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Abstract

Federated averaging (FedAvg) is a popular federated learning (FL) technique that updates the global

model by averaging local models and then transmits the updated global model to devices for their local

model update. One main limitation of FedAvg is that the average-based global model is not necessarily

better than local models in the early stage of the training process so that FedAvg might diverge in realistic

scenarios, especially when the data is non-identically distributed across devices and the number of data

samples varies significantly from device to device. In this paper, we propose a new FL technique based

on simulated annealing. The key idea of the proposed technique, henceforth referred to as simulated

annealing-based FL (SAFL), is to allow a device to choose its local model when the global model is

immature. Specifically, by exploiting the simulated annealing strategy, we make each device choose its

local model with high probability in early iterations when the global model is immature. From extensive

numerical experiments using various benchmark datasets, we demonstrate that SAFL outperforms the

conventional FedAvg technique in terms of the convergence speed and the classification accuracy.

I. INTRODUCTION

Federated learning (FL) is an emerging distributed learning technique where hundreds or

thousands of devices jointly train a common machine learning (ML) model without exchanging
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their local dataset with the centralized server or other devices [2]–[6]. A wide range of FL

applications include human face recognition, next-word prediction, resource allocation, device

tracking, basestation association, cyberattack detection, to name just a few [7]–[10]. In the FL-

based approach, a learning task is performed in an iterative fashion, mainly following by three

steps (see Fig. 1). First, a server sets up a common ML model and then broadcasts the model to

the user devices. Second, user devices train the model locally and individually using their own

local datasets. Third, the server evaluates the model by aggregating the locally trained parameters

sent by the devices.

The central challenge of FL is to improve the learning capability of user devices without

sharing their own datasets with other devices. In fact, due to various reasons such as user privacy

and limited resources (e.g., computing hardware, battery power, network capacity, bandwidth),

data generated in one device cannot be transmitted to the server or other devices. One well-

known approach to deal with this issue is federated averaging (FedAvg) [2]. In this technique,

instead of transmitting data, each device transmits locally trained parameters (e.g., gradients or

updated model parameters) to the server. The server updates the global model by averaging the

local parameters and then sends the updated model back to devices for the local model update.

While FedAvg is effective in solving nonconvex problem, it has been shown that FedAvg

and its variants might diverge in realistic scenarios where the data is non-identically distributed

across devices (e.g., data of different languages in the next-word prediction application) and/or

the number of data samples significantly varies from device to device [3], [20]. One important

reason for the divergence of FedAvg is that the average-based global model is not necessarily

better than locally trained models so that just relying on the global model might degrade the

entire learning process [11]–[13]. To illustrate this, we consider a simple FL task whose goal is

to minimize the cost function given by

J(w;D) =
∑

(xi,yi)∈D

(yi − xTi w)2 + ‖w‖1, (1)

where D = {(xi, yi)}i is the training dataset and ‖w‖1 = |w1| + |w2| is the `1-norm of w.

For simplicity, we consider two devices with the local datasets D1 = {([1
4

0]T ,−1)} and D2 =

{([0 3
2
]T , 1)}. One can easily check that the parameters w minimizing the cost function J(w;D)

with respect to D1 and D2 are w(1) = [0 0]T and w(2) = [0 4
9
]T , respectively (see Appendix

A). Using w(1) and w(2), we obtain the average-based model w evaluated at the server: w =
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(a) (b)

Fig. 1. Federated learning operation: (a) centralized server sends a common model to user devices and (b) each device locally

trains the model using its own local data and then upload the trained network parameters to the server to globally update the

model.

1
2
(w(1) + w(2)) = [0 2

9
]T . Since the optimum weight over D1 ∪ D2 is w∗ = [0 4

9
]T , we have

‖w∗ −w‖2 =
2

9
> 0 = ‖w∗ −w(2)‖2,

which implies that the average value w is worse than the locally generated value w(2). In this

scenario, clearly, it would be better for the second device to use its own solution w(2) instead of

the server feedback w. Simply put, the moral of the story is that collaboration might do more

harm than good, especially when things are not ready.

Our intent in this paper is to put forth a simple yet effective FL strategy overcoming the prob-

lem we mentioned. Key idea of the proposed approach, referred to as the simulated annealing-

based FL (SAFL), is that we encourage each device to stay with its locally trained model instead

of relying on the collaborative learning model in the early stage of the learning process. When the

collaborative model becomes mature and reliable after the reasonable number of iterations, we

use the server-generated model to update the device. This idea can be well explained using the

simulated annealing (SA) strategy. In the SA strategy, the solution space is searched by imposing

perturbations on the estimates of parameters [14]–[18]. In the early stage (a.k.a., heating stage),

the SA algorithm decides to move the system to a new (presumably perturbation) state with high
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Fig. 2. The SA-based update strategy of the proposed SAFL. Here, the local model selection probability p is set to exponentially

decay with respect to the training iteration.

probability, even though the new state might not be better than the current state, to avoid the

chance of trapping in the local optima. In the later stage (a.k.a., cooling stage), the SA algorithm

reduces the exploration of the perturbation space.

Inspired by the SA strategy, the proposed SAFL updates the local model of each user proba-

bilistically. To be specific, SAFL decides whether the device keeps its own locally updated model

with some modification (i.e., perturbation update) or uses the global evaluation model provided

by the server (i.e., server feedback) (see Fig. 2). In the early iterations where the global model

is immature, we give a favor to the locally updated model by setting the local model selection

probability high. As the number of iterations increases, we gradually reduce this probability so

that the device relies more on the server feedback, which helps to avoid the overfitting to the

local dataset.

The main contributions of this paper are summarized as follows:

• We propose a new FL technique called SAFL (Section II) inspired by the SA technique.

From extensive numerical experiments on various datasets including MNIST, Fashion-

MNIST, CIFAR-10, and Google speech commands, we demonstrate that the proposed SAFL

technique is effective and in fact outperforms the conventional FedAvg technique by a large

margin in terms of accuracy and convergence speed (Section V). Specifically, in the MNIST

dataset, SAFL converges two times faster than FedAvg and also achieves more than 50%
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improvement in the classification accuracy.

• We analyze the performance of the proposed SAFL technique (Section III). Specifically, we

show that under some suitable conditions, the mean squares error (MSE) of SAFL satisfies

E[‖ŵ −w∗‖2
2] ≤ ξ

after O(1
ξ
) iterations where ŵ is the evaluated model parameters and w∗ is the optimal

model parameters (see Theorem III.1).

• We extend SAFL to the scenario where the performance of the average-based global model

is degraded due to non-i.i.d. data and data imbalance among devices (Section IV). Our

key idea is to detect biased local updates by measuring the performance gap between the

global and local models. Specifically, if the performance gap is large, then we consider

the local update as a biased update and do not upload it to the server. In doing so, we

can exclude the biased local update in the update of the global model and prevent the

performance degradation of the global model. From the numerical results, we demonstrate

that the extended SAFL is effective in handling the non-i.i.d. data and reducing the number

of local updates uploaded to the server (see Section V).

We briefly summarize notations used in this paper. For a vector a ∈ Rn, Diag(a) ∈ Rn×n is

the diagonal matrix formed by a. ‖a‖2 stands for the spectral norm (i.e., the largest singular

value) of a. The inner product of two vectors a and b is defined as < a,b >= aTb. A � B

is the Hadamard product (or element-wise multiplication) of two matrices A and B. Given a

function f : X ∈ Rn1×n2 → f(X) ∈ R, ∇Xf(X) is the Euclidean gradient of f(X) with respect

to X, i.e., [∇Xf(X)]ij = ∂f(Y)
∂yij

. 1 =
[

1 1 · · · 1
]T

is all-ones vector.

II. PROPOSED SAFL ALGORITHM

We consider a communication system consisting of one central server and n user devices. The

server generates a global model with parameters w and then transmits the generated model to s

selected devices (1 ≤ s ≤ n). Each selected device has its own dataset D(k) = {(x(k)
i , y

(k)
i )}mk

i=1

to train the local model, where x
(k)
i ∈ Rq is an input data sample (e.g., image), y(k)

i is the class

label of x(k)
i , and mk is the number of data samples in the k-th device. We consider the standard

FL setting where devices cannot exchange their own datasets with other devices or the central

server. In each iteration, FedAvg updates the model parameters w (e.g., weights and biases)
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by taking the following steps. First, using its own dataset D(k), each user device updates the

model parameters locally to minimize the loss function F (w;D(k)).1 For example, the update

expression of the model parameters z
(k)
t at the k-th device is

z
(k)
t = w

(k)
t−1 − α

∂F (w;D(k))

∂w

∣∣∣∣
w=w

(k)
t−1

, (2)

where α is the learning rate and w
(k)
t−1 is the local model parameters after t−1 iterations. Second,

the server aggregates the local updates z
(k)
t to evaluate the global model parameters. The update

expression of the global evaluation model is

z̄t =
n∑
k=1

ηkz
(k)
t , (3)

where ηk is the coefficient satisfying
∑

k ηk = 1.2 Note that when s < n, we simply set ηk = 0

for non-selected devices. Finally, the server transmits the globally updated parameters z̄t to the

selected devices to update the local models. That is, the local model parameters w
(k)
t is updated

as

w
(k)
t =

 zt if the device receives zt

z
(k)
t otherwise

. (4)

One potential drawback of the conventional FedAvg technique is that an entire FL process can

be degraded by applying the hard-decision rule in (4). This is because the global evaluation model

z̄t is not necessarily better than locally updated parameters z
(k)
t in many practical scenarios. For

example, in the next word prediction application, a language model is trained to predict which

word comes next when the initial text fragment is given. In heterogeneous scenarios, users with

different countries might use their own mother languages with different grammar and word

combination rules (e.g., a subject-verb-object (SVO) rule is used in English, while a subject-

object-verb (SOV) rule is used in Korean). Since the next word prediction task is performed with

different language rules, the average-based model might perform much worse than the locally

trained language model of a local device.

As another example, one can consider the face and object recognition problem where a

classification model is trained to identify the user’s face ID. The local dataset collected from

1For example, if the mean squared error (MSE) is employed as a loss function, then F (w;D) = 1
|D|

∑
(x,y)∈D

1
2
(xTw−y)2.

2We consider the generic setting of ηk which is an arbitrary value defined by user. A typical setting of ηk is ηk = mk∑
k mk

[2].
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Fig. 3. In each iteration of the proposed SAFL technique, each device (a) moves to the perturbation state P(k)
t with probability

p or (b) stays in the normal state R(k)
t with probability 1− p. In this figure, ξ(k)

t is a descent direction.

user’s personal images is often non-i.i.d. distributed across devices. Since the global model is

aggregated by averaging the locally trained models, it may overfit to the local data. In this

case, if the device uses the average-based model exclusively, the device might also suffer the

overfiting problem, even when the good training dataset is available. Indeed, it has been shown

that FedAvg can diverge in such non-i.i.d. scenario [3], [20].

Inspired by this observation, we first define a weighted sum model that incorporates z
(k)
t and

zt. The corresponding local update model is expressed as

w
(k)
t =

εzt + (1− ε)z(k)
t if the device receives zt

z
(k)
t otherwise

. (5)

where ε is the regularization parameter used to control the contribution of the global evaluation

model in (5). For example, by setting ε = 1, the update expression (5) is returned to the

conventional FL case. Whereas, by setting ε = 0, the device ignores the server feedback zt and

continues to use the locally trained model z(k)
t .

For the model selection, we consider a strategy inspired by the SA algorithm. In the proposed

SAFL, we define the normal state Rt and the perturbation state Pt as zt and εzt + (1− ε)z(k)
t ,

respectively (see Fig. 3). Pt is accepted with probability p = exp(− t
L

) where L is a positive

constant (a.k.a., the maximum temperature of SA [15]), while Rt is with probability 1− p. To
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TABLE I

THE PROPOSED SAFL ALGORITHM

Algorithm 1: Proposed SAFL

Input: T : max iteration

E: max local epoch

L: control parameter

{ηk}k: weight coefficients

{w(k)
0 }k: parameter initialization of the devices

s: number of selected devices each round

t = 1: initial iteration

While t < T and a stopping criterion is not met do:

For the server do:

If the server receives z
(k)
t from the devices then do:

zt =
n∑

k=1

ηkz
(k)
t

Select a random set of devices St satisfying |St| = s

Send zt to St

End If

End For

For device k ∈ St in parallel do:

For e = 1 to E do:

For all example A(ik)
t , ik ∈ {1, 2, · · · ,mk} do:

z
(k)
t = w

(k)
t−1 − α∇Fk(w

(k)
t−1;A

(ik)
t )

If the device receives zt from the server then do:

Generate u
(k)
t using (6)

w
(k)
t = u

(k)
t � zt + (1− u

(k)
t )� z

(k)
t

Else do:

w
(k)
t = z

(k)
t

End If

t = t+ 1

End For

End For

Send z
(k)
t to the server

End For

End While

Output: ŵt =
∑

k w
(k)
t

be specific, let u(k)
t be the random vector whose j-th element uj satisfies

uj =

ε with probability p = exp
(
− t
L

)
,

1 with probability 1− p,
(6)

October 12, 2021 DRAFT
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then the local update expression (5) can be reformulated as (see Fig. 3)

w
(k)
t =

u
(k)
t � z̄t + (1− u

(k)
t )� z

(k)
t if receives zt

z
(k)
t otherwise

. (7)

Note that the model selection probability p decays exponentially with the number of iteration.

In early iterations (i.e., p is close to one), each device relies on its locally trained model and

thus the local model would be trained mainly by the local dataset. In later iterations (i.e., p is

close to zero), the device uses the global evaluation model which is presumably more robust to

the overfitting problem than the locally trained model.

We note that the server update procedure of SAFL is essentially the same as the conventional

FedAvg so that various fusion models can be easily integrated to SAFL [33], [34], [37]–[41]. For

example, if we integrate the inverse distance aggregation (IDA) fusion model [34] and SAFL,

the coefficient ηk is expressed as [37]

ηk =
‖zt − z

(k)
t ‖−1

2
n∑
k=1

‖zt − z
(k)
t ‖−1

2

. (8)

In Algorithm I, we summarize the proposed SAFL algorithm.

III. CONVERGENCE ANALYSIS OF SAFL

In this section, we analyze the convergence behavior of the proposed SAFL. For simplicity, we

consider the scenario where each participating device updates its local model using the stochastic

gradient descent (SGD) [19]. Let δt be a user-predefined value satisfying

δt =

1 if the k-th device receives the server feedback zt,

0 else,
(9)

Then, the update expressions (2) and (7) can be reformulated as

z
(k)
t = w

(k)
t−1 − α∇Fk(w(k)

t−1;A
(ik)
t ), (10)

w
(k)
t = δtu

(k)
t � z̄t + (1− δtu(k)

t )� z
(k)
t . (11)

where the input data A(ik)
t = (xik , yik) ∈ D(k) is sampled identically and independently at each

iteration. Here, we put no assumption on the data distribution so that our analysis results can be

October 12, 2021 DRAFT
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applied for both i.i.d. and non-i.i.d. scenarios. Also note that Fk(w
(k)
t−1;A

(ik)
t ) is the cost function

with respect to the data sample A(ik)
t and Fk(w

(k)
t−1) is the empirical risk function defined as

Fk(w
(k)
t−1) =

1

|D(k)|
∑
ik

Fk(w
(k)
t−1;A

(ik)
t ). (12)

Before proceeding, we summarize the assumptions used in our analysis:

A1 Fk(w) is non-negative: Fk(w) ≥ 0 and Fk(w∗) = 0

A2 Fk(w) is a smooth convex function: λI � ∇2Fk(w) � µI for λ ≥ µ ≥ 0.

A3 The stochastic gradient ∇Fk(w(k)
t ;A

(ik)
t ) has a bounded variance:

tr(V ar(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(ik)
t )|w(k)

t−1)) ≤ σ2
k. (13)

It is worth mentioning that these assumptions are used in various machine learning problems,

such as linear regression, Tikhonov regularization, logistic regression, and support vector machine

(SVM) [10]–[12].

Without loss of generality, we focus on the minimization problem3 of the empirical risk. Hence,

A1 ensures that the objective function is to be minimized to zero. When the objective function has

a nonzero lower bound, say, Fk(w) ≥ F0 for some constant F0, we simply define a new objective

function F̃k(w) = Fk(w)− F0 and easily extend the analysis results to F̃k(w). Assumption A2

is popularly used to guarantee a linear convergence rate of many gradient descent-based machine

learning techniques [19]. Equivalently, A2 can be expressed as [19]

A2a ∇Fk(w) is λ-Lipschitz continuous:

‖∇Fk(w2)−∇Fk(w1)‖2 ≤ λ‖w2 −w1‖2,∀w1,w2. (14)

A2b Fk(w) is a µ-strongly convex function:

Fk(w2) ≥ Fk(w1) +∇Fk(w1)T (w2 −w1)

+
µ

2
‖w2 −w1‖2

2,∀w1,w2 (15)

for λ ≥ µ ≥ 0.

Intuitively, A2 ensures that there exists a quadratic lower bounds on the growth of the objective

function. In our analysis, we use A2, together with Taylor’s expansion, to build a universal upper

3The maximization problem can be converted into a minimization problem with the same solution by multiplying the objective

function by −1.
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bound on the MSE of the local updates w
(k)
t . Assumption A3 is referred to as bounded variance

condition in the literature [19], which is widely used in the SGD convergence analysis [20]–[22].

In our main theorem, under A1, A2, and A3, we show that the proposed SAFL converges

linearly4 to an accurate solution.

Theorem III.1. Under A1, A2, and A3, the MSE error bound of SAFL satisfies

E[‖ŵt −w∗‖2
2] ≤ (1− αµ)2tζ +

α

µ

n∑
k=1

η2
kσ

2
k

1− (1− αµ)2q

1− e−c(1− αµ)2q
, (16)

where ŵt =
n∑
k=1

ηkw
(k)
t , ζ = max

k
E[‖w(k)

0 − w∗‖2
2], q is the largest number of local iterations

and c = (1− p(1− ε2))(1−α(2λ−µ)
1−αµ )2 for some p and ε, provided that α < 1

2λ−µ .

Remark III.2. The right-hand side of (16) consists of two terms: 1) the first term (1− αµ)2tζ

converges linearly to zero with the iteration t and 2) the second term is a function of the learning

rate α and can be reduced with a small α. In fact, when α = O(1
t
), we can further show that

SAFL converges sublinearly to the optimal solution.

Corollary III.3. Under the same conditions of Theorem III.1, if αt = α0

t+1
for some α0 satisfying

2−
√

2
µ

< α0 <
2+
√

2
µ

, then the MSE bound of SAFL satisfies

E[‖ŵt −w∗‖2
2] ≤ c

t+ 1
, (17)

where c = max{2α2
0(maxk σ

2
k)

2−(2−µα0)2
,max

k
E[‖w(k)

0 −w∗‖2
2]}.

Proof. See Appendix E.

One can see that the MSE of the proposed SAFL scales in the order of O(1
t
). This MSE bound

matches to the latest results of federated optimization bound [20]–[22].

Remark III.4. In Theorem III.1, the impact of the network size n on the MSE bound is captured

by the factor
n∑
k=1

η2
kσ

2
k. In particular, when the local dataset has the same size (i.e., ηk = 1

n
), we

4A sequence {ut}∞t=1 is said to converge linearly to u∗ if there exists a number λ ∈ (0, 1) such that lim
t→∞

|ut+1−u∗|
|ut−u∗| = λ.

Also, if λ = 1, then the sequence is said to converge sublinearly to u∗.
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have

E[‖ŵt −w∗‖2
2] ≤ (1− αµ)2tζ +

ασ2

nµ

1− (1− αµ)2q

1− e−c(1− αµ)2q

(a)

≤ (1− αµ)2tζ +
ασ2

nµ
,

where σ2 = 1
n

n∑
k=1

σ2
k and (a) is because 1−(1−αµ)2q

1−e−c(1−αµ)2q
≤ 1. When t is large and α is fixed, this

MSE bound decays and converges to ασ2

nµ
, which means that the quality of the SAFL solution

improves with the number of participating devices n.

Remark III.5. While we use the convexity assumption A2 to facilitate our analysis, our main

result can be readily extended to the case where Fk(w) is not necessarily a strong convex

function. For example, we consider the non-negative function Fk(w) satisfying

A4 Fk(w) is µ-strongly quasi-convex:

< ∇Fk(w),w −w∗ > ≥ µ

2
‖w −w∗‖2

2. (18)

A5 The stochastic gradient ∇Fk(w(k)
t ;A

(ik)
t ) has a bounded variance:

E[‖∇Fk(w(k)
t−1;A

(ik)
t )‖2

2] ≤ σ2
k. (19)

Note that A4 is weaker than A2 since if A2 holds true, then we have

< ∇Fk(w),w −w∗ >
(a)
= Fk(w)− Fk(w∗) +

1

2
(w −w∗)

T∇2Fk(ξ)(w −w∗)

(b)

≥ 1

2
(w −w∗)

T∇2Fk(ξ)(w −w∗)

(c)

≥ µ

2
‖w∗ −w‖2

2,

where ξ is a point between w and w∗, (a) is due to Taylor’s expansion, (b) is because Fk(w)−
Fk(w∗) ≥ 0, and (c) is because ∇2Fk(ξ) � µI. We also note that A4 does not imply A2,

meaning that the quasi-strong convexity does not imply the convexity of Fk(w) [23]. For a

complete review of the functional classes satisfying this condition, see [24]. Interestingly, using

A4 instead of A2, one can show that the proposed SAFL still has the same convergence rate

O(1
t
).
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Theorem III.6. Under A1, A4, and A5, if αt = α0

t+1
for some α0 satisfying α0 >

1
µ

, the MSE

bound of SAFL satisfies

E[
∑
k

ηk‖w(k)
t −w∗‖2

2] ≤ c

t+ 1
, (20)

where c = max{α
2
0

∑
k ηkσ

2
k

µα0−1
, E[
∑
k

ηk‖w(k)
0 −w∗‖2

2]}.

Proof. See Appendix F.

Remark III.7. In Theorem III.1, we put no constraint on the number of local iterations q (a.k.a.,

the synchronization interval [22]). Therefore, the communication rounds required for T iterations

is O(Tq−1), which is comparable to the latest results of existing distributed SGD techniques [22].

We are now ready to prove Theorem III.1.

Proof of Theorem III.1: In our proof, we first show that the bound of E[‖ŵt − w∗‖2
2] is

expressed in terms of E[‖w(k)
t −w∗‖2

2] and ‖E[w
(k)
t −w∗]‖2

2. We then build the upper bounds

for each of these. That is,

E[‖ŵt −w∗‖2
2] = E[‖

∑
k

ηkw
(k)
t −w∗‖2

2]

=
∑
k

η2
kE[‖w(k)

t −w∗‖2
2]

+
∑
i

∑
j 6=i

ηiηjE[< w
(i)
t −w∗,w

(j)
t −w∗ >]

(a)

≤
∑
k

η2
kE[‖w(k)

t −w∗‖2
2]

+
∑
i

∑
j 6=i

ηiηj‖E[w
(i)
t −w∗]‖2‖E[w

(j)
t −w∗]‖2

(b)
= (
∑
k

η2
k) max

k
E[‖w(k)

t −w∗‖2
2]

+ (1−
∑
k

η2
k) max

k
‖E[w

(k)
t −w∗]‖2

2, (21)

where (a) is from the Cauchy-Schwarz inequality and (b) is because
∑

i

∑
j 6=i ηiηj = (

∑
k ηk)

2−∑
k η

2
k = 1−∑k η

2
k.

In the following lemmas, we provide the upper bounds of E[‖w(k)
t − w∗‖2

2] and ‖E[w
(k)
t −

w∗]‖2
2.
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Lemma III.8. Under the same conditions of Theorem III.1, we have

E[‖w(k)
t −w∗‖2

2] ≤ (1− αµ)2te−cb
t
q
cζ0 +

α2σ2
k

1− (1− αµ)2

1− (1− αµ)2q

1− e−c(1− αµ)2q
, (22)

where ζ0 = max
i
E[‖w(k)

0 −w∗‖2
2].

Proof. See Appendix B.

Lemma III.9. Under the same conditions of Theorem III.1, we have

‖E[w
(k)
t −w∗]‖2 ≤ (1− αµ)t

√
ζ, (23)

where ζ = max
k
E[‖w(k)

0 −w∗‖2
2].

Proof. See Appendix C.

Finally, using (21), (22), and (23), we have

E[‖ŵt −w∗‖2
2] ≤

∑
k

η2
k(1− αµ)2te−cb

t
q
cζ + (1−

∑
k

η2
k)(1− αµ)2tζ

+
∑
k

η2
kσ

2
k

α2

1− (1− αµ)2

1− (1− αµ)2q

1− e−c(1− αµ)2q

= (1−
∑
k

η2
k(1− e−cb

t
q
c))(1− αµ)2tζ

+
∑
k

η2
kσ

2
k

α2

1− (1− αµ)2

1− (1− αµ)2q

1− e−c(1− αµ)2q

(a)

≤ (1− αµ)2tζ +

∑
k

η2
kσ

2
kα

2

1− (1− αµ)2

1− (1− αµ)2q

1− e−c(1− αµ)2q

(b)

≤ (1− αµ)2tζ +
α

µ

∑
k

η2
kσ

2
k

1− (1− αµ)2q

1− e−c(1− αµ)2q
,

where (a) is because 1−∑
k

η2
k(1−e−cb

t
q
c) ≤ 1 and (b) is because 1−(1−αµ)2 = αµ(2−αµ) ≥ αµ,

which establishes Theorem III.1. �

IV. EXTENDED SAFL FOR THE OVERFITTING PROBLEM

In many practical scenarios, the FL performance can be degraded due to various reasons such

as biased user data, training failures, model poisoning attack, and adversarial attacks [7]–[10],

[20], [25]. For example, when a user device trains its local model using non-representative data
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Fig. 4. The performance of the FL network with and without biased user data.

(i.e., certain elements in the dataset are more heavily weighted and represented than others),

then the local update of the device might cause a model overfitting problem, resulting in the

degradation of the entire FL network performance. To illustrate this behavior, we consider a FL

network performing the MNIST classification (see Section V for the detailed setting of the FL

network). Depending on the number of digit labels in the local datasets, devices can be classified

into two groups: 1) a group with local dataset containing multiple digits (say, 1, 2, 5, 7, and

9) and 2) a group with dataset containing only one digit (say, 2). Due to the data bias, devices

in the second group can only learn features of one digit and, as a result, locally trained models

might fail to predict other digits (1, 5, 7, and 9). In fact, when the locally trained models of the

second group are overfitted to the biased dataset, there would be a performance degradation in

the global evaluation model. In our example, if the server uses the local updates of the second

group in the update of the global model, then the accuracy of the global model is degraded

significantly (see Fig. 4).

In the above example, since the data distributions of devices are known as a priori, we can

prevent the performance degradation of the global model by excluding local updates of the

second group in the update of the global model. In general, however, it is very difficult for the

server to exclude those biased local updates since the local datasets are not revealed to the server

due to the privacy of the user data. Instead of making the server to exclude biased local updates,
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Algorithm 2: Extended SAFL

Input: T : max iteration

E: max local epoch

L: maximum temperature

{ηk}k: weight coefficients

{w(k)
0 }k: parameter initialization of the devices

s: number of selected devices each round

t = 1: initial iteration

{q(k)0 }k = 1: initial probability of the local update

While t < T and a stopping criterion is not met do:

For the server do:

If the server receives z
(k)
t from the devices then do:

zt =
n∑

k=1

ηkz
(k)
t

Select a random set of devices St satisfying |St| = s

Send zt to St

End If

End For

For device k ∈ St in parallel do:

For e = 1 to E do:

For all example A(ik)
t , ik ∈ {1, 2, · · · ,mk} do:

z
(k)
t = w

(k)
t−1 − α∇Fk(w

(k)
t−1;A

(ik)
t )

If the device receives zt from the server then do:

Generate u
(k)
t using (6)

w
(k)
t = u

(k)
t � zt + (1− u

(k)
t )� z

(k)
t

Compute q(k)t using (25)

Else do:

w
(k)
t = z

(k)
t

q
(k)
t = q

(k)
t−1

End If

t = t+ 1

End For

End For

Send z
(k)
t to the server with probability q(k)t

End For

End While

Output: ŵt =
∑

k w
(k)
t

we modify SAFL such that each device can decide whether to upload its local update to the
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server or not. This decision is done by measuring the performance gap between global and local

models. Let h(zt−1) and h(z
(k)
t ) be the accuracies of the global evaluation model and the local

model in the k-th device, respectively, then the performance gap ∆
(k)
t between the global and

local models is defined as

∆
(k)
t =

|h(zt−1)− h(z
(k)
t )|

h(zt−1) + h(z
(k)
t ) + ε

, (24)

where ε is a small constant to avoid division by zero (e.g., ε = 10−6). If ∆
(k)
t is large, then we

consider the local update as a biased update and do not upload the local update to the server.

To do so, we set the probability q(k)
t that the local update z

(k)
t is uploaded to the server as5

q
(k)
t = exp

(
−∆

(k)
t

ν

)
, (25)

where ν is a regularization parameter. Since the probability q
(k)
t decays exponentially with the

performance gap ∆
(k)
t , if ∆

(k)
t is large, then it is highly likely that the device does not send its

local update z
(k)
t to the server. By excluding the biased local update z

(k)
t in the update of the

global model, we can prevent the performance degradation of the global model.

While the communication cost of SAFL is the same as that of FedAvg, the extended SAFL

can reduce the number of local updates uploaded to the server. Let X be the total local updates

of n devices after T communication rounds and let X(k)
t be the random variable indicating

whether the k-th device sends the local update to the server, i.e., P (X
(k)
t = 1) = q

(k)
t and

P (X
(k)
t = 0) = 1− q(k)

t . Then, we have X =
T∑
t=1

n∑
k=1

X
(k)
t and thus

E[X] =
T∑
t=1

n∑
k=1

exp

(
−∆

(k)
t

ν

)
≤

T∑
t=1

n∑
k=1

1 = nT, (26)

where nT is the total local updates of FedAvg.

In Algorithm II, we summarize the extended SAFL algorithm.

V. SIMULATION

In this section, we investigate the empirical performance of the proposed SAFL on various

benchmark datasets, which has been popularly used in the FL evaluation. We first summarize

the datasets used in our experiments as follows:

5The choice of the exponential decay is based on our empirical experiences.
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TABLE II

DEEP NEURAL NETWORKS

LeNet-5 Light VGGNet

Layer Filter Stride Layer Filter Stride

conv5-6 1 conv3-64 1

avg-pool-2 2 conv3-128 1

conv5-16 1 max-pool-2 2

avg-pool-2 - conv3-128 1

FC-120 - max-pool-2 2

FC-84 - conv3-128 1

FC-10 - max-pool-2 2

softmax - conv3-128 1

- - max-pool-2 2

- - global-avg-pool -

- - conv1-10 1

- - softmax -

0.04M params 1.76M params

• MNIST [26]: a dataset consisting of 70, 000 images of handwritten digits between 0 and 9.

All the images are divided into two groups: 60, 000 images for the training set and 10, 000

images for the test set6.

• Fashion-MNIST [27]: a dataset containing 70,000 grayscale images of clothing (e.g., sneak-

ers, shirts, shoes, and bags). These images are classified into 10 categories. The dataset is

divided into two sets: the training set of 60,000 images and the test set of 10,000 images.

• CIFAR10 [28]: a dataset of color images popularly used in image classification. It consists

of 60,000 images of 32×32 pixels from 10 categories: airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck. The dataset is divided into two: training set of 50,000

images and test set of 10,000 images.

• Google speech commands dataset [29]: a dataset popularly used in speech recognition

tasks. It consists of 65,000 utterances of 30 short words. To pre-process the GSC dataset,

we compute the first 13 mel-frequency cepstral coefficients (MFCC) of a speech signal using

80 filterbanks. To be specific, we first perform a 1024-point short-time Fourier transform

6The training and the test sets are split by the command tf.keras.datasets.mnist.load data() in Tensorflow.
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n = 40 n = 80 n = 120

(a)

(b)

Fig. 5. Test accuracy of SAFL on different datasets: (a) MNIST and (b) GSC.

TABLE III

TEST ACCURACY IN THE 50-TH COMMUNICATION ROUND.

Dataset
Baseline AvgFed SAFL

Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

MNIST 99% 99% 30% 90% 94% 99%

FMNIST 92% 99% 58% 98% 75% 99%

CIFAR10 77% 98% 21% 75% 35% 88%

GSC 91% 98% 62% 91% 72% 92%

(STFT) with frames of 64ms and 75% overlap (at 16kHz sampling frequency) and then

compute the power spectrum and MFCC.

In our experiments, each training set is partitioned into n subsets (D1,D2, · · · ,Dn) of user

devices, and each of which is the local dataset in each device. We consider the heterogeneous
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(a) (b) (c)

Fig. 6. Performance of SAFL for different fraction R of selected devices: (a) R = 0.3, (b) R = 0.5, and (c) R = 0.7.

TABLE IV

EFFECT OF THE PARAMETERS ε AND L IN THE PROPOSED SAFL.

ε
Baseline FedAvg

SAFL
L = 10

SAFL
L = 80

Test
Cost Test Acc.

Test
Cost Test Acc.

Test
Cost Test Acc.

Test
Cost Test Acc.

0.3 0.075 98.8% 0.476 88.2% 0.322 91.2% 0.186 95.3%

0.5 0.075 98.8% 0.476 88.2% 0.206 94.7% 0.204 95.1%

0.7 0.075 98.8% 0.476 88.2% 0.335 91.5% 0.217 94.6%

TABLE V

SAFL ACCURACY FOR DIFFERENT BATCH SIZES.

Dataset size FL Technique
Batch size

50 100 150 200

Half of dataset
FedAvg 97.59% 97.15% 91.53% 93.03%

SAFL 97.99% 97.55% 97.25% 94.01%

All of dataset
FedAvg 98.44% 97.42% 97.01% 95.74%

SAFL 98.47% 98.12% 97.67% 97.08%

scenarios where Dk consists of just a few number of class labels (not all the labels) whose

sizes are all different (mk = |Dk|). To be specific, we first set mk = max(bxkc, 1) where
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TABLE VI

TOTAL LOCAL UPDATES UPLOADED TO THE SERVER.

Iter
FedAvg SAFL Extended SAFL

Total updates Test Acc. Total updates Test Acc. Total updates Test Acc.

60 3050 52.22% 3050 93.72% 2023 94.83%

70 3550 78.91% 3550 95.35% 2448 95.87%

80 4050 92.32% 4050 96.22% 2883 96.51%

xk ∼ N(m,σ2) is a normal random variable with mean m and variance σ2 and bxkc is the

integer satisfying bxkc ≤ xk < bxkc + 1. Then we select a number of digits (e.g., at most 7

digits) for each device at random and choose mk samples randomly from the training subset

containing only the selected digit labels.

For the MNIST classification, we use LeNet-5, a CNN model consisting of two sets of convolu-

tional and pooling layers, followed by two fully-connected layers and the softmax classifier [30].

For the fashion-MNIST, CIFAR10, and GSC classifications, we use the VGGNet, a CNN model

using only 3 × 3 convolutional kernels [31]. The parameter settings of the CNN architectures

are shown in Table II. As a loss function in the training process, we use the cross-entropy:

H(y, ŷ) = −
10∑
i=1

(yi ln ŷi + (1− yi) ln(1− ŷi)), (27)

where ŷ =
[
ŷ1 · · · ŷ10

]T
is the predicted softmax output and y =

[
y1 · · · y10

]T
is the

one-hot vector of the true label. For all experiments, we set the learning rate α to a fixed constant

(α = 0.002) and set the number of local epochs to E = 3. We initialize the local model of each

device with a different random seed.

We first evaluate the test accuracy of SAFL for different network size (n = 40, 80, and 120).

In this experiment, we set the parameters ε = 0.3, L = 80, m = 600, and σ2 = 100. In Fig. 5, we

plot the test accuracy of SAFL and the conventional FedAvg as a function of the communication

round. The baseline is the centralized machine learning using the whole dataset. From the results,

we observe that the accuracy of all the FL algorithms improves after a sufficient communication

rounds (e.g., 100 rounds) and the performance of all FL algorithms eventually converges to the
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accuracy of the centralized learning technique. In particular, the proposed SAFL outperforms

the standard FL technique by a large margin. For example, for n = 80, SAFL achieves the test

accuracy of 95% at the 56-th communication round, resulting in an accuracy improvement of

more than 50% (see Fig. 5a). We also observe that the proposed SAFL converges faster than the

standard FL technique. For example, when n = 120, SAFL achieves the accuracy of 80% in 35

communication rounds, while the standard FL technique requires more than 70 rounds to achieve

the same level of accuracy (see Fig. 5a). Similar results can be observed from the GSC dataset

(see Fig. 5b). In Table. III, we show the top-1 and top-5 accuracy of SAFL in the early stage of

SA for n = 80. From these experiments, we observe that SAFL outperforms the conventional

approaches, resulting in an 17% improvement of the top-1 accuracy on the FMNIST dataset.

We next examine the impact of the hyperparameters ε and L on the performance of SAFL.

In this MNIST experiment, we set n = 50 and run simulations for different values ε =

0.3, 0.5, and 0.7. In Table. IV, we show the test cost and the test accuracy evaluated at the

50-th communication round. The best performance of SAFL is highlighted with bold digits. For

example, when ε = 0.3 and L = 80, SAFL achieves the smallest MSE (i.e., MSE = 0.186) and

the best accuracy (i.e., 95.3%).

We test the performance of SAFL for different training batch sizes (B = 50, 100, 150, and

200). For all the MNIST experiments, we set the parameters n = 100, ε = 0.3, L = 80,

m = 600, σ2 = 100. The MNIST accuracy are tested after T = 100 communication rounds.

From the results, we observe that the small and moderate batch size can be used to enhance the

accuracy of the FL networks, especially when the data size is reduced by half. For example,

the batch size B = 50 gives more than 97.99% SAFL accuracy while the batch size B = 200

results in less than 97.08% accuracy (see Table. V).

We also test the accuracy of SAFL for different fraction of selected devices (R = 0.3, 0.5,

and 0.7). From the results, we observe that SAFL outperforms FedAvg, resulting in more than

50% improvement of the test accuracy after 50 communication rounds when R = 0.7 (see Fig.

6).

Next we evaluate the test accuracy of the extended SAFL as a function of the total local

updates uploaded to the server. Here, we set n = 100 local devices and count the total local

updates in different iterations (T = 60, 70, and 80). We run 100 trials and compute the mean

values (see Table VI). From the results, we observe that SAFL has the same communication cost
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Fig. 7. The learning performance of the FL techniques.

as FedAvg. While the accuracy of the extended SAFL is comparable to the SAFL accuracy, the

extended SAFL significantly reduces the number of the local updates uploaded by the devices,

resulting in more than 30% reduction of the local updates (see Table VI).

Finally, we compare the performance of SAFL with the state-of-the-art FL techniques in-

cluding the temporally weighted aggregation asynchronous (ASTW) [33], IDA [34], FedAvg,

FedSGD [35], and FedMA [36]. We also test the combined algorithms: ASTW-SAFL and IDA-

SAFL which are combined version of SAFL and ASTW/IDA fusion models [37]. From the

results, we observe that SAFL outperforms FedSGD and FedAvg by a large margin, resulting

in more than 50% improvement of the test accuracy after 50 communication rounds. The

performance of SAFL is comparable to that of FedMA. We also observe that the combination

of SAFL and state-of-the-art data fusion model can boost up the learning accuracy significantly.

For example, IDA-SAFL can achieve more than 80% accuracy after 50 communication rounds,

resulting in more than 30% improvement of the test accuracy over the conventional IDA.

VI. CONCLUSION

In this paper, we proposed a FL technique that greatly improves the accuracy and convergence

speed of FL. Motivated by the observation that the average-based global model is not necessarily

better than local models, the proposed SAFL technique allows each device to choose its own

model instead of the global model in the early stage of FL. From the convergence analysis,
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we showed that SAFL sublinearly converges to the optimal solution under suitable conditions.

Also, from the numerical experiments based on various benchmark datasets, we demonstrated

that SAFL outperforms the conventional FL technique in terms of the convergence speed and

the classification accuracy. In this work, we restricted our attention to the single-task learning

scenario. Our future work will be directed toward the extension to the multi-tasking scenario [32].

APPENDIX A

PROOF OF w(1), w(2), AND w∗

Proof. We first find the solution w(1). Let (x1, y1) = (
[

1
4

0
]T
,−1) and w =

[
w1 w2

]T
.

Then, we have

w(1) = arg min
w

J(w,D1)

= arg min
w

(y1 − xT1 w)2 + ‖w‖1

= arg min
w

(−1− 1

4
w1)2 + |w1|+ |w2|

=

 arg min
w1

(−1− 1
4
w1)2 + |w1|

arg min
w2

|w2|


(a)
=

 0

0

 ,
where (a) is because (−1 − 1

4
w1)2 + |w1| = 1 + 1

16
w2

1 + 1
2
w1 + |w1| ≥ 1 + 1

16
w2

1 ≥ 1 and the

equality holds if and only if w1 = 0. Similarly, we can find out the solutions w(2) =
[

0 4
9

]T
and w∗ =

[
0 4

9

]T
, which is the desired results.

APPENDIX B

PROOF OF LEMMA III.8

Proof. In this proof, we first show a recursive inequality of the MSE and then build the upper

bound of the MSE.
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Let e(k)
t = w

(k)
t −w∗ and ∆z

(k)
t = z

(k)
t − zt, then from (7), and (10), we have

e
(k)
t = w

(k)
t −w∗

= δtu
(k)
t � zt + (1− δtu(k)

t )� z
(k)
t −w∗

= z
(k)
t −w∗ − δtu(k)

t �∆z
(k)
t

= (w
(k)
t−1 −w∗)− δtu(k)

t �∆z
(k)
t − α∇Fk(w(k)

t−1;A
(ik)
t )

= e
(k)
t−1 − δtu(k)

t �∆z
(k)
t − α(∇Fk(w(k)

t−1)−∇Fk(w∗)) + α(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(ik)
t )).

Applying Taylor’s expansion yields

e
(k)
t = e

(k)
t−1 − δtu(k)

t �∆z
(k)
t − α∇2F (ξ

(k)
t−1)e

(k)
t−1 + α(∇Fk(w(k)

t−1)−∇Fk(w(k)
t−1;A

(ik)
t ))

= (I− α∇2Fk(ξ
(k)
t−1))e

(k)
t−1 − δtDiag(u

(k)
t )∆z

(k)
t + α(∇Fk(w(k)

t−1)−∇Fk(w(k)
t−1;A

(ik)
t )),

where ξ
(k)
t−1 is a point in the line segment of two endpoints w

(k)
t−1 and w∗.

Taking the conditional variance of e(k)
t , we have

E[‖e(k)
t ‖2

2|w(k)
t−1,∆z

(k)
t ,u

(k)
t ] = ‖E[e

(k)
t |w(k)

t−1,∆z
(k)
t ,u

(k)
t ]‖2

2 + tr(V ar(e
(k)
t |w(k)

t−1,∆z
(k)
t ,u

(k)
t ))

= ‖Ae
(k)
t−1 − δtDiag(u

(k)
t )∆z

(k)
t ‖2

2 + α2tr(V ar(∇Fk(w(k)
t−1)

−∇Fk(w(k)
t−1;A

(ik)
t )|w(k)

t−1,∆z
(k)
t ,u

(k)
t )),

where A = I− α∇2Fk(ξ
(k)
t−1).

By Assumption A3, the stochastic gradient has a bounded variance:

tr(V ar(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(ik)
t )|w(k)

t−1)) ≤ σ2
k. (28)

Thus, we have

E[‖e(k)
t ‖2

2|w(k)
t−1,∆z

(k)
t ,u

(k)
t ] ≤ ‖Ae

(k)
t−1 − δtDiag(u

(k)
t )∆z

(k)
t ‖2

2 + α2σ2
k

= ‖Ae
(k)
t−1‖2

2 + δt‖Diag(u
(k)
t )∆z

(k)
t ‖2

2 + α2σ2
k

− 2δt(∆z
(k)
t )TDiag(u

(k)
t )Ae

(k)
t−1.

Taking expectations of the last inequality, and noting the law of total expectation (E[X] =
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E[E[X|Y ]]), we have

E[‖e(k)
t ‖2

2] = E[E[‖e(k)
t ‖2

2|w(k)
t−1,∆z

(k)
t ,u

(k)
t ]]

≤ E[‖Ae
(k)
t−1‖2

2] + δtE[‖Diag(u
(k)
t )∆z

(k)
t ‖2

2] + α2σ2
k

− 2δtE[(∆z
(k)
t )TDiag(u

(k)
t )Ae

(k)
t−1].

By Assumption A2, the positive definite matrix A satisfies ‖Ae
(k)
t−1‖2

2 ≤ (1 − αµ)2‖e(k)
t−1‖2

2. It

follows that

E[‖e(k)
t ‖2

2] ≤ (1− αµ)2E[‖e(k)
t−1‖2

2] + α2σ2
k

+ δtE[‖Diag(u
(k)
t )∆z

(k)
t ‖2

2]− 2δtE[(∆z
(k)
t )TDiag(u

(k)
t )Ae

(k)
t−1]. (29)

Using the law of total expectation, one can easily check that

E[‖Diag(u
(k)
t )∆z

(k)
t ‖2

2] = E[E[‖Diag(u
(k)
t )∆z

(k)
t ‖2

2|w(k)
t−1,∆z

(k)
t ]]

= (1− p(1− ε2))E[‖∆z
(k)
t ‖2

2] (30)

E[(∆z
(k)
t )TDiag(u

(k)
t )Ae

(k)
t−1] = E[E[(∆z

(k)
t )TDiag(u

(k)
t )Ae

(k)
t−1||w(k)

t−1,∆z
(k)
t ]]

= (1− p(1− ε))E[(∆z
(k)
t )TAe

(k)
t−1] (31)

From (29), (30), and (31), we have

E[‖e(k)
t ‖2

2] ≤ (1− αµ)2E[‖e(k)
t−1‖2

2] + δt(1− p(1− ε2))E[‖∆z
(k)
t ‖2

2]

− 2δt(1− p(1− ε))E[(∆z
(k)
t )TAe

(k)
t−1] + α2σ2

k

= (1− αµ)2E[‖e(k)
t−1‖2

2]− δtE[Ω] + α2σ2
k

(a)

≤ (1− αµ)2E[‖e(k)
t−1‖2

2] + α2σ2
k

− δt(1− p(1− ε2))(1− α(2λ− µ))2E[‖e(k)
t−1‖2

2]

(b)

≤ τtE[‖e(k)
t−1‖2

2] + α2σ2
k, (32)

where Ω = 2(1− p(1− ε))(∆z
(k)
t )TAe

(k)
t−1 − (1− p(1− ε2))‖∆z

(k)
t ‖2

2, τt = (1− αµ)2 − δt(1−
p(1− ε2))(1−α(2λ−µ))2, and (a) is because E[Ω] ≥ (1−p(1− ε2))(1−α(2λ−µ))2E[‖e(k)

t−1‖2
2]

(see Appendix D).
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Using the recursion relationship (between E[‖e(k)
t ‖2

2] and E[‖e(k)
t−1‖2

2]) in (32), and noting that

τt > 0 as long as α ≤ 1
2λ−µ , we have

E[‖e(k)
t ‖2

2] ≤
t∏

j=1

τjE[‖e(k)
0 ‖2

2] + α2σ2
k(1 +

t−2∑
i=0

i∏
j=0

τt−j)

= (1− αµ)2t−2b t
q
cτ b

t
q
cE[‖e(k)

0 ‖2
2]

+ α2σ2
k

q−1∑
i=0

(1− αµ)2i

d t+1
q
e−1∑

j=0

τ j(1− αµ)2j(q−1)

= (1− αµ)2t−2b t
q
cτ b

t
q
cE[‖e(k)

0 ‖2
2]

+ α2σ2
k

(
1− (1− αµ)2q

1− (1− αµ)2

)
1− (τ(1− αµ)2q−2)d

t+1
q
e

1− τ(1− αµ)2q−2

(a)
= (1− αµ)2t−2b t

q
cτ b

t
q
cE[‖e(k)

0 ‖2
2]

+
α2σ2

k

1− (1− αµ)2

1− (1− αµ)2q

1− τ(1− αµ)2q−2

(b)

≤ (1− αµ)2te−cb
t
q
cE[‖e(k)

0 ‖2
2]

+
α2σ2

k

1− (1− αµ)2

1− (1− αµ)2q

1− e−c(1− αµ)2q
,

where q is the number of local iterations, τ = (1 − αµ)2 − (1 − p(1 − ε2))(1 − α(2λ − µ))2,

c = (1− p(1− ε2))(1−α(2λ−µ)
1−αµ )2, (a) is because 1− (τ(1−αµ)2q−2)d

t+1
q
e ≤ 1, and (b) is because

τ ≤ (1− αµ)2e−c, which is the desired result.

APPENDIX C

PROOF OF LEMMA III.9

Proof. We first show a recursive inequality of ‖E[w
(k)
t −w∗]‖2 and then build an upper bound

of this term.

Let e(k)
t = w

(k)
t −w∗ and ∆z

(k)
t = z

(k)
t − zt, then from (7), and (10), we have

‖E[Ae
(k)
t ]‖2 = ‖E[A(w

(k)
t −w∗)]‖2

= ‖E[A(δtu
(k)
t � zt + (1− δtu(k)

t )� z
(k)
t −w∗)]‖2

(a)
= ‖δt(εp+ 1− p)E[A(zt −w∗)] + (1− δt(εp+ 1− p))E[A(z

(k)
t −w∗)]‖2
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= ‖δt(εp+ 1− p)E[A(
∑
i

ηiz
(i)
t −w∗)] + (1− δt(εp+ 1− p))E[A(z

(k)
t −w∗)]‖2,

(33)

where A is a matrix independent of u(k)
t and (a) is because E[uj] = εp+ 1− p for all element

uj of u(k)
t .

Applying Jensen’s inequality yields

‖E[Ae
(k)
t ]‖2

(b)

≤ δt(εp+ 1− p)
∑
i

ηi‖E[A(z
(i)
t −w∗)]‖2

+ (1− δt(εp+ 1− p))‖E[A(z
(k)
t −w∗)]‖2

(c)

≤ max
i
‖E[A(z

(i)
t −w∗)]‖2, (34)

where the last inequality is because
∑

i ηi = 1.

Also, from the update expression (10), we have

E[A(z
(k)
t −w∗)] = E[A(w

(k)
t−1 − α∇Fk(w(k)

t−1;A
(jk)
t )−w∗)]

= E[A(e
(k)
t−1 − α(∇Fk(w(k)

t−1)−∇Fk(w∗)))]

+ αE[A(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(jk)
t ))]. (35)

Using Taylor’s expansion, we have

E[A(z
(k)
t −w∗)] = E[A(e

(k)
t−1 − α∇2F (ξ

(k)
t−1)e

(k)
t−1)]

+ αE[A(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(jk)
t ))]

= E[AG
(k)
t−1e

(k)
t−1]

+ αE[A(∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(jk)
t ))],

where G
(k)
t−1 = I− α∇2Fk(ξ

(k)
t−1) and ξ

(k)
t−1 is a point in the line segment of two endpoints w

(k)
t−1

and w∗.

Using the law of total expectation yields

E[A(z
(k)
t −w∗)] = E[AG

(k)
t−1e

(k)
t−1] + αE[A(∇Fk(w(k)

t−1)−∇Fk(w(k)
t−1;A

(jk)
t ))]

= E[AG
(k)
t−1e

(k)
t−1] + αE[AE[∇Fk(w(k)

t−1)−∇Fk(w(k)
t−1;A

(jk)
t )|A,w(k)

t−1]]

= E[AG
(k)
t−1e

(k)
t−1], (36)
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where the last equality is because the input data A(ik)
t is sampled identically and independently

in each iteration and E[∇Fk(w(k)
t−1)−∇Fk(w(k)

t−1;A
(jk)
t )|A,w(k)

t−1] = 0.

From (34) and (36), we have

‖E[Ae
(k)
t ]‖2 ≤ max

i
‖E[A(z

(i)
t −w∗)]‖2

= max
i
E[AG

(i)
t−1e

(i)
t−1].

Letting j = arg max
i
E[AG

(i)
t−1e

(i)
t−1], we have

‖E[Ae
(k)
t ]‖2 ≤ E[AG

(j)
t−1e

(j)
t−1].

Applying this inequality yields

‖E[e
(k)
t ]‖2 ≤ ‖E[G

(it−1)
t−1 e

(it−1)
t−1 ]‖2

≤ ‖E[G
(it−1)
t−1 G

(it−2)
t−2 e

(it−2)
t−2 ]‖2

≤ ‖E[G
(it−1)
t−1 G

(it−2)
t−2 G

(it−3)
t−3 · · ·G(i0)

0 e
(i0)
0 ]‖2

(a)

≤ E[‖G(it−1)
t−1 · · ·G(i0)

0 e
(i0)
0 ‖2]

(b)

≤ (1− αµ)tE[‖e(i0)
0 ‖2]

(c)

≤ (1− αµ)t
√
ζ, (37)

where it−1 = arg max
i
‖E[G

(i)
t−1e

(k)
t−1]‖2 and it−j = arg max

i
‖E[G

(it−1)
t−1 · · ·G(i)

t−je
(i)
t−j]‖2 (j =

2, 3, · · · , t), ζ = maxiE[‖e(i)
0 ]‖2

2], (a) is because of Jensen’s inequality (‖γx + (1 − γ)y‖2 ≤
γ‖x‖2 + (1− γ)‖y‖2), (b) is because ‖G(i)

t−1‖ ≤ 1− αµ, and (c) is because ζ ≥ E[‖e(i0)
0 ‖2

2] ≥
(E[‖e(i0)

0 ‖2])2, which is the desired result.

APPENDIX D

PROOF OF Ω ≥ (1− p(1− ε2))(1− α(2λ− µ))2‖e(k)
t−1‖2

2

Proof. In this proof, we show that Ω ≥ (1 − p(1 − ε2))‖e(k)
t−1‖2

2 for some values of ε and p as

long as α < 1
2λ−µ . In fact, we have

Ω = 2(1− p(1− ε))(∆z
(k)
t )TAe

(k)
t−1

− (1− p(1− ε2))‖∆z
(k)
t ‖2

2
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= ‖e(k)
t−1‖2

2 (2(1− p(1− ε))ρs

−(1− p(1− ε2))s2
)
, (38)

where ρ =
(∆z

(k)
t )TAe

(k)
t−1

‖∆z
(k)
t ‖2‖e

(k)
t−1‖2

and s =
‖∆z

(k)
t ‖2

‖e(k)t−1‖2
. Note that when ‖e(k)

t−1‖2 = 0 (i.e., s → ∞), the

algorithm already converges to the optimum w∗. When ‖∆z
(k)
t ‖2 = 0 (i.e., s = 0), it is clear

that Ω = 0. So, we only need to consider the case of 0 < s <∞.

First, we recall that for x and y satisfying ‖x‖2 = ‖y‖2 = 1, it follows 2xTAy = xTAx +

yTAy− (x−y)TA(x−y) ≥ 2λmin−λmax where λmax and λmin are the largest and the smallest

eigenvalues of A. Since A = I − α∇2Fk(ξ
(k)
t−1), we have λmax ≤ 1 − αµ and λmin ≥ 1 − αλ.

Therefore, we have

ρ ≥ 1

2
(2λmin(A)− λmax(A) ≥ 1

2
(1− α(2λ− µ)). (39)

Form (38) and (39), we have

Ω ≥ ‖e(k)
t−1‖2

2 ((1− p(1− ε))(1− α(2λ− µ))s

−(1− p(1− ε2))s2
)
.

Next, we have

Ω− ‖e(k)
t−1‖2

2(1− p(1− ε2))(1− α(2λ− µ))2

‖e(k)
t−1‖2

2(s2 + (1− α(2λ− µ))2)

= (1− p(1− ε)) (1− α(2λ− µ))s

s2 + (1− α(2λ− µ))2
− (1− p(1− ε2))

≥ (1− p(1− ε))c1 − (1− p(1− ε2))

≥ g(ε, p),

where c1 = min
s

(1−α(2λ−µ))s
s2+(1−α(2λ−µ))2

(≤ 1
2
) and g(ε, p) = −pε2 + pc1ε − (1 − c1)(1 − p). Noting that

1
2
λ‖e(k)

t−1‖2
2 ≥ f(w

(k)
t−1)− f(w∗) ≥ 1

2
µ‖e(k)

t−1‖2
2 and f(w∗) = 0, we have

c1 =
(1− α(2λ− µ))s

s2 + (1− α(2λ− µ))2

≥ min

(
c2
√
µ(1− α(2λ− µ))

c2
2(1− α(2λ− µ))2 + µ

,

c2

√
λ(1− α(2λ− µ))

c2
2(1− α(2λ− µ))2 + λ

)
, (40)
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where c2 = 1

‖∆z
(k)
t ‖2

√
2f(w

(k)
t−1).

Now, what remains is to show g(ε, p) ≥ 0. In fact, we have

g(ε, p) =
c2

1

4
− (1− c1)(1− p)

p
− (ε− c1

2
)2. (41)

It is not difficult to check that g(ε, p) ≥ 0 if

ε =
2(1− c1)(1− p)

c1p
, (42)

p ≥ 4(1− c1)

(2− c1)2
. (43)

Since g(ε, p) ≥ 0, we have Ω−‖e(k)
t−1‖2

2(1− p(1− ε2))(1−α(2λ−µ))2 ≥ 0 which is the desired

result.

APPENDIX E

PROOF OF COROLLARY III.3

Proof. Using Jensen’s inequality, we have

E[‖ŵt −w∗‖2
2] = E[‖

∑
k

ηkw
(k)
t −w∗‖2

2]

≤
∑
k

ηkE[‖w(k)
t −w∗‖2

2]

(a)

≤ max
k
E[‖w(k)

t −w∗‖2
2],

where (a) is because
∑

k ηk = 1. What remains is to show that if αt = α0

t+1
, then

E[‖w(k)
t −w∗‖2

2] ≤ c

t+ 1
. (44)

We will prove (44) using the mathematical induction on t. First, since c ≥ maxk E[‖w(k)
0 −w∗‖2

2],

it is clear that (44) holds true for t = 0.

Now we assume the induction hypothesis that (44) holds true for t − 1 and check if it also

holds true for the case of t. Letting e
(k)
t = w

(k)
t −w∗, and substituting αt instead of α in (32),
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we have

E[‖e(k)
t ‖2

2] ≤ (1− αtµ)2E[‖e(k)
t−1‖2

2] + α2
tσ

2
k

≤ (1− α0µ

t+ 1
)2 c

t
+

α2
0σ

2
k

(t+ 1)2

=
c

t+ 1

(
(1− α0µ

t+ 1
)2 t+ 1

t
+

α2
0σ

2
k

c(t+ 1)

)
(a)

≤ c

t+ 1

(
(1− α0µ

t+ 1
)2 t+ 1

t
+

2− (2− α0µ)2

2(t+ 1)

)
=

c

t+ 1

2t2 + t(2− α2
0µ

2) + 2(1− α0µ)2

2t(t+ 1)

(b)
<

c

t+ 1

2t2 + t(2− α2
0µ

2) + α2
0µ

2

2t(t+ 1)

(c)

≤ c

t+ 1
,

where (a) is because c ≥ 2α2
0σ

2
k

2−(2−α0µ)2
, (b) is because 2−

√
2

µ
< α0 <

2+
√

2
µ

, and (c) is because t ≥ 1,

which is the desired result.

APPENDIX F

PROOF OF THEOREM III.6

Proof. We first find a recursive expression of E[
∑
k

ηk‖w(k)
t −w∗‖2

2] and then prove by induction

that

E[
∑
k

ηk‖w(k)
t −w∗‖2

2] ≤ c

t+ 1
. (45)

From (7) and (10), we have

EU [
∑
k

ηk‖w(k)
t −w∗‖2

2] = EU [
∑
k

ηk‖δtu(k)
t � zt + (1− δtu(k)

t )� z
(k)
t −w∗‖2

2]

= EU [
∑
k

ηk‖z(k)
t −w∗ − δtu(k)

t � (z
(k)
t − zt)‖2

2]

=
∑
k

ηk‖z(k)
t −w∗‖2

2 + δtEU [
∑
k

ηk‖u(k)
t � (z

(k)
t − zt)‖2

2]

− δtEU [
∑
k

ηk < 2(z
(k)
t −w∗),u

(k)
t � (z

(k)
t − zt) >]

=
∑
k

ηk‖z(k)
t −w∗‖2

2
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+ δtEU [
∑
k

ηk < u
(k)
t � (z

(k)
t − zt)

− 2(z
(k)
t −w∗),u

(k)
t � (z

(k)
t − zt) >]

=
∑
k

ηk‖z(k)
t −w∗‖2

2

+ δtEU [
∑
k

ηk < u
(k)
t � u

(k)
t � (z

(k)
t − zt)

− 2u
(k)
t � (z

(k)
t −w∗), z

(k)
t − zt >]

=
∑
k

ηk‖z(k)
t −w∗‖2

2

+ δt
∑
k

ηk < (pε2 + 1− p)(z(k)
t − zt)

− 2(pε+ 1− p)(z(k)
t −w∗), z

(k)
t − zt >

(a)

≤
∑
k

ηk‖z(k)
t −w∗‖2

2

+ δt(pε+ 1− p)
∑
k

ηk(‖z(k)
t − zt − (z

(k)
t −w∗)‖2

2

− ‖z(k)
t −w∗‖2

2)

=
∑
k

ηk‖z(k)
t −w∗‖2

2

+ δt(pε+ 1− p)(‖zt −w∗‖2
2 −

∑
k

ηk‖z(k)
t −w∗‖2

2)

(b)

≤
∑
k

ηk‖z(k)
t −w∗‖2

2,

where EU [x] is the expected value of x with respect to U = {u(k)
t }k, (a) is because ε ≤ 1 and

< a − 2b, a >= ‖a − b‖2
2 − ‖b‖2

2, and (b) is because ‖zt − w∗‖2
2 = ‖∑

k

ηkz
(k)
t − w∗‖2

2 ≤∑
k

ηk‖z(k)
t −w∗‖2

2.

Taking expectation again, we have

E[
∑
k

ηk‖w(k)
t −w∗‖2

2] ≤ E[
∑
k

ηk‖z(k)
t −w∗‖2

2]

=
∑
k

ηkE[‖w(k)
t−1 −w∗ − αt∇Fk(w(k)

t−1, A
(ik)
t )‖2

2]
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=
∑
k

ηk(E[‖w(k)
t−1 −w∗‖2

2

− 2αt < ∇Fk(w(k)
t−1, A

(ik)
t ),w

(k)
t−1 −w∗ >]

+ α2
tE[‖∇Fk(w(k)

t−1, A
(ik)
t )‖2

2])

=
∑
k

ηk(E[‖w(k)
t−1 −w∗‖2

2

− 2αt < E[∇Fk(w(k)
t−1, A

(ik)
t )|w(k)

t−1],w
(k)
t−1 −w∗ >]

+ α2
tE[‖∇Fk(w(k)

t−1, A
(ik)
t )‖2

2])

(a)
=
∑
k

ηk(E[‖w(k)
t−1 −w∗‖2

2

− 2αt < ∇Fk(w(k)
t−1),w

(k)
t−1 −w∗ >]

+ α2
tE[‖∇Fk(w(k)

t−1, A
(ik)
t )‖2

2])

(b)

≤
∑
k

ηk((1− αtµ)E[‖w(k)
t−1 −w∗‖2

2]

+ α2
tE[‖∇Fk(w(k)

t−1, A
(ik)
t )‖2

2])

(c)

≤ (1− αtµ)E[
∑
k

ηk‖w(k)
t−1 −w∗‖2

2] + α2
t

∑
k

ηkσ
2
k, (46)

where (a) is because E[∇Fk(w(k)
t−1, A

(ik)
t )|w(k)

t−1] = ∇Fk(w(k)
t−1), (b) is due to A4, and (c) is due

to A5.

Letting et = E[
∑
k

ηk‖w(k)
t − w∗‖2

2], we will prove (45) using induction on t. First, since

c ≥ E[
∑
k

ηk‖w(k)
0 −w∗‖2

2], it is clear that (45) holds true for t = 0.

Now we assume the induction hypothesis that (45) holds true for t − 1 and check if it also

holds true for the case of t. We have

et ≤ (1− αtµ)et−1 + α2
tσ

2

≤ (1− α0µ

t+ 1
)
c

t
+

α2
0σ

2

(t+ 1)2

=
c

t+ 1

(
(1− α0µ

t+ 1
)
t+ 1

t
+

α2
0σ

2

c(t+ 1)

)
(a)

≤ c

t+ 1

(
(1− α0µ

t+ 1
)
t+ 1

t
+
α0µ− 1

t+ 1

)
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=
c

t+ 1

t(t+ 1)− (α0µ− 1)

t(t+ 1)

(b)
<

c

t+ 1
,

where σ2 =
∑

k ηkσ
2
k, (a) is because c ≥ α2

0σ
2

α0µ−1
and (b) is because α0 >

1
µ

, which is the desired

result.
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