 (different SNRs; 50 realizations). Left: RMSE
of the group delay against RMSE of s1(t). Right: RMSE of the
group delay against RMSE of s1(t).

4.1.2. Random ξj, ζp, Y (t) and Z(t). In this case, first consider the construction of
Y and Z. Let W (t) be the standard Brownian motion, and XB(t) = W ∗KB(t) its
smoothed version, where KB(t) is the Gaussian function with standard deviation
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B > 0 and ∗ denotes the convolution operator. Then, the random process

(30) RB(t) = 2π

∫ t

0

XB(u)

‖XB‖L∞[0,1]
du,

is defined for t ∈ [0, 1]. Set Y (t) = R80(t) and Z(t) = R50(t). We assume that
Y (t) and Z(t) are independent. Next, consider ξ2, . . . , ξ10 ∼ U [0.05, 0.1], and
ζ3, . . . , ζ10 ∼ U [0.01, 0.02], where we assume that ξj , ζp, Y (t) and Z(t) are in-
dependent.

Now, we decomposed y(t) = F (t)+ε(t), where ε(t) could be either Gaussian white
noise, ARMA(1,1) noise, or Poisson noise (with a relative amplitude of 10 dB). For
the ARMA(1,1) case, the autoregressive and moving-averaging polynomials are
chosen to be 0.5z + 1 and −0.5z + 1 respectively with the i.i.d. Student t4 random
variables as the innovation process. Due to the ‘fat-tail’ of Student t4, the noise
might be spiky.

The boxplot results for RMSE are presented in Fig. 6. MMD converged between
95 and 96 times out of the 100 realizations (depending on the type of noise), and
RDBR diverged on one occasion. It can be appreciated that SAMD is the best
among the four methods in the sense of the median. Wilcoxon signed rank tests
(5% significance level) were further carried out to compare different methods. Out
of the six cases (two components, three types of noise), SAMD is better than LR and
RDBR in four occasions, with the two remaining not showing a statistical significant
difference. In all but one case, SAMD is better than MMD (always taking less than
a tenth of the time), with the remaining one not showing significant statistical
difference.

The obtained waveforms for the noiseless signal, via the four methods, and three
more examples on simulated signals can be found in the Supplemental Material.

4.2. Impedance Pneumography. Our first real example is an impedance pneu-
mography (IP) recording [49]. An IP signal is usually composed of one respiratory
component and one cardiac component, called the cardiogenic artifact. Physio-
logically, the heart rate is faster than the breathing rate, so the condition C4 is
satisfied. The IP signal was recorded from patients receiving flexible bronchoscopy
examination using the Philips Patient Monitor MP60 at the Chang Gung Memo-
rial Hospital, Linkou, New Taipei, Taiwan. The study protocol was approved by
the Chang Gung Medical Foundation Institutional Review Board (No.104-0872C).
We applied the four methods to decompose an IP signal of 60 s long. We used a
Gaussian window with σ = 0.05, a maximum jump of 2 Hz and ∆ = 2Hz, for the
estimation of amplitudes and phases. D1 = 2 and D2 = 5 were obtained for LR and
SAMD, and we used K = 2 for SAMD. The results are shown in Fig. 7, where only
30 s is shown for the sake of visibility. We show the estimated components, along
with the estimated WSF for the cardiac component. For the comparison purpose,
we superimposed ECG on top of the extracted cardiac component.

All four methods seem to be able to eliminate the slowly increasing trend present
on the signal. SAMD and LR offer similar results, with smooth respiratory compo-
nents, and cardiac components that match ECG. However, the flexibility of SAMD
allows it to capture the WSF change from one cycle to the other. Note that the
estimated WSF of the cardiac component by LR is fixed, and has the first bump
higher than the second one, while the WSF estimated by SAMD changes along with
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Figure 6. Results for simulated database when ξ2, . . . , ξ10 ∼
U [0.05, 0.1], and ζ2, . . . , ζ10 ∼ U [0.01, 0.02], and disturbed
phases (10 dB; 100 realizations). Left: results for Gaussian
white noise. Middle: results for ARMA(1,1) noise. Right: re-
sults for Poisson noise (λ = 1). ‘*’: test in favor of SAMD. MMD
converged between 95 and 96 times out of the 100 realizations.

the signal. We show the first (in blue) and last (in red) cycle (zooming appropri-
ately) to illustrate these changes. The waveforms for both respiratory and cardiac
components extracted by RDBR are less physiological. Specifically, the oscillatory
patterns of both components are too spiky. As for MMD, the respiratory compo-
nent is reasonable and comparable with the one extracted by SAMD. However, the
cardiac component presents “spiky” artifacts, which does not seem to be present in
the original data. For the 60-second segment, the computational times were 3.62s,
0.007s, 179.1s, and 34.14s for SAMD, LR, RDBR and MMD respectively.

4.3. Epileptic newborn electroencephalography. We analyzed an EEG record-
ing during the cessation of a widespread seizure discharge with strong muscle arte-
fact, which belongs to a public dataset [50]. We assumed the signal has only one
component (i.e. I = 1) and applied four methods for the mission of denoising and
estimating the WSF. We used a Gaussian window with σ = 0.1, a maximum jump
of 0.5 Hz and ∆ = 1Hz, for the estimation of amplitudes and phases. D1 = 6 was
obtained for LR and SAMD and we used K = 1 for SAMD. The advantages of
SAMD are evident. While its waveforms might seem similar to those of LR, SAMD
captures the WSF dynamics from one cycle to the other, as can be appreciated on
the right column of Fig. 8. On the other hand, RDBR estimates a waveform with
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Figure 7. Impedance Pneumography. First row: 30 seconds
of IP recording. Second row: SAMD extracted components and
waveforms. Third row: LR extracted components and waveforms.
Fourth row: RDBR extracted components and waveforms. Fifth
row: MMD extracted components and waveforms. (red dashed-
dotted line: ECG signal).

a non-smooth behavior, and MMD presents several spiky artifacts, which probably
are not physiological. A further exploration from the electrophysiological perspec-
tive is needed to further evaluate the performance of these algorithms. The compu-
tational times were 1.774s, 0.005s, 5.125s, and 67.788s for SAMD, LR, RDBR and
MMD respectively. An example with an electrocardiogram signal denoising can be
found in the Supplemental Material.

5. Conclusions

We proposed a novel nonlinear regression algorithm, SAMD, to decompose sig-
nals with time-varying WSFs satisfying the model (17). The flexibility added by al-
lowing the harmonics to be other than integer multiples of a fundamental frequency
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Figure 8. Epileptic newborn electroencephalography.
First row: 23 seconds of channel T6-O2 from recording 44. Sec-
ond row: SAMD estimated component and waveforms. Third row:
LR estimated component and waveform. Fourth row: RDBR es-
timated component and waveform. Fifth row: MMD estimated
component and waveforms.

permits the model to better fit the observed data. The advantages over existing
methods, such as RDBR and MMD, are evident both in recovery performance, in
the sense of RMSE, and computational times. There are several future research
directions we shall consider when applying SAMD to real-world data. First, since
long and highly sampled data is getting more popular, a solution to analyze such
data like parallelization is needed. A simple solution is the divide and conquer
approach – segment the signal into pieces, run the analysis in parallel, and then
concatenate the results. We may need a more sophisticated solution to gain more
by parallelization. Real-time implementation is yet another interesting challenge
in practice. The main challenge of a real-time implementation of the considered



DECOMPOSING COMPLICATED SIGNALS 21

algorithms in this paper is how to handle the boundary effect when a TF analysis
tool is applied. To our best knowledge, the most efficient solution so far is based
on the forecasting idea [51], and it would be interesting to incorporate this idea to
SAMD. Another common challenge is dealing with signals with components with
crossover IFs; that is, when the condition C4 is not fulfilled. There have been some
recent efforts dealing with this challenge for the IF estimation [52–54] and decom-
position purpose [55] when IFs crossover, and the Blaschke decomposition can be
helpful when IFs do not crossover but are close [56]. However, these works focus
on the sinusoidally oscillatory signal. Another challenge is estimating the number
of components, I, and K in the model when this information is missing. While the
considered peeling scheme for estimating I works well, it can be improved. In the
future work we could combine tools like the short-term entropy measure [57, 58],
but how to accommodate the nontrivial WSF is yet another challenge. Such an
estimate is applicable to algorithms like MMD or RDBR, where they assume the
knowledge of I. The parameter K also needs further exploration. In the current
work, K is chosen manually and we found that usually a small K, like around
3, works well. How to find a better solution for these parameters, and the above
described challenges, will be the purpose of our future work.
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Supplemental Material

6. The first simulated signal (noiseless case)

Figure 9 presents the decomposition results of the simulated signal shown in the
main manuscript when noise does not exist. We recall the simulation here for the
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Figure 9. Simulated signal (noiseless). First row: analyzed
signal f(t) from Eqs. (31), and (32). Second row: true com-
ponents. Third row: extracted modes with our proposal SAMD.
Fourth row: extracted components with LR. Fifth row: extracted
components with RDBR. Sixth row: extracted components with
MMD. (black solid line: estimated component; red dashed line:
true components).

sake of completeness: f(t) = s1(t) + s2(t), where

(31)

s1(t) = 1.5 cos(φ11(t)) + 0.25 cos(2.05φ11(t))

+

10∑
p=3

0.1 cos((p+ 0.05)φ11(t) + 0.01φ2
11(t)),



DECOMPOSING COMPLICATED SIGNALS 25

Table 2. Errors and computation times for second simulated sig-
nal from Eqs. (33) and (34). *Out of the 100 realizations, MMD
converged on 92 occasions.

Noiseless Noisy (10 dB; 100 realizations)
RMSE mean(RMSE) std(RMSE) mean time (s)

s1 (SAMD) 0.0482 0.0586 0.0043
12.7855

s2 (SAMD) 0.0002 0.0152 0.0041
s1 (LR) 0.0602 0.0641 0.0032

0.0012
s2 (LR) 0.253 0.2532 0.0002
s1 (RDBR) 0.0626 0.0638 0.0080

16.9325
s2 (RDBR) 0.2532 0.2547 0.001
s1 (MMD*) 0.0820 0.1495 0.0806

270
s2 (MMD*) 0.0821 0.1322 0.0375

where φ11(t) = 2π6t+ 2π6t2, and

(32) s2(t) = cos(φ21(t))+

10∑
p=2

cos((p+ 0.01)φ21(t))
√
p

,

where φ21(t) = 2π10t + 2π7t2 + 0.5 cos(2πt). The signals are defined for t ∈ [0, 1],
and sampled at 1000 Hz.

7. The second simulated signal

We consider another simulated example with two oscillatory components: f(t) =
s1(t) + s2(t), where

(33) s1(t) =
∑
p

e−2×105(t−tp)2 ,

with tp such that φ11(tp) = 2πp, p ∈ Z and φ11(t) = 2π20t+ 2 cos(4πt), and

(34) s2(t) = 0.5 cos(φ21(t)) + 0.375 cos(2.05φ21(t)),

with φ21(t) = 2π10t+2π5t2. For s1, we subtracted its mean to make it a zero-mean
signal. The signals are defined for t ∈ [0, 1], and sampled at 1000 Hz.

Figure 10 presents the results for the decomposition of the second simulated
signal without noise contamination. We used the parameters D1 = 10, D2 = 2, for
both LR and SAMD methods, and K = 3 following the same procedure detailed
in the main article. The errors can be found in Table I, with suggests that SAMD
provides a better result.

We tested the robustness to noise by applying different algorithms to 100 real-
izations of noisy copies of the signal at 10 dB. The noise is Gaussian white. We
present the results in Fig. 11, where we show the mean and the 95% confidence
interval. The means and standard deviations of the RMSE are presented on Table
I, along with the computational times.

Figure 12 presents mean RMSEs (and its standard deviations) of the decomposi-
tion at different SNRs (50 realizations). While SAMD showed the best performance
across the different methods, it also presented an acceptable robustness since its
behavior does not worsen as that of MMD when the input SNR decreases.
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Figure 10. Second simulated signal (noiseless). First row:
analyzed signal f(t) from Eqs. (33) and (34). Second row: true
components. Third row: extracted modes with our proposal
SAMD. Fourth row: extracted components with LR. Fifth row: ex-
tracted components with RDBR. Sixth row: extracted components
with MMD. (black solid line: estimated component; red dashed
line: true components).

8. The third simulated signal

As a third example, we decomposed f(t) = s1(t) + s2(t), where

(35) s1(t) = cos(φ11(t)) + 0.5 cos(1.9φ11 + 0.01φ2
11(t)),

with φ11(t) = 2π3t+ 2πt2, and

(36) s2(t) = cos(φ21(t)) +

5∑
p=2

1

p
cos((p+ 0.01)φ21(t)),
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Figure 11. Second simulated signal (noisy signals at 10
dB; 100 realizations). First row: a typical noisy example of
signal f(t) from Eqs. (33) and (34). Second row: true components.
Third row: extracted modes with our proposal SAMD. Fourth row:
extracted components with LR. Fifth row: extracted components
with RDBR. Sixth row: extracted components with MMD. (black
solid line: mean estimated components; shaded gray area: 95%
confidence interval).

with φ21(t) = 2π10t + 2π10t2. As before, the signals are defined for t ∈ [0, 1], and
sampled at 1000 Hz.

This time, in order to have a complete picture of the different methods, we
incorporated the estimations of φ11(t) and φ21(t). As explained in the paper, we
used second-order SST, and ridge detection algorithm for all four methods. We used

a Gaussian window g(t) = σe−
πt2

σ2 , with σ = 0.45 (which minimizes the criterion of



28 MARCELO A. COLOMINAS AND HAU-TIENG WU

20 10 0 -5
SNR in (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R

M
S

E
RDBR
SAMD
LR
MMD

20 10 0 -5
SNR in (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

RDBR
SAMD
LR
MMD

Figure 12. Errors for the second simulated signal (differ-
ent SNRs; 50 realizations). Left: mean errors and standard
deviations for s1(t). Right: mean errors and standard deviations
for s2(t). For MMD method, we considered only those decom-
positions that converged (between 44 and 48 times out of the 50
realizations, depending on the input SNR).

the Rényi entropy [1,2]), for the ridge detection we allowed a maximum jump of 2
Hz, and for estimating the complex components we used ∆ = 1Hz.

In order to avoid possible boundary effects due to ridge estimation, we computed
the RMSEs on the interval (0.1, 0.9).

The results for the four methods are presented on Fig. 13. We used the param-
eters D1 = 2, D2 = 5, for both LR and SAMD methods, and K = 3 for the phases
estimations in SAMD, following the same procedure detailed in the main article.
The errors (measured as the RMSE on the mentioned interval) can be found in
Table II, with clear advantages for our proposal.

Noise robustness was tested by decomposing 100 realizations of noisy copies of
the signal at 10 dB. The results can be appreciated on Fig. 14, where we show the
mean and the 95% confidence interval. The means and standard deviations of the
RMSE are presented on Table 8, along with the computational times.

Figure 15 presents mean RMSEs (and its standard deviations) of the results when
decomposing the signal at different SNRs (50 realizations). While SAMD showed
the best performance among different methods, it also presented an acceptable
robustness. Particularly, its behavior does not worsen as that of MMD when the
input SNR decreases.

9. The fourth simulated signal

As a fourth and final example, we decomposed a three-component signal f(t) =
s1(t) + s2(t) + s3(t), where

(37) s1(t) = cos(φ11(t)) + 0.5 cos(1.95φ11(t) + 0.0001φ2
11(t)),
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Table 3. Errors and computation times for third simulated signal
from Eqs. (35) and (36). *Out of the 100 realizations, MMD
converged on 95 occasions.

Noiseless Noisy (10 dB; 100 realizations)
RMSE mean(RMSE) std(RMSE) mean time (s)

s1 (SAMD) 0.0432 0.1070 0.0147
7.1416

s2 (SAMD) 0.1645 0.2503 0.0367
s1 (LR) 0.2573 0.2621 0.0079

0.00091
s2 (LR) 0.2724 0.2891 0.0374
s1 (RDBR) 0.3321 0.3397 0.0218

16.5182
s2 (RDBR) 0.2760 0.3012 0.0349
s1 (MMD*) 0.2441 0.3450 0.2482

462.6
s2 (MMD*) 0.2454 0.3920 0.0490

with φ11(t) = 2π12t+ 2π2t2,

(38)
s2(t) = cos(φ21(t)) + 0.75 cos(2.05φ21(t))

+ 0.25 cos(2.95φ21(t)),

with φ21(t) = 2π14t+ 2πt2 + 2πt3, and

(39) s3(t) =
∑
p

2000(t− tp)e−2×105(t−tp)2 ,

with tp such that φ31(tp) = 2πp, p ∈ Z and φ31(t) = 2π18t + 2π2t2 + cos(4πt). As
with the previous examples the signals are defined for t ∈ [0, 1], and sampled at
1000 Hz.

The obtained waveforms for the noiseless signal, via the four methods, can be
found on Fig 16. We used the parameters D1 = 2, D2 = 3, D3 = 20 for both
LR and SAMD methods, and K = 3 (this last one for the estimations of the
phases for SAMD). Regarding Di parameters, these can be estimated by adapting
trigonometric regression tools, where we minimize a criterion which is a function of
the model order, looking for a trade-off between error and model order. Promising
results of applications of these criteria on the wave-shape function model can be
found in [3]. In this case, as we said before, we assumed the knowledge of φ11(t),
φ21(t) and φ31(t). We measured the quality of modes recovery through RMSE,
and the performance of the four methods can be found at Table I, with evident
advantages for the SAMD method.

In order to test the robustness to noise of the different methods, we performed
100 decompositions of noisy versions of the signal at 10 dB. The noise is assumed to
be Gaussian white. We present these results on Fig. 17. We show, for each mode,
the mean and the 95% confidence interval. The means and standard deviations
of the RMSE can be found at Table I, along with the mean computational times.
These results evidence not only a better mode recovery performance for SAMD, but
also a comparable computational load when compared to RDBR, and a significantly
lower burden than MMD (at least one order of magnitude).

We also tested noise robustness at different SNRs. We performed 50 decomposi-
tions of noisy versions of the signal at 20, 10, 0, and -5 dB, and computed the errors
for s1(t), s2(t), and s3(t). Results can be appreciated on Fig. 18, where we present
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Figure 13. Third simulated signal (noiseless). First row:
analyzed signal f(t) from Eqs. (35) and (36). Second row:
true components. Third row: extracted modes with our proposal
SAMD. Fourth row: extracted components with LR. Fifth row: ex-
tracted components with RDBR. Sixth row: extracted components
with MMD. (black solid line: estimated component; red dashed
line: true components).

the mean of the RMSE and the standard deviations over the 50 decompositions.
For s1(t), the results of SAMD are the best for all considered SNRs. The same
is confirmed for s2(t), and as for s3(t) the performance results of SAMD, LR and
RDBR are comparable when the SNR is equal to 20 and 10 dB. Out of the four
analyzed methods, MMD seems to be the most sensitive to noise.
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Figure 14. Third simulated signal (noisy signals at 10 dB;
100 realizations). First row: a typical noisy example of signal
f(t) from Eqs. (35) and (36). Second row: true components.
Third row: extracted modes with our proposal SAMD. Fourth row:
extracted components with LR. Fifth row: extracted components
with RDBR. Sixth row: extracted components with MMD. (black
solid line: mean estimated components; shaded gray area: 95%
confidence interval).

9.1. Electrocardiogram signal from Fantasia Database. We analyzed an ECG
recording with noise and baseline wander as second real example. The analyzed
recording belongs to the Fantasia Database 1 [4, 5].

We used the four methods here for the missions of denoising and segmentation,
and the results are presented in Fig. 19. We assumed the signal has only one
component. We used a Gaussian window with σ = 0.15, a maximum jump of 2 Hz

1https://physionet.org/content/fantasia/1.0.0/
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Figure 15. Errors for the third simulated signal (different
SNRs; 50 realizations). Left: mean errors and standard devi-
ations for s1(t). Right: mean errors and standard deviations for
s2(t). For MMD method, we considered only those decompositions
that converged (between 43 and 49 times out of the 50 realizations,
depending on the input SNR).

Table 4. Errors and computation times for simulated signal from
Eqs. (37), (38), and (39). *Out of the 100 realizations, MMD
converged on 96 occasions.

Noiseless Noisy (10 dB; 100 realizations)
RMSE mean(RMSE) std(RMSE) mean time (s)

s1 (SAMD) 0.0205 0.0372 0.0083
17.8319s2 (SAMD) 0.0036 0.0368 0.0102

s3 (SAMD) 0.1416 0.1740 0.0056
s1 (LR) 0.2989 0.3002 0.0012

0.0023s2 (LR) 0.5438 0.5446 0.0009
s3 (LR) 0.1438 0.1650 0.0047
s1 (RDBR) 0.3171 0.3119 0.0072

11.2058s2 (RDBR) 0.5470 0.5499 0.0181
s3 (RDBR) 0.2121 0.1635 0.0165
s1 (MMD*) 0.1620 0.2839 0.0138

522.5335s2 (MMD*) 0.3302 0.2939 0.1435
s3 (MMD*) 0.1480 0.3411 0.0137

and ∆ = 2Hz, for the estimation of amplitudes and phases. We used D1 = 40 for
LR and SAMD, and K = 1 for SAMD. The advantages of our SAMD method are
evident here. Both LR and RDBR are not able to capture the fast QRS complexes,
achieving a wider waveform. MMD was not able to remove the baseline wander, and
the estimated waveforms contains an important amount of noise. SAMD, on the
other hand, was able to remove the low frequency trend, with satisfactory waveforms
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Figure 16. Fourth simulated signal (noiseless). First row:
analyzed signal f(t) from Eqs. (37), (38) and (39). Second row:
true components. Third row: extracted modes with our proposal
SAMD. Fourth row: extracted components with LR. Fifth row: ex-
tracted components with RDBR. Sixth row: extracted components
with MMD. (black solid line: estimated component; red dashed
line: true components).

that represents truly the different waves of the ECG cycle. The computational times
were 36.9404s, 0.0263s, 4.5721s, and 421.9341s for SAMD, LR, RDBR and MMD
respectively.
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Figure 17. Fourth simulated signal (noisy signals at 10 dB;
100 realizations). First row: a typical noisy example of signal
f(t) from Eqs. (37), (38) and (39). Second row: true components.
Third row: extracted modes with our proposal SAMD. Fourth row:
extracted components with LR. Fifth row: extracted components
with RDBR. Sixth row: extracted components with MMD. (black
solid line: mean estimated components; shaded gray area: 95%
confidence interval).

20 10 0 -5

SNR in (dB)

0

0.5

1

1.5

R
M

S
E

RDBR
SAMD
LR
MMD

20 10 0 -5

SNR in (dB)

-0.5

0

0.5

1

1.5

R
M

S
E

RDBR
SAMD
LR
MMD

20 10 0 -5

SNR in (dB)

0

0.5

1

1.5

R
M

S
E

RDBR
SAMD
LR
MMD

Figure 18. Errors for the fourth simulated signal (differ-
ent SNRs; 50 realizations). Left: mean errors and standard
deviations for s1(t). Middle: mean errors and standard deviations
for s2(t). Right: mean errors and standard deviations for s3(t).
For MMD method, we considered only those decompositions that
converged (between 44 and 49 times out of the 50 realizations,
depending on the input SNR).
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Figure 19. ECG signal from Fantasia Database. First row:
9 seconds of recording f1o07m. Second row: SAMD estimated com-
ponent and waveforms. Third row: LR estimated component and
waveform. Fourth row: RDBR estimated component and wave-
form. Fifth row: MMD estimated component and waveforms.
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