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Abstract— In this paper, we study the channel estimation
problem in correlated massive multiple-input-multiple-output
(MIMO) systems with a reduced number of radio-frequency
(RF) chains. Importantly, other than the knowledge of channel
correlation matrices, we make no assumption as to the structure
of the channel. To address the limitation in the number of RF
chains, we employ hybrid beamforming, comprising a low di-
mensional digital beamformer followed by an analog beamformer
implemented using phase shifters. Since there is no dedicated RF
chain per transmitter/receiver antenna, the conventional channel
estimation techniques for fully-digital systems are impractical.
By exploiting the fact that the channel entries are uncorrelated
in its eigen-domain, we seek to estimate the channel entries
in this domain. Due to the limited number of RF chains,
channel estimation is typically performed in multiple time slots.
Under a total energy budget, we aim to design the hybrid
transmit beamformer (precoder) and the receive beamformer
(combiner) in each training time slot, in order to estimate the
channel using the minimum mean squared error criterion. To
this end, we choose the precoder and combiner in each time
slot such that they are aligned to transmitter and receiver eigen-
directions, respectively. Further, we derive a water-filling-type
expression for the optimal energy allocation at each time slot. This
expression illustrates that, with a low training energy budget,
only significant components of the channel need to be estimated.
In contrast, with a large training energy budget, the energy is
almost equally distributed among all eigen-directions. Simulation
results show that the proposed channel estimation scheme can
efficiently estimate correlated massive MIMO channels within a
few training time slots.

I. INTRODUCTION

Massive multiple-input-multiple-output (MIMO) is proven

to be the most promising technology for a wide range of

applications, such as the Internet of things (IoT) [2]–[4], in

the next generation of wireless networks. Conventionally, in

wireless systems, signal processing is performed at baseband.

This requires that, at the receiver for example, the analog

signal be filtered, down-converted and properly sampled.

These tasks are carried out by hardware modules known as

radio-frequency (RF) chains. Therefore, conventional base-

band signal processing algorithms require a dedicated RF

chain for each transmit/receive antenna. Given a large number

of antennas in massive MIMO systems, such a large number

of RF chains may not be available due to their high cost

and power consumption. To overcome this challenge, a hybrid

analog-digital beamforming structure has been proposed for

massive MIMO systems [5]. In such systems, the signal is

first processed at baseband, and is then up-converted to the

RF domain using a reduced number of RF chains. The signal

This work has been presented in part in [1].

is then passed through a network of phase shifters connected

to all transmit antennas before transmission. At the receiver,

the received signals first go through a network of phase

shifters, then, are down-converted using a reduced number

of RF chains, and finally are fed to baseband processing

blocks. Therefore, the conventional beamforming techniques,

performed at the baseband [6]–[8], may not be applicable.

Recently, several techniques have been proposed to design

hybrid analog-digital beamformers (HB) [9]–[14].

Achieving the performance of the aforementioned hybrid

design approaches requires that accurate channel state infor-

mation (CSI) be available. However, in such systems, channel

estimation is challenging because the high dimensional chan-

nel is observable only through the limited number of RF chains

[15]. This implies that, the conventional fully-digital channel

estimation methods cannot be directly applied to obtain the

CSI for massive MIMO systems with a hybrid structure [16]–

[20]. In this paper, we aim to address the channel estimation

problem for such a system by exploiting the correlation among

the entries of channel matrix. Other than the knowledge of

channel correlation matrices, we make no further assumption

on the structure of the channel. Before we elaborate on the

contributions of this paper, we briefly review the related work.

Related Work: In the context of millimeter-wave

(mmWave) communication systems, the CSI acquisition chal-

lenge has been addressed by exploiting channel sparsity in

mmWave frequencies [21]–[26]. By exploiting the limited-

scattering nature of mmWave channels, the authors in [22],

[23] show that the MIMO channel can be represented using

a parametric model which is sparse in the underlying pa-

rameters [22]. Therefore, for the sake of channel estimation,

instead of estimating the entire channel matrix, only the angles

of departure/arrival (AoD/AoA) of dominant paths and the

corresponding path gains are estimated. In this case, the

channel estimation is formulated as a sparse problem where

the measurement matrices are expressed in terms of the hybrid

precoders/combiners in the training phase. In [15], [21], [22],

[27], the measurement matrices are designed based on adaptive

compressive sensing (CS). In particular, the authors of [22]

propose an adaptive algorithm to design the measurement

matrices. The channel estimate is obtained iteratively by

scanning through a set of training beamforming vectors at

both transmitter and receiver sides. The complexity of the

work in [22] is dictated mainly by the level of channel spar-

sity; however, in rich scattering environments, the algorithm

requires more resources with higher complexity to achieve

the channel estimation with desired angular resolution. In

[28], coarse channel estimation is performed using the beam

http://arxiv.org/abs/2107.07622v1
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TABLE I
SUMMARY OF RELATED WORKS

Frequency Channel Model Assumption Estimation Technique Reference

CS-based [15], [21]–[24], [27], [29], [30]

mmWave Parameteric Sparsity
Beam training followed by
CS-based resolution refining

[28]

ESPRIT [25]
MUSIC [31]
PASTd [32], [33]

Microwave and mmWave Kronecker Known Channel Correlations MMSE [34], [35]

training approach, while a subsequent CS algorithm refines

the resolution. As an alternative to adaptive CS algorithms,

traditional random CS approaches exploiting pseudo-random

weights are used in a phased array MIMO system with a hybrid

structure [24], [29]. The authors of [23] apply random CS with

simpler analog beamformers, where the network of switches

is replaced with the phase-shifter network1. In [30], the CS-

based channel estimation algorithm extended to a mmWave

communication system equipped with one-bit analog-to-digital

converters (ADCs) and HB.

The authors of [25], [31]–[33] propose non-CS-based tech-

niques to estimate the channel in massive MIMO systems

with the hybrid precoder/combiner structure. Assuming the

parametric channel model, the authors in [31] exploit two-

dimensional beamspace multiple signal classification (MU-

SIC) to estimate the path directions followed by a least-

squares estimate of the path gains. In [25], estimating signal

parameters via rotational invariance techniques (ESPRIT) is

employed to estimate the CSI. Note that applying the ESPRIT

technique to massive MIMO systems with the hybrid struc-

ture is challenging, since this technique requires the shift-

invariance property of the array response in the observation

samples. To circumvent this issue, the authors of [25] first

design a training signal for channel estimation in a way that

the low-dimensional effective channel has this shift-invariance

property. Then, exploiting the angular sparsity of the mmWave

channel, the AoA and AoD estimates are obtained. The

authors of [32] and [33] exploit projection approximation

subspace tracking with deflation (PASTd) algorithm to track

the subspace and estimate the right (left) singular vector at the

transmitter (receiver).

In [34], [35], the authors consider a multi-user multi-cell

communication system where each user is equipped with one

antenna. Assuming a Kronecker channel model, with a priori

known channel’s covariance matrices, the authors estimate the

channel matrix by jointly designing the pilot sequences (to

mitigate the effect of pilot contamination) and analog com-

biners that yield the minimum channel estimation error. It is

shown that, regardless of the choice of the pilot sequences, the

analog combiners can be designed using existing algorithms,

such as the one proposed in [14]. Then, the pilot sequence is

designed by solving an optimization problem that yields the

minimum sum mean squared estimate (MSE) of the channel

estimate. Table I summarizes the existing channel estimation

techniques in massive MIMO systems.

1With switches, the entries of analog beamforming matrix are either 0 or
1.

Contributions and Methodology: In this paper, we propose

a training-based channel estimation technique for correlated

massive MIMO systems with the hybrid precoder/combiner

structure. Using the Kronecker model to represent the channel

statistics, we assume that the long-term transmitter and re-

ceiver correlation matrices are available at both transmitter and

receiver. Since a correlated MIMO channel has fewer degrees

of freedom than an uncorrelated channel, we expect that fewer

parameters need to be estimated to effectively reconstruct the

channel.

Due to the reduced number of RF chains at both transmitter

and receiver, the channel training is performed in multiple time

slots. To minimize the time used for training, we express the

channel in its eigen-domain, where the channel is projected

onto the eigenvectors of correlation matrices at transmitter

and receiver. This channel representation is referred to as

a virtual channel [36]. The channel matrix and its virtual

representation are unitarily equivalent. Importantly, the entries

of the virtual channel are uncorrelated – a fact that we use

to efficiently estimate the channels. To this end, we use the

minimum mean squared error (MMSE) criterion and design

the needed hybrid beamformers. Due to the constraint on

analog beamformers, the optimization problem is non-convex.

To efficiently solve this problem, we first solve for optimal

fully-digital beamformers. Then, we split the so-obtained fully-

digital beamformers into digital and analog beamformers using

a least-squares approach.

The main contribution of this paper lies in the design of

hybrid beamformers in order to estimate the channel matrix

of a correlated massive MIMO with reduced RF chains. The

hybrid beamforming design is carried out in two phases. In

the first phase, we assume that there is no hybrid structure for

the beamformers and we propose an MMSE-based technique

to design the fully digital beamformers. To realize the hybrid

structure, the beamformers are then split into the digital and

analog parts using the already-existing solutions, such as those

of [12], [37].

The designed fully-digital precoder and combiner in each

training time slot are, respectively, aligned to transmitter and

receiver eigen-directions, thereby allowing us to estimate a

portion of the virtual channel along its eigen-directions. To

minimize the MSE, more of training energy budget is allocated

to stronger eigen-directions. With a low training energy bud-

get, instead of estimating the channel in all eigen-directions,

only the components along the stronger eigen-directions are

estimated within a fewer training time slots. This is because

the rest of the eigen-directions are not as important from an
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MMSE point of view, and therefore, they are not estimated.

On the other hand, given a large training energy budget, the

energy is almost equally allocated to all eigen-directions.

Our system setup is different from the studies in [17], [38]–

[42]. Here due to a reduced number of RF chains, the signals

received in each time slot, belong to a space with a much

smaller dimension than the number of transmitter/receiver

antennas. Therefore, channel estimation has to be performed

in multiple time slots. We seek to optimally design the hybrid

beamformers in each time slot in order to estimate the channel

given a training energy budget. The work in this paper differs

from that [15], [21], [22], [24], [25], [27], [28] in the sense

that here we do not rely on any assumption of channel

sparsity. Instead, our approach in this paper considers a general

correlated MIMO channel model where such a correlation

is exploited to design the beamformers for channel training

efficiently.

The work in our paper is substantially different from those

in [34], [35], [43] (which are the most closely related work

in the literature). Here, we consider a point-to-point MIMO

system where the transmitter and receiver are both equipped

with a reduced number of RF chains. Unlike the study in [34],

[35], we estimate the channel in its eigen-domain, where the

channel entries in this domain are uncorrelated. Leveraging

this fact, we show that our channel estimation technique can

be performed with fewer training time slots. Furthermore, to

improve channel estimation accuracy, we design the hybrid

beamformers for each training time slot, as opposed to [34],

[35], where the combiner is fixed throughout the channel

training process.

The data and channel models as well as the design criterion

in our work are somewhat similar to those in [43]. The main

difference in the data models stems from the fact the study in

[43] focuses on designing training sequences for systems with

one RF chain per antenna, while our goal is to design hybrid

beamformers for systems with reduced number of RF chains.

As such, the result, the proofs, and the derivations of [43] is

not applicable to our system setup.

Organization: This paper is organized as follows: We intro-

duce the system model, including the received signal model

and the channel model in Section II. Section III introduces

the channel estimation problem formulation. To estimate the

channel, in Section IV, we propose an MMSE-based fully-

digital beamforming design. In Section IV, we explain how

to design the hybrid precoder and combiner by splitting the

fully-digital beamformers into analog and digital components.

Section VI presents simulation results to illustrate the efficacy

of the proposed approach. Finally, Section VII concludes the

paper.

Notation: We use bold upper and lower-case letters to de-

note matrices and vectors, respectively. E{·} denotes statistical

expectation. The transpose, hermitian, conjugate, and pseudo-

inverse operations are represented as (·)T , (·)H , (·)∗, and

(·)†, respectively; |x| is the absolute value of complex x;

⌈x⌉ returns the nearest integer greater than or equal to x;

mod(x,m) returns the remainder after division of x by m.

Tr(A) is used to denote the summation of diagonal entries

of matrix A. diag(x) represents a diagonal matrix whose

diagonal entries are the elements of the vector x, while

diag (A) is a vector that captures the diagonal entries of matrix

A. IN denotes an N×N identity matrix. 1N denotes an N×1
all one vector. blkdg [A1,A2, · · · ,AN] is a block diagonal

matrix whose nth diagonal entry is given by matrix An, for

n = 1, 2, · · · , N . The (i, j)th element of a matrix A is denoted

as A(i, j) or Aij , ⊗ is used for the Kronecker product, vec{·}
represents the matrix vectorization operation, and R+ denotes

the set of non-negative real numbers.

II. SYSTEM MODEL

Channel Model: We consider a narrow-band frequency-flat

MIMO channel model, where the signals at the transmitter

and receiver antenna arrays are correlated. Such a correlated

channel is expressed by the following canonical statistical

model, known as the Kronecker model [36], [44]:

H = S1/2
r HwS

1/2
t , (1)

where the entries of Hw are random variables drawn identi-

cally and independently from a complex Gaussian distribution

with zero mean and unit variance. The matrices St and Sr are,

respectively, the transmitter and receiver correlation matrices.

This model has been considered in [34], [36], [44]–[47] and

has also been verified through the measurements [48], [49].

To further characterize the channel model in (1), let us denote

the eigenvalue decomposition of St and Sr, respectively,

as UtΛtU
H
t and UrΛrU

H
r . The matrices Ut and Ur are,

respectively, the eigenvector matrices of St and Sr, while Λt

and Λr are diagonal matrices capturing the eigenvalues of St

and Sr, respectively. Using (1), we can write

H = UrΛ
1/2
r UH

r HwUtΛ
1/2
t UH

t = UrHvU
H
t , (2)

where Hv , Λ
1/2
r H̄wΛ

1/2
t and H̄w , UH

r HwUt. Note that,

using the fact that the entries of Hw are independently and

identically distributed (i.i.d.) and that Ut and Ur are unitary

matrices, we can show that the entries of H̄w remain i.i.d. [36].

Also, with pre- and post- multiplication of Λ
1/2
r and Λ

1/2
t , the

entries of Hv are uncorrelated with diagonal covariance matrix

Rv defined as [36]:

Rv , E{hvh
H
v } = Λt ⊗Λr = Λ, (3)

where hv = vec{Hv} and Λ is a diagonal matrix. Note that

we herein assume that Rv is full rank. The Kronecker structure

of Λ in (3) plays an important role in our proposed channel

estimation technique.

Signal Model: We consider a narrow-band point-to-point

MIMO system with N transmit antennas and M receive

antennas. We assume that the transmitter and the receiver are,

respectively, equipped with NRF
t and NRF

r RF chains. We also

assume that the channel training is performed in a maximum2

of Q time slots (we elaborate on the minimum number of

training time slots in Section III). As shown in Fig. 1, at

the qth time slot, q = 1, 2, . . . , Q, the training symbol, sq, is

first linearly precoded by multiplying with a digital precoder

2Indeed, Q is the maximum number of time slots available for channel
training. As we will show in this paper, not all Q time slots might be needed.
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Fig. 1. System model for channel training during the qth time slot, where q = 1, 2, . . . , Q.

vd
q ∈ CNRF

t
×1. The baseband signal, after the digital precoder,

is written as xq = vd
qsq .

The signal is then up-converted to the carrier frequency by

NRF
t RF chains. To construct the final transmit signal, the

N × NRF
t RF precoder, VRF

q , is applied to the signal xq at

the carrier frequency. In the literature, different architectures

for VRF
q have been proposed. In this paper, we use the fully-

connected phase shifter structure, in which VRF
q (i, j) is a

complex number with |VRF
q (i, j)| = 1. Under such hybrid

beamforming, the transmitted signal can be represented as:

x̄q = VRF
q xq = VRF

q vd
q sq. (4)

This signal propagates through the M × N channel matrix

H. We wish to estimate H. At the receiver, the signal is

first processed by the analog combiner, WRF
q ∈ C

M×NRF

r ,

implemented using analog adders and analog phase shifters,

implying that |WRF
q (i, j)| = 1, ∀ i, j. By passing through

NRF
r RF chains, the signal is then down-converted to base-

band. Hence, the received symbol vector rq after the down-

conversion can be written as:

rq,WRF
q

H
HVRF

q xq +WRF
q nq=WRF

q

H
HVRF

q vd
qsq + n̄q.

Here, n̄q , WRF
q nq , where nq ∼ CN (0, σ2

nIM ) is the re-

ceiver’s noise vector during the qth time slot. Further baseband

processing is carried out by applying an NRF
r ×NRF

r digital

combiner Wd
q . Hence, the final processed received signal can

be written as:

yq , Wd
q

H
rq = WH

q Hvqsq +Wqnq, (5)

where Wq , WRF
q Wd

q and vq , VRF
q vd

q are the overall

hybrid precoder and combiner, respectively. Note that, in order

to estimate H, we must design the hybrid beamformers, i.e.,

WRF
q , Wd

q , VRF
q , and vd

q . Throughout the paper, for the ease

of exposition, we set NRF = NRF
t = NRF

r and NRF ≥ 2.

To efficiently estimate the channel matrix H, we note

that the beamformers across different training time slots may

not necessarily be the same. Let {vq ,Wq}
Q
q=1 denote the

set of beamformers used at the qth time slot. Due to the

hybrid beamforming structure, vq and Wq are constructed as

cascades of analog and digital components, i.e.,

vq = VRF
q vd

q , Wq = WRF
q Wd

q . (6)

Without loss of generality, we consider sq = 1 as the training

symbol. From (5), the received signal at the qth time slot is

given by:

yq = WH
q Hvqsq +WH

q nq = WH
q UrHvU

H
t vq +WH

q nq

= (vT
q ⊗WH

q )vec{UrHvU
H
t }+WH

q nq

= (vT
q ⊗WH

q )Ψhv +WH
q nq, (7)

where Ψ ,
((

UH
t

)T
⊗Ur

)

= [Ψ1 Ψ2 · · · ΨQ]. In

order to characterize the MN × NRF matrix Ψq , using

ν , M/NRF, and

nq = ⌈q/ν⌉, mq =

{
ν, if mod (q, ν) = 0;
mod (q, ν), otherwise,

(8)

we define ũ
(q)
t , u

(nq)
t and Ũ

(q)
r , U

(mq)
r , where u

(i)
t is the

ith column of U∗
t , and U

(i)
r is an M×NRF sub-matrix of Ur

with the (m,n)th element given by U
(i)
r (m,n) , Ur(m, (i−

1)NRF + n). Finally, Ψq is written as: Ψq , ũ
(q)
t ⊗ Ũ

(q)
r .

After Q training time slots, we stack all L , QNRF

measurements in the vector y as

y ,








y1

y2

...

yQ







=








vT
1 ⊗WH

1

vT
2 ⊗WH

2
...

vT
Q ⊗WH

Q








︸ ︷︷ ︸

,Φ(V,W)

Ψhv +








WH
1 n1

WH
2 n2

...

WH
QnQ








= F(V ,W)hv + n̄. (9)

Here, we define F(V ,W) , Φ(V ,W)Ψ, V and W are

tuples defined, respectively, as V , (v1,v2, . . . ,vQ) and

W , (W1,W2, . . . ,WQ), and we use the following def-

initions: n̄ , W̄n, W̄ , blkdg
[
WH

1 , . . . ,WH
Q

]
, and

n , [nT
1 , . . . ,n

T
Q]

T . Next, we describe the channel estimation

problem formulation.

III. CHANNEL ESTIMATION PROBLEM FORMULATION

In this section, we formulate the channel estimation prob-

lem for the system described in Section II. Assuming the

availability of long-term statistics of transmitter and receiver

correlation matrices at both transmitter and receiver (i.e., St

and Sr), we aim to optimally design the hybrid precoders and

combiners, VRF
q , vd

q , Wd
q , and WRF

q for q = 1, 2, · · · , Q,

in order to estimate the channel matrix using the MMSE

criterion. In general, to estimate H, we must estimate all MN
unknown entries of the channel matrix. Since, we only have

NRF RF chains at the receiver side, only NRF observations

are available in each time slot. Therefore, to estimate the entire
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channel matrix, in general, we require at least MN/NRF

training time slots. Note that, from (2), we obtain

Hv = UH
r HUt, (10)

which implies that H and Hv are unitarily equivalent. It can be

shown that for highly correlated channel matrix H, the virtual

channel matrix (also referred to as the eigen-domain channel

[36]) Hv tends to be a sparse-like3 matrix, meaning that most

of its elements have very small amplitudes. Our goal here is

to exploit such semi-sparsity to effectively estimate Hv within

a fewer time slots than MN/NRF.

We now aim to formulate the channel estimation problem.

The goal is to design the beamformers in order to estimate hv

based on the MMSE criterion. The linear MMSE estimate of

hv is given by:

ĥv = Ao(V ,W)y, (11)

where Ao(V ,W) is obtained as:

Ao(V ,W) = argmin
A

E
{
‖ hv −Ay ‖2

}
(12)

= RvF
H(V ,W)

(
F(V ,W)RvF

H(V ,W) +Rn(W)
)−1

,

where Rn(W) , E
{
n̄n̄H

}
= W̄E

{
nnH

}
W̄H =

σ2
nW̄W̄H = blkdg

[
σ2
nW

H
q Wq

]Q

q=1
. The covariance matrix

of the estimation error is given by:

CMMSE(V ,W) = E

{(

hv − ĥv

)(

hv − ĥv

)H
}

= Rv −RvF
H(V ,W)

(
F(V ,W)RvF

H(V ,W) +Rn(W)
)−1

× F(V ,W)Rv

=
(
R−1

v + FH(V ,W)R−1
n (W)F(V ,W)

)−1
. (13)

Accordingly, the MMSE estimation error is computed as:

JMMSE(V ,W) = Tr (CMMSE(V ,W))

= Tr
((

R−1
v + FH(V ,W)R−1

n (W)F(V ,W)
)−1
)

. (14)

Using (3), and defining

Γ2(V ,W) , FH(V ,W)R−1
n (W)F(V ,W), (15)

we obtain JMMSE(V ,W) = Tr
((

Λ−1 + Γ2(V ,W)
)−1
)

.

Under a total training energy budget ET , the MMSE-based

beamforming design amounts to solving the following opti-

mization problem:

min
V,W

JMMSE(V ,W) (16a)

s.t.

Q
∑

q=1

‖vq‖
2 ≤ ET , (16b)

3 Based on (10), Hv is the channel representation in the eigen-domain.
Due to the non-zero entries of correlation matrices St and Sr, the channel
components along different eigenvectors have different levels of significance
measured by the eigenvalues of these correlation matrices (i.e., the significance
of the entries of hv = vec(Hv) is given by the diagonal entries of Λ).
For uncorrelated channels, where we have St = Sr = I, and therefore,
Λ = I, the entries of hv have the same level of significance. However as the
channel entries become more correlated, some of the diagonal components
of Λ become more significant compared to others, meaning that some of the
entries of hv are more significant than the others. That is, we state that Hv

tends to be a sparse-like matrix. Further details on this issue is given in [36].

vq = VRF
q vd

q , (16c)

Wq = WRF
q Wd

q , (16d)

VRF
q ∈ Av and WRF

q ∈ Aw, (16e)

where PT = ET /Q is the average transmit power during

training, and sets Aw and Av are defined as Aw ,
{

W ∈

CM×NRF

∣
∣
∣ |W(i, j)|2 = 1

}

and Av ,
{

V ∈ CN×NRF

∣
∣
∣

|V(i, j)|2 = 1
}

. Note that the optimization problem in (16)

is non-convex due to the constraints in (16e), and may not

be amenable to a computationally efficient solution. To tackle

this problem, we first relax the constraints in (16e) (thereby

turning (16c) and (16d) trivial), and solve for the optimal V ,

and W , denoted as Vo, and Wo, respectively. This solution

is referred to as unconstrained fully-digital (FD) solution4.

Then, using the so-obtained Vo and Wo along with (16c),

(16d) and the constraints in (16e), we seek to find the hybrid

beamfomers VRF
q ,vd

q ,W
RF
q , and Wd

q such that (16c) and

(16d) are satisfied. We study the unconstrained fully-digital

solution for Case 1) Q = MN/NRF, i.e., the number of time

slots required to estimate the entire channel matrix; and Case

2) Q < MN/NRF 5.

IV. FULLY-DIGITAL BEAMFORMING DESIGN

In this section, we consider a fully-digital beamforming

design scenario where there is no constraint on vq and Wq,

except the total energy constraint. We seek to find optimal vq

and Wq based on the MMSE criterion. Before we specify the

fully-digital problem formulation, let us simplify Γ2(V ,W).
Let Wq = KqDqZ

H
q denote the singular value decomposition

of Wq, where Kq ∈ CM×NRF

and Zq ∈ CNRF×NRF

are,

respectively, the matrices of the left and the right singular

vectors, and Dq ∈ R
NRF×NRF

+ is the diagonal matrix of the

singular values. We show in Appendix A that Γ2(V ,W) is

independent of Dq and Zq , and it can be expressed as:

Γ2(Z, Ṽ ,K) =
1

σ2
n

ΨHΥ
(

Ṽ ,K
)

D (Z)ΥH
(

Ṽ ,K
)

Ψ.

(17)

Here, with small abuse of notation, we use Γ2(Z, Ṽ,K)
instead of Γ2(V ,W) where Z = (z1, z2, . . . , zQ) ,
(‖v1‖, ‖v2‖, . . . , ‖vQ‖) < 0, K , (K1, · · · ,KQ), Ṽ ,
(ṽ1, ṽ2, . . . , ṽQ), and ṽq , vq/‖vq‖. Also, D (Z) and

Υ
(

Ṽ ,K
)

are, respectively, an L × L diagonal matrix and

an MN × L matrix defined as:

D (Z) , blkdg
(
z21I, z

2
2I, . . . , z

2
QI
)
, (18)

4Note that the unconstrained fully-digital case is different from the widely
known FD beamformers, where a dedicated RF chain is assigned to each

antenna. Here, we refer to V , Ṽ,W the unconstrained FD beamformers where
the structures in (16c) and (16d) are ignored.

5Note that the case Q > MN/NRF is not considered since, under
the energy constraint, increasing the number of training time slots beyond
MN/NRF does not improve the channel estimation from an MMSE point
of view [17], [50].
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Υ
(

Ṽ ,K
)

,








ṽT
1 ⊗KH

1

ṽT
2 ⊗KH

2
...

ṽT
Q ⊗KH

Q








H

. (19)

In the rest of the paper, we replace JMMSE(V ,W) with

JMMSE(Z, Ṽ ,W), thereby emphasizing that the optimization

variables are now Z , Ṽ, andW . Note that Z denotes the power

in the transmit beamformers, and Ṽ is their corresponding

directions. To specify the fully-digital beamforming design

problem, we relax the minimization (16) by ignoring (16c),

(16d), and (16e), and solve the following minimization:

min
Z,Ṽ,K

Tr

((

Λ−1 + Γ2
(

Z, Ṽ ,K
))−1

)

, s.t.

Q
∑

q=1

z2q ≤ ET

(20)

where we have dropped the non-negative constraints on

{zq}
Q
q=1, simply because if, at the optimum, zq < 0, for some

q, flipping the sign of zq will not violate the constraint in (20),

neither does it affect the cost function. Using the fact that

Tr(A−1) ≥
∑

i

(A(i, i))−1, (21)

with equality if and only if A is a diagonal matrix [17], we

can easily see that solving the minimization

min
Z,Ṽ,K

∑

i

(

Λ−1
ii + Γ2

ii

(

Z, Ṽ,K
))−1

s.t.

Q
∑

q=1

z2q ≤ ET

(22)

yields a lower bound to the optimization problem in (20).

From (21), the only way to achieve this lower bound is when

Γ2
(

Z, Ṽ,K
)

is diagonal. By choosing ΨHΥ
(

Ṽ ,K
)

= I, or

equivalently, by choosing Ṽ and K such that Υ
(

Ṽ ,K
)

= Ψ

holds true, we can ensure that Γ2
(

Z, Ṽ,K
)

is diagonal. We

emphasize that the optimality of Γ2
(

Z, Ṽ,K
)

diagonal is yet

to be proven. Due to the block structure of D (Z) given in

(18), the existing proof for diagonality of Γ2
(

Z, Ṽ ,K
)

in the

literature (like in [17], [36]), does not apply here. Note that,

since the unitary matrix Ψ and Υ
(

Ṽ ,K
)

are MN×MN and

MN × L matrices, we first need to ensure L = MN . This

is possible only when Q = MN/NRF. In what follows, we

show how to find
(

Z, Ṽ,K
)

first for the case Q = MN/NRF

and later look at the case Q < MN/NRF.

A. Fully-Digital Beamforming Design for Q = MN/NRF

We now show how the values of Ṽ and K can be chosen

such that Υ
(

Ṽo,Ko
)

= Ψ holds true, where Ṽo,Ko are used

to denote the solution of Ṽ and K in (20), respectively. To this

end, we choose

Ṽo =
(

ũ
(1)
t , . . . , ũ

(Q)
t

)

,

Ko =
(

Ũ(1)
r , . . . , Ũ(Q)

r

)

. (23)

To find Zo, we solve the following minimization problem:

min
Z

Tr

((

Λ−1 + Γ2(Z, Ṽo,Ko)
)−1

)

, s.t.

Q
∑

q=1

z2q ≤ ET ,

(24)

where

Γ2(Z, Ṽo,Ko) =
1

σ2
n

blkdg
(
z21INRF , · · · , z2QINRF

)
. (25)

Note that, at the optimum, the total energy constraint in (24)

has to be satisfied with equality. Otherwise, if at the optimum
∑Q

q=1 z
,2
q < ET holds, then {zq}

Q
q=1 can be scaled up such

that this constraint is satisfied with equality. Doing so reduces

the objective function, thereby contradicting the optimality.

Defining αq , z2q , we can now define the Lagrangian function

as:

L(α1, . . . , αQ, µ) =

Q
∑

q=1

Tr

(((

Λ̃(q)
)−1

+
1

σ2
n

αqINRF

)−1
)

+ µ0

[
Q
∑

q=1

αq − ET

]

−

Q
∑

q=1

µqαq, (26)

where µ0 is the lagrange multiplier, and Λ̃(q) denotes an

NRF × NRF diagonal matrix corresponding to qth block

diagonal matrix of Λ. For αq > 0 (which implies µq =
0, due to the complementary slackness condition), setting

∂L(α1, . . . , αQ, µ)/∂αq = 0, ∀ q, yields




NRF

∑

k=1

((

λ̃(k)
q

)−1

+
1

σ2
n

αq

)−2

− µ0σ
2
n



 = 0, (27)

where λ̃
(k)
q denotes the kth diagonal entry of Λ̃(q). Therefore,

the optimal positive αq is obtained as the positive solution of

the following equation:

µ0 =
1

σ2
n

NRF

∑

k=1

((

λ̃(k)
q

)−1

+
1

σ2
n

αq

)−2

, ∀q. (28)

while satisfying
∑Q

q=1 αq = ET .

Note that if (28) does not have a positive solution for αq ,

then we have to choose αq = 0. Note also that the solution for

αq in (28) is a non-increasing function of µ0. For a given µ0,

once all αq’s are obtained, we need to verify the constraint
∑Q

q=1 αq = ET . If
∑Q

q=1 αq > ET , then at least one of the

αq’s has to be reduced meaning that the optimal value of µ0 is

larger than the given µ0, If
∑Q

q=1 αq < ET , then at least one

of the αq’s has to be increased meaning that the optimal value

of µ0 is smaller than the given µ0. Based on this explanation,

we can devise a bisection-based algorithm to find the optimal

value of µ0, and consequently, the optimal values of {αq}
Q
q=1.

Algorithm to solve (28): Let µ0 be a value in the interval

[µmin, µmax], where µmin and µmax are respectively the lower-

and upper-bound for µ0. We set µ0 = 1
2 (µmin + µmax) and

solve for αq in (28) using the Newton-Raphson method [51].

If αq < 0, then we set αq = 0. Now, if
∑Q

q=1 αq < ET ,

implying that one or more of {αq}
Q
q=1 have to be increased.

To do so, we decrease µmax by setting µmax = µ0. Otherwise,
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if
∑Q

q=1 αq > ET , then µmin = µ0. We continue this process

until |
∑Q

q=1 αq − ET |2 ≤ ε, for some small ε.

We now explain how µmin and µmax can be chosen. For

extremely high ET , i.e., ET → ∞, each {αq}
Q
q=1 is un-

bounded, implying that µ0 → 0. Therefore, we set µmin = 0.

On the other hand, when ET → 0, each {αq}
Q
q=1 becomes

zero. Defining µ
(q)
0 ,

1

σ2
n

NRF

∑

k=1

(

λ̃(k)
q

)2

by setting αq = 0 in

(28), we can then choose

µmax = max
{

µ
(1)
0 , µ

(2)
0 , · · · , µ

(Q)
0

}

. (29)

The bisection-based algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm to solve (28)

Inputs: Λ, ET , M , N , NRF, and ε.

Outputs: αo
q for q = 1, 2, · · · , Q.

1: Set µmin = 0 and obtain µmax as in (29), and choose an

arbitrarily small value for ε,

2: Repeat

3: Choose µ0 = 1
2 (µmin + µmax).

4: Solve for αq in system of equations in (28) using the

Newton-Raphson method

5: If αq < 0 : Set αq = 0.

6: If
∑Q̃

q=1 αq < ET : Set µmax = µ0.

7: else If
∑Q̃

q=1 αq > ET : Set µmin = µ0.

8: Until |
∑Q̃

q=1 αq − ET |2 ≤ ε

Once we calculate αq , ∀q, we obtain Zo as:

Zo =
(√

αo
1,
√

αo
2, · · · ,

√

αo
Q

)

. (30)

Now, given
(

Zo, Ṽo,Ko
)

, we explain how to find the beam-

formers Vo and Wo. To find Wo, we note that the objective

function as well as the constraint in (20) do not depend on Dq

and Zq (see (17)), therefore, there are infinite solution forWo.

For the sake of simplicity, we choose Dq = I and Zq = I.

One solution for Wo as well as the solution for Vo are given

by:

Wo = Ko,

Vo =
(
‖vo

1‖ṽ
o
1, ‖v

o
2‖ṽ

o
2, · · · , ‖v

o
Q‖ṽ

o
Q

)
. (31)

Recall that ṽo
q and ‖vo

q‖ are the qth entries of Ṽo and Zo,

respectively.

B. Fully-Digital Beamforming Design for Q < MN/NRF

In this subsection, we consider the case where the number

of available training time slots, Q, is less than MN/NRF, and

aim to solve (20). Since Q < MN/NRF (or equivalently L <

MN ), the dimensions of Υ
(

Ṽ ,K
)

and D (Z) are different

from the case where Q = MN/NRF. Indeed, Γ2(Z, Ṽ ,K) is

an MN ×MN matrix whose rank is at most L. As we have

seen in the case Q = MN/NRF, not all Q time slots may

be used. Indeed, given the transmitter and receiver correlation

matrices6, i.e., St and Sr, we can obtain the corresponding

eigenvalue matrices Λt and Λr, and then, calculate Λ = Λt⊗
Λr, from which we can obtain the power of each transmit

beamformer. That is, we can in advance determine the number

of transmit beamformers with non-zero powers. We use Qnz

to denote this number, with Qnz ∈ {1, 2, · · · ,MN/NRF}. If

Qnz < Q, the solution can be obtained from the approach

obtained in the previous subsection. Otherwise, the solution

in the previous subsection cannot be applied and we use the

solution presented below.

To efficiently solve the problem in this case, inspired by

the solution in the previous subsection, we impose a diagonal

structure on Γ2
(

Z, Ṽ,K
)

, and solve the following optimiza-

tion problem instead:

min
Z,Ṽ,K

Tr

((

Λ−1 + Γ2(Z, Ṽ ,K)
)−1

)

(32)

s.t.

Q
∑

q=1

z2q ≤ ET , and Γ2
(

Z, Ṽ ,K
)

is diagonal.

Let Λ̃ , diag
(

Tr
(

Λ̃(1)
)

,Tr
(

Λ̃(2)
)

, . . . ,Tr
(

Λ̃(Q)
))

be a

Q×Q diagonal matrix, with Λ̃(q) defined right after (26). Let

also Λ̃ = ŨΛ̃sŨ
H denote the eigenvalue decomposition of Λ̃

where, Λ̃s is a diagonal matrix of eigenvalues in decreasing

order, and Ũ is the corresponding matrix of eigenvectors. Since

Λ̃s and Λ̃ are both diagonal matrices, Ũ is just a permutation

matrix. We define U , Ũ ⊗ INRF , and Λs , UHΛU , and

using the fact that Ũ is a permutation matrix, the diagonal

entries of Λs and Λ are the same but in different order. Using

this notation, the objective function in (32) is expressed as:

JMMSE

(

Z, Ṽ ,K
)

= Tr

((

UΛ−1
s UH + Γ2(Z, Ṽ ,K)

)−1
)

= Tr

((

Λ−1
s +

1

σ2
n

Ψ̃HΥ
(

Ṽ ,K
)

D (Z)ΥH
(

Ṽ ,K
)

Ψ̃

)−1
)

, Tr

((

Λ−1
s + Γ̃2

(

Z, Ṽ ,K
))−1

)

, (33)

where Ψ̃ , ΨU . Therefore, the optimization problem (32) is

equivalent to:

min
Z,Ṽ,K

Tr

((

Λ−1
s + Γ̃2

(

Z, Ṽ,K
))−1

)

(34)

s.t.

Q
∑

q=1

z2q ≤ ET , and Γ̃2
(

Z, Ṽ ,K
)

is diagonal.

Since Γ̃2
(

Z, Ṽ,K
)

in (34) is an MN × MN diagonal

matrix of rank L < MN , then, there have to be at least

6Although obtaining St and Sr requires some training, we argue that the
rate at which St and Sr change depends on large-scale variations in the
scattering environment (such as array geometry, pattern of applied antenna,
path loss exponent, and delay profile) and is typically slow [52]–[55]. The
actual channel coefficients, on the other hand, can vary at a much faster
rate due to the phase variations induced by the relative motion between the
transmitter/receiver and scattering objects. Thus, in general, St and Sr vary
much more slowly and do not need to be estimated in each coherence interval.
This allows for the possibility of covariance feedback to the transmitter [56].
Such an assumption is well adopted in the literature, see for example [34]–
[36], [42].
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MN − L zero entries on its diagonal. We show in the

Appendix B that at the optimum, the non-zero diagonal entries

of Γ̃2
(

Zo, Ṽo,Ko
)

are the same as the diagonal entries of

D(Zo). This implies that the non-zero diagonal entries of

Γ̃2
(

Zo, Ṽo,Ko
)

have multiplicity order NRF, therefore, it

can be expressed as Γ̃2
(

Zo, Ṽo,Ko
)

= 1
σ2
n

Σo⊗INRF , where

Σo , diag

(

γo
1 , γ

o
2 . . . , γ

o
MN

NRF

)

. Given this observation, in

order to solve (34), we use the following strategy. We first

find Σo by solving

min
Σ∈D

Tr

((

Λ−1
s +

1

σ2
n

Σ⊗ INRF

)−1
)

s.t. Rank (Σ) ≤ Q, Tr (Σ) ≤ ET , (35)

where D ,

{

Σ | Σ ∈ R
MN

NRF
× MN

NRF

+ ,Σ is a diagonal matrix

}

.

Then, using the obtained Σo, we find Vo, Ṽo and Ko such that

Γ̃2
(

Zo, Ṽo,Ko
)

=
1

σ2
n

Σo ⊗ INRF . (36)

Next, we show how to find Zo, Ṽo, and Ko based on Σo.

1) Finding Zo: Since Σo is a rank-Q diagonal matrix, it

has Q non-zero entries on its diagonal. Let

Σo ⊗ INRF = F blkdg (Σo
s ,0) FH (37)

denote the eigenvalue decomposition of Σo⊗INRF , where Σo
s

is an L×L diagonal matrix7 with entries in decreasing order

and F is a unitary matrix. Using the fact that D (Zo) = Σo
s

(see Appendix B), Zo can be directly obtained from the diag-

onal entries of Σo
s . Note that the diagonal entries of Σo

s have

multiplicity order of NRF, so we can write Σo
s = Σ̌o

s ⊗ INRF ,

where Σ̌o
s is a Q × Q diagonal matrix with unit multiplicity

order. Therefore, Zo = diag
(
Σ̌o

s

)
.

2) Finding Ṽo and Ko: Using (36) and (37) along with the

fact that D (Zo) = Σo
s , we can write

FHΨ̃HΥ
(

Ṽo,Ko
)

D (Zo)ΥH
(

Ṽo,Ko
)

Ψ̃F

= blkdg (D (Zo) ,0) . (38)

To satisfy (38), we choose Ṽo and Ko such that the MN ×

L matrix Υ
(

Ṽo,Ko
)

corresponds to the first L columns of

Ψ̃F , or equivalently, ΨUF . Specifically, due to the structure

of U and F , we express UF = T ⊗ INRF , where T is a

permutation matrix. Let iq denote the index of the non-zero

entry of the qth column of T , then Ṽo and Ko are given by:

Ṽo =
(

ũ
(i1)
t , . . . , ũ

(iQ)
t

)

, Ko =
(

Ũ(i1)
r , . . . , Ũ(iQ)

r

)

. (39)

3) Solving (35) to find Σo: Due to the rank constraint,

the optimization problem (35) is non-convex, and in gen-

eral, may not be amenable to a computationally affordable

solution. However, we propose an algorithm to find a sub-

optimal but efficient solution. To this end, we propose to

allocate ET to the first Q diagonal entries of Σo while the

7Recall that L = QNRF.

last MN
L − Q diagonal entries of Σ are set to zero, i.e.,

γo
q = 0 for q = MN

L − Q + 1, . . . , MN
L . To find γo

q , ∀ q, let

Σ̌ , blkdg (γ1 ⊗ INRF , γ2 ⊗ INRF , . . . , γQ ⊗ INRF), where

γq ∈ R+, ∀ q. Let also
ˇ̃
Λs be an L × L diagonal matrix that

captures the first L diagonal entries of Λ̃s. Then,
{
γo
q

}Q

q=1
is

the solution to the following optimization problem:

min
γ1,...,γQ

Tr

((

ˇ̃
Λ−1

s +
1

σ2
n

Σ̌

)−1
)

, s.t.

Q
∑

q=1

γq ≤ ET . (40)

The above minimization is the same as (24). Therefore, we

use Algorithm 1 to find
{
γo
1 , . . . , γ

o
Q

}
.

The proposed fully-digital beamforming design procedure

is summarized in the following algorithm.

Algorithm 2 Fully-digital beamforming design algorithm

Inputs: Λ, ET , M ,N , NRF, and Q.

Outputs: Vo and Wo.

1: Find αo
q , q = 1, 2, · · · ,MN/NRF using the Algorithm 1.

2: Find Qnz, the number of non-zero αo
q obtained in Step 1.

3: If Qnz ≤ Q:

4: Obtain Zo, Ṽo and Ko from (30) and (23), respectively.

5: else:

6: Obtain Ṽo and Ko from (39).

7: Find Σ̌o
s by solving (40) and using Algorithm 1. Then,

set Zo = diag
(
Σ̌o

s

)
.

8: Obtain Vo and Wo using (31).

V. HYBRID BEAMFORMERING DESIGN

So far, we assumed that vq and Wq are both fully-digital

without any constraint except the total energy constraint im-

posed on vq . In this section, we consider hybrid structures for

both vq and Wq, where they are both constructed from the

cascades of digital-only and analog-only beamformers as in

(6), respectively. Specifically, given the unit norm constraints

in (16e), we find the analog and digital precoders and combin-

ers to realize vq and Wq by minimizing the Euclidean distance

between the corresponding fully-digital beamformers and the

hybrid structured beamformers. This widely-used technique is

shown to be effective in the literature [11], [14], [23], [37].

A. Hybrid Precoder Design

Here, we aim to show how to split the unconstrained

precoders, designed in the previous section, into digital and

RF precoders. Specifically, given vq we seek to find VRF
q and

vd
q such that vq = VRF

q vd
q . Specifically, we solve

min
VRF

q ,vd
q

‖ vq −VRF
q vd

q ‖
2, s.t. VRF

q ∈ Av. (41)

To solve (41), we use the following proposition.

Proposition 1 : Any fully-digital beamformer Vq ∈ CN×t

can be ideally realized by a cascade of an analog beamformer

VRF
q ∈ Av and a digital beamformer Vd

q ∈ CNRF×t, if

NRF ≥ 2t.
Proof : See [12].
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Since vq is an NRF × 1 vector and NRF ≥ 2, we use the

above proposition to express vq as a cascade of VRF
q ∈ Av

and vd
q ∈ C

NRF×1. Let fie
jωi be the ith entry of vq , vd

q =
[vd1 · · · v

d
NRF ]

T , and VRF
q (i, k) = ejφi,k . Then, following the

result of [12], if we choose

vdk =

{
fmax, k = 1, 2,
0, k = 3, . . . , NRF ,

φi,k =







ωi − cos−1
(

fi
2fmax

)

, k = 1,

ωi + cos−1
(

fi
2fmax

)

, k = 2,

0, k = 3, . . . , NRF,

(42)

where fmax = maxi fi, then vq = VRF
q vd

q holds true. Next,

we explain how to find the hybrid combiners.

B. Hybrid Combiner Design

Given the unconstrained optimal fully-digital combiner ma-

trices {Wq}
Q
q=1, in this subsection, we explain how to split

Wq into its digital and analog counterparts. Considering the

norm constraint on each entries of WRF
q , we aim to find WRF

q

and Wd
q such that their product is sufficiently close to Wq.

Mathematically, we solve the following minimization problem:

min
WRF

q ,Wd
q

‖Wq −WRF
q Wd

q ‖
2, s.t. WRF

q ∈ Aw. (43)

Due to the non-convex unit-modulus constraint in (43), the

joint minimization in (43) is highly complicated, and in

general, may not be amenable to a computationally affordable

solution. Inspired by the work in [37], we tackle (43) by

decoupling the optimization over WRF
q and Wd

q . Indeed, we

alternately solve for WRF
q while fixing Wd

q and vice versa.

To this end, two alternating approaches, namely MO-AltMin

technique and PE-AltMin algorithm, have been proposed in

[37]. In this paper, we rely on the PE-AltMin technique which

is summarized as follows. In the first step of this technique,

given WRF
q , we obtain Wd

q as Wd
q = VqU

H
q , where Uq and

Vq are NRF×NRF matrices whose columns are, respectively,

the left and the right singular vectors of WH
q WRF

q . In the

second step, given Wd
q , we obtain the phase of each elements

of WRF
q equal to the phase of the corresponding element

in WqW
d
q
H

. The PE-AltMin algorithm is summarized in

Algorithm 3. Compared to PE-AltMin technique, the MO-

AltMin algorithm is computationally more demanding while

does not provide much performance gain as it is shown in our

simulation results.

Remark 1: It is worth mentioning that in our proposed

scheme, determining Wo requires only the knowledge of Ur,

(i.e., the eigen-vectors of Sr, and not that of St). On the other

hand, obtaining Ṽo only requires the knowledge of Ut (i.e.,

the eigenvectors of St, and not that of Sr). In addition, finding

Zo does not require full knowledge of matrix Sr but only the

eigenvalues of Sr (i.e., Λr). These eigenvalues can be made

available to the transmitter with a low feedback overhead.

Remark 2: The main computational cost for each iter-

ation of Algorithm 1 is to solve the non-linear equation

in (28) using Newton-Raphson method. For each value of

q, q = 1, · · · , Q, the complexity of solving (28) is given

Algorithm 3 PE-AltMin algorithm

Inputs: Wq, NRF.

Outputs: WRF
q and Wd

q .

1: Choose WRF
q

(0)
with random phases and set k = 0.

2: Repeat:

3: Compute the SVD WH
q WRF

q
(k)

= U
(k)
q S(k)V

(k)
q

H
.

4: Set Wd
q
(k)

= V
(k)
q U

(k)
q

H
.

5: Set arg[WRF
q

(k+1)
]ij = arg[WqW

d
q
(k)H

]ij .

6: Set k ← k + 1.

7: Until a stoping criterion triggers.

by O
(
NRF log(1/ε)

)
, where ε is the tolerance error term.

Therefore, for Q = MN/NRF, the overall complexity of

(28) is given by O (MN log(1/ε)). Moreover, the number of

iterations needed for the bisection method is ⌈log2(µmax/ε)⌉
(which is directly proportional to the logarithm of the initial

value µmax). Thus, a proper selection for µmax, such as in (29),

will reduce the total cost. In summary, the computational cost

of Algorithm 1 is given by O (MN log(1/ε) log2(µmax/ε)).
In Algorithm 2, we first use Algorithm 1 to find αo

q and Qnz,

with complexity O (MN log(1/ε) log2(µmax/ε)). The com-

plexity of the remaining part of Algorithm 2 is dominated by

the eigenvalue decomposition of St and Sr, which are of com-

plexity O
(
N3
)

and O
(
M3
)
, respectively. Overall, the com-

plexity of Algorithm 2 is O
(
(MN)3 log(1/ε) log2(µmax/ε)

)
.

In each iteration of Algorithm 3, the update of the analog pre-

coder is simply realized by the SVD of WH
q WRF

q
(k)

followed

by a phase extraction operation of the matrix WqW
d
q
(k)H

,

whose dimension is M ×NRF. Therefore, the computational

complexity of the Algorithm 3 is dominated by the SVD

operation in each iteration which is O
(

NRF3
)

. It should

be noted that there are numerous algorithms to reduce the

computation complexity of SVD such as the techniques in

[57], [58].

VI. SIMULATION RESULTS

A. Experiment Setup

We consider a correlated massive MIMO8 system in a rich-

scattering environment. The spatial correlation matrices St and

Sr are given as [42]:

St(i, j) = ρ
|i−j|
t and Sr(i, j) = ρ|i−j|

r ,

where we assume ρr = ρt , |ρ|ejθ , |ρ| < 1, and θ ∈ [0, 2π].
Given the hybrid precoder and combiner design provided

in Sections V-A and V-B, the estimated H, denoted as Ĥ,

8 For example, this could be a massive MIMO system implemented with
less than half a wavelength antenna spacing. Note that a massive MIMO
system, even with antenna spacing greater than half a wavelength, may exhibit
correlations among the transmit and receive antennas mainly due to lack of
a sufficient number of scatters around the transmitter or receiver [59]. In
the case where the propagation environment is not scattering-rich, significant
correlation exists among the transmit antennas and among receiver antennas
[60], [61], [62, Section 8.2.2]). Similar analysis has been carried out in [63],
where the inter-element correlation is shown to depend not only on the antenna
spacing but also on the azimuth power spectrum and on the mean AOA/AOD
of each clustered scatters.



10

RF

Digital

Precoder

TD

Analog Precoder TRF

RF

RF

Digital

Combiner

QD

Analog Combiner QRF

HM×N

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b
b

b

b
b

b

b
b

b

b
b
b

NRF
t

NRF
rNs

s

Ns

yd

b

b

RF

Fig. 2. System model for data transmission.

can be directly obtained from (10) and (11). To quantify the

performance of the proposed channel estimation method, we

use the normalized mean squared error in channel estimation

defined as NMSE = ||Ĥ−H||22/||H||
2
2 . We also compare the

spectral efficiency of the proposed water-filling-type scheme

with that of an equal power scheme and with the perfect

CSI case. Both schemes use the same set of beamformers

but different power allocations. In the equal power allocation

scheme, we set αq = ET /Q, for q = 1, 2, . . . , Q, while in

water-filling scheme αq, is obtained using Algorithm 1. The

annotated numbers on each simulation point indicate that, out

of Q, how many training time slots are essentially being used.

To evaluate the spectral efficiency, we use the communi-

cation scheme shown in Fig. 2. The system in Fig. 2 is the

same as the one in Fig. 1, except that we use Ns ≤ NRF data

streams at the input and collect Ns data streams at the output.

The received signal y is written in terms of s as:

yd = QH
t HTts+Qtn, (44)

where s , [s1 s2 . . . sNs
]T is the vector of transmit symbols,

yd , [yd1 yd2 . . . ydNs
]T is the vector of the final processed

received signal. We define Qt , QRFQD, and Tt , TRFTD,

where TRF ∈ CN×NRF

and QRF ∈ CM×NRF

are, respec-

tively, the analog precoder and combiner, implemented using

the phase shifters, i.e., |QRF(i, j)|2 = 1, |TRF(i, j)|2 = 1.

Further, TD ∈ CNRF×Ns and QD ∈ CNRF×Ns are, respec-

tively, baseband digital linear precoder and combiner.

Before we calculate the spectral efficiency, we first need to

find the optimal hybrid beamformers, denoted as To
t and Qo,

using the channel matrix estimates Ĥ. This can be done by

any of the beamforming design approaches proposed in [12]

and [37]. To calculate the spectral efficiency, let He denote

the error in channel estimation, defined as He , H− Ĥ; then

yd in (44) can be written as:

yd = Qo
t
H
(

Ĥ+He

)

To
ts +Qo

t
H
n

= Qo
t
H
ĤTo

t s+Qo
t
H
HeT

o
t s+Qo

t
H
n. (45)

Therefore, the spectral efficiency is calculated as:

SE = η log
∣
∣
∣I+E−1Qo

t
H
ĤTo

tT
o
t
H
ĤHQo

t

∣
∣
∣ , (46)

where E , Qo
t
H
(

HeT
o
tT

o
t
HHH

e + σ2
nI
)

Qo
t . The pre-log

factor η is used to denote the ratio of effective channel use

and given by η , 1 −Qnz/TcBw, where Bw is the commu-

nication bandwidth, Tc is the coherence time, calculated as

Tc ,
√

9
16π

1
fm

[64], fm , v
c fc is the maximum Doppler

spread, v is the velocity, c is the speed of light, and fc
is the carrier frequency. The performance of the proposed

channel estimation method in terms of the channel estimation

accuracy and the achievable spectral efficiency is investigated

through the simulations in the next subsections. The simulation

parameters are given in Table II.

TABLE II
SIMULATION PARAMETERS

|ρ| N M Ns σ2
n ε Bw v fc

0.8 32 16 4 1 10−6 1.5 MHz 50 Km/h 2 GHz

In all our simulations, for the sake of comparison, we

provide simulation results for the MO-AltMin algorithm of

[37] that we use to solve (43), i.e., to design the hybrid

combiner.

B. NMSE and Spectral Efficiency vs ET /σ
2
n

In the first set of our numerical experiments, we plot the

NMSE and the corresponding spectral efficiency vs. ET /σ
2
n.

Here, we assume that Q = MN/NRF. The NMSE and the

corresponding spectral efficiency vs. ET /σ
2
n are depicted in

Figs. 3 and 4, respectively. We observe that for very low ET ,

both the water-filling technique and the equal power scheme

yield almost the same NMSE, because there is not enough

power for channel estimation. For medium ET , the water-

filling method better utilizes the training energy. Instead of

allocating an equal amount of power to all eigen-directions,

the water-filling scheme allocates more power to the significant

eigen-directions, and this performs better within fewer training

time slots. At high ET , both schemes perform the same,

as they allocate the same amount of power to each eigen-

direction. The hybrid beamforming structure performs so close

to its fully-digital counterpart. This indicates the efficacy of

hybrid design provided in sections V-A and V-B.

It is worth noting that, while the number of training time

slots is fixed in the equal power scheme, the water-filling

scheme utilizes fewer training time slots. Since the beamform-

ers are aligned to the channel-eigen-directions, the channel is

estimated along its eigen-directions at each time slot. At low

to medium ET , instead of estimating the channel components

in all eigen-directions, only the components in stronger direc-

tions are estimated. The rest of the eigen-directions are not

important from an MMSE point of view, hence not estimated.

That is, the water-filling scheme requires fewer training time

slots. Spectral efficiency-wise, we can save more time slots

for data transmission.
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C. NMSE and Spectral Efficiency vs Q

To further assess the performance of the proposed channel

estimation method, we plot the NMSE and the corresponding

spectral efficiency vs Q in Figs. 5 and 6. For each simulation

point, we consider ET /σ
2
n = 64, which has to be distributed

among Q time slots. This implies that, the equal power scheme

allocates an equal amount of energy to all 64 time slots.

The NMSE plot in Fig. 5 shows an improvement in channel

estimation as we increase Q. The reason is that, with a

higher Q, we estimate more content of the channel. However,

due to the correlation among the channel entries, the rate of

improvement in channel estimation declines for large Q. Note

that, given Q, our channel estimation scheme aims to estimate

the significant portion of the channel within Q training time

slots. That is, we observe a better rate of improvement for

small Q compared to large Q. As expected, the equal power

scheme consumes all available Q with equal amounts of power

in each time slot, while the water-filling scheme employs much

fewer training time slots.

In terms of the spectral efficiency, Fig. 6 shows that, in equal

power scheme, there is no further significant improvement in

spectral efficiency as we increase Q beyond 30 time slots. It

can be seen that estimating more components of the channel

matrix for large values of Q does not significantly affect

the spectral efficiency. Indeed, with the equal power scheme,

resources are being allocated to estimate the unnecessary and

insignificant components of the channel. Instead, from the

MMSE point of view, the water-filling scheme allocates more

resources to estimate the significant portion of the channel,

which has more effect on the spectral efficiency.

D. NMSE and Spectral Efficiency vs |ρ|

NMSE and spectral efficiency vs |ρ| are depicted in Figs.

7 and 8. In this set of numerical examples, we assume Q =
MN/NRF. We also consider ET /σ

2
n = 64 for training to be

distributed among the Q training time slots. As we increase |ρ|,
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the NMSE decreases for both methods. The reason is that for

high |ρ|, the channel matrix entries become more correlated.

By exploiting such a higher correlation, the virtual channel in

the eigen-domain can be represented with fewer parameters.

Therefore, for fixed energy used for channel training, we have

better estimation in both schemes. At relatively lower |ρ|, the

water-filling scheme yields a better estimate of the channel

compared to the equal power scheme. This is mainly due to

the fact that, at low |ρ|, all eigen-directions have almost the

same significance from the MMSE point of view. Therefore,

both scenarios allocate an equal amount of power in all

eigen-directions. However, as channel entries become more

correlated, different eigen-directions have different levels of

significance. Unlike the equal power allocation scheme, the

water-filling scheme allocates more energy to stronger eigen-

directions, resulting in a better estimate of the channel.

The spectral efficiency vs |ρ| is depicted in Fig. 8. For fixed

ET , we observe that, for very small |ρ|, both water-filling

and equal power schemes perform almost the same, because

they have quite similar NMSE. However, as we increase |ρ|,
there is a significant gap between these two schemes. This can

be explained by the fact that at low |ρ|, all eigen-directions

have similar significance as opposed to the case with high |ρ|,
where the channels in certain directions are stronger than the

others. Therefore, exploiting the correlation among the channel

entries, not all eigen-directions receive same amount of energy.

Instead, significant eigen-directions receive more energy. At

very high |ρ|, although we obtain a better NMSE, the spectral

efficiency decreases because, at this range of |ρ|, the channel

tends to be rank-one, which has lower multiplexing gain.

E. Performance for Different (M,N)

We now provide further simulations for M = 32, N = 64,

NRF = 16, and Ns = 8. The NMSE and spectral efficiency vs.

ET /σ
2
n are plotted in Figs. 9 and 10, respectively. Similar to

Figs. 3 and 4, the proposed water-filling technique outperforms

the equal power allocation in practical ranges of ET /σ
2
n. At
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low ET /σ
2
n, both techniques perform the same. At very large

ET /σ
2
n, the proposed water-filling technique allocates almost

equal amount of power to different eigen-directions, thereby

yielding the same performance as the equal power technique

does. The NMSE and spectral efficiency vs |ρ| are plotted in

Figs. 11, and 12, respectively. For fixed ET , and for relatively

small |ρ|, both the water-filling method and the equal power

technique perform almost the same. This is mainly because, at

small values of |ρ|, the channel entries are largely uncorrelated

and the channel components have almost the same levels

of significance. However, as we increase |ρ|, the channel

components have different level of significance. Leveraging

this characteristic, the water-filling technique yields a better

channel estimate within a smaller Q.

F. Performance for Different (NRF, Ns)

Figs. 13 and 14 illustrates the NMSE and spectral efficiency

curves for different pairs of (NRF, Ns). In terms of NMSE, the

scenario with (NRF, Ns) = (8, 2) performs the same as the

one with (NRF, Ns) = (8, 4) provided in Fig. 3. The reason

is that in these two scenarios, we employed the same number

of the RF chains. However, from a spectral efficiency per-

spective, the scenario with (NRF, Ns) = (8, 4) yields a better

performance compared to the one where (NRF, Ns) = (8, 2).
This is mainly attributed to the multiplexing gain caused by the

difference in Ns. Compared to the scenario with (NRF, Ns) =
(4, 4), the scenario with (NRF, Ns) = (8, 4) performs better in

terms of NMSE mainly because more RF chains are employed.

In Fig. 14, the scenario with (NRF, Ns) = (8, 4) offers a better

spectral efficiency for the same Ns. The reason is that the

scenario with (NRF, Ns) = (8, 4) provides a better channel

estimate.

G. Qnz vs the Number of Antennas

To show the dependency of Qnz on the number of antenna,

in Fig. 15, we plot the Qnz/Q vs. M for NRF = 8, N =
16, and ET /σ

2
n = 64. It can be seen that for |ρ| = 0.1 and

for small M , all Q training time slots are used, i.e., Qnz =
Q. This is mainly due to the fact that, for this range of |ρ|,
the channel components along all eigen-directions have almost
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the same significance, and therefore, receive almost the same

amount of energy during the training. As we increase M , and

for the same training energy budget, we observe that not all

training time slots are being utilized for training. Instead, the

energy is being allocated to estimate the channel components

along the stronger eigen-directions. This observation becomes

more evident when we increase |ρ| (i.e., channel correlation

is increased), where the training energy is dedicated to only

estimate the channel components along the stronger eigen-

directions.

Remark 3: The overall computational complexity of the

proposed technique with respect to the number of training

time slots is O(Q). This implies that adding more training

time slots will linearly increase the complexity of the proposed

technique. The improvement in performance, however, is not

linear. Specifically, as shown in Figs. 5 and 6, the improvement

in NMSE and spectral efficiency is not linear. In fact, for

Q ≥ 32, the improvement becomes marginal. Such a marginal

improvement in performance is mainly due to the fact that

the channel entries are correlated, and therefore, spending

more time resources for channel estimation does not provide

a significant improvement in channel estimation or spectral

efficiency. This becomes further evident when |ρ| is very close

to 1, indicating that the channel can be represented by a few

dominant eigenvectors, and estimating the channel along those

eigen-directions only provides good performance.

VII. CONCLUSIONS

We proposed a training-based channel estimation tech-

nique for correlated massive MIMO systems where hybrid

beamforming is employed. Using the Kronecker model to

express such correlated channels, and relying on the fact

that the channel entries are uncorrelated in its eigen-domain,

we estimated the channel components in this domain. Since

the number of RF chains is much less than the number of

transmitter/receiver antennas, the training has to be done in

multiple time slots. Minimizing the channel estimate mean

squared error criterion under a total training energy budget,

we optimally designed the hybrid beamformers in each time

slot that led to linearly estimate the channel. The optimal

precoder and combiner in each training time slot are aligned

to the set of strongest eigen-directions of the channel. The

number of training time slots is determined by the training

energy budget. Our simulation results indicate that, when the

training energy budget is relatively low, only the portion of the

channel along the strongest eigen-directions is estimated. At

high training energy budgets, all eigen-directions participate in

channel estimation. Importantly, by exploiting the knowledge

of the channel correlations, we can reduce the number of time

slots required for channel training.

As a future direction to this work, one can consider different

architectures such as partially-connected analog beamformers

or analog beamformers, which are implemented using only

analog switches. Another direction for future work is con-

sidering more practical settings where the effects of finite-

resolution analog-to-digital converters (ADCs) and digital-to-

analog converters (DACs) are taken into account.

APPENDIX A

SIMPLIFYING Γ2(V ,W)

Since Rn(W) = σ2
nblkdg

[(
WH

1 W1

)
· · ·

(
WH

QWQ

)]
,

we can write

R−1
n (W) =

1

σ2
n

blkdg
[(
Z1D

2
1Z

H
1

)−1
· · ·

(
ZQD

2
QZ

H
Q

)−1
]

=
1

σ2
n

blkdg
[

Z1D
−2
1 ZH

1 · · · ZQD
−2
Q ZH

Q

]

=
1

σ2
n

blkdg [Z1 · · · ZQ] blkdg
[

D−2
1 · · · D−2

Q

]

× blkdg
[
ZH
1 · · · ZH

Q

]
. (47)

Then, Γ2(V ,W) in (15) is written, in terms of Z̃ and D̃, as:

Γ2(V ,W) =
1

σ2
n

ΨHΦH(V ,W)Z̃D̃Z̃HΦ(V ,W)Ψ. (48)

To further simplify Γ2(V ,W), defining ṽq , vq/‖vq‖ and

zq = ‖vq‖, we can write:

Z̃HΦ(V ,W)Ψ = blkdg
[
ZH
1 · · · ZH

Q

]








vT
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1

vT
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2
...

vT
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Q


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
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

Ψ

=
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





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






‖v1‖ṽ
T
1 ⊗DH

1 KH
1

‖v2‖ṽT
2 ⊗DH

2 KH
2

...
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T
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Q








Ψ

= blkdg
[
‖v1‖DH

1 · · · ‖vQ‖DH
Q

]








ṽT
1 ⊗KH

1

ṽT
2 ⊗KH

2
...

ṽT
Q ⊗KH

Q








︸ ︷︷ ︸

,ΥH(Ṽ,K)

Ψ, (49)

where we define Ṽ , (ṽ1, ṽ2, . . . , ṽQ) and K =
(K1,K2, · · · ,KQ). Using (49), we can write (48) as:

Γ2(V ,K) =
1

σ2
n

ΨHΥ
(

Ṽ ,K
)

D(Z)ΥH
(

Ṽ ,K
)

Ψ, (50)
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where we define: D(Z) , blkdg
[
z21INRF , . . . , z2QINRF

]
and

Z , (z1, z2, . . . , zQ).

APPENDIX B

RELATION BETWEEN Γ̃2
(

Zo, Ṽo,Ko
)

AND D (Zo)

Before we begin, we introduce the following lemma that

will help us to show the relation between Γ̃2
(

Zo, Ṽo,Ko
)

and D (Zo).

Lemma 1. For any V , Ṽ , and K, the following equalities hold

diag
(

ΥH
(

Ṽ ,K
)

Υ
(

Ṽ ,K
))

= 1MN (51)

Tr
(

Γ2(Z, Ṽ,K)
)

=
1

σ2
n

Tr (D(Z)) (52)

Proof. To show (51), based on (50), we note that the qth

block diagonal entries of ΥH
(

Ṽ ,K
)

Υ
(

Ṽ ,K
)

is given by
(
ṽT
q ⊗KH

q

) (
ṽT
q ⊗KH

q

)H
= INRF , for q = 1, 2, . . . , Q. This

now implies that (51) holds true. To show (52), from (50), we

can write

Tr
(

Γ2(Z, Ṽ,K)
)

(53)

= Tr

(
1

σ2
n

ΨHΥ
(

Ṽ ,K
)

D (Z)ΥH
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Ṽ ,K
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Ψ

)

(a)
=

1

σ2
n

Tr
(

D (Z)ΥH
(

Ṽ,K
)

ΨΨHΥ
(

Ṽ ,K
))

(b)
=

1

σ2
n

Tr
(

D (Z)ΥH
(

Ṽ,K
)

Υ
(

Ṽ ,K
))

(c)
=

1

σ2
n

Tr (D (Z)) ,

where (a) follows from the fact that Tr(AB) = Tr(BA), (b)
follows from ΨΨH = I, and (c) follows from (51).

Given Γ̃2
(

Zo, Ṽo,Ko
)

= Ψ̃HΥ
(

Ṽo,Ko
)

D (Zo)ΥH
(

Ṽo,Ko
)

Ψ̃

is a diagonal matrix, we aim to show that its non-zero diagonal

entries are the same as D (Zo). For notation simplicity, let

us drop the dependency of each matrix to their variables,

and denote Γ̃o2 , Γ̃2
(

Zo, Ṽo,Ko
)

, Υo , Υ
(

Ṽo,Ko
)

and

Do , D (Zo). Since Γ̃o2 is a rank-L diagonal matrix, we

can write

1

σ2
n

Ψ̃HΥoDoΥoH Ψ̃ = Γ̃o2 (a)
= Q

(

Γ̃o2

nz

0

)

︸ ︷︷ ︸

,Γ̃o2

s

QH (54)

where (a) follows from the eigenvalue decomposition of

Γ̃o2 , Q is a unitary matrix and Γ̃o2

nz is an L × L diagonal

matrix corresponding to the non-zero diagonal entries of Γ̃o2 .

Defining
ˇ̃
Ψ , Ψ̃Q, then (54) is expressed as:

1

σ2
n

ˇ̃
ΨHΥoDoΥoH ˇ̃

Ψ = Γ̃o2

s . (55)

Now, let us augment Υo and Do and define the following

MN ×MN matrices

D̃o ,

(
Do 0

0 0

)

, Υ̃o ,
(
Υo C

)
. (56)

where C can be any MN × (MN − L) matrix, and 0 in

D̃o is an (MN − L) × (MN − L) all-zero matrix. Let us

choose C such that diag
(

Υ̃oH Υ̃o
)

= 1MN , meaning that

the columns of C should have unit norms. One such choice

for C that satisfies this condition is to choose its columns from

the basis vectors that spans the null space of Υo. Then, it can

be verified that 1
σ2
n

ˇ̃
ΨHΥ̃oD̃oΥ̃oH ˇ̃

Ψ = Γ̃o2

s holds true. Since

Γ̃o2

s is the optimal diagonal matrix that minimizes the objective

function, along with the fact that
ˇ̃
Ψ is a unitary matrix, and

diag
(

Υ̃oHΥ̃o
)

= 1MN and Tr
(

Γ̃o2

s

)

= 1
σ2
n

Tr
(

D̃o
)

, we

use (25) and conclude that Γ̃o2

s = 1
σ2
n

D̃o. This implies that

Do = σ2
nΓ̃

o2

nz. The proof is complete.
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