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Maximum Likelihood Optimization of Adaptive
Asynchronous Interference Mitigation Beamformer

Alexandr M. Kuzminskiy, Yuri I. Abramovich, Pei Xiao, Rahim Tafazolli, Jinliang Huang

Abstract—In asynchronous (intermittent) interference scenar-
ios, the content of co-channel interference sources over the data
interval may be different from the interferers content over the
training interval, typically with extra interference sources pre-
sented over the data interval. Under such conditions, conventional
adaptive beamformer designed over the training interval may
lose its efficiency when applied to the data interval. In this
paper, we address the problem by 1) formulating a family of
the second order statistics adaptive beamformers regularized
by the covariance matrix estimated over the data interval; 2)
proposing a maximum likelihood methodology for optimization of
the combined (mixed) covariance matrix based on maximization
of a product of a likelihood ratio that checks the accuracy of the
recovered training signals and a likelihood ratio on equality of
the eigenvalues in complementary to the signal subspace defined
over the data interval; 3) demonstrating efficiency and robustness
of the proposed solution as a linear adaptive beamformer and as
an initialization for iterative beamformer with projections to the
finite alphabet in different asynchronous interference scenarios
comparing with the basic training and data based interference
rejection combining receivers.

Index Terms—Asynchronous interference, interference rejec-
tion combining, regularization, mixing factor, maximum likeli-
hood.

I. INTRODUCTION

To meet the challenge of ever increasing demands for
higher capacity and better user experience in wireless com-
munications industry, a number of promising technologies
have been suggested in the literature, e.g. in [1], [2] and
references therein. One such technology relies on utilizing
more frequency resources via, e.g., carrier aggregation, in-
corporation of unlicensed spectrum, shared-license spectrum,
and millimeter wave spectrum [3], [4]. Another approach is
to deploy more network nodes, including both macro BSs and
low power nodes such as picos, femtos, small cells, and relays,
leading to dense or ultra-dense networks (UDN) [5]. Particu-
larly, coexistence of spectrum sharing UDNs, possibly based
on different radio access technologies (RAT) in unlicensed
spectrum is considered in [6] as a useful supplement to the
conventional 5G cellular licensed band scenarios.

The main limiting factor for spectrum sharing UDNs is the
harsh and generally uncontrollable interference environment,
which may compromise user experience. In such an environ-
ment, interference mitigation becomes a pivotal technology.
Interference mitigation by means of antenna arrays (smart
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antennas) is of special interest because (massive) multiple
input multiple output (MIMO) is recognized as one of the key
enablers for future networks. Interference rejection combining
(IRC) based on the minimum mean square error (MMSE)
criterion is a simplest antenna array interference mitigation
technology using a linear beamforming at the receiver based
on estimated second order statistics [7].

Conventional space-time-frequency equalization and inter-
ference rejection techniques in wireless communications ex-
ploit known training (pilot) symbols to estimate the weight
vector of an antenna array using the estimated propagation
channel of the desired signal and space-time-frequency pa-
rameters of the interference. The underlying assumption for
these kind of techniques is that the training data is reliable
since the co-channel interference (CCI) completely overlaps
with the training symbols of the desired signal. Normally, this
is the case for synchronous CCI, which has the same time-
frequency structure as the desired user. Asynchronous cells,
packed intermittent transmission, inter-system interference of
different time-frequency formats in unlicensed spectrum, and
other techniques may lead to more complicated asynchronous
or intermittent CCI scenarios, where the interference may
partially overlap or not overlap with the training data of the
desired signal. The main difficulty with this scenario is that
potentially different content of CCI sources may be observed
over the training and data intervals. Under these conditions,
adaptive beamformers designed over the training interval,
occupied by the known (often orthogonal) training sequences,
becomes inefficient for interference mitigation over the data
interval due to a possibility of the presence of interference
signals absent over the training interval. Directly using the
estimate of the covariance matrix averaged over the data
interval does not result in an efficient useful signal extraction
due to the the useful signal presence in the data used for
covariance matrix estimation [8].

The asynchronous CCI scenario is addressed in time divi-
sion multiple access (TDMA) networks [9] - [13], wireless
local area networks (WLAN) [14], [15], long term evolution
(LTE) networks on the downlink [16] and on the uplink
[17]. Significant performance degradation for the conventional
training based IRC in the asynchronous CCI scenario is
reported in these papers.

The asynchronous CCI scenario becomes especially impor-
tant for coexisting spectrum sharing technologies in unlicensed
spectrum and applications such as Internet of Things (IoT). A
typical example leading to the asynchronous CCI scenario is
IoT based on the IEEE802.11ah standard [21], which assumes
thousands of stations per a single access point with highly
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irregular transmissions in unlicensed band.
Currently, the MMSE-IRC is considered as a basic receiver

for the 3GPP New Radio (NR) standard [18]. Although, it
is known that a pilot-based estimation of the interference
plus noise covariance matrix required for IRC significantly
outperforms the data based estimation in the basic synchronous
CCI scenario1 [16], [19], both the pilot and data based versions
are indicated in [18] as the ones that need investigation mainly
because “IRC receiver performance may depend on network
synchronization assumptions.”

A possibility to improve performance in such scenarios
using constant modulus (CM) algorithms is pointed out in [10],
[13]. Similar improvements can be achieved using algorithms
with projections to the finite alphabet (FA) [22]. An important
feature of these criteria in the considered problem is that they
belong not only to the training data of the desired signal, but
to the whole receive data block, which always overlaps with
the asynchronous CCI. This means that interference mitigation
techniques based on such nonlinear criteria are naturally
resistant against asynchronous CCI. The main difficulty with
such higher order statistics based solutions is the necessity
for a reliable initialization, which may be difficult to achieve
with the conventional beamformers in the asynchronous CCI
scenarios.

As alternative to the conventional pilot and data based
IRC, in [14], [23] we have proposed a semi-blind IRC in the
asynchronous WLAN scenario, where the data based estimate
of the covariance interference plus noise matrix averaged
over the whole transmitted medium access control (MAC)
protocol data unit (MPDU) of the desired signal is used as a
regularization to the conventional pilot-based IRC receiver. In
[23], we have developed a second order statistics based non-
asymptotic benchmark for such scenarios and demonstrated
that performance of the regularized receiver may be close to
the benchmark for properly selected regularization parameter.
Although, the problem of adaptive selection of such regular-
ization parameter was not addressed in [14], [23].

Selection of regularization parameters generally has no
closed form solution because it involves unknown information
regarding signal/interference scenarios. Different empirical
techniques are proposed in the literature as summarized in
[24]. One such technique is referred as decision added a
posteriori least square in [24], which selects the regularization
parameters by means of minimization of mean square error
between the regularized soft and hard (projections to FA)
estimates of the desired signals. A version of this technique
based on the CM minimization is applied in [25], [26] for
selection of the conventional diagonal loading in robust beam-
forming. Unfortunately, this solution may be computationally
very expensive. Indeed, to find one single parameter the weight
coefficients, output signals, projections to FA and decision
metric need to be recalculated at least several times for each
data slot. A likelihood second order statistics based uniform
solution for adaptive selection of diagonal loading parameter

1In [20], we have shown that the conventional training-based linear solution
practically cannot be improved in the class of second-order semi-blind
techniques under the synchronous interference scenario.

for the conventional regularized training based IRC is given
in [27].

Considering that maximum likelihood (ML) optimization
of adaptive asynchronous interference mitigation beamform-
ers remains open, in this paper we address a generalized
asynchronous CCI scenario, and 1) formulate a family of
the second order statistics adaptive beamformers regularized
by the covariance matrix estimated over the data interval; 2)
propose a ML methodology for optimization of the combined
(mixed) covariance matrix based on maximization of a product
of a likelihood ratio (LR) that checks the accuracy of the
recovered training signals and LR on equality of the eigen-
values in complementary to the signal subspace defined over
the data interval; 3) demonstrate efficiency and robustness of
the proposed solution as a linear adaptive beamformer and
as an initialization for iterative beamformer with projections
to the finite alphabet in different asynchronous interference
scenarios comparing with the basic training and data based
MMSE-IRC beamformers.

Typically, the IRC related works study the effects of time-
frequency channel variations and limited sampling support for
estimation of the propagation channels of the useful signals
and interference plus noise covariance matrix. Our emphasis
in this paper is on the CCI overlapping effects with the
training and data intervals in the asynchronous CCI scenario.
Therefore, we use a flat fading assumption for our basic
scenario with relatively high sampling support for both training
and data intervals for the given number of antennas and users.
Then, we demonstrate robustness of the proposed solution in
terms of 1) different channel models leading to time-frequency
channel variations, and 2) limited sampling support using an
additional conventional diagonal loading regularization.

The rest of the paper is organized as follows. In Section
II, we present the system model, introduce our regularized
interference mitigation solution, and formulate the problem. In
Section III, we propose a maximum likelihood methodology
for optimization of the regularized beamformer. In Section IV,
we develop an algorithm for adaptive selection of the mixing
factor. In Section V, we present the simulation results that
illustrate sensitivity of the interference mitigation performance
on selection of the mixing factor, compare efficiency of the
developed algorithm with the optimal (non-implementable)
selection of the regularization parameter, and evaluate its
performance as a linear adaptive IRC and as an initialization
for adaptive beamformer with the FA projections in different
asynchronous CCI scenarios. Finally, Section VI concludes the
paper.

The key symbols and notations used in the paper are
summarized in Table 1.
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Table 1. Summary of key symbols / notations
Symbol Definition
K Number antenna array elements
M Number of useful signals
MCCI Number of interference sources
H, Ĥ K ×M actual and estimated channel matrices
Nt, Nd Numbers of training and data samples
Xt K ×Nt received signal at the training interval
Xd K ×Nd received signal at the data interval
R̂t, R̂d K ×K training and data covariance matrices
δ Mixing factor
R̂r(δ) K ×K regularized covariance matrix
Ŵd(δ) K ×M beamforming weight matrix
LRt(δ), LRd(δ) Training, and data based likelihood ratios
LR(δ) Joint likelihood ratio

II. DATA MODEL AND PROBLEM FORMULATION

We consider the following narrowband data model of the
signal received by an antenna array of K elements:

x(n) = Hs(n) +

MCCI∑
m=1

gmum(n) + z(n), (1)

where n = 1 . . . N ; N is the total number of samples in data
block; x(n) ∈ CK×1 is the vector of observed outputs of an
antenna array; s(n) ∈ CM×1 is the vector of M desired signals
from user equipment (UE), um(n), m = 1 . . .MCCI are the
MCCI < K −M components of CCI:

E{um(n1)u∗m(n2)} =

 pm, n1 = n2 ∈ Nm
0, n1 = n2 6∈ Nm
0, n1 6= n2

, (2)

Nm is the appearance interval for the m-th interference com-
ponent; z(n) ∈ CK×1 is the vector of noise, E{z(n)z∗(n)} =
σ2IK , E{z(n1)z∗(n2)} = 0, n1 6= n2, where E{·} and
(·)∗ denote expectation and transposition complex conjugate
correspondingly; H ∈ CK×M is the matrix of the propagation
channels of the desired signals and gm ∈ CK×1, m =
1 . . .MCCI are the vectors of propagation channels of CCI.
All propagation channels are assumed to be stationary over the
whole data slot and independent for different antenna elements
and slots. The desired signals are assumed to be deterministic
signals. The training data of Nt samples, where K < Nt < N ,
and their positions inside the data slot are known at the
receiver: St = [st(1), ..., st(Nt)], Xt = [xt(1), ...,xt(Nt)],
(NtM)−1tr(StS∗t ) = 1, where tr(A) is the trace of matrix
A, leading to the signal to noise ratio SNR=σ−2. We assume
SNR� 1. The working data interval of Nd = N−Nt samples
is defined as the rest of the slot: Sd = [sd(1), ..., sd(Nt)],
Xd = [xd(1), ...,xd(Nd)]. All interference components and
noise are assumed to be independent circular Gaussian pro-
cesses. The CCI propagation channels, powers, and appearance
intervals are not known at the receiver. Regarding the UEs
propagation channels, we consider two cases with H 1) being
known a priori, 2) being estimated using the same training
data. The former represents the case with multiple data slots
that can be used for accurate estimation of the stationary
slowly varying propagation channels of the desired signals.

Both data and training intervals may contain a number of
data blocks, e.g., sub-carriers in frequency domain. An exam-
ple of the asynchronous CCI scenario with the training interval

positions similar to the ones in the LTE resource block (RB)
on the uplink is shown in Fig. 1. This example illustrates the
main difficulty with the asynchronous interference scenario:
some of the interference components may partially overlap
or not overlap at all with the training interval of the desired
signal.

Training

Data

CCIs

Data

UEs

Random duration

Random delay

. . . 

. . . 

Data slot

Data

Fig. 1. Data model

Under the introduced model, the interference plus noise
covariance matrices that are averaged over the training and
working data intervals of the received signal can be expressed
as

Rt =

MCCI∑
m=1

p̄tmgmg∗m + σ2IK , (3)

Rd =

MCCI∑
m=1

p̄dmgmg∗m + σ2IK , (4)

where p̄tm ≥ 0 and p̄dm > 0 are the power coefficients averaged
over the corresponding training and data intervals depending
on the appearance interval Nm and actual power pm of each
interference source.

It is important to note that we consider the case, where
the number of antenna elements exceeds the total number of
useful signals and CCI components

K > M +MCCI . (5)

In turn, this means that the optimal linear beamformer Wd ∈
CK×M :

Wd = R−1d H(H∗R−1d H)−1 (6)

should provide efficient interference mitigation both in the data
and training intervals, though over the training interval, better
extraction of the (known a priori) training signals could be
performed by another beamformer Wt ∈ CK×M :

Wt = R−1t H(H∗R−1t H)−1. (7)
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These properties of the optimal beamformers are fully ex-
ploited in the sequel 2.

Clearly, covariance matrices Rt and Rd are not known a
priori and they have to be adaptively estimated. For the training
data with the known H, we have

R̂t = N−1t (Xt −HSt)(Xt −HSt)
∗ (8)

which is an ML estimate of Rt. Since the training data
volume Nt could be small (compared to the data set Nd) for
the given number of antennas K, and the training interval
may not contain any interferers, one should apply diagonally
loaded estimate of Rt [28]: R̂

(DL)
t = R̂t + αIK , where

α = (0.1÷ 1)σ2 is the regularization parameter3.
In the case when H is unknown, we use its least square

estimate
Ĥ = XtS

∗
t (StS

∗
t )
−1, (9)

leading to the following matrix estimate

R̂t = (Nt −M)−1Xt[INt − S∗t (StS
∗
t )
−1St]X

∗
t . (10)

The ML estimate of the data covariance matrix Rd is

R̂d = N−1d XdX
∗
d. (11)

Note, that

E{R̂d} = Rd +N−1d HSdS
∗
dH
∗ (12)

due to presence of inseparable (unknown) deterministic desired
signals and CCI on the data interval.

Direct application of estimate (8) to the beamformer (7)
gives the basic training based MMSE-IRC receiver, which
fully exploits information at the training interval for useful
signals recovery and CCI mitigation presented at the training
interval, but it cannot reject interference appearing at the data
interval. On the other hand, direct application of estimate (11)
to (6) gives the basic data based MMSE-IRC receiver that
allows interference mitigation at the data interval, but leads
to significant performance degradation due to presence of the
desired signals in Rd estimate in (11) [8].

Thus, both the conventional MMSE-IRC solutions are inef-
ficient in the considered asynchronous interference scenario.
In order to exploit the merits of both basic receivers and
at the same time, avoid drawbacks in the asynchronous CCI
scenario, similarly to our development in [14], [23], instead of
directly using R̂t or R̂d defined in (8) and (11), we consider
a regularized estimate of the corresponding matrix defined as

R̂r(δ) = (1− δ)R̂t + δR̂d, (13)

where 0 ≤ δ ≤ 1 is the mixing (regularization) parameter.
Then, the corresponding adaptive beamformer for data signals
recovery can be defined as

Ŵd(δ) = R̂−1r (δ)H
[
H∗R̂−1r (δ)H

]−1
(14)

2We assume interference limited scenarios with high SNR. Thus, in (6), (7)
we use the following version of the basic MMSE-IRC formulation W = (R+
HH∗)−1H = R−1H(IM +H∗R−1H)−1 ≈ R−1H(H∗R−1H)−1 for
H∗R−1H � 1.

3Selection of α is a well studied problem, e.g. [27], [28], [29]. We
illustrate using a conventional diagonal loading additionally to our data based
regularization in Section V.A.

for the known channel matrix and

Ŵd(δ) = R̂−1r (δ)Ĥ
[
Ĥ∗R̂r(δ)

−1Ĥ
]−1

(15)

for the estimated channels correspondingly.
The regularized estimate defined in (13) is heuristic, but

could be formally introduced as a Bayesian covariance matrix
estimate with the Wishart distribution of one of the matrix as
a prior. Example of such introduction is given, e.g. in [28].

The problem now is to adaptively estimate the mixing factor
δ̂ML in (14), (15) in order to achieve the best performance of
the linear beamformer

Ŝd(δ̂ML) = Ŵ∗
d(δ̂ML)Xd (16)

for the given beamformer structure.
The complexity of the semi-blind solutions (14), (15) is

similar to that of the conventional data-based MMSE-IRC.

III. MAXIMUM LIKELIHOOD METHODOLOGY FOR
OPTIMIZATION OF THE REGULARIZED BEAMFORMER

In this study, we limit our consideration by using only
second order statistics of the input data, both on the training
and data intervals. This means that in addition to the training
signals and known a priori or estimated with the help of
the training signals channel propagation matrix H, we can
estimate the signal-free interference plus noise covariance
matrix R̂t on the training interval and the covariance matrix
R̂d of the mixture of interference and signal on the data
interval. Thus, if we confine our adaptive search of the optimal
mixing factor δ in (13) only by the second order statistics, no
much more measurable parameters are left in our disposal. The
main reason is that in terms of their correlation properties, the
useful signals on the data interval are indistinguishable from
CCI, which is often created by very similar signals. Therefore,
a direct analysis of the second order properties of the filtered
data covariance matrix

R̂(δ) = Ŝd(δ)Ŝ
∗
d(δ), (17)

Ŝd(δ) =
[
H∗R̂−1r (δ)H

]−1
H∗R̂−1r (δ)Xd (18)

within the signal subspace spanned by the manifold matrix H
can say a little about the appropriateness of the selected δ. This
is the main reason why higher order statistics properties such
as CM and FA have been applied for adaptive regularization,
e.g. selection of diagonal loading parameter in [25], [26].

Our central idea is that under the specified conditions, the
beamformer Ŵd(δ̂ML) should efficiently reject interference
in both data and training intervals and extract the (known)
training signals over the training interval and the data signals
over the data interval. For the training interval with the
known training signals the corresponding likelihood ratio may
be directly evaluated comparing the extracted and the true
training signals. At the data interval, the transmitted signals are
unknown. Thus, we need to estimate interference “whitening”
properties on the data interval to be able to derive the corre-
sponding likelihood ratio. Then, we may expect that δ̂ML that
delivers the maximum of the joint (product) likelihood ratio of
the extracted with R̂r(δ) training signals and the likelihood
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ratio of the covariance of the “whitened” with R̂r(δ) data
signals, is the one we are looking for.

In essence, we use the traditional ML criterion not only for
estimation of R̂t and R̂d, but also for finding the right mixing
factor δ̂ML in R̂r(δ).

To estimate “whitening” properties on the data interval, we
need to separate estimation of interference properties from the
impact of the useful signal components. One way to do that is
to consider that the useful signals do not reside in the subspace
complementary to the signal subspace spanned by H. Indeed,
only remains of the interference and white noise should reside
in the subspace spanned by the projector

P⊥
[
R̂
− 1

2
r (δ)H

]
= (19)

= IK − R̂
− 1

2
r (δ)H[H∗R̂−1r (δ)H]−1H∗R̂

− 1
2

r (δ).

Therefore, the properties of the projected by (19)
“whitened” by R

− 1
2

r input signal on the data interval

Ẑd = P⊥
[
R̂
− 1

2
r (δ)H

]
R̂
− 1

2
r (δ)Xd, (20)

are defined only by the remains of the interference and noise.
Then, matrix ẐdẐ

∗
d can be presented as

ẐdẐ
∗
d = UK−MQ̂K−MU∗K−M , (21)

Q̂K−M (δ) = U∗K−MR̂
− 1

2
r (δ)XdX

∗
dR̂
− 1

2
r (δ)UK−M , (22)

with the following decomposition of projector (19)

P⊥
[
R̂
− 1

2
r (δ)H

]
= UK−MU∗K−M , (23)

where U∗K−MUK−M = IK−M .
Now, analyzing distribution of the eigenvalues of matrix

Q̂K−M (δ) we may conclude on the interference “whitening”
properties in the complementary to the signal subspace on the
data interval. The remaining in the complementary to signal
subspace interference power should be a function of overlap
between the signal and interference subspaces. Considering
that the interference subspace is spanned by the similar to the
channel vectors, one may expect that for the growing signal
subspace dimension M , less interference power should remain
in the complementary to signal subspace and properties of
matrix Q̂K−M (δ) could be directly used for indication of the
interference mitigation efficiency. Indeed, for large enough M
(compared to the antenna dimension K) the “whitener” with
the optimum δ in R̂r(δ) may significantly remove CCI from
the complementary subspace and matrix Q̂K−M (δ) in (22)
may indeed be close to the sample matrix of white noise. Yet,
for small M � K, significant remaining interference power in
Q̂K−M (δ) may be observed, even if efficient interference mit-
igation in the (unavailable) signal subspace may be achieved.

Let us illustrate this property in a flat fading scenario
shown in Fig. 1 with stationary propagation channels assuming
that data slot consists of NRB resource blocks (RBs) of 14
symbols and 12 sub-carriers each with 2 symbols containing
pilots in all sub-carriers. CCI sources have a similar structure
with random delay within data slot, random duration of 2
or 3 symbols and signal to interference ratio SIR=0 dB. We
use 16-QAM and QPSK signaling for the desired signals

and CCI correspondingly. Pilots are generated by means of
MATLAB routine “ltePUSCHDRS”. Propagation channels of
the desired signals and CCI components are generated as
i.i.d. unit power Gaussian vectors. In Fig. 2, we show the
cumulative distribution functions (CDF) of the ratio between
the total CCI power and the CCI power in the complementary
to the signal subspace, calculated as the sum of MCCI

largest eigenvalues of matrix Q̂K−M (δ0), estimated over 1000
scenario realizations for K = 16, NRB = 2, SNR=15 dB,
M = 2, 4, 8, and MCCI = 1, 2, 3 . The optimal mixing factor
δ0 is estimated by means of the direct bit error rate (BER)
minimization for each scenario realization.
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Fig. 2. CDF of the ratio between the total CCI power and the CCI power
in the complementary to the signal subspace: K = 16, NRB = 2, SNR=15
dB, SIR=0 dB, M = 2, 4, 8, and MCCI = 1 for (a), MCCI = 2 for (b),
MCCI = 3 for (c)

One can see in Fig. 2b for MCCI that, as expected, for
M = 2� K = 16, the remaining in Q̂K−M (δ0) interference
power with probability 0.5 is only 5 dB below the total CCI
power, but for M = 8 = K/2 it is already 12 dB weaker. For
SNR=15 dB and SIR=0 dB one may expect that in most cases
the interference eigenvalues in Q̂K−M (δ0) are relatively close
to the noise ones for M comparable with K. This dependence
on M remains for different numbers of CCI sources as one
can see in Figs. 2a and 2c for MCCI = 1 and MCCI = 3
correspondingly. Indeed, while for a single interferer in Fig.
2a, the remaining in the complementary subspace CCI power
is somewhat higher for M = 8, for MCCI = 2 and MCCI = 3
the CDFs in Figs. 2b and 2c are barely distinguishable.

Therefore, this quite stable behavior of the CCI power
within the complementary to the signal subspace, may be used
for adaptive mixing factor selection. Ideally, if the remaining
interference subspace eigenvalues were somehow predictable,
our criterion for appropriate interference mitigation on the
data interval could be proximity of the sample eigenvalues
in Q̂K−M (δ) to the predicted ones for δ0. Yet, even if such
a prediction was possible, a number of additional parameters,
such as the number of “new” CCI sources appeared on the data
interval, their SIR, etc., would be required. In what follows,
we suggest a simple robust approach to provide sufficiently
close to the optimum values of mixing factor. Indeed, for M
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comparable with K, we observe reduction of the interference
power in the complementary to the signal subspace to the level
close to the noise power. Therefore, for such relatively large
M we may apply as a criterion the likelihood ratio LR0(δ)
that tests hypothesis on equal eigenvalues of the true matrix
QK−M (δ), given eigenvalues of the sample matrix Q̂K−M (δ).
Considering that for M � K lower interference mitigation in
the complementary subspace may be required for the optimal
mixing factor compared to the case of comparable values of
M and K, we suggest to compensate the likelihood ration
degradation by the simple correction factor

LRd(δ) = [LR0(δ)]
M
K . (24)

In Section V.A, we demonstrate robustness of this ad-hoc
correction for relatively low dimensions of the signal subspace.

IV. ADAPTIVE SELECTION OF THE MIXING FACTOR

In this section, we specify the likelihood ratio LRt(δ)
for testing proximity of the actual training sequence St to
the reconstructed one using Ŵd(δ) in (14), (15), and the
likelihood ratio test LRd(δ) on equality of all eigenvalues
of the true matrix QK−M (δ), given the sample ones. Each
of these ratios could be constructed using a methodology
introduced in [30]. Then, we formulate a joint likelihood ratio
for the given volumes of samples on the training Nt and data
Nd intervals.

Let us transform the input training data Xt ∈ CK×Nt into
the sufficient statistics data Ẑt ∈ CM×Nt , which is the output
signal of the estimated beamformer in (7). In the case of the
known H, we define

Ẑt = (H∗R̂−1t H)−1H∗R̂−1t Xt = Z̃t + St, (25)

where

Z̃t = (H∗R̂−1t H)−1H∗R̂−1t (Xt −HSt) (26)

leading to the ML estimate of the covariance matrix

R̂z = N−1t Z̃tZ̃
∗
t = (H∗R̂−1t H)−1. (27)

Therefore, the likelihood ratio for the estimated with beam-
former (14) training signal

Ŝt(δ) = (H∗R̂−1r (δ)H)−1H∗R̂−1r (δ)Xt (28)

may be introduced as

LRt(δ) =
L[Ŝt(δ), R̂z]

maxŜ L[Ŝ, R̂z]
, (29)

where

L[Ŝ, R̂z] =
1

πNtdet(R̂z)
exp

{
−(Ẑt − Ŝ)R̂−1z (Ẑt − Ŝ)∗

}
(30)

is the likelihood function, where det(A) is the determinant of
matrix A. Taking into account that

max
Ŝ

L[Ŝ, R̂z] = L[Ŝt(0), R̂z] = (31)

= L[Ẑt, R̂z] =
1

πNtdet(R̂z)
,

we finally get for the known H

LRt(δ) = (32)

= exp
{
−tr
[

1

Nt
H∗R̂−1t H(Ẑt − Ŝt(δ))(Ẑt − Ŝt(δ))

∗
]}Nt

.

For the channel matrix estimated according to (9), there are
only Nt − M independent samples for estimation of R̂t in
(10). Therefore, LRt(δ) is defined in a slightly different way
in this case

LRt(δ) = (33)

= exp
{
−tr
[

1

Nt −M
Ĥ∗R̂−1

t Ĥ(Ẑt − Ŝt(δ))(Ẑt − Ŝt(δ))
∗
]}Nt−M

,

where Ĥ is used in (25) and (28) instead of H.
On the data interval, the test on equality of eigenvalues of

Q̂K−M (δ) defined in (22) is the well-known sphericity test
[30]:

LRd(δ) =

 ∏K−M
j=1 λj [Q̂K−M (δ)](

1
K−M

∑K−M
j=1 λj [Q̂K−M (δ)]

)K−M

βNd

,

(34)
where λj(Q̂K−M ), j = 1, ..., (K −M) are the eigenvalues
of matrix Q̂K−M , and β is the correction factor introduced in
(24), i.e. we use β = 1 for relatively large M and β = M/K
for M � K.

Note, that LRd(1) = 1, while LRt(0) = 1. We are looking
for the mixing factor that maximizes the product of the
likelihood ratios in (32) and (34) or some monotonic function
of this product, e.g. the Ndth root:

δ̂ML = arg max
δ

[L̃R(δ)], (35)

L̃R(δ) = [LRd(δ)LRt(δ)]
1

Nd = (36)

=

 ∏K−M
j=1 λj [Q̂K−M (δ)](

1
K−M

∑K−M
j=1 λj [Q̂K−M (δ)]

)K−M

β

×

×exp
{
−tr
[

1

Nt
H∗R̂−1t H(Ẑt − Ŝt(δ))(Ẑt − Ŝt(δ))

∗
]} Nt

Nd

.

For the channel matrix Ĥ estimated over the training
interval , we have a similar to (36) expression using Ĥ instead
of H and Nt −M instead of Nt as in (33).

The complexity of algorithm (35) is mainly due to the
K×K matrix inversion, eigendecomposition, and square root
calculation that require a number of complex multiplications
proportional to K3 for each value of δ to be tested for finding
maximum in (35). Assuming that for typical scenarios, a range
for reasonable values of δ may be known, this number could be
kept at a minimum, leading to a reasonably low computational
complexity of the algorithm.
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V. NUMERICAL RESULTS

A. Basic scenario

We consider the same flat fading scenario as in Section
III with random SIR uniformly distributed in the range of
[-10,5] dB independent for CCI components. As a perfor-
mance metric, we use BER averaged over 1000 independent
scenario realizations. We begin with the case of relatively
high dimension of the signal subspace of M = K/2 and use
β = 1 in (36). To avoid effects of mixing different types
of regularization, initially in our simulations we consider a
relatively high number of training samples of Nt = 3K and
do not use any diagonal loading, i.e. α = 0 . Then, we illustrate
importance of using diagonal loading additionally to the data
based regularization for lower values of Nt especially for the
estimated channel.

First, we demonstrate the impact of the proper selection of
the mixing parameter δ on the performance in the considered
scenario. The BER results for two configuration settings are
shown in Fig. 3

0 0.5 1

a) 

10
-3

10
-2

10
-1

B
E

R

K=8, M=4, M
CCI

=2, N
RB

=1

Known channel

Estimated channel

0 0.5 1

b) 

10
-4

10
-3

10
-2

10
-1

K=16, M=8, M
CCI

=2, N
RB

=2

Known channel

Estimated channel

SNR=20 dB

SNR=5 dBSNR=5 dB

SNR=20 dB

Fig. 3. BER results depending on δ: a) K = 8, M = 4, MCCI = 2,
NRB = 1, Nt = 24, Nd = 144, and b) K = 16, M = 8, MCCI = 2,
NRB = 2, Nt = 48, Nd = 288

One can observe from Fig. 3 that:
• Proper selection of the mixing factor is critically impor-

tant and it gives much better results compared to both
conventional boundary cases of the training based for
δ = 0 and data based for δ = 1 adaptive beamforming.

• The optimal mixing factor that minimizes the BER per-
formance depends on scenario and network configuration.

• BER dependence on δ is similar for both known and
estimated channels with slightly better results for the
known channel and significantly different optimal values
of the mixing parameter.

CDFs for the optimal and the optimized according to
Section IV mixing factors for each scenario realization and
averaged BER results for the known and estimated channels
are presented in Figs. 4 and 5 with the same configuration
settings as in Fig. 3 The optimal values of the mixing factor
are obtained by means of (non-implementable) direct BER

minimization for each scenario realization for both cases of the
known and estimated channels of the desired signals. The BER
results for the conventional training (δ = 0) and data (δ = 1)
based beamformers are shown in Fig. 5 for comparison.
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Fig. 4. Distributions of the optimal and optimized values of δ in the same
scenarios as in Fig. 3 for SNR=15 dB

Fig. 5. BER results for different values of δ in the same scenarios as in Fig.
3

The presented simulation results show the following:
• The proposed adaptive selection of the mixing factor

gives its optimized values that are close to the optimal
ones.

• The BER performance for the optimized mixing factor is
close to the optimal one in the considered scenarios.

• The BER results for the proposed optimized mixing factor
are much better compared to both conventional boundary
cases of the training based for δ = 0 and data based for
δ = 1 MMSE-IRC receivers.

Selection of the mixing factor is further illustrated in Fig. 6,
which shows the optimization statistics L̃R in (36) and BER
results depending on δ for a typical realization of the extreme
scenario, where all CCI components do not overlap with pilots.
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Fig. 6. Illustration of selection of the mixing factor when CCI do not overlap
with pilots in the same scenarios as in Fig. 3b for SNR=15 dB

It is important to note that although Rt estimate is based only
on noise samples in this case, we still use the training interval
(estimated pilots Ŝt(δ) in (32), (33)) to control distortion of the
recovered desired signals that allows us to balance it with the
“whitening” of interference on the data interval in (34) leading
to selection of the effective mixing factors corresponding to
the maximum of the decision statistics as one can see in Fig.
6a.

An example of another extreme scenario with all interfer-
ence components overlapping with the pilots is presented in
Fig. 7. One could see another illustration of efficiency of our
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Fig. 7. Illustration of selection of the mixing factor when CCI overlaps with
pilots in the same scenarios as in Fig. 3b for SNR=15 dB

solution, where very small values of δ are selected, which
corresponds to the optimal in this case conventional training-
based beamformer.

While the presented above results demonstrate significant
performance improvement by the optimized adaptive semi-
blind beamformer compared to the training (δ = 0) and data
(δ = 1) based adaptive beamformers, it is also important to
demonstrate limitations of this approach based exclusively on

second order statistics. To do this, we ones again consider
scenarios as per Figs. 3a and 3b with the known H. This time
we analyze effects of improvement in interference plus noise
covariance matrix estimation on the data interval achieved by
means of subtraction (“cleaning”) of the different estimates of
the useful signals from the received signal on data interval.
Figs. 8 and 9 present the corresponding results for SNR=15
dB in 10000 scenario realizations for the following estimates
of Rd:

1) the basic one as in (13) without any “cleaning” marked
as “Initial”;

2) the one with “cleaning” of the data interval with the
initially estimated desired signal

R̂soft
d = N−1d

[
Xd −HŜd(δ̂ML)

] [
Xd −HŜd(δ̂ML)

]∗
(37)

marked as “Soft cleaning”;
3) the one with “cleaning” of the data interval with the

initially estimated desired signal projected to the FA
S̃ = PFA{Ŝ}:

R̂hard
d = N−1d

[
Xd −HS̃d(δ̂ML)

] [
Xd −HS̃d(δ̂ML)

]∗
(38)

marked as “Hard cleaning”;
4) the one with the ideal (non-implementable) “cleaning”

R̂ideal
d = N−1d [Xd −HSd] [Xd −HSd]

∗ (39)

marked as “Ideal cleaning”.
Figs. 8a and 9a show histograms of the likelihood ratio

values in (36) obtained after maximization with the indicated
estimates of Rd. Figs. 8b and 9b present CDFs of the
optimized values of the mixing factor. Figs. 8c and 9c show
CDFs of the corresponding BER results.
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Fig. 8. Comparison of the initial and “cleaned” beamforming versions in the
same scenario as in Fig. 3a for SNR=15 dB

Additionally, in Fig. 10, we illustrate the decision metric
(36) and Ndth roots of its training and data components in the
particular scenario realization.

The presented simulation results show the following:
• The likelihood ratio values for the soft, hard and ideally

“cleaned” estimates of the interference plus noise covari-
ance matrix on the data interval are practically the same
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Fig. 10. Illustration of the joint decision metric and its training and data
components in the same scenario as in Fig. 3b for SNR=15 dB

as one can see in Figs. 8a and 9a. This means that better
in the likelihood sense than the soft “cleaning” estimates
cannot be obtained by means of second order statistics.
The main reason for that is that LRd(δ) in (34) does
not depend on “cleaning ” of the data based covariance
matrix. The analytical demonstration of this remarkable
property is given in Appendix and it is further illustrated
in Fig. 10, where one can see the same LRd(δ) values for
the initial and all the introduced “cleaned” estimates of
Rd. On the other hand, the joint likelihood ratio is very
different for the initial and “cleaned” estimates of Rd.
The reason is that the training component LRt in (32) is
very different for these estimates as one can see in Fig.
10. At the same time, no significant difference in LRt
behavior between different types of “cleaning ” in (37) -
(39) could be observed. This is because for high enough
values of δ in (13), the presence of the useful signals in
R̂d in (11) leads to rejection of the training data, but even
the soft “cleaning” in (37) reduces the signal component
in the covariance matrix estimate to the levels that do not
significantly affect the extracted training signal accuracy.

• In Figs. 8b and 9b, our selection algorithm (36) gives
much higher and close values of the optimized mixing
factor for all “cleaned ” versions, which is natural for
better estimates of the interference plus noise covariance
matrix compared with the initial one due to accurate
extraction of the desired signals. This situation demon-
strates ability and efficiency of our proposed mixing
factor selection algorithm.

• In Figs. 8c and 9c, the BER performance for the soft
“cleaned” estimates is only slightly better compared to
the initial one illustrating limitations of using only sec-
ond order statistics solution, while the ideally “cleaned”
results are much better indicating a room for possible
performance improvements using higher order statistics
techniques. One way for such improvements could be
“cleaning” with projections to FA leading to significant
improvement of the BER results as one can see in Figs. 8c
and 9c, although the likelihood “quality” of such estimate
remains the same as for the soft “cleaning” as one can see
in Figs. 8a and 9a. More results on the iterative “cleaning”
with projections to the FA with initialization from the
adaptive linear beamformer with selection of the mixing
factor defined in (36) are given in Section V.B.

Next, we demonstrate robustness of the proposed adaptive
solution for lower dimensions of the signal subspace. In Fig.
11, we present the BER results in the same scenario as in Fig.
5b, but for M = 2, 4 using β = M/K in (36).

Fig. 11. BER results for different values of δ in the same scenario as in Fig.
5b for M = 4 (a) and M = 2 (b)

One can see in Fig. 11 that our optimized beamformer
significantly outperforms both conventional boundary cases of
the training based for δ = 0 and data based for δ = 1 MMSE-
IRC solutions, and its BER results are still close to the optimal
ones demonstrating robustness of the proposed algorithm.

In Fig. 12, we show the simulation results in the same
scenario as in Fig. 5b, but for NRB = 1. Now, for K = 16
antennas and M = 8 users we have only Nt = 24 samples
at the training interval. In Fig. 12a, we still do not use
any diagonal loading, but in Fig. 12b we apply a typical
conventional regularization of α = 0.5σ2. One can see mach
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better results for the optimized mixing factor for the estimated
channel in Fig. 12b, which illustrates importance of using both
types of regularization in the asynchronous CCI scenario with
low sampling support.
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Fig. 12. BER results for different values of δ in the same scenario as in Fig.
5b for NRB = 1 with no diagonal loading α = 0 (a) and with diagonal
loading α = 0.5σ2 (b)

B. OFDM scenario

We simulate an OFDM network with the 5G-NR numerol-
ogy on the uplink [31] for the similar interference scenario as
in Section V.A using the 16QAM signaling for both the signals
and CCI. We assume 3.4 GHz carrier frequency, 10 MHz
bandwidth, 15 kHz carrier spacing and 3 km/h Doppler speed
for both the desired signals and CCIs that occupy the whole
band. The difference compared to the interference scenario in
Section IV.A is that CCI symbols can partially overlap with
the desired signal symbols in the OFDM case. We consider
the case of M = K/2 and use β = 1 in (36). The BER
results estimated over 200 scenario realizations (10000 RBs)
are presented in Figs. 13 and 14 for the Extended Pedestrian
A (EPA) channel model [32] with 410 ns maximum delay
spread. for the same scenarios and algorithms as in Fig. 5
for the estimated fixed channel in time and frequency for all
resource elements for NRB = 1 in Fig. 13, and NRB = 2 in
Fig. 14. Additionally, the BER results for the hard “cleaning”
as in (38) for 1 and 2 iterations are plotted in Figs. 13
and 14 with initialization from all the considered algorithms
using δ = 1 for both iterations taking into account that
the optimized mixing parameter approaches to one for the
“cleaned” estimates of the interference plus noise covariance
matrix on the data interval as illustrated in Figs. 8b and 9b.

One can see in Figs. 13 and 14 that relatively low variations
of the channels in time and frequency for the EPA channel and
low Doppler speed allow effective averaging of the second or-
der statistics over the considered number of RBs leading to the
situation, where for both scenarios the BER performance for
the proposed optimized mixing factor is close to the optimal
(but intractable and non-implementable) mixing factor results
and it significantly outperforms both conventional training

Fig. 13. BER results for different values of δ in OFDM scenario with
estimated channels for EPA channel model: K = 8, M = 4, MCCI = 2,
NRB = 1, Nt = 24, Nd = 144

Fig. 14. BER results for different values of δ in OFDM scenario with
estimated channels for EPA channel model: K = 16, M = 8, MCCI = 2,
NRB = 2, Nt = 48, Nd = 288

based (δ = 0) and data based (δ = 1) solutions. As ex-
pected, the algorithms with projections to the FA demonstrate
significant improvements for the proposed initialization, but
negligible effects on the one with the conventional training
and data based beamformers.

In Fig. 15, we show the BER results in the same scenario
as in Fig 14, but for the Extended Vehicular A (EVA) channel
model [32] with 2510 ns maximum delay spread. Now, signif-
icant channel variations in the frequency domain do not allow
effective averaging over two RBs as in Fig. 14. Thus, we use
NRB = 1 in Fig.15 and additional diagonal loading similarly
to the results in Fig. 12.

One can see an overall performance degradation in Fig.
15 compared to Fig. 14, but the BER performance for the
proposed optimized mixing factor is still close to the (non-
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Fig. 15. BER results for different values of δ in OFDM scenario with
estimated channels for EVA channel model: K = 16, M = 8, MCCI = 2,
NRB = 1, Nt = 24, Nd = 144, α = 0.5σ2

implementable) optimal mixing factor results and it signifi-
cantly outperforms both conventional MMSE-IRC solutions.

VI. CONCLUSIONS

In this paper, we have introduced a family of the second
order statistics adaptive beamformers regularized by the co-
variance matrix estimate over the data interval and proposed
a novel maximum likelihood methodology for their optimiza-
tion. We have developed the algorithm for adaptive selection
of the regularization (mixing) factor and demonstrated its
efficiency as a linear adaptive beamformer and as an ini-
tialization for adaptive beamformer with the FA projections
in different asynchronous CCI scenarios. Our regularization
solution is widely applicable to systems with different config-
uration settings. It demonstrates a near-optimal performance
and significantly outperforms the conventional training and
data based schemes. The proposed approach constitutes a
promising and viable solution to mitigate interference in
practical asynchronous transmission systems.
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APPENDIX

In Appendix, we provide an analytical evidence on the
independence of the sphericity test (34) with respect to the
“cleaning” operation. We, therefore, have to demonstrate that
the eigenspectrum of the (K −M) dimension matrix Q̂K−M
(22) is the same for the initial covariance matrix estimate R̂d

(11) and any of its “cleaned” versions (37) - (39).
Let R̂r is the regularized matrix (13) with any of Rd

estimates (11) or (37) - (39). Then, matrix Q̂K−M (22) can
be represented as

Q̂K−M = U∗K−MP⊥
[
R̂
− 1

2
r H

]
R̂
− 1

2
r Xd× (40)

×X∗dR̂
− 1

2
r P⊥

[
R̂
− 1

2
r H

]
UK−M ,

where projector P⊥
[
R̂
− 1

2
r H

]
is defined in (19) with the

corresponding decomposition based on UK−M in (23).
Now, note that

P⊥
[
R̂
− 1

2
r H

]
R̂
− 1

2
r = R̂

− 1
2

r P⊥(H, R̂r), (41)

where

P⊥(H, R̂r) = IK −H
[
H∗R̂−1r H

]−1
H∗R̂−1r . (42)

Similarly, we get

R̂
− 1

2
r P⊥

[
R̂
− 1

2
r H

]
= P⊥(R̂r,H)R̂

− 1
2

r , (43)

where

P⊥(R̂r,H) = IK − R̂−1r H
[
H∗R̂−1r H

]−1
H∗ (44)

with the properties{
H∗P⊥(R̂r,H) = 0

P⊥(H, R̂r)H = 0
(45)

Then, we get

Q̂K−M = U∗K−MR̂
− 1

2
r P⊥(H, R̂r)Xd× (46)

×X∗dP⊥(R̂r,H)R̂
− 1

2
r UK−M .

From (45), it follows that Q̂K−M in (46) remains the same
if we replace Xd with its any “cleaned” version Xd − HŜ
irrespective of R̂r.

Using singular value decomposition of P⊥(H, R̂r) and
P⊥(R̂r,H)

P⊥(H, R̂r) = ŨK−MΛK−MṼ∗K−M , (47)

P⊥(R̂r,H) = ṼK−MΛK−MŨ∗K−M , (48)

where ΛK−M is the diagonal matrix of K − M non-zero
singular values, and{

ΛK−MṼ∗K−MŨK−M = IK−M
ΛK−MŨ∗K−MṼK−M = IK−M

(49)

since P⊥(H, R̂r) and P⊥(R̂r,H) are idempotent matrices, we
get from (46)

Q̂K−M = T∗
[
Ṽ∗K−MXdX

∗
dṼK−M

]
T, (50)

where
T = ΛK−MŨ∗K−MR̂

− 1
2

r UK−M . (51)

Now, let us prove that T∗T is orthogonal to R̂
− 1

2
r H

irrespective of R̂
− 1

2
r . Indeed,

T∗T = U∗K−MZUK−M . (52)

where

Z = R̂
− 1

2
r ŨK−MΛ2

K−MŨ∗K−MR̂
− 1

2
r = (53)

R̂
− 1

2
r ŨK−MΛK−MṼ∗K−MṼK−MΛK−MŨ∗K−MR̂

− 1
2

r =

R̂
− 1

2
r P⊥(H, R̂r)P⊥(R̂r,H)R̂

− 1
2

r ,
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taking into account decomposition in (47) and (48).
Then, using (42) and (44) in (53), it becomes clear that{

HR̂
− 1

2
r Z = 0

ZR̂
− 1

2
r H = 0

(54)

irrespective of R̂
− 1

2
r .

Therefore, matrix T∗T is free of any components in the
“whitened” signal subspace spanned by R̂

− 1
2

r H irrespec-
tive of R̂

− 1
2

r . Similarly, matrix Ṽ∗K−MXdX
∗
dṼK−M in (50)

does not contain any components spanned by H because
Ṽ∗K−MH = 0, which follows from (45) and (47). For this
reason, we may conclude that within the subspace orthogonal
to the “whitened” signal subspace, no components spanned by
R̂
− 1

2
r H or H are present. Therefore, the transformation of the

input data (“cleaning”) that modifies only signal subspace of
the input data, should not affect properties of the components
that belong to the complementary to the “whitened” signal
subspace, irrespective to the “whitening” matrix R̂

− 1
2

r . Partic-
ularly, the eigenspectrum of matrix Q̂K−M should not depend
on such transformation of the input signal.
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