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Abstract

This paper investigates a novel intelligent reflecting surface (IRS)-based symbiotic radio (SR) system

architecture consisting of a transmitter, an IRS, and an information receiver (IR). The primary transmitter

communicates with the IR and at the same time assists the IRS in forwarding information to the IR.

Based on the IRS’s symbol period, we distinguish two scenarios, namely, commensal SR (CSR) and

parasitic SR (PSR), where two different techniques for decoding the IRS signals at the IR are employed.

We formulate bit error rate (BER) minimization problems for both scenarios by jointly optimizing the

active beamformer at the base station and the phase shifts at the IRS, subject to a minimum primary rate

requirement. Specifically, for the CSR scenario, a penalty-based algorithm is proposed to obtain a high-

quality solution, where semi-closed-form solutions for the active beamformer and the IRS phase shifts

are derived based on Lagrange duality and Majorization-Minimization methods, respectively. For the PSR

scenario, we apply a bisection search-based method, successive convex approximation, and difference

of convex programming to develop a computationally efficient algorithm, which converges to a locally

optimal solution. Simulation results demonstrate the effectiveness of the proposed algorithms and show

that the proposed SR techniques are able to achieve a lower BER than benchmark schemes.
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I. INTRODUCTION

Recently, intelligent reflecting surfaces (IRSs), also termed reconfigurable intelligent surfaces

(RISs), have attracted significant attention from both academia and industry [1]–[3]. IRSs are com-

posed of large numbers of reflecting elements (e.g., low-cost printed dipoles) [4]. The elements of

an IRS are based on metamaterials with subwavelength structure and are able to adjust the incident

signal’s amplitude, phase, frequency, and polarization, thus being able to collaboratively change the

reflected signal’s propagation [5]. Different from traditional reflecting surfaces, where the phase

shift is fixed after fabrication, the phase shifters of IRSs can be dynamically adjusted between 0

and 2π to adapt to varying wireless channel conditions [6]. In addition, different from current base

stations (BSs)/active relays, which require power-hungry and high-cost radio frequency (RF) chains,

IRSs are much greener and more cost-effective due to their simple integrated passive components,

such as varactor diodes, positive-intrinsic-negative (PIN) diodes, micro-electro-mechanical system

(MEMS) switches, and field-effect transistors (FETs) [2]. Furthermore, IRSs can be fabricated as

artificial thin films and readily attached to existing infrastructures, such as the facades of buildings,

indoor ceilings, and even smart t-shirts [1], thus making them promising for implementation in

practice. Due to the above appealing benefits, IRSs have been recognized as a key solution for

improving both the spectral and energy efficiency in future sixth-generation (6G) cellular wireless

networks.

By properly adjusting the phase shifts of a large number of IRS reflecting elements, the signals

reflected by a planar IRS coherently add up at desired receivers to boost the received power, while

they add up destructively at non-intended receivers to suppress co-channel interference [7], [8]. For

example, it was shown in [7] that the received signal-to-noise ratio (SNR) increases quadratically

with the number of reflecting elements in a single-user IRS-aided system, which unveiled the

fundamental scaling law of IRS. Subsequently, various follow-up works have investigated the

application of IRSs for other purposes, such as physical layer security [9]–[12], multi-cell coop-

eration [13]–[15], simultaneous wireless information and power transfer [16]–[18], and unmanned

aerial vehicle communication [19]–[21]. Due to the similarities between IRSs and active relaying,

some works compared the performance gain provided by IRSs with that of relays [22], [23]. In

[22], the authors studied the classical three-node cooperative transmission system and compared

the performances of IRSs with that of amplify-and-forward (AF) relays. The results showed that
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IRS-assisted wireless systems outperform AF relaying wireless systems in terms of the average

SNR, outage probability, symbol error rate, and ergodic capacity when the aperture of the IRS

is sufficiently large. Similar results were also obtained in [23] for the comparison of IRSs and

decode-and-forward (DF) relays with respect to the maximum energy efficiency and the required

total transmit power.

Different from the above studies, where IRSs were used only to assist the communication of

existing communication systems, a new IRS functionality referred to as symbiotic radio (SR)

transmission (also known as passive beamforming and information transfer transmission) was

proposed recently [24]–[29]. The preliminary concept of simultaneous passive beamforming and

information transfer was introduced in [24]–[26], where the IRS did not only help the transmitter

enhance the transmission of the primary wireless network via passive beamforming but also

delivered its own information to receivers by leveraging the reflected signals. For example, a

sensing device, which is able to sense and collect environmental information such as illuminating

light, temperature, and humidity, can be connected to the smart controller of an IRS, and the smart

controller conveys the sensed information (i.e., a sequence of 0 and 1 symbols) to the desired

receiver via adjusting the on/off state of the IRS. Then, the receiver decodes the information based

on the differences of the responses of the IRS for the two states. As such, the information is encoded

into the on/off state of the IRS. This concept is similar to spatial modulation transmission, where

the indices of active transmit antennas are exploited to encode information to improve spectral

efficiency [30].

In this paper, we study a novel wireless communication paradigm for IRS-based SR systems.

We consider a network consisting of a BS, an IRS, and an information receiver (IR). The BS

and the IR constitute the primary network, and the BS transmits the primary information to the

IR. The IRS is deployed nearby the IR, and leverages the radio wave generated by the BS to

deliver its own information to the IR by adjusting its on/off state. We aim at minimizing the

bit error rate (BER) of the IRS by jointly optimizing the BS beamformer and IRS phase shifts

while guaranteeing a minimum required rate for the primary network subject to the BS transmit

power budget and the unit-modulus phase-shift constraints. Based on the IRS’s symbol period, two

scenarios, namely, commensal SR (CSR) and parasitic SR (PSR), are considered. For the CSR

scenario, the IRS’s symbol period is much smaller than that of the primary transmission. During

one primary symbol period, the IRS’s transmission can be regarded as an additional multipath

component for the primary transmission. As such, the IRS is also used to strengthen the primary
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network’s transmission. In contrast, for the PSR scenario, where the IRS’s symbol period is

comparable to that of the primary transmission, the IRS’s signal is treated as interference when

decoding the primary symbol at the receiver. Therefore, different decoding techniques are needed

for the above two scenarios, which leads to different expressions for the objective function. We

note that the proposed IRS based SR is significantly different from backscatter based SR [31],

[32]. Specifically, in the considered system, the IRS acts not only as an information source node

but also as a helper for improving the performance of the primary link via passive beamforming. In

contrast, backscatter tags are only information sources that transmit their own signals to the receiver

by riding on the sinusoidal signal generated by the transmitter. As such, the transmission model

and the problem formulation in our paper differ from that for backscatter based SR. Furthermore,

compared to [24]–[29], this paper is the first work that targets the minimization of the BER of

the IRS symbols while taking account into the primary rate requirements. We propose a novel

algorithm, namely, the penalty-based algorithm, to solve this problem. In addition, this is also the

first work to consider PSR for IRSs, and propose a corresponding bisection search-based algorithm.

The main contributions of this paper are summarized as follows:

• For the CSR scenario, we formulate an optimization problem for minimization of the BER,

which is shown to be non-convex. To solve this problem efficiently, a novel penalty-based al-

gorithm is proposed, which comprises a two-layer iteration, i.e., an inner layer iteration and an

outer layer iteration. The inner layer solves the penalized optimization problem, while the outer

layer updates the penalty coefficient from one iteration to the next to guarantee convergence.

In particular, in the inner layer, semi-closed-form solutions for both the BS beamformer and

the IRS phase shifts are obtained based on Lagrange duality and Majorization-Minimization

(MM) techniques, respectively.

• For the PSR scenario, the formulated BER minimization problem is rather complicated and

fundamentally different from that for CSR. To overcome this difficulty, a bisection search-

based algorithm is proposed. We first derive the search range space, and then find the desired

point by checking the feasibility of the resulting problem. To reduce the computational

complexity, a semi-closed-form expression for the BS beamformer is derived. To incorporate

the unit-modulus IRS phase-shift constraint, we leverage the difference of convex (DC) pro-

gramming framework instead of the commonly used semidefinite relaxation (SDR) technique

to avoid the high probability of obtaining non-rank-one solutions.

• Simulation results demonstrate that for both scenarios, i.e., CSR and PSR, the proposed
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Fig. 1. A novel wireless communication paradigm for IRS based SR systems.

algorithms for joint BS beamformer and IRS phase shift optimization outperform benchmark

schemes employing maximum ratio transmission (MRT) and random IRS phase shifts, re-

spectively. We also find that the BER of CSR is much smaller than that of PSR, since the

interference can be harnessed in the former case. Furthermore, we unveil that deploying IRSs

nearby the BS or the IR can significantly improve the system performance for both scenarios.

The rest of this paper is organized as follows. Section II introduces the system model and problem

formulation for the CSR and PSR scenarios, respectively. In Sections III and IV, we propose

efficient algorithms for the two resulting optimization problems, respectively. Numerical results

are provided in Section V, and the paper is concluded in Section VI.

Notations: Boldface lower-case and upper-case letters denote vectors and matrices, respectively.

Cd1×d2 stands for the set of complex d1×d2 matrices. For a complex-valued vector x, ‖x‖ represents

the Euclidean norm of x, arg(x) denotes the phase of x, and diag(x) denotes a diagonal matrix

whose main diagonal elements are extracted from vector x. For a square matrix X, X∗, XH ,

Tr (X), X−1, X†, rank (X), and ‖X‖2 stand for its conjugate, conjugate transpose, trace, inverse,

pseudoinverse, rank, and l-2 norm, respectively. X � 0 indicates that matrix X is a positive

semi-definite matrix. [X]i,i represents the ith main diagonal element of matrix X. I and 0 denote

the identity matrix and all-zeros matrix with appropriate dimensions, respectively. A circularly

symmetric complex Gaussian (CSCG) random variable x with mean µ and variance σ2 is denoted

by x ∼ CN (µ, σ2). A real Gaussian random variable x with mean µ and variance σ2 is denoted

by x ∼ N (µ, σ2). Statistical expectation and statistical variance are denoted by E {·} and Var {·},

respectively. Re {x} denotes the real part of a complex variable x. O (·) is the big-O computational

complexity notation.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an IRS-based SR system consisting of a BS, an IRS, and an

IR, where the BS transmits primary signals to the IR and the IRS delivers its own information

to the IR by leveraging radio waves generated by the BS. We assume that the BS is equipped

with N transmit antennas, the IR is equipped with one antenna, and the IRS has M reflecting

elements. Let hd ∈ CN×1, G ∈ CM×N , and hr ∈ CM×1 denote the complex equivalent baseband

channels between the BS and the IR, between the BS and the IRS, and between the IRS and the

IR, respectively. The IRS reflection can be characterized by a diagonal reflection coefficient matrix

Θ= diag
(
ejθ1, . . . , ejθM

)
, where the reflection amplitude is fixed as 1, and θm denotes the phase

shift corresponding to the mth IRS reflecting element [4], [7], [33].

The CSR and PSR scenarios considered in this paper are described in the following.

1) CSR scenario: In the CSR scenario, the symbol rate of the IRS transmission is much

smaller than that of the primary transmission due to the limited computational and communication

capabilities at the IRS. Denote the durations of the IRS symbol and the primary symbol by Ts

and Tx, respectively. Without loss of generality, we assume that each IRS symbol spans L primary

symbols, i.e., Ts = LTx. Denote by x[l], 0 ≤ l ≤ L, and s the BS’s lth symbol and the IRS’s

symbol, which is generated by the on/off state of the IRS, respectively. The lth symbol received

by the IR is given by

ycsr,r [l] = hH
d wx [l]
︸ ︷︷ ︸

direct link

+hH
r (sΘ)Gwx [l]
︸ ︷︷ ︸

reflected link

+nr[l], (1)

where w ∈ CN×1 is the transmit beamforming vector at the BS, x[l] ∼ CN (0, 1), and nr[l] ∼
CN (0, σ2) denotes the additive white Gaussian noise at the IR. We adopt the simple but widely

used on-off keying (OOK) modulation for the information transmission of the IRS, i.e., s = {0, 1}.

We assume that the probability for the IRS to send symbol “1” is ρ, and that to send symbol “0”

is 1 − ρ. Without loss of generality, we assume the IRS sends symbol “1” and symbol “0” with

equal probability, i.e., ρ = 1
2
. We note that symbol “1”, i.e., s = 1, implies the IRS is turned on

and symbol “0”, i.e., s = 0, implies the IRS is turned off.

The instantaneous achievable rate (bps/Hz) of the IRS-assisted primary system is given by

R̃csr,x (s) = log2

(

1 +

∣
∣hH

d w + hH
r (sΘ)Gw

∣
∣
2

σ2

)

. (2)
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Since the instantaneous achievable rate R̃csr,x (s) depends on the IRS’s on/off state, the average

achievable rate of the primary system is given by [28], [31]

Rcsr,x = Es

{

R̃csr,x (s)
}

= (1− ρ) log2

(

1 +

∣
∣hH

d w
∣
∣2

σ2

)

+ ρlog2

(

1 +

∣
∣hH

d w + vHdiag
(
hH
r

)
Gw

∣
∣2

σ2

)

. (3)

where vH =
(
ejθ1, . . . , ejθM

)
.

After successfully decoding the primary signal x[l], the receiver can apply successive interference

cancellation (SIC) to remove hH
d wx [l] from the received composite signal in (1). Thus, after

removing this term, we obtain the intermediate IRS signal as follows

ȳcsr,r [l] = vHdiag
(
hH
r

)
Gwsx [l] + nr[l], (4)

Since each IRS symbol spans L primary symbols for the CSR scenario, the IRS is affected by

time-selective fading. By applying maximal-ratio-combining (MRC), the decision can be based on

the following real sufficient statistic [34]

ȳcsr,r = Re

{
L∑

l=1

(
vHdiag

(
hH
r

)
Gwx [l]

)∗
ȳcsr,r [l]

}

=
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

L∑

l=1

|x [l]|2s+ n̄r, (5)

where n̄r = Re

{
(
vHdiag

(
hH
r

)
Gw

)∗ L∑

l=1

x∗ [l]nr[l]

}

. It is not difficult to see that

(
vHdiag

(
hH
r

)
Gw

)∗ L∑

l=1

x∗ [l]nr[l] is still a CSCG random variable with the expectation and

variance given by

E

{

(
vHdiag

(
hH
r

)
Gw

)∗
L∑

l=1

x∗ [l]nr[l]

}

= 0,

Var

{

(
vHdiag

(
hH
r

)
Gw

)∗
L∑

l=1

x∗ [l]nr[l]

}

=
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

L∑

l=1

|x [l]|2σ2. (6)

As such, n̄r is a real Gaussian random variable and it follows that

n̄r ∼ N
(

0,
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

L∑

l=1

|x [l]|2σ2/2

)

. (7)

We can rewrite (5) as follows

ȳcsr,r =







∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

L∑

l=1

|x [l]|2 + n̄r, s = 1

n̄r, s = 0

(8)
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Suppose that the hypotheses of sending symbol “1” and “0” are denoted by H1 and H0, respectively.

Following [35], the BER for the IRS symbol assuming maximum likelihood (ML) detection can

be expressed as1

P̄csr,e =
1

2
Pr

(

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

L∑

l=1

|x [l]|2 + n̄r < ȳthcsr,r|H1

)

+
1

2
Pr
(
n̄r ≥ ȳthcsr,r|H0

)
, (9)

where ȳthcsr,r =
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

L∑

l=1

|x [l]|2/2. Define probability density function (PDF) fn̄r
(t) =

1√
2πσ1

exp
(

− t2

2σ2
1

)

, where σ2
1 =

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

L∑

l=1

|x [l]|2σ2/2. Then, the BER for CSR is

obtained as

P̄csr,e =
1√
2πσ1

∫ +∞

ȳthcsr,r

exp

(

− t2

2σ2
1

)

dt

= Q

(

1√
2

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣

√
∑L

l=1
|x [l]|2/σ

)

, (10)

where Q (x) = 1√
2π

∫∞
x

e−
t2

2 dt. Since x[l] in (10) is a random variable, we are interested in the

average BER for CSR. The primary signals are CSCG random variables and are independent

identically distributed (i.i.d.), (10) is equivalent to the instantaneous BER for MRC combining

of L i.i.d. Rayleigh fading paths. Hence, according to [36], the closed-form expression for the

average BER can be obtained as

Pcsr,e
△
= Ex[l]

{
P̄csr,e

}
=

(
1−µ

2

)L L−1∑

l=0




L− 1 + l

l





(
1 + µ

2

)l

, (11)

where µ =

√

|vHdiag(hH
r )Gw|2

|vHdiag(hH
r )Gw|2+4σ2

and




n

k



 = n(n−1)···(n−k+1)
k(k−1)···1 .

2) PSR scenario: Different from the CSR scenario, for PSR, the symbol rate of the IRS is equal

to that of the primary transmission, i.e., Ts = Tx. Therefore, for PSR, the detection scheme for

decoding the primary symbol and the IRS symbol is fundamentally different from that for CSR.

Define by s[l] the IRS’s lth transmit symbol. The lth received symbol at the IR is given by

ypsr,r [l] = hH
d wx [l]
︸ ︷︷ ︸

direct link

+hH
r (s [l]Θ)Gwx [l]
︸ ︷︷ ︸

reflected link

+nr[l]. (12)

1The optimal estimator is a maximum a posteriori probability (MAP) detector, while for equally likely symbols, the ML detector

is equivalent to the MAP detector.
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Similar to the CSR scenario, we first decode the primary symbol, i.e., x[l], then subtract hH
d wx [l]

from the combined signal, and finally extract the IRS symbol s[l]. Since x[l] and s[l] have the

same symbol rate for PSR, the IRS treats the signal reflected from the IRS as interference with

the average power given by E

{∣
∣hH

r (s [l]Θ)Gwx [l]
∣
∣
2
}

= ρ
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

when decoding

the primary signal x[l]. Therefore, the achievable rate for decoding the primary signal is given by

Rpsr,x = log2

(

1 +

∣
∣hH

d w
∣
∣2

ρ|vHdiag (hH
r )Gw|2+σ2

)

, (13)

and then after removing hH
d wx [l] from (12), we have

ȳpsr,r [l] = hH
r ΘGws [l] x [l] + nr[l]. (14)

Similar to the case of CSR, by setting L = 1 in (11), the average BER for PSR can be expressed

as

Ppsr,e =
1

2
−1

2

√

|vHdiag (hH
r )Gw|2

|vHdiag (hH
r )Gw|2 + 4σ2

. (15)

B. Problem Formulation

1) CSR scenario: Our goal is to minimize the BER of the IRS symbols by jointly optimizing

the IRS phase shifts and the BS transmit beamformer while guaranteeing a minimum rate required

for the primary network subject to the BS transmit power budget and the unit-modulus phase-shift

constraints. Mathematically, the problem can be formulated as follows

(P1)min
w,v

(
1−µ

2

)L L−1∑

l=0




L− 1 + l

l





(
1 + µ

2

)l

s.t. (1− ρ) log2

(

1 +

∣
∣hH

d w
∣
∣2

σ2

)

+ ρlog2

(

1 +

∣
∣hH

d w + vHdiag
(
hH
r

)
Gw

∣
∣2

σ2

)

≥ Rcsr,th, (16)

‖w‖22 ≤ Pmax, (17)

|vm| = 1, ∀m, (18)

where vm denotes the mth element of v, Rcsr,th is the minimum rate required by the primary

network for CSR, and Pmax is the BS’s maximum transmit power. Problem (P1) is non-convex

and difficult to solve due to the highly coupled optimization variables in the objective function as

well as constraints (16) and (18). There is no standard method for solving non-convex optimization

problems optimally. As such, we propose a novel penalty-based algorithm to solve (P1) to obtain

a high-quality suboptimal solution in Section III.
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2) PSR scenario: Similarly, for PSR, we aim to jointly optimize the IRS phase shifts and the

BS transmit beamformer to minimize the BER. Accordingly, the problem can be formulated as

(P2)min
w,v

1

2
−1

2

√

|vHdiag (hH
r )Gw|2

|vHdiag (hH
r )Gw|2 + 4σ2

s.t. log2

(

1 +

∣
∣hH

d w
∣
∣2

ρ|vHdiag (hH
r )Gw|2 + σ2

)

≥ Rpsr,th, (19)

(17), (18), (20)

where Rpsr,th represents the minimum rate required for the primary network for PSR. Problem

(P2) is also challenging to solve for the following three reasons. First, the objective function of

(P2) is rather complicated, as it is non-convex due to the involvement of coupled optimization

variables w and v. Second, the optimization variables are intricately coupled in constraint (19).

Third, constraint (18) is a unit-modulus constraint. Nevertheless, we propose an efficient bisection

search based algorithm to solve problem (P2) in Section IV.

III. PENALTY-BASED ALGORITHM FOR CSR OPTIMIZATION PROBLEM

In this section, we study the CSR scenario to minimize the BER of the IRS symbols and

propose a novel penalty-based algorithm to solve (P1), which involves a two-layer iteration,

i.e., an inner layer iteration and an outer layer iteration. Specifically, the inner layer solves the

penalized optimization problem, while the outer layer updates the penalty coefficient. We then

alternately optimize the two layer iterations until convergence is achieved. Before proceeding

to solving the problem, we observe that Pcsr,e given by (11) is monotonically decreasing in
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2, which implies that minimizing the BER Pcsr,e is equivalent to maximizing

the SNR, i.e.,
|vHdiag(hH

r )Gw|2
σ2 . Thus, in the following, we adopt the SNR as the objective function

to facilitate algorithm design.
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A. Problem Reformulation

We first introduce new auxiliary variables µ1 and µ2 satisfying µ1=
vHdiag(hH

r )Gw

σ
and µ2 =

hH
d
w

σ
.

Then, problem (P1) is equivalent to

(
P̄1
)

max
w,v,µ1,µ2

|µ1|2

s.t. (1− ρ) log2
(
1 + |µ2|2

)
+ ρlog2

(
1 + |µ1 + µ2|2

)
≥ Rcsr,th, (21)

µ1=
vHdiag

(
hH
r

)
Gw

σ
, (22)

µ2 =
hH
d w

σ
, (23)

(17), (18). (24)

We then use (22) and (23) as penalty terms that are added to the objective function of
(
P̄1
)
,

yielding the following optimization problem

(
P̄1−1

)
max

w,v,µ1,µ2

|µ1|2 −
1

2η





∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

2


 (25)

s.t. (17), (18), (21), (26)

where η (η > 0) is a penalty coefficient that penalizes the violation of equality constraints (22)

and (23). By gradually decreasing the value of η in the outer layer until it approaches zero,

it follows that 1
2η

→ ∞. As such, the penalty terms will be forced to zero eventually, i.e.,
∣
∣
∣
∣
µ1 −

vHdiag(hH
r )Gw

σ

∣
∣
∣
∣
= 0 and

∣
∣
∣µ2 − hH

d
w

σ

∣
∣
∣ = 0, which indicates that the newly added equality

constraints (22) and (23) will be satisfied after convergence. However, for a given η,
(
P̄1−1

)

is still a non-convex optimization problem due to the coupled optimization variables in both the

objective function and constraint (21), and the unit-modulus constraint in (18). To address this

difficulty, we first divide the variables into three blocks, namely, 1) auxiliary variables {µ1, µ2},

2) BS transmit beamformer w, and 3) phase shift vector v, and alternately optimize each block

with the other two blocks of variables fixed until convergence is achieved.
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B. Inner Layer Iteration

1) Optimizing auxiliary variables {µ1, µ2} for the given BS transmit beamformer w and phase

shift vector v. This subproblem is formulated as

(
P̄1−2

)
max
µ1,µ2

|µ1|2 −
1

2η





∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

2




s.t. (21). (27)

Note that
(
P̄1−2

)
is neither concave nor quasi-concave due to the non-convex constraint (21). In

addition, we must have 1− 1
2η

≤ 0 in the objective function, i.e., η ≤ 1
2
, since otherwise we can

increase µ1 to obtain an infinite value of the objective function. As such, the objective function of
(
P̄1−2

)
is jointly convex w.r.t. µ1 and µ2. In the following, we propose to leverage the successive

convex approximation (SCA) technique to solve
(
P̄1−2

)
. Recall that any convex function is

globally lower-bounded by its first-order Taylor expansion at any feasible point. Therefore, for

any given points µr
1 and µr

2 at the rth iteration, we have

|µ2|2 ≥ −|µr
2|2 + 2Re

{
µH
2 µ

r
2

}
, (28)

|µ1+µ2|2 ≥ −|µr
1 + µr

2|2 + 2Re
{

(µ1 + µ2)
H (µr

1 + µr
2)
}

. (29)

As a result, for any given points µr
1 and µr

2, we obtain the following optimization problem

(
P̄1−3

)
max
µ1,µ2

|µ1|2 −
1

2η





∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

2




s.t. (1− ρ) log2
(
1− |µr

2|2 + 2Re
{
µH
2 µ

r
2

})
+

ρlog2

(

1− |µr
1 + µr

2|2 + 2Re
{

(µ1 + µ2)
H (µr

1 + µr
2)
})

≥ Rcsr,th. (30)

It can be readily verified that the objective function of
(
P̄1−3

)
and new constraint (30) are convex.

Thus,
(
P̄1−3

)
can be efficiently solved by using standard convex optimization techniques [37].

It is worth pointing out that the obtained objective value of
(
P̄1−3

)
serves as a lower-bound for

(
P̄1−2

)
due to the Taylor expansion approximation in (28) and (29).

2) Optimizing BS transmit beamformer w for the given phase shift v and auxiliary variables

{µ1, µ2}. This subproblem can be expressed as

(
P̄1−4

)
min
w

∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

2

s.t. (17). (31)
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It can be readily observed that
(
P̄1−4

)
is a convex quadratically constrained quadratic program

(QCQP), which can be solved by the interior point method [37]. However, the complexity of

solving
(
P̄1−4

)
by the interior point method is O(N3.5), which is rather high especially when

the number of antennas N is large. To reduce the computational complexity, we obtain a semi-

closed-form yet optimal solution for the BS transmit beamformer w by using the Lagrange duality

method [37]. Specifically, by introducing dual variable λ (λ ≥ 0) associated with constraint (17),

the Lagrangian function of
(
P̄1−4

)
is given by

L (w, λ) =

∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

2

+ λ
(
‖w‖22 − Pmax

)
. (32)

By taking the first-order derivative of L (w, λ) w.r.t. w and setting it to zero, we obtain the optimal

solution as

w (λ)=

(

GHdiag (hr)vv
Hdiag

(
hH
r

)
G+hdh

H
d

σ2
+λIN

)†(
µ1G

Hdiag (hr)v+µ2hd

σ

)

. (33)

Recall that for the optimal solution wopt (λopt) and λopt, the following complementary slackness

condition must be satisfied [37]

λopt
(∥
∥wopt

(
λopt

)∥
∥
2 − Pmax

)

= 0. (34)

We first check whether λopt = 0 is the optimal solution or not. If

∥
∥wopt (0)

∥
∥2 − Pmax < 0, (35)

which indicates that the optimal dual variable λ equals 0, the optimal BS beamformer is given by

wopt (0)=
(
GHdiag (hr)vv

Hdiag
(
hH
r

)
G+hdh

H
d

/
σ2
)†
(

µ1G
Hdiag(hr)v+µ2hd

σ

)

, otherwise, the opti-

mal λ is a positive value, which can be calculated as follows.

Defining S = GHdiag (hr)vv
Hdiag

(
hH
r

)
G+hdh

H
d /σ

2 and z = µ1G
Hdiag (hr)v+µ2hd/σ, we

have

‖w (λ)‖22= tr
(
(S+λIN)

−2
zzH

)
. (36)

It can be readily shown that S is a positive semi-definite matrix. We thus have S=UΣUH by

performing eigenvalue decomposition. Substituting S=UΣUH into (36), we arrive at

‖w (λ)‖22= tr
(
(Σ+λIN)

−2
UHzzHU

)

=
sr∑

i=1

(
UHzzHU

)

i,i

(Σi,i + λ)2
+

N∑

i=sr+1

(
UHzzHU

)

i,i

λ2
, (37)
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Algorithm 1 Proposed Lagrange duality method for solving problem
(
P̄1−4

)
.

1: Initialize λlb, λup, and ε.

2: If ‖w (0)‖22 ≤ Pmax, the optimal BS beamforming vector is given by wopt (0), and then

terminate the algorithm; otherwise, go to step 3.

3: Repeat

4: Compute λ = λlb+λup

2
.

5: If ‖w (λ)‖22 ≤ Pmax, let λup = λ, otherwise, let λlb = λ.

6: Until
∣
∣λup − λlb

∣
∣ ≤ ε.

7: Output: Optimal BS beamformer wopt
(
λlb
)
.

where sr denotes the number of non-zero eigenvalues of S. Note that since each main diagonal

element of UHzzHU is non-negative, ‖w (λ)‖22 is monotonically decreasing w.r.t. dual variable

λ. Therefore, the optimal λopt can be obtained by using the bisection search method to find the

solution that satisfies the following equation

sr∑

i=1

(
UHzzHU

)

i,i

(Σi,i + λopt)2
+

N∑

i=sr+1

(
UHzzHU

)

i,i

(λopt)2
= Pmax. (38)

Then, substituting the optimal λopt into (33), we obtain the optimal BS beamformer vector wopt (λopt).

Note that for the bisection search, the low bound of λ, denoted by λlb, can be set as a sufficiently

small non-negative value, while the upper bound of λ, denoted by λup, can be calculated as

λup =

√
N∑

i=1

(UHzzHU)i,i/Pmax. The detailed procedure for solving
(
P̄1−4

)
is summarized in

Algorithm 1. Note that the complexity of Algorithm 1 is O
(

log2

(
λup−λlb

ε

)

N3
)

, which is much

lower than that of the interior point method.

3) Optimizing phase shift vector v for given BS transmit beamformer w and auxiliary

variables {µ1, µ2}. This subproblem is given by

(
P̄1−5

)
min
v

∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣

2

s.t. (18). (39)

Although the objective function of
(
P̄1−5

)
is a quadratic function, the unit-modulus constraints

in (18) are still non-convex. In the following, we obtain a locally optimal closed-form solution for

v by leveraging the Majorization-Minimization (MM) method [38], [39]. The key idea of using

the MM method lies in constructing a convex surrogate function that is an upper bound of the
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objective function of
(
P̄1−5

)
. Define f (v) as the objective function and vr as the initial point for

v at the rth iteration, the surrogate function, denoted by f̂ (v|vr), should satisfy with the following

three conditions: 1) f̂ (v|vr) ≥ f (v); 2) f̂ (vr|vr) = f (vr); 3) ∇vr f̂ (vr|vr) = ∇vrf (vr), where

1) means that f̂ (v|vr) serves an upper bound function of f (v), 2) implies that f̂ (v|vr) and

f (v) have the same function value at point vr, and 3) indicates f̂ (v|vr) and f (v) have the same

gradient at point vr. As a result, we have the following lemma:

Lemma 1: Based on [38], at the initial point vr, a surrogate function f̂ (v|vr) for quadratic

function f(v) = vHAv is given by

f̂ (v|vr) = λmaxv
Hv − 2Re

{
vH (λmaxIM −A)vr

}
+ vr,H (λmaxIM −A)vr, (40)

where A =
diag(hH

r )GwwHGHdiag(hr)

σ2 , and λmax represents the maximum eigenvalue of A.

Substituting f̂ (v|vr) for f (v) and plugging it into the objective function of
(
P̄1−5

)
as well as

ignoring the irrelevant constants w.r.t. v, the phase shift v can be obtained by solving the following

problem

(
P̄1−6

)
max

v

Re
{
vHqr

}

s.t. (18), (41)

where qr = (λmaxIM −A)vr +
diag(hH

r )GwµH
1

σ
. Obviously, the optimal phase shift vector for

(
P̄1−6

)
is given by vopt = exp (j arg (qr)). Note that the obtained optimal solution vopt for

(
P̄1−6

)
is guaranteed to be a locally optimal solution for the original problem

(
P̄1−5

)
[38], [39].

C. Outer Layer Iteration

In the outer layer, we gradually decrease the value of penalty coefficient ηr in the rth iteration

by updating it as follows

ηr = cηr−1, (42)

where c (0 < c < 1) is a scaling factor. Here, a larger value of c can achieve better performance

but at the cost of more iterations required in the outer layer.

D. Overall Algorithm

The constraint violation of the proposed penalty-based algorithm is qualified by

ξ=max

{∣
∣
∣
∣
∣
µ1 −

vHdiag
(
hH
r

)
Gw

σ

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
µ2 −

hH
d w

σ

∣
∣
∣
∣

}

. (43)
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Algorithm 2 Proposed penalty-based algorithm for solving problem
(
P̄1− 1

)
.

1: Initialize phase shift vector vr1 , auxiliary variables {µr1
1 , µ

r1
2 }, penalty coefficient ηr2 , scaling

factor c, predefined thresholds ε1 and ε2, inner layer iteration index r1 = 0, outer layer iteration

index r2 = 0.

2: Repeat: outer layer

3: Repeat: inner layer

4: Update auxiliary variables, denoted by {µr1+1
1 , µr+1

2 }, by solving problem
(
P̄1−3

)
.

5: Update BS transmit beamformer, denoted by wr1+1, by solving problem
(
P̄1−4

)
.

6: Update phase shift vector, denoted by vr1+1, by solving problem
(
P̄1−6

)
.

7: Set r1 = r1 + 1.

8: Until the fractional increase of the objective value of
(
P̄1−1

)
is below ε1.

9: Update the penalty coefficient, denoted by ηr2+1, based on (42).

10: Set r2 = r2 + 1 and r1 = 0.

11: Until constraint violation indicator ξ in (43) is smaller than ε2.

The proposed penalty-based algorithm is summarized in Algorithm 2.

Lemma 2: The obtained solution {w,v, µ1, µ2} converges to a point fulfilling the Karush–Kuhn

–Tucker (KKT) optimality conditions of original problem
(
P̄1
)
.

Proof : Note that with the proper variable partitioning in our proposed algorithm, there is

no constraint coupling between the variables in different blocks, as seen from
(
P̄1−3

)
,
(
P̄1−4

)
,

and
(
P̄1−6

)
. In addition, in step 4 of Algorithm 2,

(
P̄1−3

)
is solved by an SCA method and a

locally optimal solution is obtained. In step 5, a globally optimal solution is obtained by using the

Lagrange duality method for
(
P̄1−4

)
. In step 6, a locally optimal solution is obtained by using

the MM method to solve
(
P̄1−6

)
. Following Theorem 4.1 in [40] together with the fact that for

each subproblem in the inner layer at least a locally optimal solution is obtained, the proposed

algorithm is guaranteed to find a locally optimal solution of
(
P̄1
)
.

IV. BISECTION SEARCH-BASED ALGORITHM FOR PSR OPTIMIZATION PROBLEM

In this section, we study the PSR scenario and minimize the BER of the IRS symbols. It can

be readily seen that the objective function of (P2) is a monotonically decreasing function in
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2
. Thus, we can equivalently maximize the corresponding SNR instead. The
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problem can be recast as follows

(
P̄2
)
max
w,v,β

β

s.t.

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2
≥ β, (44)

(17), (18), (19). (45)

In the following, we propose an efficient bisection search based algorithm to solve
(
P̄2
)
. However,

the search range for β is in principle infinite, which would make the proposed algorithm inefficient.

To tackle this issue, we first confine the search space by deriving an upper bound for β.

A. Confined Search Range

Problem
(
P̄2
)

can be solved by finding the maximum value of β that satisfies all the constraints.

Based on (17) and (44), we have the following inequality

β ≤
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

σ2

(a)

≤ Pmax

∥
∥vHdiag

(
hH
r

)
G
∥
∥
2

σ2
, (46)

where (a) holds since the optimal beamforming vector w that maximizes
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2 is

w =
√
PmaxG

Hdiag(hr)v
‖GHdiag(hr)v‖ . Similar to Lemma 1, a surrogate function for

vHdiag(hH
r )GGHdiag(hr)v

σ2 at the

initial point vr by using MM method is given by

ĝ (v|vr) = λ̂maxM − 2Re
{

vH
(

λ̂maxIM − Â
)

vr
}

+ vr,H
(

λ̂maxIM − Â
)

vr, (47)

where Â=
diag(hH

r )GG
Hdiag(hr)

σ2 , and λ̂max represents the maximum eigenvalue of Â. As a result,

an upper bound of β can be obtained by solving the following optimization problem

(
P̄2−1

)
max

v

Pmaxĝ (v|vr)

s.t. (18). (48)

Obviously, in the rth iteration, the optimal solution of problem
(
P̄2−1

)
, denoted by vr+1, is given

by vr+1 = − exp
(

j arg
((

λmaxIM − Â
)

vr
))

. We then successively update the IRS phase-shift

vector vr+1 according to
(
P̄2−1

)
, until convergence is achieved. The converged objective value

is denoted by βup.

For any fixed β, we have to check whether the following problem
(
P̄2−2

)
is feasible

(
P̄2−2

)
Find : {w,v}

s.t. (17), (18), (19), (44). (49)
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If problem
(
P̄2−2

)
is feasible, this indicates that β is a feasible solution of problem

(
P̄2
)

and β

can be enlarged to pursue a higher objective value; otherwise β is infeasible, which indicates that

β is too large. However, problem
(
P̄2−2

)
has no objective function. To make it more tractable,

(
P̄2−2

)
can be transformed to

(
P̄2−3

)
max
w,v

∣
∣
∣
∣

hH
d w

σ

∣
∣
∣
∣

2

−
(
2Rpsr,th − 1

)

(

ρ
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2
+ 1

)

s.t. (17), (18), (44). (50)

The objective function of
(
P̄2−3

)
is obtained by performing simple algebraic operations on (19).

If the obtained objective value of
(
P̄2−3

)
is no smaller than zero at the optimal point {w,v},

this indicates that problem
(
P̄2−2

)
is feasible; otherwise it is no feasible. It is observed that

the optimization variables in the objective function and constraint (44) are intricately coupled,

which motivates us to apply the block coordinate descent method to solve
(
P̄2−3

)
by properly

partitioning the optimization variables into different blocks. Specifically,
(
P̄2−3

)
is divided into

two subproblems, namely, the BS beamforming optimization subproblem and IRS phase shift

optimization subproblem, and then we alternately optimize the two subproblems until convergence

is reached.

B. Lagrange Duality Method for BS Beamforming Optimizaiton

For any given phase shift vector v, the BS beamforming optimization subproblem is given by

(
P̄2−4

)
max
w

∣
∣
∣
∣

hH
d w

σ

∣
∣
∣
∣

2

−
(
2Rpsr,th − 1

)

(

ρ
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2
+ 1

)

s.t. (17), (44). (51)

Problem
(
P̄2−4

)
is still non-convex due to the non-convex objective function as well as non-convex

constraint (44). Note that both the objective function and the left-hand-side of (44) are quadratic

functions, the SCA method can be applied to address this difficulty efficiently. Specifically, based

on the first-order Taylor expansion at any given point wr, we have the following inequality
∣
∣
∣
∣

hH
d w

σ

∣
∣
∣
∣

2

≥ −
∣
∣
∣
∣

hH
d w

r

σ

∣
∣
∣
∣

2

+
2Re

{
wr,Hhdh

H
d w
}

σ2

△
= f lb

1 (w) , (52)

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣
2

σ2
≥ −

∣
∣vHdiag

(
hH
r

)
Gwr

∣
∣
2

σ2
+

2Re
{
wr,HGHdiag (hr)vv

Hdiag
(
hH
r

)
Gw

}

σ2

△
= f lb

2 (w) . (53)
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It can be readily seen that both f lb
1 (w) and f lb

2 (w) are linear and thus convex w.r.t. w. As a

result, for a given point wr, we have the following optimization problem

(
P̄2−5

)
max
w

f lb
1 (w)−

(
2Rpsr,th − 1

)

(

ρ
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2
+ 1

)

(54)

s.t. f lb
2 (w) ≥ β, (55)

(17). (56)

Although
(
P̄2−5

)
is a convex optimization problem and can be solved with the interior point

method, the resulting computational complexity is O (N3.5). In the following, we exploit the

Lagrange duality method to reduce the complexity. Note that compared to
(
P̄1−4

)
for CSR in

Section III-B,
(
P̄2−5

)
for PSR has a different objective function and an additional constraint in

(55). Define by τ1 ≥ 0 the dual variable associated with (17). The partial Lagrange function of
(
P̄2−5

)
is given by

L1 (w, τ1) = f lb
1 (w)−

(
2Rpsr,th − 1

)

(

ρ
∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2
+ 1

)

+ τ1
(
Pmax − ‖w‖22

)
. (57)

Thus, the corresponding dual function is given as follow

(
P̄2−5− dual

)
max
w

L1 (w, τ1)

s.t. (55). (58)

To maximize
(
P̄2−5− dual

)
for a given τ1, we introduce the dual variable τ2 ≥ 0 associated with

(55). Then, the Lagrange function of
(
P̄2−5− dual

)
is given as follow

L2 (w, τ2) = L1 (w, τ1)+τ2
(
f lb
2 (w)−β

)
. (59)

By taking the first-order derivative of L2 (w, τ2) w.r.t. w and setting it to zero, we obtain

w (τ1, τ2) =(D1+τ1I)
†
(
hdh

H
d w

r

σ2
+τ2d2

)

, (60)

where D1=
(
2Rpsr,th − 1

)
(

ρ(vHdiag(hH
r )G)

H
vHdiag(hH

r )G
σ2

)

and d2=
ρGHdiag(hr)vvHdiag(hH

r )Gwr

σ2 . For

any given τ1, the optimal value of τ2 must be chosen such that the following complementary

slackness condition is satisfied:

τ opt2

(
β−f lb

2

(
w
(
τ1, τ

opt
2

)))
=0. (61)
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As such, if β−f lb
2 (w (τ1, 0)) < 0 holds, the optimal beamformer is w (τ1, 0); otherwise, the

optimal beamformer is w
(
τ1, τ

opt
2

)
with τ opt2 given by

τ opt2 =
β+

ρ|vHdiag(hH
r )Gw

r|2
σ2 −2Re

{

dH
2 (D1+τ1I)

† hdh
H
d
w

r

σ2

}

2Re
{

dH
2 (D1+τ1I)

†
d2

} . (62)

To solve
(
P̄2−5

)
, we need to calculate the optimal τ opt1 . The optimal value of τ1 must be chosen

to satisfy the following complementary slackness condition

τ opt1

(∥
∥w
(
τ opt1 , τ opt2

)∥
∥
2

2
−Pmax

)

=0. (63)

If
∥
∥w
(
0, τ opt2

)∥
∥
2 ≤ Pmax holds, the optimal beamformer is given by w

(
0, τ opt2

)
; otherwise, we

need to calculate the optimal τ opt1 that satisfies Pmax=
∥
∥w
(
τ opt1 , τ opt2

)∥
∥
2

2
. However, since there is

no closed-form expression for τ1 w.r.t. τ2, it is difficult to show that ‖w (τ1, τ2)‖22 is monotonic

w.r.t. τ1. This problem is addressed in the following lemma.

Lemma 3: ‖w (τ1, τ2)‖22 is a non-increasing function of τ1.

Proof : Please refer to the Appendix A.

Based on Lemma 3, we can use a bisection search-based method to find the optimal τ1.

The details of the proposed Lagrange duality method for solving
(
P̄2−5

)
are summarized in

Algorithm 3.

C. DC Method for IRS Phase Shift Optimization

For any given BS beamformer w, by ignoring constants that do not depend on v, the IRS phase

shift optimization subproblem can be formulated as follows

(
P̄2−6

)
min
v

∣
∣vHdiag

(
hH
r

)
Gw

∣
∣2

σ2

s.t. (18), (44). (64)

Due to the unit-modulus constraint in (18), a commonly used approach is to reformulate (P2−6)

as a semidefinite programming (SDP) problem [7], [16]. Specifically, define V=vvH , which needs

to satisfy V � 0 and rank (V) = 1. As a result, problem
(
P̄2−6

)
is equivalent to

(
P̄2−7

)
min
V�0

tr (VB)

s.t. tr (VB) ≥ β, (65)

Vi,i = 1, ∀m, (66)

rank (V) = 1, (67)
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Algorithm 3 Lagrange duality method for solving problem
(
P̄2−5

)
.

1: Initialize τ lb1 , τup1 = τ̄up1 , and ε.

2: If β−f lb
2 (w (0, 0)) ≤ 0 holds, τ opt1 = 0 and τ opt2 = 0; otherwise τ opt1 = 0, and τ opt2 is given

by (62).

3: If
∥
∥w
(
0, τ opt2

)∥
∥
2

2
≤ Pmax, the optimal beamformer is given by w

(
0, τ opt2

)
, and go to step 10;

otherwise go to step 4.

4: Repeat

5: Compute τ1 =
τ lb1 +τ

up
1

2
.

6: If β−f lb
2 (w (τ1, 0)) ≤ 0 holds, τ opt2 is set to zero; otherwise τ opt2 is given by (62).

7: Update beamformer w
(
τ1, τ

opt
2

)
according to (60).

8: If
∥
∥w
(
τ1, τ

opt
2

)∥
∥
2

2
≤ Pmax, set τup1 = τ1, otherwise, set τ lb1 = τ1.

9: Until
∣
∣τup1 − τ lb1

∣
∣ ≤ ε.

10: If
∣
∣τ lb1 − τ̄up1

∣
∣ ≤ ε, which indicates problem

(
P̄2−5

)
is infeasible, we terminate the algorithm.

11: Output: Optimal BS beamformer w
(
τ opt1 , τ opt2

)
according to (60).

where B= diag
(
hH
r

)
Gw

(
diag

(
hH
r

)
Gw

)H
/σ2. It can be seen that the objective function, and

constraints (65) and (66) are all linear w.r.t. V, while constraint (67) is non-convex. A common

method for addressing this issue is to apply SDR by dropping the non-convex rank-one constraint,

i.e., constraint (67), and then solve the relaxed problem via standard convex optimization techniques

[7]. If the solution V of the relaxed version of problem
(
P̄2−7

)
is rank-one, the optimal phase shift

v can be optimally obtained by applying Cholesky decomposition of V. Otherwise, the Gaussian

randomization technique can be applied to construct a rank-one solution from the obtained high-

rank solution V [41]. However, Gaussian randomization may not be able to guarantee a locally

and/or globally optimal solution, especially when the dimension of matrix V (which is equal

to the number of IRS reflecting elements) is large. To overcome this drawback, we apply DC

programming to solve (P2−7), which guarantees convergence to a KKT point [42], [43]. We first

introduce the following important lemma needed for the development of the proposed DC method.

Lemma 4: For a positive semidefinite matrix V and rank (V) ≥ 1, we have the following

equivalence [43], [44],

rank (V) = 1 ⇔ tr (V)− ‖V‖2 = 0. (68)

Note that it can be readily checked that tr (V) ≥ ‖V‖2. By adding the term tr (V)− ‖V‖2 in the
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objective function of
(
P̄2−7

)
as a penalized term, problem

(
P̄2−7

)
can be rewritten as follows

(
P̄2−8

)
min
V�0

tr (VB) +
1

η̄
(tr (V)− ‖V‖2)

s.t. (65), (66), (69)

where η̄ is a penalty coefficient. Then, we can apply a similar two-stage penalty-based method to

solve
(
P̄2−8

)
as was presented in Section III. Specifically, we update the penalty coefficient η̄ in

the outer layer, and solve the penalized optimization problem in the inner layer. In the inner layer,

for a fixed η̄, the objective function of
(
P̄2−8

)
is not convex and is still difficult to solve. The

main idea behind DC programming is to construct a sequence of convex surrogates to replace the

non-convex term, and solve the constructed convex surrogates in an iterative manner. Specifically,

by linearizing the term −‖V‖2 at a given point Vr at the rth iteration, we obtain the following

optimization problem

(
P̄2−9

)
min
V�0

tr (VB) +
1

η̄
Re
{

tr
((

I−(∂‖Vr‖2)H
)

V
)}

s.t. (65), (66), (70)

where ∂‖Vr‖2 denotes the subgradient of V at point Vr. It is worth pointing out that ∂‖Vr‖2
can be calculated from Proposition 4 of reference [43] and is given by

∂‖V‖2=vpv
H
p , (71)

where vp denotes the eigenvector corresponding to the largest eigenvalue of V. Both the objective

function and the constraints of
(
P̄2−9

)
are convex. Thus,

(
P̄2−9

)
can be efficiently solved by

the standard convex optimization techniques [37]. We then successively update V obtained from
(
P̄2−9

)
, until convergence is reached. Note that the solution V obtained from

(
P̄2−9

)
after

convergence must be rank-one, we thus can uniquely reconstruct the beamforming vector v from

the obtained solution V via Cholesky decomposition.

D. Overall Algorithm

Based on the solutions to the above subproblems, a bisection search-based method is proposed,

which is summarized in Algorithm 4. Note that if the finally obtained objective value of
(
P̄2−3

)
,

denoted by fobj, is smaller than zero, this indicates that there is no feasible solution for problem
(
P̄2
)
. Since stationary points are obtained for both blocks defined by problems

(
P̄2−5

)
and

(
P̄2−9

)
in steps 6 and 7, respectively, Algorithm 4 is guaranteed to converge to a KKT solution
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Algorithm 4 Bisection search-based algorithm for solving problem
(
P̄2
)
.

1: Initialize β lb, η̄, phase shift vector vr1 , beamforming vector wr1 , predefined thresholds ε1, ε2,

iteration index r1 = 0.

2: Calculate βup based on
(
P̄2−1

)
.

3: Repeat

4: Calculate β = βlb+βup

2
.

5: Repeat

6: Update wr1+1 in problem
(
P̄2−5

)
by using Algorithm 3. If problem

(
P̄2−5

)
is

infeasible, set βup = β and go to step 4.

7: Update vr1+1 in
(
P̄2−9

)
by using a penalty-based method as in Algorithm 2.

8: Until the fractional increase of the objective value of
(
P̄2−3

)
is below ε1.

9: Calculate the objective value of
(
P̄2−3

)
, denoted by fobj. If the value of fobj ≥ 0, set

β lb = β, r1 = 0; otherwise, set βup = β, r1 = 0.

10: Until
∣
∣βup − β lb

∣
∣ ≤ ε2.

of problem
(
P̄2
)

[45]. The computational complexity of Algorithm 4 can be determined as follows.

In step 2, the complexity of computing βup is mainly caused by the calculation of the maximum

eigenvalue of Â, which is given by O (M3). In step 6, the complexity of calculating beamforming

vector w via the Lagrange duality method is O
(

log2

(
τ
up
1 −τ lb1

ε

)

N3
)

. In step 7, the complexity

of calculating the IRS phase shift matrix V based on SDP is O (M3.5). Therefore, the overall

complexity of Algorithm 4 is given by O
(

M3 + log2

(
βup−βlb

ε2

)(

log2

(
τ
up
1 −τ lb1

ε

)

N3 + IM3.5
))

,

where I denotes the number of iterations required by the penalty-based method for reaching

convergence.

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate the performance of the proposed

algorithms for IRS-based SR transmission systems. We assume that the BS is equipped with a

uniform linear array with N = 10 elements, while the IRS is equipped with a uniform rectangular

array with M = MxMz, where Mx and Mz denote the numbers of reflecting elements along the x-

axis and z-axis, respectively. We fix Mx = 5 and increase Mz linearly with M . We assume that the

antenna spacing is half a wavelength. The BS, IRS, and IR are located at (0, 0, 0), (100 m, 0, 2.5 m),

and (100 m, 0, 0) in 3D Cartesian coordinates, respectively. In addition, the large-scale path loss is
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Fig. 2. One channel realization is considered to illustrate the convergence behaviour of Algorithm 2.

modeled as Lloss = L0

(
d
d0

)−α

, where L0 denotes the channel power gain at the reference distance

of d0 = 1 m, d is the link distance, and α is the path loss exponent. We assume that the BS-IRS

and IRS-IR links are Rician fading with a Rician factor of 3 dB, and the BS-IR link is Rayleigh

fading. In addition, the path loss exponents for the BS-IRS, IRS-IR, and BS-IR links are set as 2.6,

2.6, and 3.6, respectively. Unless otherwise stated, we set Rcsr,th = 1 bps/Hz, Rpsr,th = 1 bps/Hz,

L0 = −30 dB, Pmax = 40 dBm, η = 0.1, η̄ = 102, σ2 = −80 dBm, ρ = 0.5, L = 15, c = 0.7,

ε = 10−6, ε1 = ε2 = 10−4, β lb = 0, τ lb1 = β lb = 0, λlb = 10−5, and τup1 = τ̄up1 = 106.

Before discussing the performance of the proposed schemes, we first verify the effectiveness

of the proposed penalty-based Algorithm 2 for CSR. The constraint violation and convergence

behaviour of Algorithm 2 are shown in Fig. 2 for one channel realization for different numbers

of IRS reflecting elements M , namely, M = 100, M = 200, and M = 500. From Fig. 2(a), it is

observed that the constraint violation ξ converges very fast to the predefined violation accuracy of

10−4 after about 23 iterations for M = 100, which indicates that equality constraints (22) and (23)

in
(
P̄1
)

are eventually satisfied. Even for M = 500, only 27 iterations are required for reaching

the predefined violation accuracy, which demonstrates the effectiveness of Algorithm 2. This can

be observed more clearly in Fig. 2(b), where the penalized objective values of
(
P̄1−1

)
obtained

for different M all increase quickly with the number of iterations and finally converge.

In order to evaluate the performance of the proposed IRS-based SR system, we compare the

following schemes for CSR and PSR: 1) Proposed scheme: We jointly optimize the BS beamformer

and phase shifts to minimize the BER of the IRS symbols. For CSR, Algorithm 2 is used, while

for PSR, Algorithm 4 is applied; 2) Baseline Scheme 1: we set w =
√
Pmaxhd

/
‖hd‖ to achieve

MRT for the BS-IR direct link, and the BER of the IRS symbols is minimized by optimizing
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the phase shifts; and 3) Baseline Scheme 2: the IRS phase shifts are random and follow uniform

distributions, and the BER of the IRS symbols is minimized by optimizing the BS beamformer. In

Fig. 3, we compare the BER of the IRS symbols obtained for the above schemes versus Pmax for

M = 400. Note that all results shown are obtained by simulation where we average 200 channel

realizations. As can be observed for all considered schemes, the BER of the IRS symbols decreases

with Pmax. This is expected since from the objective functions of (P1) and (P2), it can be easily

seen that as Pmax grows, the SNR increases with the transmit power, thereby reducing the BER of

the IRS symbols. In addition, for CSR, it is observed that the proposed scheme outperforms both

Baseline Schemes 1 and 2, which demonstrates that the BER of the IRS symbols can indeed be

reduced significantly with the joint BS beamformer and IRS phase shift optimization. A similar

behavior is also observed for PSR. Furthermore, it is observed that the BER of the IRS symbols

for CSR is significantly lower than that for PSR. This is because for CSR, one IRS symbols spans

L primary symbols. Thus, a diversity gain is obtained by exploiting MRT to coherently add up

the multi-path signals to increase the SNR at the receiver. In contrast, for PSR, the period of the

IRS symbol is equal to that of the primary symbol. Hence, the IRS reflected signals are treated

as interference for the primary network, which thus degrades the system performance. In other

words, the interference is harnessed in CSR, while it is harmful in PSR.

In Fig. 4, we show the BER of the IRS symbols versus the number of reflecting elements M . It is

observed that the BER of the IRS symbols obtained by all considered schemes decreases with M .

This is because more reflecting elements help achieve a higher passive beamforming gain, thereby

improving the SNR. More importantly, since the IRS is passive with low power consumption

and low hardware cost, it is promising to apply large IRSs with hundreds of reflecting elements.

Moreover, for CSR, our proposed scheme outperforms Baseline Scheme 1, which illustrates the
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benefits introduced by BS beamformer optimization. Furthermore, Baseline Scheme 2 achieves

some performance gains for CSR since the IRS is able to reflect some of the dissipated signals

back to the receiver. A similar behavior is also observed for PSR. In addition, similar to Fig. 3,

the BER of the IRS symbols obtained with CSR is lower than that obtained with PSR since the

interference is harnessed in CSR.

In Fig. 5, we study the impact of the IRS location on the BER of the IRS symbols for M = 400.

Specifically, we study the BERs obtained with the considered schemes versus the IRS’s horizontal

location (x-coordinate), ranging from −25 m to 125 m. Note that for x = 0 m, the IRS is closest

to the BS, while for x = 100 m, the IRS is closest to the IR. As can be observed, if the IRS is

deployed close to the BS or IR, the BER decreases. This is because for a short distance between

IRS and BS or IR, the signal attenuation in the BS-IRS-IR link is reduced due to the smaller double

path loss [2]. Additionally, for CSR, the proposed scheme still outperforms Baseline Schemes 1

and 2. Similar results are also obtained for PSR. This further demonstrates the benefits of the

proposed joint IRS phase shift and BS beamforming optimization.

In Fig. 6, we plot the outage probability of the proposed schemes versus the required primary

rate. For ease of exposition, we set Rcsr,th = Rpsr,th = Rth. The outage probability is defined

as the probability that the received primary rate at the IR is lower than a predefined minimum

required primary rate Rth. For the joint optimization scheme for CSR, we check the feasibility of

(P1) by jointly optimizing the beamformer and the phase shifts, while for Baseline Scheme 1, we

optimize the phase shifts for the given MRT beamformer for the BS-IR link. For PSR, we make

a similar comparisons for (P2). It is observed that the outage probability of all schemes increases

with Rth and approaches 1 for large Rth. This is expected since the primary rate is upper bounded

by a finite value due to the limited BS transmit power budget. For the CSR scenario, the joint
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optimization scheme has a lower outage probability than Baseline Scheme 1, especially when Rth

is larger than 4 bps/Hz. For example, the outage probability for the joint optimization scheme is

about 0.042 for Rth = 4.5 bps/Hz, while that for Baseline Scheme 1 is about 0.339. This can

also be deduced from (P1). For any given phase shift v, the left-hand-side of (16) obtained by

optimizing the BS beamformer w is larger than that obtained by applying MRT, which indicates

that the joint optimization scheme has a higher probability of satisfying constraint (16). For the

PSR scenario, the joint optimization scheme has a lower outage probability than Baseline Scheme

1. This can be deduced from (P2). For any given phase shifts v, the left-hand-side of (19) obtained

by optimizing the BS beamformer w is larger than that obtained by applying MRT. In addition,

the outage probability of the joint optimization scheme for CSR is lower than that for PSR. This

can be readily derived from (16) and (19), where the left-hand-side of (16) is evidently larger than

that of (19), which implies that a higher primary rate can be obtained with CSR. To see this more

clearly, Fig. 7 studies the BER of the IRS symbols versus Rth. It can be observed that for small

Rth, the BER remains nearly unchanged, while for large Rth, the BER increases substantially. This

is because as Rth becomes larger, the primary rate requirement constraint becomes stringent, so

the optimization of the beamformer and phase shifts needs to fulfill the primary rate requirement

at the cost of sacrificing the system performance.

VI. CONCLUSION

In this paper, we have studied novel paradigms for IRS-based SR systems. Depending on the

IRS’s symbol period, two scenarios, namely, CSR and PSR, have been considered with the objective

of minimizing the BER of the IRS symbols by jointly optimizing the active beamformer at the base

station and the phase shifts at the IRS while guaranteeing the minimum primary rate requirements.
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For the CSR scenario, we have decomposed the original problem into three subproblems, which

allowed us to obtain semi-closed-form solutions for the BS beamformer and the IRS phase shifts.

Then, a penalty-based algorithm with a two-stage iteration has been proposed to obtain a high-

quality solution. For the PSR scenario, a bisection search based algorithm has been proposed. In

particular, we have obtained a semi-closed-form solution for the BS beamformer, and leveraged the

DC programming framework to obtain a rank-one solution. Our simulation results have shown that

the proposed SR techniques achieve lower BERs as compared with two benchmark schemes and

demonstrated that the BER can be significantly reduced by jointly optimizing the BS beamformer

and IRS phase shifts for both scenarios. In addition, our results have also shown that the BER can

be significantly reduced by proper positioning of the IRS, especially by placing the IRS close to

the BS and/or IR. The results in this paper can be further extended by considering multiple IRSs,

frequency-selective channel models, imperfect CSI, etc., which are interesting topics for future

work in this area.

APPENDIX A

PROOF OF LEMMA 3

Define two dual variables τ1 and τ
′

1 corresponding to problem
(
P̄2−5

)
. Then, the corresponding

beamforming vectors are denoted by w
(
τ1, τ

opt
2

)
and w

(

τ
′

1, τ
′opt
2

)

, respectively. In addition, we

set τ1 > τ
′

1. Since w
(
τ1, τ

opt
2

)
is the optimal beamformer with given τ1, we have

L1

(
w
(
τ1, τ

opt
2

)
, τ1
)
≥ L1

(

w
(

τ
′

1, τ
′opt
2

)

, τ1

)

, (72)

L1

(

w
(

τ
′

1, τ
′opt
2

)

, τ
′

1

)

≥ L1

(

w
(
τ, τ opt2

)
, τ

′

1

)

. (73)

Adding the above two inequalities, we have

(

τ1 − τ
′

1

)(∥
∥
∥w
(

τ
′

1, τ
′opt
2

)∥
∥
∥

2

−
∥
∥w
(
τ1, τ

opt
2

)∥
∥
2
)

≥ 0. (74)

Since τ1 > τ
′

1, we directly arrive at

∥
∥
∥w
(

τ
′

1, τ
′opt
2

)∥
∥
∥

2

≥
∥
∥w
(
τ1, τ

opt
2

)∥
∥
2
. This thus completes the

proof.
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