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Abstract

Cell-free massive multiple-input multiple-output (MIMO) employs a large number of distributed access points

(APs) to serve a small number of user equipments (UEs) via the same time/frequency resource. Due to the strong

macro diversity gain, cell-free massive MIMO can considerably improve the achievable sum-rate compared to

conventional cellular massive MIMO. However, the performance of cell-free massive MIMO is upper limited by

inter-user interference (IUI) when employing simple maximum ratio combining (MRC) at receivers. To harness

IUI, the expanded compute-and-forward (ECF) framework is adopted. In particular, we propose power control algo-

rithms for the parallel computation and successive computation in the ECF framework, respectively, to exploit the

performance gain and then improve the system performance. Furthermore, we propose an AP selection scheme and

the application of different decoding orders for the successive computation. Finally, numerical results demonstrate

that ECF frameworks outperform the conventional CF and MRC frameworks in terms of achievable sum-rate.
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M
ASSIVE multiple-input multiple-output (MIMO) is a promising physical-layer technology to

keep up with the exponential traffic growth of future wireless communication systems. More

specifically, massive MIMO can provide tremendous beamforming gains and spatially multiplexing gains

to multiple user equipments (UEs) and increase the system achievable sum-rate [2]–[4]. Despite the

potential performance gain brought by massive MIMO, UEs at cell-edge may experience poor channel

conditions and suffer from strong inter-cell interference (ICI). To alleviate this performance bottleneck,

distributed massive MIMO has been proposed to combat ICI and to improve the performance of cell-edge

UEs. However, there is a fundamental performance limitation for distributed massive MIMO with full

cooperation between different transmitters [5].

Recently, the authors in [6] proposed a practical network infrastructure for distributed massive MIMO,

under the name of cell-free massive MIMO [7]–[9]. In cell-free massive MIMO systems, a large number

of access points (APs) distribute in a large area and are connected to a central processing unit (CPU)

via a fronthaul network. In particular, a small number of UEs are served by all APs with the same

time/frequency resource [6], [10], [11]. Since there are no cells or cell boundaries, ICI does not exist.

Indeed, cell-free massive MIMO is a specific realization of distributed massive MIMO [6].

The most outstanding aspect of cell-free massive MIMO is that many APs simultaneously serve a much

smaller number of UEs, which yields a high degree of macro-diversity and can offer a huge spectral

efficiency. Besides, some studies have reported that favorable propagation is also a potential advantage

for cell-free massive MIMO which can be exploited to eliminate inter-user interference (IUI) [6]. Note

that favorable propagation refers to the property that when the number of AP antennas is sufficiently

large, the channels between the UEs and APs become asymptotically orthogonal [12]. However, the

favorable propagation property does not always hold in practical systems. The non-negligible IUI is

highly undesirable and leads to a considerable loss in achievable sum-rate. As a result, how to harness

the IUI has triggered many new coding and signal processing techniques.

A. Related Works

As a new approach of linear physical-layer network coding that allows intermediate nodes to send out

functions of their received packets [13]–[16], the compute-and-forward (CF) scheme has recently been

employed in cell-free massive MIMO systems to offer protection against noise and to reduce IUI with

cooperation gain [17]. For the uplink transmission, UEs employ a nested lattice coding strategy to encode

data that takes values in a prime-size finite field before transmission. Then, the CF scheme enables APs to
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decode the integer linear equations of UEs’ codewords using the noisy linear combinations provided by

the channels. Relying on nested lattice codes, the linear combination of UEs’ codewords is still a regular

codeword [18], [19]. Next, each AP forwards the decoded combination to the CPU through the fronthaul

link. After receiving sufficient linear combinations, the CPU could recover every UE¡¯s original data by

performing AP selection and solving the received equations [17], [20], [21].

However, the CF scheme requests all UEs transmit with equal power, which is generally not the optimal

strategy for improving the achievable sum-rate. Due to the different propagation conditions between APs

and UEs, the performance can be improved by performing appropriate power control [12]. Moreover, with

power control for UEs, the effective noise variance across all APs whose linear combinations involve the

message can be reduced. Then, the achievable sum-rate can be further improved.

Motivated by the discussion above, we adopt the expanded compute-and-forward (ECF) framework

which was proposed in [22] for the uplink transmission in cell-free massive MIMO systems. The ECF

framework is able to distribute transmit powers unequally and retains the connection between the finite

field data and the lattice codeword. We note that coordinated multiple points (CoMP) framework also

can be implemented with interference alignment at the transmitter-side [23]–[25], however, the distinction

between CoMP and ECF is that CoMP as conventionally defined does not involve CF strategy.

There are two types of ECF framework, named parallel computation and successive computation,

respectively. The distinction between these schemes is that in parallel computation the CPU recovers

UEs’ data independently while for successive computation the CPU decodes the linear combinations by

using successive cancellation. Specifically, in successive computation, the combinations which have been

decoded can be used as side information in the subsequent decoding steps to decrease both effective noise

variance and the number of UEs that need to tolerate the effective noise. Applying successive computation

helps improve the achievable sum-rate, however, in terms of processing delay, the parallel computation

has some advantages. In other words, there is a trade-off between the parallel computation and successive

computation.

Besides, there are some key aspects which dominate the performance of ECF framework: coefficient

vector selection and AP selection. Since the performance of ECF is captured by the computation rate and

that rate achieves the highest when the equation coefficients closely approximate the effective channel

coefficients, designing the coefficient vector elaborately is beneficial for the improvement of achievable

sum-rate. As for AP selection, it is performed at the CPU when recovering UEs’ original data in both
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parallel computation and successive computation. With the help of AP selection, the computational

complexity of power optimization is reduced. Furthermore, the noise tolerance on UEs’ data can also

be relaxed, which contributes to the improvement of the achievable sum-rate.

B. Contributions

In this paper, we consider the application of ECF framework in cell-free massive MIMO systems to

increase the achievable sum-rate, including both parallel computation and successive computation. The

main contributions of this paper are as follows:

• We apply a quadratic programming relaxation based coefficient vector selection method and a large-

scale fading based low-complexity AP selection algorithm to improve the achievable sum-rate of the

cell-free massive MIMO system.

• We design efficient power control algorithms for parallel and successive computation schemes,

respectively. For the successive computation scheme, we further derive a sub-optimal decoding order

of combinations and develop three assignment algorithms to find a sub-optimal decoding order of

UEs.

• We quantitatively compare the performance of conventional combining and ECF frameworks under

practical channel model and scenarios, which proves that the ECF framework is an effective approach

for the fronthaul reduction. In particular, the successive computation scheme outperforms the parallel

computation scheme with a larger fronthaul load.

Compared with our related conference paper [1], which focused only on parallel computation with

power control based on uplink-downlink duality, in this paper, we provide a thorough analysis for the

successive computation scheme with power control for improving the achievable sum rate. Besides, the

problem-solving methodology for determining the suboptimal decoding order of combinations and UEs are

investigated. Furthermore, the results from [1] are not applicable to the case considered in this paper due

to different power control method and additional AP selection algorithm are applied. More importantly, we

also provide practice insights into the performance of MRC, CF, centralized MMSE, parallel computation,

and successive computation schemes in achievable sum rate.

The rest of this paper is organized as follows. In Section II, we describe the cell-free massive MIMO

system model. A detailed introduction for ECF framework is given in Section III. Furthermore, AP

selection methods and power control algorithm for parallel computation are introduced in Section III-B. In
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TABLE I

NOTATIONS

p A prime number

R, C, Zp
Reals, complex field,

finite field of size p
q1, q2, w1, w2, r Element in Zp

Z[i] =
{a + bi| a, b ∈ Z}

Set of Gaussian integers whose real

and imaginary parts are both integers
∑ Addition over the real

or complex field

⊕ Addition over the finite field

a mod p = r
Computing the remainder

of dividing a by p
q1w1 ⊕ q2w2 q1w1 + q2w2 mod p

‖a‖ 2-norm of vector a

aT , aH Transpose of a,

conjugate-transpose of a

⌊a⌋ Floor function of a
I Identity matrix

E {a} Expectation of a

log+ (a)
max (log (a) , 0), the log function

is with respect to base 2

Section III-C, we investigate different decoding order methods of combinations for successive computation.

Finally, numerical results and discussions are given in Section IV while Section V concludes the paper.

Table I shows the notations. Unless further specified, plain letters, boldface letters, and boldface

uppercase letters denotes scalars, column vectors, and matrices respectively.

II. SYSTEM MODEL

We consider an uplink cell-free massive MIMO system. M single-antenna APs and L (M > L) single-

antenna UEs are randomly distributed in a wide geographical area [6], [10], [11]. APs provide services

for UEs via the same time/frequency resource. In particular, each AP exchanges information with the

CPU via fronthaul link. As the practical number of APs is finite, we assume that the IUI can still have

significant impact on the achievable sum-rate.

First, we will provide some necessary definition on nested lattice codes. An n-dimensional lattice, Λ, is

a set of points in Rn such that if s, t ∈ Λ, then s+t ∈ Λ and if s ∈ Λ, then −s ∈ Λ. Note that a lattice can

always be written in terms of a lattice generator matrix B ∈ Rn×n, i.e., Λ = {s = Bc : c ∈ Zn}. Besides,

a lattice Λ is said to be nested in a lattice Λ1 if Λ ⊆ Λ1. As shown in Fig. 1, without loss of generality, the

lth UE maps the original length-k data wl ∈ Zk
p into a length-n complex-valued lattice codeword xl with
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Fig. 1. ECF framework based cell-free massive MIMO systems.

encoder φl : Z
k
p → Z[i]n. The specific choices of n and p are studied in [22, Theorem 8]. For creating

generation matrices to encode the original data into nested lattice codeword, the blocklength needs to be

large enough. Therefore, the longer blocklength, i.e., n, is better. Note that kl is the number of symbols

carrying information. The remaining k − kl symbols are set to zero to meet the power constraint and the

effective noise tolerance. The lattice codeword is subject to the power constraint E‖xl‖2 ≤ nPl, where Pl

is the transmit power of the lth UE.

Let gmk represent the channel coefficient between the mth AP and lth UE, which is given by

gml = β
1/2
ml hml, (1)

where βml denotes the large-scale fading and hml ∈ C denotes the small-scale fading. With the help of

[11, Eq. (17)], the propagation is given as

βml [dB] = −30.5− 36.7log10 (dml/1m) + Fml, (2)

where dml represents the distances between the mth AP and the lth UE and Fml ∼ N (0, 42) is the shadow

fading. We assume that hml, m = 1, . . . ,M, l = 1, . . . , L, are independent and identically distributed (i.i.d.)

CN (0, 1) random variables (RV)s.

The length-n vector received signal at the mth AP is

ym =
∑L

l=1
gmlxl + zm, (3)

where the thermal noise zm ∈ Cn is elementwise independent and identically distributed (i.i.d.) CN (0, σ2).

The ECF framework manipulates the algebraic structure such that any Gaussian integer combination of

lattice codewords is still a lattice point. In cell-free massive MIMO, each AP endeavours to represent the
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received length-n signal vector ym with a Gaussian integer linear combination of UEs’ codewords. By

applying an equalization factor bm and selecting the coefficient vector am = [am1, am2, . . . , amL]
T ∈ Z[i]L,

the scaled received signal can be expressed as

bmym =
∑L

l=1
amlxl +

∑L

l=1
(bmgml − aml)xl + bmzm

︸ ︷︷ ︸
effective noise

. (4)

Each AP is equipped with a decoder, ϕm : Z[i]n → Zk
p . Then, AP decodes the received signal ym

into the finite field as ûm = ϕm (ym), where ûm is an estimation of the linear combination of original

data um =
L
⊕
l=1

qmlwl =
∑L

l=1 amlxl mod p. 1 The specific procedure for recovering messages for UEs

is stated in [18]. Given L linear combinations of messages with real and imaginary coefficient matrices

QR =
{
qRml

}
, QI =

{
qIml

}
, the CPU can recover message wl if there exists a vector c ∈ ZM×L

p such that

cT


 QR −QI

QI QR


 = δ

T
l , (5)

where δl denotes a unit column vector with 1 in the lth entry and 0 elsewhere. 2 For the traditional

multiuser MIMO systems, where M = L, data recovery is a major challenge due to the high probability

of rank deficiency. However, the number of APs is far larger than that of the UEs in cell-free massive

MIMO systems. Since when the number of APs increases the probability of selecting L APs that provides

L independent linear combinations also increases [17], the extra APs can ensure a much higher probability

for avoiding rank deficiency, so as to improve the probability to recover the desired message.

III. EXPANDED COMPUTE-AND-FORWARD

One of the major challenges in cell-free massive MIMO is the IUI in the uplink. In particular, CF scheme

can achieve large gain through decoding linear functions of transmitted signals with nested lattice codes.

The performance of CF scheme for cell-free massive MIMO has been compared with MRC in [17], which

shows that with equal power transmission at all UEs, the CF scheme can offer a throughput improvement.

1If the codeword spacing for a given data from the lth UE can tolerate the maximum effective noise across the APs whose linear

combinations involve that data, the probability of decoding error is given as Pr

(

Ml

∪
m=1

{ûm 6= um}

)

< ε, where Ml represents the number

of APs whose combinations contain the data and ε is a small positive number that tends to zero.
2The two decoders adopted at APs and the CPU, respectively, have different functionalities. Indeed, decoders at the APs are used for

decoding the received signal into the linear combination of the UEs’ original data. Then, these decoded linear combinations are transmitted

from APs to CPU. In contrast, the decoder at the CPU is responsible for recovering each UE’s data from those combinations. Specifically,

when applying it with successive computation, the interference cancellation procedure takes place at the decoder at the CPU.
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Furthermore, the ECF framework can improve the achievable sum-rate utilizing the characteristic of

optimal power control.

In this section, two practical ECF frameworks are considered for cell-free massive MIMO systems.

The first one is parallel computation, which refers to that the CPU decodes each of the integer linear

combinations independently. Furthermore, successive computation decodes received combinations one-

by-one and employing the side information to reduce the effective noise. We begin with the parallel

computation.

A. Coefficient Vector Selection

The goal of this paper is to evaluate the performance of the ECF framework for cell-free massive

MIMO systems by deriving its computation rate region [22], which is defined as the set of achievable

rate Rl ensuring successful data recovery:

RECF (P, gm, am) ,

{
(R1, R2, . . . , RL) ∈ R

L
+ :

Rl≤ log+
(

Pl

σ2 (P, gm, am)

)
∀ (m, l) s.t. aml 6= 0

}
, (6)

where σ2 (P, gm, am) refers to the effective noise at the mth AP and P
∆
= diag (P1, P2, . . . , PL) is the

diagonal matrix with the power constraint for UEs. In order to maximize the computation rate region, we

need to find the optimal coefficient vector am and equalization factor bm.

According to [22, Lemma 2], the equalization factor bm that minimizes the effective noise variance

from (4) is the MMSE projection. Then, we have

bm = gH
mPam

(
1 + gH

mPgm

)−1
. (7)

Hence, the effective noise is given by

σ2 (P, gm, am)
∆
=

1

n
E

{∥∥XT (bmgm − am) + bmzm
∥∥2
}

= aH
m

(
P−1 + gmg

H
m

)−1
am, (8)

where X = [x1,x2, . . . ,xL]
T

represents the codeword matrix. For the mth AP, the aim is to find its
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optimal coefficient vector that maximizes the computation rate region as

am,opt = argmax
am∈Z[i]L

RECF (P, gm, am)

= argmin
am∈Z[i]L

σ2 (P, gm, am) . (9)

Since the channel coefficient between the mth AP and the lth UE is complex-valued, the received signal

ym can be divided into the real part and the imaginary part:

Re (ym)=

L∑

l=1

(Re (gml)Re (xl)−Im (gml) Im (xl))+Re (zm) ,

Im (ym)=

L∑

l=1

(Im (gml) Re (xl)+Re (gml) Im (xl))+Im (zm) .

Therefore, we can transform the complex-valued network with L UEs and M APs into a real-valued

network with 2L UEs and 2M APs. It is convenient to calculate the real and imaginary parts of the

coefficient vector am, respectively. 3 Without loss of generality, we only consider Re (am) for a given

real-valued channel coefficient Re (gm) in the following.

For each coefficient vector Re (gm), we can find a signed permutation matrix S, which is unimodular

and orthogonal such that SRe (gm) is nonnegative and its elements are in nondecreasing order [27,

Lemma 1]. Suppose Re(am)opt is the optimal coefficient vector with the specifical power constraint P and

channel coefficient Re (gm), we have R
(
Re(gm),Re(am)opt

)
= R

(
SRe (gm) ,SRe(am)opt

)
[27, Lemma

3]. Define Re (gm) as the nonnegative and non-decreasing-ordered vector, e.g., Re (gm) = SRe (gm).

Therefore, we can recover the desired coefficient vector through Re(am)opt = S−1Re (am)opt.

In the following, we concentrate on acquiring Re (am)opt for Re (gm) by relaxing the optimization

problems stated in (9) based on the quadratic programming (QP) method [28]. Recall that Re (am) is

in nondecreasing order, therefore, the maximum element should be Re (am)L. According to [22], the

searching space for Re (am)L can be restricted with

Re (am)L ≤ λmax

(
I+ Re (gm)PRe (gm)

T
)
, (10)

where λmax

(
I+ Re (gm)PRe (gm)

T
)

denotes the maximum eigenvalue of
(
I+ Re (gm)PRe (gm)

T
)

.

3Reducing the problem of developing coefficient algorithms for complex channels to an equivalent real-only channel is generally suboptimal.

Some solutions of finding the optimal solution in polynomial time over complex integer based lattices and complex channels were proposed

in [26], however, they require a substantially higher complexity. Therefore, the investigation of explicitly addresses the complex channel

with low complexity is one of our future work.
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Then, the problem stated in (9) can be rewritten as a series of QP problems

minimize
Re(am)

Re (am)
T
GmRe (am)

subject to Re (am) ∈ R
L,

Re (am)L = k, k = 1, 2, . . . , K, (11)

where Gm =
(
P+ Re (gm)Re (gm)

T
)−1

and K =
⌊
λmax

(
I+ Re (gm)PRe (gm)

T
)⌋

. Let Re (am)
+

k

represent the solution to the problem of (11) with the constraint Re (am)L = k. K solutions can be

obtained by utilizing Re (am)
+

k = kRe (am)
+

1 . With the Lagrange multiplier method [28], we have

Re (am)
+

1 = [r, 1]T , (12)

where r = −(Gm (1 : L− 1, 1 : L− 1))−1
G (1 : L− 1, L). With the help of [27, ALgorithm 1], K real-

valued solutions to the problem in (11),
{
Re (am)

+

k

}
, can be quantized to integer-valued

{
Re (am)

int

k

}
.

We select a sub-optimal coefficient vector Re (am)opt for Re (gm) with

Re (am)opt = arg min
Re(am)∈

{

Re(am)
int

k

}

Re (am)
T
GmRe (am).

Finally, the optimal coefficient vector Re(am)opt correlated with the channel coefficient Re (gm) is recov-

ered with Re(am)opt = S−1Re (am)opt. Following a similar line of reasoning, the imaginary part of the

coefficient vector can be derived.

B. Parallel Computation

For parallel computation, the integer linear combinations of UEs’ data are decoded independently. On

this basis, we first introduce the computation rate region. Then, we provide a detailed description of the

proposed power control algorithm which improves the achievable sum-rate. For reducing the effective noise

variance and computation complexity, we further propose an AP selection algorithm based on large-scale

fading.

1) Computation Rate Region: Let us suppose that all APs have full channel state information. To obtain

the estimation of the integer combination with UEs’ original data ûm, the mth AP multiplies the received
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signal by an equalization factor bm by the received signal to obtain the effective channel as

ỹm = bmym = bmX
Tgm + bmzm

= bmX
Tam +XT (bmgm − am) + bmzm︸ ︷︷ ︸

effective noise

. (13)

After choosing bm to be the minimum mean-square error (MMSE) coefficient adopted at the mth AP, the

minimum effective noise variance for parallel computation is given by

σ2
para (P, gm, am)

∆
= aH

m

(
P−1 + gmg

H
m

)−1
am. (14)

We denote A as the matrix of the coefficient vectors, A = [a1,a2, . . . , aM ]. Specifically, if the mth column

of A is a null vector, the mth AP does not serve any UE; if the lth row of A is a zero vector, the lth UE

is not served by any AP. When we remove such columns and rows from A, we obtain A ∈ Z[i]L
′×M ′

,

where L′ and M ′ refers to the number of effective UEs and APs. Due to the array gain, the sum-rate

increases along with the value of M ′ increase. However, there is a trade-off between the values of L′ and

sum-rate performance, since the growth of effective UEs does not always lead to the increase in sum-rate

[6]. According to the discussion of coefficient vector selection in Section III-A, the values of M ′ and L′

are determined by the location of APs and UEs, therefore M ′ and L′ can take the optimal value when

the location of APs and UEs is optimal. Define the rank of A by M ′
rank

∆
= Rank (A). According to

[18], all effective UEs’ data can be recovered if M ′
rank = L′. Therefore, we only need L′ integer linear

combinations among the whole M ′ combinations. In other words, only L′ APs need to transmit signals

to the CPU through fronthaul links. The computation rate region for the parallel computation is given by

Rpara (P, gm, am)
∆
=

{
(R1, R2, . . . , RL′) ∈ R

L′

+ :

Rl≤ log+
(

Pl

σ2
para (P, gm, am)

)
∀(m, l) s.t. aml 6= 0

}
, (15)

where aml = 0 means the mth AP doesn’t serve the lth UE.

2) Power Optimization: If aml 6= 0, the computed achievable rate for the lth UE at the mth AP is

given as

R′
(l,m) = log+

(
Pl

σ2
para (P, gm, am)

)
(16)
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However, when recovering the data of the lth UE, the codeword spacing for that data should tolerate the

maximum effective noise variance across APs, whose linear combinations involve that data. Therefore,

the actual achievable rate of the lth UE is

Rl= min
aml 6=0

R′
(l,m)= min

aml 6=0
log+

(
Pl

σ2
para (P, gm, am)

)
. (17)

Hence, the achievable sum-rate of L′ UEs is

L′∑

l=1

Rl = min
aml 6=0

L′∑

l=1

(
log+

(
Pl

σ2
para (P, gm, am)

))
. (18)

Recall that all UEs transmit with equal power in CF scheme. For fairness, we compare the performance

of CF and ECF with the constraint of equal total transmit power. We aim at optimizing the power

allocation to maximize the achievable sum-rate under the constraints on the total power consumption Pt.

The optimization problem is formulated as follows:

maximize
P

L′∑

l=1

Rl

subject to
∑L′

l=1
Pl = Pt,

Pl ≥ 0, l = 1, 2, . . . .L′. (19)

UEs can share a total power budget which is the upper bound performance of each UE’s power constraint

as their total maximum allowable transmit power [29]. Besides, (19) is handled at the CPU since the

global information a1, · · · , aM and g1, · · · , gM are required.

As mentioned above, each AP decodes
∑L

l=1 amlxl as one regular codeword due to the lattice algebraic

structure. All UEs served by the mth AP need to tolerate the same effective noise. If the linear integer

combinations
∑L

l=1 amlxl can tolerate the effective noise variance σ2
para (P, gm, am), then all UEs served by

the mth AP, which means aml 6= 0 can be successfully recovered from the linear combination with integer

coefficient vector am. In cell-free massive MIMO, we always emphasize a good quality-of-service for all

users. However, directly improving the achievable sum rate cannot achieve a good balance of quality-of-

service for all users [12]. Therefore, the goal of minimizing the maximum effective noise variance that

can generally improve the achievable rate for most UEs is more suitable for our model. In other words,
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we could minimize the maximum effective noise variance as

minimize
P

max
m=1,...,M ′

{
σ2
para (P, gm, am)

}

subject to
∑L′

l=1
Pl = Pt,

Pl ≥ 0, l = 1, 2, . . . .L′. (20)

According to (14), (20) is equivalent to

minimize
P

max
m=1,...,M ′

{
aH
m

(
P−1 + gmg

H
m

)−1
am

}

subject to
∑L′

l=1
Pl = Pt,

Pl ≥ 0, l = 1, . . . , L′. (21)

According to [12, Lemma B. 4], the matrix inversion can be equivalently represented by

(
P−1 + gmg

H
m

)−1
= P− 1

1 + gH
mPgm

Pgmg
H
mP. (22)

Therefore, the effective noise variance for the mth AP is

σ2
para (P, am, gm) = aH

mPam − aH
mPgmg

H
mPam

1 + gH
mPgm

. (23)

Aa a result, (21) can be rewritten as

minimize
P

max
m=1,...,M ′

{
aH
mPam − aH

mPgmg
H
mPam

1 + gH
mPgm

}

subject to
L′∑

l=1

Pl = Pt,

Pl ≥ 0, l = 1, . . . , L′. (24)

However, (24) is NP-hard. To tackle this challenge, we first introduce three auxiliary variables. On this

basis, we can build the following optimization problem by introducing three auxiliary variables r, s, and
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t: 



min
P,r,s

t

s.t. t ≥ r − s, ∀m,

r ≥ aH
mPam, ∀m,

s ≤
∥∥aH

mPgm

∥∥2

1 + gH
mPgm

, ∀m,

L′∑

l=1

Pl = Pt,

Pl ≥ 0, ∀l.

(25)

In particular, variables r and s have limited searching space, respectively. For a given value of r, the

variable s should be smaller than r. Therefore, we employ a two-dimension of brute force search on these

two scalars. For fixed r and s, the optimization problem in (25) can be rewritten as a feasibility problem





aH
mPam ≤ r, ∀m,

(1/2)pTJp− svp− s ≥ 0, ∀m,

L′∑

l=1

Pl = Pt,

Pl ≥ 0, ∀l,

(26)

where p = [P1, . . . , PL′]T , v =
[
|gm1|2, . . . , |gmL′|2

]T
. J is a L′ × L′ matrix whose (l1, l2)th element is

given as J(l1,l2) = 2|aml1 | |gml1 | |aml2 | |gml2 |. Clearly, J is a positive semi-definite matrix. Consequently,

(26) can be solved efficiently by performing a brute force search on two scalars. In each step, a feasibility

problem needs to be solved. Since transforming a nonconvex problem into its equivalent convex form is

quite difficult if not possible, an off-the-shelf optimization solver, e.g. fmincon in Matlab, is adopted to

obtain a suboptimal solution. Besides, simulations show that solving a nonconvex problem also brings

obvious performance improvement, the computation cost is tolerable. Besides, actually (24) is equal to

(25) only if the two terms in the objective of (24) are independent. However, at the optimal point, we

only care about minimize the final maximum term. More specifically, Algorithm 1 can solve (25). The



15

Algorithm 1 Brute Force Search on Two Scalars for Solving Problem (25)

1: Initialization: Define the range of the values of r by rmin and rmax. Choose step size for r and s as

rsl and ssl, respectively. Set t = ∞ and r = rmax.

2: Set s = r − ssl. If s ≥ 0, solving the feasibility program in (26),else go to Step Step 4.

3: If (26) is feasible, set t = min (t, r − s), else back to Step Step 2.

4: Update r with r = r − rsl. Stop if r ≤ rmin.

parameters in Step 1, e.g., rmin and rmax, can be determined by solving another two feasibility problems:





max
P

aH
mPam

s.t.
L′∑
l=1

Pl = Pt,

Pl ≥ 0, ∀l,





min
P

aH
mPam

s.t.
L′∑
l=1

Pl = Pt,

Pl ≥ 0, ∀l,

(27)

respectively. When the search is completed, all APs achieve the same minimal effective noise variance t.

The corresponding values of r and s can be denoted as ropt and sopt. Finally, utilizing (18) and (23), the

achievable sum-rate can be obtained. In Algorithm 1, there are at most



(
2rmax−rsl

⌊
rmax−rmin

rsl
−1
⌋)⌊

rmax−rmin

rsl

⌋

2ssl


⌊
rmax−rmin

rsl

⌋
(28)

feasibility problems that need to be solved, where ssl and rsl refer to the step size for searching r and s,

respectively.

3) AP Selection: As mentioned above, recovering L′ UEs’ original data only requires L′ integer linear

combinations. Therefore, we propose a low-complexity AP selection algorithm for two purposes. First,

only L′ effective noise variance participant in the brute force search leads to a reduction in computational

complexity. Second, the noise tolerance on UEs’ data can be relaxed, which contributes to the improvement

of the achievable sum-rate. Recall that (10) restricts the maximum value in the coefficient vector am and

the search space is generally small. Hence, for different APs, it is the difference on the second term in

(23) that leads to a significant deviation on the effective noise variance.

Note that the average channel gain is -70 dB while the noise power is -130 dBW. Therefore, the

denominator of that term is close to 1 and is several orders of magnitude smaller than the numerator.

Consequently, the main factor that affects the effective noise variance across different APs is the sum

of all elements in J. In other words, decoding the estimations ûm of APs with a high sum value of J

will obtain a higher achievable sum-rate. Therefore, we prefer selecting APs with a high sum value of J.
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Furthermore, according to (1), gml is a function of βml. Then, we propose an algorithm for AP selection

based on large-scale fading coefficient βml, which generally stays constant for several coherence intervals.

We construct matrix J for each AP by replacing the channel coefficient gml with βml. For each J, we first

sum all the elements and sort the sum values in ascending order. Then, we apply the greedy AP selection for

message recovery stated in [17, Algorithm 1]. Compared with the AP selection in [17], we sort the APs by

firstly replacing the channel coefficient gml with βml, and then calculating the sum value of all the elements

in the matrix J , which is independent of the power allocation. According to [17], we check the columns

of A one by one, where A = [a1 . . . , aM ], until rank requirement satisfied, therefore the computational

complexity of the proposed AP selection method is no more than O
(
M ′ +M ′log2 (M

′) +M ′(M ′ − 1)3
)
.

C. Successive Computation

It is beneficial to remove the codewords which have been decoded successfully from the channel

observation. In that case, subsequent decoding stages will encounter less interference. This well-known

technique is referred to as successive interference cancellation (SIC). In ECF framework, we apply an

analog of that for cell-free massive MIMO, which is named successive computation and can be viewed

as the combination of ECF and successive interference cancellation. Compared with parallel computation,

successive computation reduces the effective noise variance and the number of users that need to tolerate

that effective noise in each decoding step [22]. Hence, it can further improve the system performance. The

SIC technique also applied in [30], which proposes a hybrid deep reinforcement learning (DRL) model to

design the IUI-aware receive diversity combining scheme. Compared with [30], our successive computation

scheme benefits from applying the nested lattice coding strategy which can effectively reduce the fronthaul

load. In this subsection, the expression of the computation rate region for successive computation is

introduced firstly. Since the decoding order of integer linear combinations ũm and UEs both have a

significant impact on the performance of successive computation, we present different methods to find

the sub-optimal decoding orders with power control.

1) Computation Rate Region: In successive computation, AP m sends the received signal ym and the

integer linear combinations of codewords aT
mX to the CPU, instead of decoding the received signal ym

into the combinations of UEs’ original data ûm
4. Define Am−1

∆
= [a1, . . . , am−1]

T
, the CPU applies

4When applying with successive computation, the interference cancellation procedure takes place at the decoder equipped at the CPU.

Note that the signaling exchanges occurred per coherent interval and the fronthaul load are 2M ′n and 4M ′n with parallel computation

and successive computation, respectively. Besides, the data of UEs are conveyed from the CPU to the APs through fronthaul links and then

distributed to the UEs with precoding.
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equalization factor bm and vector c to the mth combination as

ỹm = bmym +XTAm−1c

= XTam +XT (bmym +Am−1c− am) + bmzm︸ ︷︷ ︸
effective noise

. (29)

where c = [c1, . . . , cm−1]
T

. (29) shows that the decoded linear combinations {y1, . . . ,ym−1} can be used

as side information for reducing the effective noise experienced in the latter decoding stages for other

UEs.

After choosing bm and c to be the MMSE projection scalar and vector, the minimum effective noise

variance with transmit power matrix P is given by

σ2
succ (gm, am, P|Am−1)

∆
= aH

mF
TNm−1Fam, (30)

where

FTF =
(
P−1 + gmg

H
m

)−1
, (31)

and

Nm−1=I−FAT
m−1

(
Am−1F

TFAT
m−1

)−1
Am−1F

T . (32)

Then, the computation rate region for successive computation is given as

Rsucc (P, gm, am|Am−1)
∆
=

{
(R1, . . . , RL′) ∈ RL

+ :

Rl≤ log+
(

Pl

σ2
succ (P, gm, am|Am−1)

)
∀(m, l) s.t. aml 6=0

}
. (33)

2) Searching Decoding Order for Combinations: Among M ′ APs, we first select the effective UEs and

APs that participate in the uplink transmission. Then, we try to find the candidate integer combinations

with small effective noise utilizing the AP selection algorithm. The detailed procedure has been introduced

in Section III-B3. According to (33), the effective noise variance is related to the decoding order of integer

linear combinations. Therefore, we propose an efficient method for determining the side information matrix

Am−1 with power control.

The main idea of successive computation is to utilize the side information and the decoded integer
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linear combinations to reduce the effective noise. Note that the integer linear combination decoded firstly

does not have any side information to exploit. Hence, the effective noise expression for the first decoding

step is similar to that of parallel computation, which is given by

σ2
succ,δ(1)

(
P, gδ(1), aδ(1)

)

= aH
δ(1)

(
P−1 + gδ(1)g

H
δ(1)

)−1
aδ(1). (34)

where δ (m) denotes the decoding order. As the remaining combinations can reduce their effective noise

with the help of side information, we can select the integer linear combination which has the minimum

effective noise to decode firstly. To determine aT
δ(1)X, we solve the following optimization problem to

obtain its local sub-optimal power allocation. As the problem (35) is non-convex and translate it into

non-convex is quite difficult, an off-the-shelf optimization solver, e.g. fmincon in Matlab, is adopted to

obtain a suboptimal solution. Note that although the obtained solution is suboptimal, the performance

of the proposed framework is still superior compared with CF and MRC, which will be verified in the

simulation section. Such that, for each aT
mX, m = 1, . . . , L′, we have

min
P

σ2
succ,δ(1) (P, gm, am)

s.t.
∑L′

l=1
Pl = Pt,

Pl ≥ 0, l = 1, . . . , L′. (35)

Then, we calculate the effective noise σ2
succ,δ(1) for each aT

mX with its own power allocation matrix and

select the combination which has the minimal effective noise as aT
δ(1)X.

After determining aT
δ(1)X, we begin to determine the remaining decoding order. For the mth step,

we determine aT
δ(m)X depending on the effective noise and the rank of the side information matrix.

More specifically, we first calculate the effective noise variance for each of the remaining integer linear

combinations according to (30) and sort them in ascending order. Then, in line with the order, in each

turn add the corresponding coefficient vector to the side information matrix Am−1, which is known from

step 1 through m−1, to form Am =
[
Am−1; a

T
m′

]
, m′ = 1, . . . ,M ′−m+1. Finally, we select the integer

linear combination which meets the constraint

Rank (Am) = m, (36)
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Algorithm 2 Searching Decoding Order for Combinations in Successive Computation

1: Input: L′ candidate integer linear combinations and the corresponding coefficient vectors which can

be obtained through AP selection.

2: Initialization: m = 2, n = 1.

3: Solve the optimization problem (35) for all L′ combinations and calculate the effective noise variance

for each combination using (34). Select the combination which has the minimal effective noise as

aT
δ(1)X and remove the corresponding coefficient vector from the candidate set. The side information

is obtained with A1 =
[
aT
δ(1)

]
. The power constraint matrix P is determined with the power allocation

for aT
δ(1)X.

4: Calculate the effective noise variance for each of the remaining combinations based on Am−1 using

(30) and sort them in ascending order. Update Am with Am−1 =
[
Am−1; a

T
n

]
. If Rank (Am) = m,

remove an form the candidate set to update the side information matrix and set m := m+ 1, n = 1,

else n := n+ 1.

5: Stop if Rank (A′
L) = L′, otherwise back to Step 4.

6: Output: A′
L.

to update the side information matrix. The procedure for finding aT
δ(m)X terminates when all integer linear

combinations find themselves decoding orders. The detailed procedure for searching the decoding order

of combinations in successive computation is summarized in Algorithm 2. To determine aT
δ(1)X, we need

to solve the optimization problem in (35) for L′ times. Then, for searching the decoding order for the left

L′ − 1 combinations in terms of the number of complex multiplications is

L′∑

m=2

(L′ −m+ 2) (L′ −m+ 1)

2

[
(L′)3 − L′

3
+ (m− 1)3L′

+
(m− 1)2L′+(m− 1)L′

2
+(m− 1) (L′)

2
+2(L′)

2

]
. (37)

3) Searching Decoding Order for UEs: In successive computation, the effective noise of UEs whose

data is decoded in the latter decoding stages can be reduced. At the mth decoding step, it is possible

to use the side information matrix Am−1 to reduce some known individual codewords and remove them

from the integer linear information aT
δ(m)X without changing the effective noise variance. In particular,

if the lth UE’s data has been recovered at the mth step, the data only need to tolerate the maximum

effective noise among
{
aT
δ(1)X, . . . , aT

δ(m)X
}

. Therefore, the decoding order of UEs also has an effect on

the achievable sum-rate. Searching the decoding order has been studied in some works [31], [32] with

SIC. However, our problem is generally intractable and the use of convex optimization for obtaining the

optimal solution is not possible. Therefore, we propose several methods to determine the decoding order

of UEs and select the best one as a suboptimal solution.
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a) Received-Power-Based Algorithm: In general successive interference cancellation, the decoding

order of UEs is determined by their received power. We calculate the received power of the lth UE with

respect to the mth integer linear combination with Pr,(l,m) = Pl‖gml‖2. Then, we can obtain the achievable

rate for each UE with aT
δ(m)X with

Rδ(m),l =
Pl

σ2
succ,δ(m)

(
P, gδ(m), aδ(m)

∣∣Am−1

) , aδ(m),l 6= 0, (38)

and sort them in descending order based on the received power. The signal from UE whose rate with

respect to the combination is in the first place of the order is decoded at the δ (m) step.

b) Channel-Coefficient-Based Algorithm: As stated in Section III-B3, a better channel condition leads

to the less effective noise variance. Therefore, UEs with good channel condition contributes to the small

effective noise of selected APs. These UEs can be decoded first to relax their effective noise tolerance

and then have a large achievable rate. For the lth UE, let us define gl as the channel coefficients with L′

integer linear combinations gl = [g1l, . . . , gL′l]
T

. We calculate the 2-norm of gl for all UEs and sort them

in descending order.

c) Hungarian Algorithm: With the effective noise variance for L′ integer linear combinations and

the power allocation for L′ UEs, we can find the assignment for each UE with Pl. It has been shown in

[33] that the Hungarian algorithm may be the best solution to the combinational optimization problem.

Therefore, we first construct a L′×L′ matrix C, whose element in the lth row and mth column represents

the achievable rate of the lth UE with the mth integer linear combination from (38), such as Cml = Rml.

The conventional Hungarian algorithm aims to find L′ element which are set in different rows and columns

of C. The sum of these L′ element is minimum. However, we need to obtain the maximum value of the

achievable sum-rate. Therefore, we first find the maximum value Cmax in C and replace each element

with Cml = Cml −Cmax. The detailed procedure of the Hungarian algorithm is summarized in Algorithm

3.

To determine which UE’s data should be recovered at the mth decoding step, we need to compute

L′ + 1−m UEs’ achievable rate. Therefore, the computational complexity for the received-power-based

algorithm and the channel-coefficient-based algorithm is O
(

(L′+1)L′

2

)
. Besides, the complexity of the

Hungarian algorithm is O
(
(L′)3

)
[34]. After determining the decoding order of integer linear combinations

and UEs, the achievable sum-rate can be obtained. Using (38) for calculating the achievable rate for lth

UE whose data is recovered with aT
δ(m)X, and the sum achievable rate is given as Rsum =

∑L′

l=1Rml.
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Algorithm 3 Hungarian Algorithm for Finding Optimal Decoding Order of UEs

1: Perform row operations on C. The minimum element of each row is selected and is subtracted from

each element in that row.

2: Repeat the procedure stated in Step 1 for all columns.

3: Count the minimum number of rows and columns that cover all zeros. Test the optimality. If the

number of counted lines is equal to L′, such as Nl = L′, stop the procedure.

4: Find the minimum value that is not covered in lines and add that to intersection points. Subtract that

minimum value from elements that are not covered by counted lines.

5: Repeat Step 3 for checking the optimality condition. If Nl ≤ L′, repeat Step 4.

20 30 40 50 60 70 80 90 100

Number of APs ( M )

0

5

10

15

20

25

30

S
um

 R
at

e 
( 

bi
ts

 p
er

 c
ha

nn
el

 u
se

 )

APS-PARA
APS-PARA-Imperfect CSI
PARA
CF
CF-Imperfect CSI

Fig. 2. Achievable sum-rate for CF, PARA, and APS-PARA schemes with L = 10 and Pt = 200 mW.

IV. NUMERICAL RESULTS

A. Parameters Setup

We adopt the similar parameters setting in [6] as the basis to establish our simulation system model.

More specifically, all UEs and APs are randomly located within a square of 1 × 1 km. In each simulation

setup, the APs and UEs are uniformly distributed at random locations within the simulation area. The

square is wrapped around at the edges to avoid boundary effects. Hata-COST231 model is employed to

characterize the large-scale propagation.

B. Results and Discussion

1) Parallel Computation: First, we evaluate the performance of the proposed parallel computation

(PARA) scheme in terms of the achievable sum-rate with power control. The APS-PARA scheme refers

to the PARA with AP selection. Fig. 2 shows the achievable sum-rate obtained via CF, PARA, and APS-

PARA schemes versus the number of APs with L = 10 and Pt = 200 mW. Owing to the array again, the

system performance of all considered schemes increases as the number of APs M increasing. Moreover,
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Fig. 3. Achievable sum-rate for PARA, APS-PARA, LSF-PARA, and APS-LSF-PARA schemes with L = 10 and Pt = 200 mW.

the PARA scheme with the proposed power control method outperforms the conventional CF scheme. For

example, compared with the CF scheme, both PARA and APS-PARA schemes improve the achievable

sum-rate by factors more than 1.24 and 1.36 for the case of M = 100, respectively. This is due to the

fact that the ECF framework enables optimal transmit power of UEs which facilitates the exploitation

of performance gain. Furthermore, it can be seen from Fig. 2 that APS-PARA scheme is better than the

PARA scheme. This is contributed to the low IUI brought by the proposed AP selection. Due to the

effective noise variance which UEs’ data need to tolerate decreases considerably, it is beneficial to utilize

AP selection for improving the achievable sum-rate. Besides, the computational complexity has also been

reduced with AP selection. For recovering UEs’ original information, only L integer linear combinations

instead of M need to be used in the power control. Besides, when the number of APs is 60, compared with

imperfect CSI estimated by MMSE estimation method [12] known at APs, the performance degradation

caused by imperfect CSI is only 4%.

Assuming that the power control is utilized at the CPU based on the large-scale fading, we need to

replace gml with βml for solving the optimization problem (20). The PARA scheme using power control

based on the large-scale fading is referred to as LSF-PARA scheme. Fig. 3 shows the achievable sum-

rate obtained with PARA, LSF-PARA, APS-PARA, and APS-LSF-PARA schemes against the number of

APs. As expected, the achievable sum-rate of all schemes improves as the number of APs increases, and

applying AP selection does help enhance the performance. Furthermore, the impact on achievable sum-

rate of neglecting the small-scale fading is not critical, especially when the ratio of APs to UEs becomes

large. In particular, the performance gap due to ignoring the small-scale fading vanishes for M = 100.
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Fig. 4. Achievable sum-rate for APS-LSF-SUCC schemes with power allocation applying Hungarian algorithm, RP algorithm and NLSF

algorithm for L = 10 and Pt = 200 mW.

This is due to the property of channel hardening [12]. As the number of antennas is sufficiently large,

the variance of the channel gain reduces and the fading becomes almost as a deterministic channel.

2) Successive Computation: Next, we examine the performance of successive computation (SUCC)

schemes. Let us denote the successive computation scheme based on large-scale fading applied with AP

selection, power allocation, and Hungarian algorithm by APS-LSF-PA-Hungarian-SUCC. Fig. 4 shows

the performance of APS-LSF-PA-SUCC schemes with different algorithms on determining the decoding

order of UEs, Hungarian algorithm, received-power-based (RP) algorithm, and channel-coefficient-based

algorithm. As we assume that the power control is employed at the CPU, which means that the channel co-

efficient is replaced with the large-scale fading coefficient, the APS-LSF-PA-SUCC scheme with searching

the decoding order of UEs through 2-norm of large-scale fading coefficients is named as APS-LSF-PA-

NLSF-SUCC scheme. As shown in Fig. 4, the APS-LSF-PA-Hungarian-SUCC scheme achieves the best

result compared to other schemes. Furthermore, the performance of APS-LSF-PA-RP-SUCC scheme is

similar to that of APS-LSF-PA-NLSF-SUCC. This is due to the fact that the denominator of the second

term in (23) is several orders of magnitude smaller than the numerator, as the transmit power normalized

by the noise power is huge. Note that the effect of the first term in (23) on effective noise variance

is not significant. Therefore, according to (23), UEs with good channel state should be allocated with

more transmit power for reducing the effective noise and finally the system can obtain a larger achievable

sum-rate. In this way, using RP and NLSF algorithms leads to the same result.

In previous simulation results, we have shown that the instantaneous channel state information can
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Fig. 5. Achievable sum-rate for APS-LSF-PA-Hungarian-SUCC and APS-PA-Hungarian-SUCC schemes for M = 50 and M = 100.

help the parallel computation scheme to improve the achievable sum-rate while with higher complexity.

In successive computation, the conclusion is similar. In Fig. 5, we compare the achievable sum-rate of

APS-PA-Hungarian-SUCC and APS-LSF-PA-Hungarian-SUCC schemes. Although the performance gap

induced by the replacement of channel coefficient becomes large along with the increase of the number

of UEs, it is still very small. At the same time, transmitting instantaneous channel state information

yields a great growth load in fronthaul load. Noted that the small-scale fading coefficient is only static

during one coherence block while the large-scale fading coefficient stays constant for a duration of at least

40 small-scale fading coherence intervals [6]. Therefore, using the statistical channel state information

works well for successive computation schemes. Besides, the benefit of employing AP selection is also

obvious in successive computation. During searching the decoding order of combinations (36), in the

mth step we only need to calculate L′ −m times to find the minimal effective noise which increases the

rank of the side information matrix. Furthermore, we can use u1 . . . ,um−1 to eliminate certain symbols

from the combination and thus remove the constraint on them. For determining the total decoding order of

combinations, the computational complexity is O
(
(L′)2

)
while abandoning the selection needs O

(
(M ′)2

)
.

Therefore, utilizing AP selection not only improves the performance but also decrease the computational

complexity when the number of APs is larger than UEs.

3) Comparison of centralized MMSE, ECF, CF, and MRC scheme: In Fig. 6, we compare the achievable

sum-rate of APS-LSF-PA-Hungarian-SUCC, APS-LSF-PARA, CF, and MRC schemes. MRC scheme is the

simple linear strategy in cell-free massive MIMO, which has been widely used in previous works [6]. In the

uplink data transmission, the received signal at the mth AP can be expressed as ym =
∑L

l=1 gml

√
Plxl+zm.
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Fig. 6. Achievable sum-rate for APS-LSF-PA-Hungarian-SUCC scheme, APS-LSF-PARA scheme, CF scheme, and MRC scheme for L = 10
and Pt = 200 mW.
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Fig. 7. CDFs of the achievable sum-rate for centralized MMSE, APS-LSF-PA-Hungarian-SUCC, APS-LSF-PARA, CF, Local ZF, and MRC

schemes for M = 100, L = 20.

Then, the mth AP multiplies the received signal with the conjugate of its channel coefficient vector gm and

then forwards ymg
∗
m to the CPU. The CPU combines signals from all M APs. Therefore, the achievable

rate of the lth UE is given by

Rmrc,l = log2

(
1 +

P
∣∣gH

l gl

∣∣2

|gH
l |

2
+ Pl

∑
l 6=l′ |gH

l′ gl|2

)
. (39)

It is clear to see that the IUI limits the achievable sum-rate. However, employing CF and ECF schemes

can harness and even exploit the interference for cooperative gain, which leads to an increase in the

achievable sum-rate. This can be verified from Fig. 6. When the number of APs is not very large, which

means the IUI affects the performance significantly, the advantage of applying CF and ECF schemes is
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self-evident. For example, compared with MRC scheme, the achievable sum-rate of CF and ECF schemes

improves by factors more than 1.5 and 2.5 when M = 100, respectively.

Although utilizing the ECF framework can effectively improve the system performance, it is not the

optimal choice for maximizing the achievable rate. Fig. 7 shows the cumulative distribution function (CDF)

of achievable sum-rate for centralized MMSE, APS-LSF-PA-Hungarian-SUCC, APS-LSF-PARA, CF, and

MRC schemes with M = 100, L = 20. From Fig. 7, we can first observe that our parallel ECF scheme with

power control method that solves (26) outperforms both CF and MRC. Second, when comparing the ECF

framework with local MR and zero-forcing (ZF) schemes using quantized signals under the same fronthaul

limit, our proposed ECF schemes including parallel and successive computation have superior performance.

Specifically, compared with the local ZF, applying the successive computation scheme leads to 60.4%

improvement in terms of the average achievable sum-rate. Besides, the performance gap between the

APS-LSF-PA-Hungarian-SUCC scheme and the centralized MMSE scheme is obvious. It is attributed to

the fact that the centralized MMSE adopts the optimal combining scheme for maximizing the instantaneous

signal-to-interference-and-noise ratio [12]. Specifically, applying the centralized MMSE scheme leads to

55% improvement in terms of average achievable sum-rate. However, compared with centralized MMSE,

ECF is also an efficient approach for fronthaul reduction and hence a largely achievable sum-rate still

can be realized even if the fronthaul capacity is limited. In particular, each AP decodes the received

signal into the finite field by applying the equalization factor and then forwards an integer combination

of the transmitted symbols of all UEs. The cardinality of signals transmitted in the fronthaul link is the

same as the cardinality of UEs original data, this is the theoretical minimum fronthaul load required to

achieve lossless transmission [17]. When the fronthaul capacity restricted as R0, the actual achievable

rate is R = min {R0, Rsum} [35], where Rsum represents the achievable sum-rate without considering the

fronthaul load constraint.

4) Trade-off between the performance and the complexity of ECF schemes: In Table II, we summarize

the performance in terms of sum-rate and the computational complexity of various versions of successive

computation and parallel computation. It can be observed that there is a trade-off between performance

and computational complexity. Specifically, the successive computation with the Hungarian algorithm

for searching decoding order of UEs has the higher computational complexity and superior performance

compared with the other two methods, i.e., received-power-based algorithm and channel-coefficient-based

algorithm.
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TABLE II

THE COMPUTATIONAL COMPLEXITY AND PERFORMANCE OF VARIOUS VERSION OF ECF FRAMEWORK

Schemes
Computation Complexity Sum rate

[bits per

channel use]AP Selection Power Optimization

(the number of feasibility problems)

Searching

Decoding

Order

Parallel

Computation

O (M ′ +M ′log2 (M
′)

+M ′(M ′ − 1)
3
)

⌊(

rmax+rmax−rsl
⌊

rmax−rmin

rsl
−1

⌋)

×
⌊

rmax−rmin

rsl

⌋

/2ssl
⌋ ⌊

rmax−rmin

rsl

⌋

N/A 19.57

Successive

Computation

Using

Received-

power-based

algorithm

O (M ′ +M ′log2 (M
′)

+M ′(M ′ − 1)
3
)

L
′

∑

m=2

(L′
−m+2)(L′

−m+1)
2

[

(L′)3−L
′

3

+ (m−1)2L′+(m−1)L′

2
+ (m− 1)3L′

+(m− 1) (L′)
2
+ 2(L′)

2
]

O

(

(L′+1)L′

2

)

23.58

Using

Channel-

coefficient-

based

algorithm

O (M ′ +M ′log2 (M
′)

+M ′(M ′ − 1)
3
)

L
′

∑

m=2

(L′
−m+2)(L′

−m+1)
2

[

(L′)3−L
′

3

+ (m−1)2L′+(m−1)L′

2
+ (m− 1)3L′

+(m− 1) (L′)
2
+ 2(L′)

2
]

O

(

(L′+1)L′

2

)

22.82

Using

Hungarian

algorithm

O (M ′ +M ′log2 (M
′)

+M ′(M ′ − 1)
3
)

L
′

∑

m=2

(L′
−m+2)(L′

−m+1)
2

[

(L′)3−L
′

3

+ (m−1)2L′+(m−1)L′

2
+ (m− 1)3L′

+(m− 1) (L′)
2
+ 2(L′)

2
]

O
(

(L′)
3
)

25.51

5) Scalable Issue: In order to realize scalability [36], [37], our ECF framework needs to control

the number of UEs each AP serves. Specifically, according to the large-scale-fading-based AP selection

criterion proposed in [38], APs are first selected to form UE-centric clusters for each UE. Then, each AP

sorts the UEs that need to be served according to the large-scale fading information, and then selects only

the first several UEs with the best channel quality to serve. Fig. 8 shows the performance comparison

between the original non scalable ECF and the scalable ECF schemes. We can observe that the performance

loss is small and decreases with the increase of the number of APs.

V. CONCLUSIONS

In this work, we investigate the achievable sum-rate of ECF framework for cell-free massive MIMO

systems. Two types of ECF framework including parallel computation and successive computation to

improve the achievable sum-rate in cell-free massive MIMO are proposed. An AP selection scheme is

proposed to reduce the effective noise tolerance of UEs to further improve the performance and reduce

the computation complexity. We prove that the proposed power control algorithm for parallel computation

and successive computation with AP selection can improve the achievable sum-rate significantly. For
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obtaining better system performance, methods for determining the decoding order of combinations and

UEs are also presented. Numerical results show that compared with CF and MRC schemes, the ECF

framework remarkably improves the achievable sum-rate of cell-free massive MIMO systems.
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