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Unlimited Sampling from Theory to Practice:
Fourier-Prony Recovery and Prototype ADC

Ayush Bhandari, Felix Krahmer and Thomas Poskitt

Abstract

Following the Unlimited Sampling strategy to alleviate the omnipresent dynamic range barrier, we study the
problem of recovering a bandlimited signal from point-wise modulo samples, aiming to connect theoretical guarantees
with hardware implementation considerations. Our starting point is a class of non-idealities that we observe in
prototyping an unlimited sampling based analog-to-digital converter. To address these non-idealities, we provide a
new Fourier domain recovery algorithm. Our approach is validated both in theory and via extensive experiments on
our prototype analog-to-digital converter, providing the first demonstration of unlimited sampling for data arising
from real hardware, both for the current and previous approaches. Advantages of our algorithm include that it is
agnostic to the modulo threshold and it can handle arbitrary folding times. We expect that the end-to-end realization
studied in this paper will pave the path for exploring the unlimited sampling methodology in a number of real world
applications.
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FREQUENTLY USED SYMBOLS

Symbol Definition

A Analog-to-digital converter (ADC) threshold.
M Centered modulo non-linearity.

;//v,\ Generalized or non-ideal modulo non-linearity.
tm Folding instant introduced by ///7,\ .

Ba Space of 2-bandlimited functions.

g(t) Continuous-time, 2-bandlimited function.

v [K] Point-wise samples of a bandlimited function.
y [K] Modulo samples of a bandlimited function.

g (t) Simple function taking values on a 2\-grid.
Ky (1) Simple function taking values on a general grid.
AN Finite-difference operator of order V.

7 (K] First order finite-difference of  [k].

Jp Fourier series coefficient of function g ().

Vv Discrete Fourier Transform (DFT) matrix.

J[n] Sampled or discrete Fourier transform (DFT).
Ik Set of K contiguous integers from 0 to K — 1.
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I. INTRODUCTION

N the recent line of work [1]-[3], the authors introduced the Unlimited Sensing Framework (USF). The

USF allows for the acquisition of signals that are orders of magnitude larger than the dynamic range of the
analog-to-digital converter (ADC) used in the sampling process. Suppose that an ADC can measure up to 2\ volts
(peak-to-peak), then any signal with maximum amplitude larger than A would result in clipped or saturated samples,
for which the Nyquist-Shannon sampling theory is no longer applicable. In contrast, the USF exploits a co-design
of hardware and algorithms to allow for high-dynamic-range (HDR) signal recovery beyond the threshold of A.

e On the hardware side, a continuous-time signal is folded via a modulo non-linearity before it is sampled. In
Fig. 1, we show an oscilloscope screenshot of the HDR input and the modulo-folded output, obtained via our
hardware prototype. This hardware is later used in Section III of the paper to validate the theory presented in
this work.

e On the algorithmic side, one needs to solve the ill-posed inverse problem of recovering a signal from folded
measurements. The solution approach of [1]-[3], which capitalizes on certain commutativity properties of the
modulo non-linearity, and the associated reconstruction guarantees are reviewed in the next subsection.

A. Overview of Unlimited Sampling and Reconstruction

When working with folded signals as in Fig. 1, the following result shows that a bandlimited function can be
recovered from a constant factor oversampling of its modulo samples.

Theorem 1 (Unlimited Sampling Theorem [1]). Let f (t) be a continuous-time function with maximum frequency
Wmax (rads/s). Then, a sufficient condition for recovery of f (t) from its modulo samples (up to an additive constant)
taken every T seconds apart is T < 1/ (2wmaxe) where e is Euler’s constant.

Note that the sampling criterion is independent of A and only depends on the bandwidth of the signal. This is
somewhat surprising and indeed the reconstruction becomes less stable with respect to noise for large amplitudes
[3]. Also, the sampling rate required for local reconstruction from a finite set of modulo samples grows in proportion
to the dynamic range of the signal, relative to A, see for example the local reconstruction theorem discussed in [4],

[5].

1 260V 2 i 4 2B0V/ 1.0002 6.000g/ stop

Fig. 1. Hardware demonstration for unlimited sampling [1]-[3]. We show an oscilloscope screen shot plotting a continuous-time function
(ground truth, black) and its folded version (pink). The input signal with dynamic range 20V peak-to-peak (== 10)\) is folded into a 4.025V
peak-to-peak, signal. We have tested sampling and recovery of signals as large as 24\. A live YouTube demonstration is available at
https://youtu.be/prv40WlzHh4.


https://youtu.be/prV40WlzHh4
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How does the Unlimited Sampling algorithm [3] work? Let us formally define the centered modulo operation
using the mapping
f o1 1 def
: 22 ||==+=l| — = = f- 1

g (|feg]-3) - m
where [[f] and | f| define the fractional part and floor function, respectively. The recovery procedure for “inverting”
the .#)(-) operator relies on two steps, (i) isolating the higher order finite differences followed by, (ii) stably inverting
the difference operator. The modulo decomposition property (cf. Fig. 4 in [3]) allows us to write,

g(t) = A\(g (1) +e4(t),  &4€2\L 2)

where ¢4 is a simple function. Let us fix g € Bn where Bg denotes the space of {)-bandlimited functions. We
denote the conventional and modulo samples by, v [k] = g (kT) and y [k] = .#\(g (kT)), respectively. Let ANy =
AN=1(Ay) denote the N'! difference operator with (Ay) [k] = y [k + 1] — y [k]. Since ANe, € 2)Z, it follows
that,
(2)

MDAV ey (KT)) =0 = M\(AN7) = A\(Ay). 3)
Oversampling g € Bq results in highly correlated samples and hence, (AN 'y) [k] shrinks as the sampling step T’
decreases. Quantitatively, the shrinking effect is explained by the bound, ||ANY||s < (T9€)"]|g|lc in [3] where
|| - || denotes the max-norm. For a suitable N (cf. [3]), namely,

N* > log A — log f3,
log (T'2e)

],&QMM@wwm @

choosing T' < 1/Qe ensures that [|AY ||, < A. Modular arithmetic shows that! for any sequence s [k], it holds
that

MA(AN 5) = A\(AN (AN (9)). Q)
By choosing N = N*, we have,
T =Tys <1/ <% ANy = (AN y). (©)

The unlimited sampling based recovery algorithm [1] recovers v from AY"~ and is also stable with respect to

quantization noise [3]. The reconstruction works by estimating AV *_”)57 for n = [0, N*] thus yielding €., and

finally, v = y + €, is the recovered signal. The approach in [1], [3],

(i) is inherently stable because we are able to exploit the restriction on the range of ¢, that is, £, € 2)\Z.

(ii) exploits properties of bandlimited functions’ to estimate the “unknown constant of integration” for inversion of
AN,

It is precisely this synergistic interplay between (i) and (ii) that allows our approach to treat orders N > 1,

distinguishing it with seemingly similar methods® [6] analogous to Itoh’s method for phase unwrapping [7], that

are restricted to low orders. For further details and comparisons, see [3]. Recovery with higher orders has clear

advantages in the context of applications such as HDR imaging [8], tomography [9], [10] and sensor array processing

[11], [12].

B. Related Work

Following our work [1], the problem of sampling and reconstruction of bandlimited and smooth functions, from
modulo samples, has been studied in various contexts. Ordentlich et al. [13] studied recovery from quantized modulo
samples, using side-information, from a rate-distortion perspective. In parallel papers, [14] and [15] proved that
bandlimted functions are uniquely characterized by modulo samples, when sampling rate is above the Nyquist rate.
In [15], the authors also present a constructive approach, provided that a subset of unfolded samples is known.
Unlimited sampling has also been studied in the context of finite-length signals [4], [5], random measurements of

'See Proposition 2 in [3].

*In praticular, we use Bernitein’s inequality. This allows for recovery of the unknown polynomial in the kernel of A, up to a constant.

3The key difficulty is that each time the operator A is inverted, an unknown constant in the kernel of A has to be estimated. Also for
N =1, our method is considerably more stable as these approaches do not capitalize on the stabilizing effect described in (i).
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Fig. 2. Example of reconstruction based on data acquired using our prototype US-ADC. Ground truth is shown in shaded yellow. (a) Non-
ideal modulo mapping. (b) Unlike in the perfect modulo case, the residue function, or g —.#x(g), no longer lies on a grid of 2A\Z, specially
at the locations marked by gridlines on the y-axis. The first order difference encodes both non-ideal folds and inaccuracies in terms of a
sparse representation. (c) By exploiting the sparse structure of the residue, our algorithm that is agnostic to A is able to recover the residue
precisely. (d) Since g — .#(g) & 2A\Z, (3) does not apply and unlimited sampling based recovery [3] yields an erroneous reconstruction. In
contrast, our Fourier domain approach based reconstruction is agnostic to A and results in a near perfect reconstruction.

sparse signals [16], one-bit [17] and multi-channel sampling [18] as well as wavelet based reconstruction approaches
[19]. Recovery guarantees for denoising of modulo samples with bounded and Gaussian noise models were discussed
in [20].

Recently, we have have developed USF based recovery methods that are tailored to larger classes of signal spaces
and inverse problems. For instance, recovery of multi-dimensional functions on arbitrary lattices was considered in
[21]. Functions that belong to spline spaces (e.g. images) were studied in [8]. The modulo Radon transform was
introduced in [9] and its application to HDR tomography was presented in [10]. Computational sensor array signal
processing based on USF was presented in [11], [12].

C. Motivation and Contributions

The work presented in this paper is pivoted around the practical aspects of unlimited sampling and the insights
developed from building a prototype USF based ADC.

1) Non-Ideal Folding. When implementing the modulo circuit in hardware (see Section III for more details), we
observed that it occasionally exhibits non-ideal foldings. An example output of the circuit with such artifacts
is shown Fig. 2(a). More precisely, in Fig. 2(a) some of the folding times are delayed; other types of non-ideal
foldings that we have observed includes spurious jumps and inaccuracies in the folding threshold A. In all
these cases, the residue ¢, in (2) is still piecewise constant, see for example Fig. 2(b), but no longer satisfies
g4 € 2)\Z. The consequence is that .2 (ANe, (kT)) # 0 in (3) and the reconstruction via (6) is erroneous,
see Fig. 2(c)). We attribute the artifacts to electronic limitations such as the maximum rate at which an input
signal can be folded. As this rate depends on the bandwidth of the input signal, wnax, an exact implementation
must be carefully calibrated to match wmnax in Theorem 1. In this paper we show that this calibration is not
required and rather, such limitations can be circumvented algorithmically.

2) Lower Sampling Rates. While T(2e < 1 guarantees that (6) holds for some /N, in practice, for stability reasons,
it is desirable that we work with smaller values of the finite-difference order N. To satisfy (4), one then needs
higher oversampling. Thus a natural question is whether alternative recovery approaches can allow for recovery
with both moderate oversampling and low values of N.
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Contributions: The main contribution of this work is to provide the first validation the unlimited sampling approach,
thus taking our theoretical ideas all the way to practice. To do so, we go beyond the conventional literature in
fundamental ways. On the theory front, we propose a novel, Fourier domain, recovery algorithm that can handle non-
idealities and uncertainties introduced by the hardware, while operating at lower sampling rates. On the hardware
end, we develop a custom-designed, USF based prototype ADC, the US-ADC. This is the key to enabling real
experiments. Extensive hardware experiments based on the US-ADC, corroborate the effectivity of our new recovery
approach. The upshot of our end-fo-end sensing pipeline is that we can recover signals as large as 24 x the ADC
threshold (). Furthermore, our work also validates the first approaches presented in [3].
Concretely, the advantages of our recovery method include that it
1) is agnostic to A and hence, can combat any non-idealities.
2) requires computation of A' only; this is specially beneficial in the case of errors. The approach in [3] requires
computation of AN which can be sensitive to hardware artifacts.

The precise signal model that we are working with consists of periodic, bandlimited signals, i.e., trigonometric
polynomials of finite degree. Note that this model is more restrictive than the infinite dimensional model considered
in previous works; this restriction, however, reflects the practical limitation that one typically samples signals on a
finite interval rather than the full real line.

Notation. The sets of real, integer, and complex-valued numbers are denoted by R, Z and C, respectively. We
use [x ={0,..., K — 1}, K € Z" to denote the set of K contiguous integers while its continuous counterpart is
denoted by 1x (t),t € R, the indicator function on _the domain X'. For a 7-periodic function h, we consider the
renormalized Fourier series coefficients as given by h,, = fOT h (t) e~ Mot dt where wy = 27/7 is the fundamental
harmonic. Vectors and matrices are written in bold fonts. The mean squared error or MSE between vectors x and
y of length K is defined by

=

1
K

de
E(x,y) =

P—h

ja [k] =y [K] |*. @)
0

B
Il

II. FOURIER DOMAIN RECONSTRUCTION APPROACH

Signal Model. In our work, we consider g € Bg such that g (t) = g (t + 7),Vt € R. Such signals can be written

as,
~ 27 Q
gt) =Y Ge™, wo=", P= {W )

T wo
lp|<P
where g, denotes the Fourier series coefficient and g, = g5 (Hermitian symmetry) with \%]2 < oco. Sampling

P
g (t) with sampling rate T results in /' samples «y [k] on the interval [0, 7). To solve for g, in (8), one requires
K > 2P + 1. Wen working with oversampled representation, we write g, in the Fourier domain as,

1 [Tg)e Pt peEpk
Go= 2 ool ’ : )
710, pelx \Epk
where the set Ep g is given by,
EP,K:[O,P}U[K—P,K—H, |EP7K|:2P+1. (10)

With KT = 7, the critical sampling rate for a P = [€2/wp] bandlimited function is 7' < 7/ (2P + 1).

Generalized Modulo Non-linearity. Our non-ideal modulo non-linearity, .#)(-), corresponds to subtracting a
piecewise constant function, with finite discontinuities, from g € Bq. In formulas, .#)(-) admits a representation
of the form,

9(t) = Mg (1) + %, (1), te0,7) (11)
where the (generalized) residue function is of the form
Ry (t) = c[m]ip, (t), Unlp, =R, c[m]€R. (12)

meM
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Fig. 3. Fourier domain partitioning of the bandlimited signal and the non-ideal folding instants given by (15).

Unlike in [3], we make no assumptions on the coefficients c[m] related to the residue function %, (t). Note that
A\(+) includes the exact modulo operation as a special case and hence our algorithm is backwards compatible
with the sampling model in [3].

A. Recovery Approach
Letting 6 denote the Dirac distribution and

gk € Ayk], v AyE, and r A%, (kT), (13)

respectively, we note that (11) implies
kelg, ylkl =k —rlk
K= Y e[m] 6 (kT — ty) (14)

meM

I
12

where t,,, € (TZ) N[0, 7) are the unknown folding instants. The size of the set M depends on the dynamic range
of the signal relative to the threshold . Since c[m] ¢ 2AZ, the contribution due to %, cannot be removed by
non-linear filtering of the amplitudes using a modulo non-linearity as in (3), which is a key ingredient of the method
in [3]. A classical alternative would be to filter out the “impulsive” component 7 [k| = (A%, ) [k] using the median
filter. However, this yields an inexact solution due to the nature of the median filter and is not considered in this
paper.

Instead, given K modulo samples y [k, k € I, we exploit the fact that (14) can be partitioned in the Fourier
domain as,

- Fn] -7 € (Epg-— K-1)7Z
] = jkl] r[n] ne(Epx_1)+( ) (15)
*f[n] n e (HKfl\Ep’Kfl)qL(K*l)Z
where 3 [n], the sampled or discrete Fourier transform (DFT) of y [k], is given by,
. def .k 27
= k; Jom = . 16
Gl Y7 ykle ™, wy= (16)

k€lg_1

The Fourier domain partition in terms of the DFT coefficients distributed over the two sets,
e n€ (Epg_1)+ (K —1)Z (bandlimited part) and,
e n€ (Ig_1\Epk—1)+ (K — 1) Z (modulo part)
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is schematically explained in Fig. 3. In vector-matrix notation, we can re-write (16) as,

o
=

€

vy, V] =e & pel, (17)

[<)

where V € CE-Dx(K-1) i5 the DFT matrix* and y is the DFT vector corresponding to the first-order finite-
difference samples y. In (15) and also as shown in Fig. 3, we have y[ |=-rn],Vne€lg_1\Epk_1 and this
simplifies to a sum of complex exponentials,

Tl = > 3" c[m]d (KT — ty) e~20m*

k€lx 1 meM

= Z c[m] eI tm (18)

meM

with M = | M| terms. Estimating the unknown parameters in (18) boils down to the spectral estimation problem [22].
In the area of error correction coding and impulse cancellation, Wolf [23] first observed that the non-bandlimited
spikes (or r [k]) being a parametric function, can be curve-fitted (e.g. using Prony’s method) on the “out-of-band”
interval, namely, Ix_; \ Ep x_1 in the Fourier domain. This approach was also used for impulse noise removal
from images [24] as well as bandlimited functions, in the context of Fourier [25] and generalized-Fourier domain
[26] sampling theory. -

In our case, we notice that (jw) %, (w) or equivalently 7 [n] in (18) is the contribution due to non-bandlimited
spikes. To see the approach in action, let us define a polynomial Py, (2),z € Z of degree M =

M-1

Pa(z) =[] (1 - > Zp (19)
m=0
with, roots (Pas (2)) = {&n}M 0, fm =e T tn, (20)
To evaluate the roots of the polynomial Py (z), one starts with identification of the filter coefficients® {p [m]}M_!
using Prony’s Method. On any interval of size 2M, we note that (p xT) [n] = 0, which is because,
(p*7) Z pn|T [l —n]
15 ML M
N el pln) el rine s
m=0 n=0
(a9 M1
2 c[m] P (e_]?ot"”> e Il — . (21
m=0 —_—
P (&m)=0
This leads to a recipe for evaluation of unknown filter p = [ p[0],--- ,p[M]]" with p[M] = 1. Algorithmically,

(21) implies that the coefficients of the unknown M—tap FIR filter, p are in the kernel of a Toeplitz matrix
comprising of out-of-band samples of 7 [n]. More precisely, for a given vector x, let us define a Toeplitz matrix®
T (x) € CMX(MHL) 5,

2 [0] 1] z[-M]
TS| [1] ) :[O] i R M (22)
zM—-1] z[M-2] - x[-1]

“We remind the reader that starting with X modulo samples, the operation y [k] = Ay [k] results in a loss of sample and hence the square
matrix V has a dimension (or rank) of K — 1. B

>We use M unknowns of p [m] instead of M + 1 as given by (19) as we normalize p [M] = 1.

®In MATLAB, given a vector x defined by 2M contiguous samples, namely, x[-M+¢L] --- x[M-1+L] where L is any integer-
valued translate, the corresponding toeplitz matrix T (x) is conveniently obtained by defining the function handle T = @(x,M)
toeplitz(x(M+1l:end),x(M+1:-1:1)).
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Then, (21) amounts to,
peker (Ty(r) <— Tu()p=0. (23)

By construction, J )/ (¥) requires any 2M, contiguous samples for identifying M = | M| folds of the modulo
non-linearity. As per our definition in (15), 7 [n] is isolated on the set I \ Ep k1. For the estimation of p in
(23), the requirement is that the cardinality of the set I \ Ep i1 is larger than 2M. From Fig. 3, we see that
Ix—1 \Epx_1| = K —2P — 2 and this translates to the condition,

K—-2P—-222M <= K2>2(P+M+1)

With K'T' = 7, the sampling density criterion,

T Q
T'=TeppL ——++——, P=|— 24
PP+ M) M .
guarantees the recovery of the M folding instants {¢,, n]\f{;& introduced by the non-ideal operator /Z/\;() We

formalize our recovery guarantee in the following theorem.

Theorem 2 (Fourier Domain Reconstruction). Let g € Bq be a T-periodic function. Suppose that we are given K
modulo samples of y k] = #\(g (kT)) folded at most M times. Then a sufficient condition for recovery of g (t)
from y [k] (up to a constant) is that, T < 7/K and K > 2 ([g—ﬂ + M +1).

Proof. Note that, by (15) one has that

[TL] = —f[n] , Vne€ (HK—I \EP,K—I) + (K — 1) Z.

<)

Then, observing that only such n appear on the right hand side of (22), we obtain from (23) that p € ker (TM (i))
Given that Iy, (i) has rank M (this follows from the Vandermonde decomposition of Toeplitz matrices, similar
to the Carathéodory—Fejér decomposition, cf. [27]), this implies that p = vp for some v € C and p as obtained
in step 4b) of Algorithm 1. Consequently, the roots of &,, of P/ (z) agree with the roots &, of Py (z) and one
has ,,, = t,, up to index permutation. Once the exponents have been identified, plugging (18) into (15) yields a
linear system which can be solved by least-squares minimization as in Step 4e). This implies that ¢[m] = c¢[m)]
and hence 7 [k] = r [k], and therefore 7 [k] = r [k] (up to an additive constant). Together with the modulo samples,
these residuals allow for the recovery of the unfolded samples, which completes the proof. |

Reconstruction without Periodicity. Recall that the periodicity assumption made in our paper enables a practical
approach for recovery of signals from folded measurements. A theoretical reconstruction guarantee when infinite
samples are available, however, can also be obtained for signals that are not periodic via the discrete-time Fourier
transform (DTFT). Then the requirement will be to have a sampling density high enough to ensure that in the
DTFT, the shift between the aliased copies of the frequency support is at least Q2 + 20 + 1.

B. Summary of Recovery Algorithm

Here, we qualitatively summarize the rationale of Algorithm 1. When the sampling criterion in (24) is satisfied,
our recovery method can be applied to “unfold” the non-ideal, modulo samples. Starting with K folded samples
of the bandlimited function in (8), we compute the first-difference y = Ay (cf. (13)). Then, we apply the DFT
on the vector y consisting of K — 1 samples, yielding y in (17). According to (15), the DFT coefficients defined
for n € (Ix_1 \Epx_1) + (K — 1) Z are solely attributed to the unknown folding parameters {c[m],tm }mem
of Z, (t) in (12). Hence, in the Fourier domain, we define [z], = [ﬂn ,Vn € Ix_1 \ Epx—1 which follows the
parametric representation in (18). Given M = | M|, estimation of {c[m],t,,} boils down to the classical spectral
estimation problem [22]. Concretely, this is implemented in step 4) of Algorithm 1 yielding estimates {[m],t,,}
which are used to estimate 7 [k] (cf. step 5)). To map 7 [k] — 7 [k], we need to invert the first-difference operator
and this is carried out in (cf. step 6). Combining 7 [k] with modulo samples y [k] in accordance with (14) yields
bandlimited samples Jgp [k] (cf. step 7)). Low-pass filtering the same results in the continuous-time function g € Bq,.
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Algorithm 1: Fourier-Prony Recovery Algorithm.
Input: {y [k]}+—, 7, P in (8) and M = | M| in (18).
Result: Samples 7rp and bandlimited function, g (¢).
1) Compute y = Ay as in (13).
2) Compute DFT or ¥ = Vy using (17).
3) Define [z],, = [i]n, nelg 1 \Epx_1.
4) Fold Estimation in the Fourier Domain Estimation.
4a) Using z from 3), define T/ (z) using (22).
4b) Find p such that Ty, (z) p = 0. N
4c) Compute the roots &, of the polynomial Py (2) in analogy to (19).
4d) Estimate tn = —TZEm, Jwo-
4e) Estimate ¢[m] using least-squares minimization,

2
_ (18) .
c[m] = n[111]1

2[n] = Y clml &y,

meM

5) Estimate 7 [k]. This is done by plugging {€[m], tm }men in (18), yielding ?[n} and then performing inverse
DFT.
6) Estimate 7 [k].
6a) Zero-pad to convert 7 € [y 1 — T € I.
That is, 7 [k + 1] =7 [k] , k € [x_1 and 7 [0] = 0.
k
6b) Apply anti-difference, 7 [k] = > 7 [m],k € Ik.
m=0
7) Estimate Jgp [k] = 7 [k] + y [k] (up to an unknown const.).
8) Estimate g (¢) by applying sinc-interpolation to 7 [k].

1) Implementation Strategy: When the conditions of the above theorem are met, the steps outlined in Algorithm 1
recover the unfolded samples ~ [k] up to an unknown constant. The reconstruction is exact in the absence of noise.
In the presence of noise and uncertainties arising from hardware implementation, the reconstruction procedure
can be stabilized, for example, with the Matrix Pencil method [28]. Note however, that the Matrix Pencil method
involves a tuning parameter (namely, the pencil parameter [28]), and finding the optimal choice for this parameter
in a practical setting is typically not straight forward, especially as the number of spikes arising in our experiments
exceeds the numbers commonly studied in previous works. As the Matrix Pencil method is not the main focus of
this paper, for our experiments we use the choice that yields the best reconstruction.

III. HARDWARE EXPERIMENTS

To investigate the validity of our approach we designed a hardware prototype—the US-ADC—implementing
the unlimited sampling pipeline. The electronic circuit, its hardware implementation together with an oscilloscope
screenshot are shown in Fig. 4. To see an experiment in action, a live YouTube demonstration has been made available
at https://youtu.be/Juzg80gUrsM. In spirit of reproducible research, we plan to provide a “DO IT YOURSELF”
(DIY) hardware guide and release our algorithmic implementations in the near future.

Experimental Protocol. For each experiment, we simultaneously acquire the bandlimited signal ¢ € Bg and
its modulo samples y [k] € [0.5,4.5] + DC (volts) where DC is an adjustable constant in the US-ADC. We use
A~ 2.01 + 3/20 where +3/20 is a manually adjustable design parameter. In experiments 1-4, we use g € B in
the range 20 V,, (volts, peak-to-peak) and DC is adjusted so that the modulo samples are aligned to the x-axis,
taking both positive and negative values. In experiments 5(a) and 5(b), we use substantially HDR signals with a
range of ~ 48 V, and ~ 58 V,,, respectively. Although our hardware is equipped with its own ADC, to be able
to obtain a ground truth, we simultaneously plot the input and output of the US-ADC on the 4 channel DSO-X
3024A oscilloscope. There on, we use the in-built 8-bit sampler of the oscilloscope to sample the waveforms.
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(a) Printed Circuit Board (b) Hardware Prototype (c) Input and Output on an Oscilloscope
Continuous-time Input Signal Continuous-time Input Signal https:/ /youtu.be/JuZg80gUrsM
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Fig. 4. Hardware prototype for unlimited sensing framework. Our initial design is capable of folding a signal that is as large as 24\ and as
shown in Section III, we have tested recovery of signals as large as 48 Vp, and 58 V,, respectively. (a) Printed circuit board. (b) Electronic
implementation that transforms a continuous-time input signal into a continuous-time modulo output. (c) Live screen shot of the oscilloscope
plotting the output of a conventional ADC (yellow) and USF based ADC (pink) signal. When the input signal exceeds the oscilloscope’s
dynamic range, the oscilloscope’s inbuilt ADC saturates. However, the output signal from our circuit continues to fold. A live YouTube
demonstration of this hardware experiment is available at https://youtu.be/Juzg80gUr8M.

Reflecting the 8-bit resolution, the samples are effectively quantized by an 8-bit, uniform quantizer and hence, the

measurements are corrupted by quantization noise following the model described in [3]. For each experiment, we

report the numerical values for,

e the experimental sampling rate 7" and T¢p in (24) which is the sampling criterion required by Theorem 2. Where
needed, we also report Tyys that guarantees that (6) holds.

e the dynamic range of the input signal (p,) and the modulo samples (p,) where p, = max z [k] — min z [k]. The
ratio p./p, provides a measure of hight-dynamic-range recovery, independent of threshold M.

The bandwidth parameter P in (8) is estimated from the ground truth. Since experimental data may not be exactly

periodic, we use a slightly higher P so that the complex exponentials are well isolated in Step 3) of Algorithm 1

and one obtains an accurate reconstruction. We assume that M/ = | M| is given and we use the matrix pencil method

[28] in Step 4) of Algorithm 1 (cf. Section II-B1). For performance evaluation, we compute the mean squared error

(MSE) of the reconstruction defined in (7). We compare the following metrics.

e &(7,7rp) the reconstruction MSE obtained by using our proposed approach in Algorithm 1.

e &(7,7us), the reconstruction MSE resulting from the unlimited sampling algorithm [3] applied to modulo samples
with a hardwired threshold value of A = 2.01.

o E(7,Usopt), the reconstruction MSE for the identical circuit design, but resulting from the unlimited sampling
algorithm with a parameter Aop¢ that is different from the hardwired modulo threshold A = 2.01, namely,

K-1
Aope = min 3 |7 [k] — UsRecs; (y) (K] k (25)
k=0

where Jys [k] = USRecs (y) [K] is the reconstruction due to unlimited sampling algorithm [3], for a given X. The
rationale behind this choice is that in practice, where occasionally non-ideal folds may appear (cf. Fig. 2(a) and
the residue depicted in Fig. 2(b)), the hardwired threshold A will not always be the optimal parameter choice;
in contrast (25) will yield an optimal choice by design.

For all experiments, we use calibration to estimate the unknown offset arising from Step 6) of Algorithm 1. The
experimental parameters and results are summarized in Table I.

Experiment 1: Backwards Compatibility with the Unlimited Sampling Approach. The goal of this experiment
is to show that in its finite dimensional setting, our recovery approach is backwards compatible with the unlimited
sampling approach. For this experiment, we use modulo samples of a randomly generated trigonometric polynomial
shown in Fig. 1. The experimental data and the corresponding recovery results are shown in Fig. 5. The signal
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TABLE I
SUMMARY OF EXPERIMENTAL PARAMETERS AND PERFORMANCE EVALUATION

Exp.  Fig. No. T Trp K T P P~ py M &(7,7rp) &(7,7us) E(7,Yusopt)  Aopt
(us)  (us) (ms) L%W V) W) (Reconstruction MSE)
1 1,5  132.03 517.86 455 60.07 37 19.87 3.80 20 0.384x107% 2.39x107° 0251 x 107°  2.04
2 2.6 4 21652 249 0996 15 771 412 7  0.343x 1072 3.7 187x 1073 1.48
3 7 1000 24268 199 199 14 19.61 3.99 26 592 x 1073 3.38 7.01 0.83
4 8 81.25 14425 245 1991 20 205 3.97 48 9.38x107°  1.416 x 102 - -
5(a) 9 10849 407.15 1201 1401 7  ~48 426 161 — — — —
5(b) 10 70 26031 357 2499 3 57.6 544 44 0.3405 1.0857 0.4768 2.07

e T is the sampling rate of the ADC while T¢p is the sampling rate criterion in Theorem 2. e p~ refers to the dynamic range of input signal (ground truth) and is
computed using p, = max -y [k] — min -y [k]. Similarly, the output signal dynamic range p, refers to the modulo samples y [k]. ® E(+,Fp) refers to the MSE due to
reconstruction using the proposed Fourier domain approach. @ £(-y,qys) refers to the MSE due to reconstruction using unlimited sampling approach with A = 2.01.
. 8(7, WUSopt) refers to the MSE due to reconstruction using unlimited sampling approach with Aopt obtained by (25).
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Fig. 5. Experiment 1: Backwards compatibility with unlimited sampling. (a) Ground truth signal and modulo samples. The DC has been
adjusted so that the modulo samples are aligned with the x-axis. (b) Ground truth residue and recovered residue. (c) Fourier domain estimation
of T [n]; as desired, it approximately agrees with 3 [n] for n € Ix—1 \ Ep,x—1. (d) Reconstruction using proposed approach agrees with the
unlimited sampling method (A = 2.01). B

with 7 = 60.07 x 1073 s is sampled with T" = 132.03 us yielding K = 455 samples. The sampling rate required
for recovery is Trp = 517.86 us. We use P = 37. The input signal dynamic range is p, = 19.866 V,,, and the
same for folded samples is p, = 3.8852 V,,. The ratio p,/p, = 5.1132 shows that a signal as large as ~ 10 times
the US-ADC threshold can be recovered. The experimental data approximately satisfies the unlimited sampling
hypothesis, namely the condition in (6) and this results in a reconstruction MSE of &(v,7ys) = 2.385 x 1073,
Quantization and system noise lead to inaccuracies specially around ¢ = O where folding is concentrated. The
proposed approach, with M = 20 folds, results in &(v,Jrp) = 3.838 x 10~* which is a factor 10 improvement
in the MSE. This performance is comparable to (7, Jusopt) = 2.385 x 10~* which is obtained by optimizing \
using (25), which turns out to be Agpr = 2.04.

Experiment 2: Moderate Number of Non-ideal Folds; Towards of a Hybrid Reconstruction Approach. We
generate a Dirichlet kernel (periodized sinc function). The experimental data is shown in Fig. 2 and in this case,
7 =19.96 x 10~* s. The signal is sampled with T = 4 us yielding K = 249 samples. The sampling rate predicted
by (24) is Trp = 21.652 ps. We estimate P = 15. The input signal dynamic range is 7.7098 V,,,, and the same
for folded samples is 4.1171 V,,. The values are specifically chosen to evaluate the performance of the algorithm
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Fig. 6. Experiment 2: Optimizing for A enhances the performance of the unlimited sampling method. In this case, Aopt = 1.48 and using
this value, the reconstruction falls steeply from &(v,7us) = 3.7 to (7, Jusept) = 18.7 x 107>, For comparison with reconstruction using
the hardwired value A = 2.01, see Fig. 2(d). Having obtained Aopt, we note that the breaking points for unlimited sampling method are the
sparse locations in Fig. 2(b) where the amplitudes deviate the largest from the grid 2AZ. These locations can be accurately estimated by the
Fourier approach of this paper.

with a smaller number of non-ideal folds (M = 7). Despite the non-idealities, our Algorithm 1 is able to accurately
reconstruct the signal resulting in a reconstruction MSE of &(7,7gp) = 3.43 x 10™%. In contrast, even though the
sampling rate in this experiment satisfies the condition in (6) (numerically), the reconstruction breaks down when
using unlimited sampling algorithm [3] and E(7,7us) = 3.7. This performance can be enhanced by optimizing
A, in which case we observe £(7,7usopt) = 1.87 x 10~2 which greatly improves up on the unlimited sampling
algorithm with the hardwired parameter but remains two orders of magnitude worse than Algorithm 1. This worse
performance is mainly due to a few “breaking points” between which one encounters a temporary offset. These
breaking points correspond to the few locations in Fig. 2(b) where the amplitudes deviate the most from the grid
2)Z. However, these locations can be exactly estimated using our Fourier domain approach that is agnostic to .
This shows promise for a hybrid reconstruction approach where the unlimited sampling method is used to resolve
most of the folds followed by a Fourier domain approach to resolve the remaining breaking points.

Experiment 3: Recovery where Unlimited Sampling Requires Higher Order Differences. Given that the method
proposed in this paper relies only on the first order differences of the samples, one could expect that sampling rate T'
needs to be of size comparable to what is required for the unlimited sampling method with first order differences,
N = 1. This experiment however confirms our theoretical finding that this is not the case. Despite a sampling
rate for which the unlimited sampling method requires higher order differences, the Fourier based approach still
yields accurate recovery — as predicted by Theorem 2. The experimental parameters are listed in Table I and the
reconstruction is shown in Fig. 7. Indeed, in this experiment, the choice of sampling rate 7' = 1 ms violates the
numerical condition |[Az| < A\ which is necessary to allow for the choice N = 1, but satisfies the condition of
Theorem 2.

Experiment 4: Recovery of Burst Signals with Clustered Folds. In this example, we consider a “burst" signal
which introduces clustered folds. Such signals typically arise in digital and radio communications where amplitude
modulation is used for transmitting messages. From the experimental parameters in Table I, we note that in
comparison to previous setups, this case results in a relatively high number of folds, M = 48, which are also
clustered. This is a challenge in the super-resolution step of our algorithm, as such methods work best for few,
well-separated spikes (corresponding to folds in our measurements). Nevertheless, with reasonable oversampling,
(Trp/T) = 1.78, our recovery approach is able to reconstruct the signal accurately with &(v, Jrp) = 9.37 x 1073,
The reconstruction is shown in Fig. 8(a) and the recovered residue is shown in Fig. 8(b).

Experiment 5: High Dynamic Range Reconstruction.
In the two experiments that follow, our goal is to push our hardware and the algorithm to its limits so that signals
with amplitudes as large as 24\ and folds as large as M = 161, can be reconstructed. Such HDR inputs are likely
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Fig. 7. Experiment 3: Recovery at lower sampling rates than what is prescribed by the Unlimited Sampling Theorem in Theorem 1 . (a)
Ground truth and non-ideal modulo samples. (b) Ground truth and recovered residue. (c) Fourier domain estimation of 7 [n], again showing
approximate agreement with y[n] for n € Ix_1 \ Ep,x—1. (d) Reconstruction using the proposed approach and the unlimited sampling
method (A = 2.01). B
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Fig. 8. Experiment 4: Burst signal with higher number of folds (M = 48). (a) Ground truth signal and non-ideal modulo samples. (b)
Ground truth residue and recovered residue.

to amplify deviations and non-idealities in the US-ADC prototype and hence, the experiments serve as an edge
case test for our recovery algorithm.

(a) Uncalibrated Example (= 48 V,,;,). In this case, we use our hardware’s internal ADC to sample the waveform
and hence, we do not have access to the ground truth. That said, the signal of interest is the alternating current drawn
from the UK mains power socket with a frequency ~ 50 Hz. Out of K = 1291 samples are sampled at 7' = 108.488
us. Due to the high dynamic range, we estimate /M = 161 folding instants. Our reconstruction approach gives a
reasonable reconstruction and to check this, we observe the Fourier spectrum of the reconstructed signal which
shows a spike at 50.018 Hz. The modulo samples and the corresponding reconstruction is shown in Fig. 9. We
also show that recovery using unlimited sampling method fails due to non-idealities. We find it remarkable that our
approach yields and accurate reconstruction despite the fairly large number of folds (M = 161). Our explanation
for this performance is the interplay between accurate modeling, exact knowledge of M, and oversampling that
avoids algorithmic challenges.

(b) Calibrated Example (= 58 V,;,). To establish that our recovery approach can indeed handle HDR signals, we
repeat the experiment with access to the ground truth as we use the oscilloscope’s built-in ADC. The corresponding
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High Dynamic Range Reconstruction of 50 Hz AC Voltage in UK Mains Socket
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Fig. 9. Experiment 5a: High Dynamic Range voltage reconstruction of ~ 48 V|, UK mains alternating current (50 Hz).
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Fig. 10. Experiment 5b: HDR voltage reconstruction of ~ 58 V,,, signal.

waveforms and reconstruction are plotted in Fig. 10(a). Due to the HDR swing of the input signal, non-ideal jumps
are observed in the measurements and have been annotated in Fig. 10(b). The non-ideal jumps result in sub-optimal
reconstruction when using the unlimited sampling method but the performance can be enhanced by optimizing .
The results tabulated in Table I yet again show the effectivity of our approach.
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IV. CONCLUSIONS AND TAKE-HOME MESSAGE

In our previous works on unlimited sampling [1]-[3], we studied new acquisition protocols and recovery
algorithms for high-dynamic-range sensing based on modulo measurements. In this paper, we revisited this problem
and proposed a novel solution approach, which, in contrast to the first works, is robust to non-idealities, as we
observed them in experiments with a hardware prototype that we developed.

Our new algorithm is designed for finite-dimensional, folded signals and is agnostic to the sensing threshold .
The main insight behind our approach is that the folds introduced by the modulo non-linearities can be isolated in
the Fourier domain, which gives rise to a frequency estimation problem. For recovery, we rely on high resolution
spectral estimation methods. This allows us to deal with arbitrarily close folding instants. At the cross-roads of
theory and practice, our work raises interesting questions for future research.

e We currently assume that the number of folds is known. We find it very interesting to explore whether this
number can be bounded in terms of function parameters such as the amplitude. Alternatively, developing a robust
criterion for estimating the same from data would benefit the recovery procedure.

e Although we have presented empirical results based on experiments with a hardware prototype, our analysis
does not yet consider the case of noise for the Fourier domain approach. This remains an interesting pursuit to
complement our guarantees.

e At the core of the recovery procedure designed in this paper is a spectral estimation problem [28]. We expect
that future advances for this problem will also have interesting implications for the problem of reconstruction
from modulo measurements. In particular, the limitations of current approaches for this problem in terms of the
number of spikes that can be recovered will also directly translate into limitations of the approach presented in
this paper. Also viewing the problem from the perspective of super-resolution [29] may yield additional insights
and solution strategies.

e As an alternative way to overcome these limitations, in future work we aim to investigate hybrid methods that use
the Fourier domain approach only for spikes that correspond to non-idealities and combine it with the original
unlimited sampling method for the other spikes.
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