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Structural Sparsity in Multiple Measurements
F. Boßmann, S. Krause-Solberg, J. Maly, and N. Sissouno

Abstract—We propose a novel sparsity model for dis-
tributed compressed sensing in the multiple measurement
vectors (MMV) setting. Our model extends the concept
of row-sparsity to allow more general types of structured
sparsity arising in a variety of applications like, e.g., seis-
mic exploration and non-destructive testing. To reconstruct
structured data from observed measurements, we derive a
non-convex but well-conditioned LASSO-type functional. By
exploiting the convex-concave geometry of the functional, we
design a projected gradient descent algorithm and show its
effectiveness in extensive numerical simulations, both on toy
and real data.

I. INTRODUCTION

Starting with the seminal works [8], [9], [16] a rich
theory on signal reconstruction from seemingly incom-
plete information has evolved under the name compressed
sensing in the past two decades, cf. [17] and references
therein.

The core idea is to use the intrinsic structure of a high-
dimensional signal x ∈ RN to allow reconstruction from
m� N linear measurements

y = Ax, (1)

where A ∈ Rm×N models the measurement process
and y ∈ Rm is called the measurement vector. In what
follows we will call the columns aj of A atoms. One
particular instance of intrinsic structure is sparsity: the
signal x is called s-sparse if |supp(x)| ≤ s, where
supp(x) = {i : xi 6= 0} denotes the support of x. We will
call an atom aj activated if j ∈ supp(x). If A is well-
designed, m ≈ s log(N

s ) measurements suffice to guar-
antee stable and robust recovery of all s-sparse x from y
by polynomial time algorithms [17]. This suggests that
the number of necessary measurements mainly depends
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on the intrinsic information encoded in x.
Despite its simplicity the model in (1) encompasses many
real-world measurement set-ups. For instance, in seismic
exploration, a key challenge is to reconstruct earth layers
from few linear measurements [6], [7]. In this case, the
vector x is a discretized vertical slice through the ground
where each entry represents the seismic reflectivity. To
reconstruct the earth layers, a synthetic seismic impulse
is produced and its reflections are measured at different
positions on the surface. This measurement process can
be modeled by a convolution of x with the seismic
impulse such that A is the corresponding convolution
matrix. Since the reflectivity is low whenever the mate-
rial is mostly homogeneous and high at material bound-
aries, the vector x can be assumed to be sparse and
its non-zero entries indicate the earth layer boundaries.
A similar model applies to ultrasonic non-destructive
testing where an ultrasonic impulse is sent into an object
and defects inside the material are reconstructed from
the reflections of this impulse [5]. Other possible applica-
tions are face and speech recognition [21], [36], magnetic
resonance imaging [25], or computer tomography [30].
For an overview also see [31], [27] and the references
therein.
In all applications mentioned above, we can assume
structure not only in one direction of space but in multi-
ple dimensions, meaning that measurements at different
locations/times t1 < ... < tL correspond to different
ground-truth signals x1, ..., xL ∈ RN whose support
structure is related. When thinking of waves travelling
through the ground, the positions of non-zero entries of
consecutive xl can only differ up to a certain number
determined by properties of the surrounding material
and fineness of the discretization.
If several signals x1, ..., xL ∈ RN are measured by the
same process A, the model in (1) becomes

Y = AX, (2)

for X = (x1, . . . , xL) ∈ RN×L and Y = (y1, . . . , yL) ∈
Rm×L. In this setting, also known as multiple measurement
vectors (MMV), the necessary number of measurements
may be reduced by exploiting joint structure in X, for
instance, row sparsity (all xl share a common support).
This has already been done in applications like MRI [37]
and MIMO communications [28]. In the case of row-
sparsity, reconstruction is usually performed via

min
X∈RN×L

‖AX− Y‖2
F + λ‖X‖row−0 , (3)
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Figure 1. Data from different applications exhibiting clear structure
but being neither row- nor block-sparse: Seismic exploration (left),
ultrasonic non-destructive testing (middle), and meteorology (right).

where ‖ · ‖F denotes the Frobenius-norm, ‖ · ‖row-0 de-
notes by abuse of notation the number of non-zero rows,
and λ is a tunable parameter. Although (3) is NP-hard
in general [17], solutions can be well approximated via
greedy algorithms or convex relaxation.

However, row-sparsity and other established struc-
tural models (column sparsity, block sparsity) make
restrictive assumptions on the concrete structure of X.
As a simple thought experiment, consider X to be the
identity matrix. Then X is neither row- nor block-sparse
but clearly exhibits a simple structure, namely a diagonal
line. In fact, the established models are too restrictive
for many applications. For example, the support and
thus the structure may change over time as it is the
case in real-time dynamic MRI [34], dynamic PET [18],
and wireless communication [23]. In machine learning
as well as in quantile and logistic regression modeling
more sophisticated structure models may be required
[22], [19]. In this work, we consider the three applications
seismic exploration, ultrasonic non-destructive testing,
and meteorology. Here, the data is gathered at different
locations where the support might change over the
spatial dimension. For instance, the above mentioned
earth layers in seismic exploration do not follow straight
horizontal lines and thus are not even close to row
sparse. Material defects that have to be reconstructed
in non-destructive testing can have many forms, most
of which are neither row nor block sparse. In Fig. 1 we
show some exemplary measurements that do not fit into
established structural models.

Moreover, in some applications there does not exist
a left-to-right order of the measurement vectors yl (for
instance, when the measurements are taken from scat-
tered locations) and also the order of atoms aj may
not be clear. In this case, we want to reconstruct the
solution independent of column permutations in A and
Y. If X is the structural sparse solution of AX = Y, then
X̃ = PYXPA should be the structural sparse solution
of (PAA)X̃ = PYY, where PA and PY are permutation
matrices. This excludes all order-dependent approaches
to define structural sparsity since such definitions are
not invariant under permutations.

A. Contribution
In this work, we introduce a sparsity model that can

capture a wide range of practically relevant structures,

comes with efficient optimization, and allows to learn
the structures in an intuitive way from only the mea-
surements and additional knowledge of the concrete
application. To be more precise, our model is a special
case of group sparsity for multiple measurement recov-
ery problems and encompasses established concepts like
row- and block-sparsity. The novel ingredient is that the
structural support constraints are encoded in a matrix C
which allows efficient processing. We introduce a non-
convex regularizer enforcing the structures encoded in C
and discuss possible relaxations of the regularizer. Based
on theoretical insights into the optimization landscape
of our regularizer, we suggest a projected gradient de-
scent to minimize the related LASSO-type formulation.
Finally, we provide a simple heuristic to determine C
for concrete applications under sole knowledge of the
measurement process and measurements. We validate ef-
ficacy of both the parameter heuristic and the regularizer
in extensive numerical simulations on real data.

B. Related Work

There exist several approaches to solve (2) by
assuming different sparsity models for X. Most of them
adapt methods that were originally designed to solve
(1). In [13] an extension of the algorithms Matching
Pursuit and the FOCal Underdetermined System
Solver (FOCUSS) are presented. Bayesian methods
are considered in [41], [46]. In [33], [32] the authors
introduce greedy pursuits and convex relaxations for
the MMV problem. Theoretical results have been shown,
e.g., in [12]. All these methods enforce row-sparsity
in the reconstructed solution. In [4] two joint sparsity
models (JSM) for compressed sensing are introduced.
JSM-1 considers solutions where all columns can be
written as the sum of a common sparse component that
is equal for each column and another unique sparse
vector. This is equivalent to assuming X = X1 + X2
where X1 is row-sparse and X2 is sparse (without any
correlation between different columns). JSM-2 is a slight
relaxation of row-sparsity and allows small support
changes over the columns. Yet another approach is
presented in [24], [43]: correlated measurements are
assumed to have sparse approximations that are close in
the Euclidean distance. This idea is related to dynamic
compressed sensing [2], [45] where neighboring columns
are assumed to have similar support. In both cases, the
support is allowed to change slowly over different data
vectors. Nevertheless, the above methods share quite
restrictive support assumptions based on geometrical
features and hence cannot reconstruct simple features in
the solution that do not match those strict assumptions.
A more general approach is the so-called group sparsity
model [3], [20] in which a set of groups G is defined
whose elements G ∈ G encode support sets. The matrix
X is called s-group-sparse if supp(X) is a subset of a
union of at most s groups in G. Whereas this model
is able to encode all possible structural constraints on
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X, its generality comes with a price. First, straight-
forward adaption of compressed sensing algorithms
is only possible under knowledge of the set G, cf. [3],
[20] and subsequent literature. Second, even if G is
known, its cardinality might grow exponentially in the
ambient dimension which considerably increases the
computational complexity of established procedures.
Third, if G is unknown, learning algorithms have to
either rely on clustering of entries [38], [42] leading
to block-sparse-like models, or on available training
data (Xi, Yi), for i ∈ [n], from which G can be learned
[26]. The latter work suggests an alternating approach
to learn both signal and structure without initial data;
nevertheless, it does not provide as simple means to
incorporate expert knowledge on concrete applications
as our heuristic for determining the structure encoding
matrix C. Let us finally mention that, for general G,
convex regularizers can only be computed theoretically,
cf. the concept of atomic norms in [11].

Remark 1. In this work we concentrate on understanding
and representing the intrinsic sparsity structure of X for a
fixed measurement process/dictionary A. Other lines of work
discuss how to learn a proper dictionary for X (such that
X becomes sparse in a classical sense) or how to adapt an
existing one by slight perturbation to improve reconstruction
performance [1], [44]. They, however, do not allow to represent
general structural dependencies between active entries of X.
Combining those approaches with our generalized sparsity
model is an interesting topic for future work.

C. Notation and Outline
We denote matrices by bold capital letters, vectors by

bold lowercase letters, and scalars by regular letters.
The only exceptions are vectors that we get by the
vectorization

#»

Z := vec(Z) of matrices Z. The inversion
(reshape) of the vectorization is denoted by vec−1. As
already mentioned in the introduction, the columns of a
matrix Z ∈ Rm×n are denoted by zl for l ∈ [n], where
[n] := {1, . . . , n} is used to abbreviate index sets. The
identity matrix and the matrix of ones are written as
Id and 1, respectively. For the set of non-negative real
numbers we use the notation R+.
We denote the support matrix of Z by Z01, i.e., Z01 ∈
{0, 1}m×n is the matrix with entries |sign(Zj,l)| for j ∈ [m]
and l ∈ [n]. If applied to matrices or vectors, the sign-
function as well as the absolute value | · | act component-
wise.

Besides the standard matrix multiplication we use the
Kronecker product ⊗ defined by A⊗ B := (Aj,lB)j,l ∈
Rmp×nq, for matrices A ∈ Rm×n and B ∈ Rp×q. The
Frobenius norm of a matrix Z is ‖Z‖F, while ‖z‖2
denotes the Euclidian norm of a vector z.

The outline of the paper is as follows. In Section II,
we introduce a general model for structural sparsity
and discuss possible reconstruction approaches of such
structured signals. In particular, we derive a relaxed,

still non-convex functional, whose minimizers provide
good approximations to X, and explore the specific ge-
ometry of the functional. Building upon these insights,
we describe in Section III a projected gradient descent
procedure to efficiently solve the program. Finally, in
Section IV, we empirically validate our model on toy
scenarios and real (seismic/ultrasonic/meteorological)
data.

II. STRUCTURAL SPARSITY

We begin by deriving a general model for structural
sparsity. After discussing its relation to established struc-
tural models like row- or column-sparsity, we provide
a corresponding NP-hard optimization problem to re-
construct structured signals from compressive measure-
ments. To solve the in general intractable problem, we
suggest a non-convex relaxation of particular convex-
concave shape.

A. The Basic Model
In order to develop a notion of structural sparsity

that is capable of describing signals like the ones in Fig.
1, we first have to understand the underlying abstract
idea of row-sparsity and related concepts. A matrix X
is s-row-sparse if it has at most s non-zero rows, i.e.,
if there are up to s matrices Xk with exactly one non-
zero row such that X = X1 + · · · + Xs. We could say
that the matrices Xk describe the elementary structures
of row-sparsity. By changing the elementary structures,
one obviously recovers various established concepts like
sparsity (Xk are matrices with exactly one non-zero
entry) and block-sparsity (Xk are matrices with exactly
one non-zero block). This elementary idea is the corner
stone of group sparsity [3], [20].

Building upon the same intuition, we wish to describe
elementary structures in a practical way that lends itself
to efficient computation. To this end, given two non-zero
entries Xj,l , Xj′ ,l′ of a structured signal matrix X ∈ RN×L,
let C(j,l),(j′ ,l′) ∈ {0, 1} indicate whether the two entries
can belong to a single elementary structure of X. To be
more precise, C(j,l),(j′ ,l′) = 0 if they can belong to the
same structure, i.e., there exists (at least) one elementary
structure Xk whose entries (j, l) and (j′, l′) are non-zero.
If such a structure does not exist, we set C(j,l),(j′ ,l′) = 1.
Then,

∑
j,j′ ,l,l′ :

Xj,l ,Xj′ ,l′ 6=0

C(j,l),(j′ ,l′) = 0 (4)

whenever X itself is an elementary structure. Moreover,
the value of (4) increases the more X differs from an
elementary structure. Let us clarify this by a simple
example: the choice C(j,l),(j′ ,l′) = 0 for j = j′ and 1
otherwise would characterize the basic units of row-
sparsity as (4) is 0 if and only if X has at most one non-
zero row. Using the vectorization of the support matrix
X01 ∈ {0, 1}N×L of X ∈ RN×L we can rewrite (4) as

#»

XT
01C

#»

X01 = 0, (5)
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where C ∈ RNL×NL has entries C(j,l),(j′ ,l′), for j, j′ ∈ [N]
and l, l′ ∈ [L]. We may now define the set of C-structured
s-sparse signals

Ss
C =

{
Z ∈ RN×L :

Z = ∑s
k=1 Zk,

(
#»

Zk)
T
01C(

#»

Zk)01 = 0, ∀k ∈ [s]

}
.

(6)

Remark 2. The model defined in (6) is quite general and
covers several well-known special cases (in addition to row-
sparsity mentioned above). Choosing C = 1− Id, the set S s

C
describes the set of s-sparse vectors. Choosing C such that

C(j,l)(j′ ,l′) =

{
0 |j− j′| ≤ a and |l − l′| ≤ b,
1 else,

we recover the set of block-sparse matrices with blocks of size
a× b (cf. [3]).
Note that the diagonal entries of C are 0 independent of the
concrete model as C shall only characterize relations between
different entries of X.

Building upon (6) we can define the C-structured `0-
norm

‖Z‖C,0 = min{s ≥ 0 : Z ∈ Ss
C}, (7)

which is actually not a norm but abuse of notation.
Minimizing the `C,0-norm constrained to correct mea-
surements, i.e.,

min
Z∈RN×L

‖Z‖C,0, subject to AZ = Y, (8)

then extends `0-minimization to the C-structured s-
sparse case. The program in (8) inherits NP-hardness
from classical sparse recovery such that it is undesirable
to solve (8) directly. In fact, even computing (7) is NP-
hard in general. Note, however, that (5) itself might
suffice as regularizer since its magnitude increases if
the number of elementary structures in X increases. This
handwavy argument is substantiated by the observation
that, under mild assumptions on the elementary struc-
tures encoded in C, there is an equivalence relation be-
tween (5) and (7) as stated in the following proposition.

Proposition 3. Assume that, for scol ∈ [N], the sparsity
model characterized by C satisfies

‖X‖C,0 = 1 =⇒ ‖xl‖0 ≤ scol, ∀l ∈ [L]. (9)

Then, for X 6= 0, we have

1
2
‖X‖2

C,0 ≤
#»

XT
01C

#»

X01 + 1 ≤ s2
colL

2‖X‖2
C,0.

Proof: For ‖X‖C,0 = 1, one has that
#»

XT
01C

#»

X01 = 0 by
(6). Let us now assume ‖X‖C,0 = s ≥ 2. Then we can
write X01 = ∑s

k=1 Xk where each Xk contains only ones
and zeros. We hence get

#»

XT
01C

#»

X01 =

(
s

∑
k=1

#»

Xk

)
C

(
s

∑
k=1

#»

Xk

)
= ∑

j 6=k

# »

Xk
TC

#»

Xj,

since
# »

Xk
TC

# »

Xk = 0, for all k ∈ [s]. By assumption, the
matrices Xk have at most scolL non-zero entries such that

1 ≤ # »

Xk
TC

#»

Xj ≤ s2
colL

2, (10)

where the lower bound is a consequence of the minimal
decomposition required in (7). We conclude that

s(s− 1) ≤ ∑
j 6=k

# »

Xk
TC

#»

Xj ≤ s2
colL

2s(s− 1),

which yields the claim.

Remark 4. Assumption (9) requires the elementary struc-
tures described by C to have scol-sparse columns which holds
for scol = 1 when working with generalizations of row-
sparsity. This can be easily seen in Fig. 1. Let us emphasize
that the construction of C presented in Appendix A satisfies
(9) if the appearing parameters α and β are suitably chosen.

If we have information on the structure of X in form of
C and the measurements A are injective when restricted
to Ss

C, Proposition 3 suggests to approximate X from Y
by solving

min
Z∈RN×L

#»

ZT
01C

#»

Z01, subject to AZ = Y. (11)

This raises two questions: how can one obtain a suitable
structure matrix C in general and how can the NP-hard
optimization in (11) be solved? We refer the interested
reader to Appendix A for a simple heuristic to construct
C from A and Y, and now address the second question.

B. Ways of Relaxation
The program in (11) poses two difficulties. First, the

matrix C is not necessarily positive semi-definite and,
second, the support vector

#»

Z01 depends in a non-
continuous way on Z. To circumvent the latter, we define
the regularizer

RC : RN×L → R, RC(Z) =
#»

ZTC
#»

Z ,

and rewrite (11) as the binary program

min
Z̃∈{0,1}N×L ,
sign(|Z|)=Z̃,

AZ=Y

RC(Z̃), (12)

where sign as well as | · | act component-wise on matri-
ces. As (12) illustrates, the non-continuous/non-convex
dependence of

#»

Z01 on Z lies in the relation between Z
and the auxiliary variable Z̃. Replacing the sign-function
by identity (interpreting identity as a convex relaxation
of sign) leads to

min
Z∈RN×L

RC(|Z|), subject to AZ = Y. (13)

Since (13) does not incorporate noise on the measure-
ments, we replace it with the more robust formulation

min
Z∈RN×L

‖AZ− Y‖2
F + λRC(|Z|), (14)

where λ > 0 is a regularization parameter. It is well
known from related programs that solutions of (14)
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solve a robust version of (13) while the magnitude of λ
balances robustness and accuracy of the reconstruction.
We detail this in the following lemma. The proof is
similar to [17, Proposition 3.2] and thus omitted.

Lemma 5. If Xλ minimizes (14) with parameter λ > 0, then
Xλ minimizes

min
Z∈RN×L

RC(|Z|), subject to ‖AZ− Y‖F ≤ ηλ,

where ηλ = ‖AXλ − Y‖F.

Although (14) is a non-convex problem, the regularizer
RC exhibits some beneficial geometrical properties.

Proposition 6. For any X, D ∈ RN×L the following holds.
Let S = sign(X) ∈ RN×L and define RN×L

S as the orthant
of RN×L in which X lies. Then,

f :
{

t ∈ R : X + tD ∈ RN×L
S

}
→ R,

f (t) = RC(|X + tD|)
(15)

is a convex or concave function. In particular, if D ∈ RN×L
S

or D ∈ −RN×L
S , then the function in (15) is convex.

Proof: Recall that all entries of C are non-negative
and that C is symmetric by definition. Obviously,

g(t) = RC(X + tD) = t2 #»

DTC
#»

D + 2t
#»

XTC
#»

D +
#»

XTC
#»

X

is a quadratic functional and thus either convex or
concave. If D ∈ ±RN×L

+ , the functional g is convex as
#»

DTC
#»

D ≥ 0. By restricting f such that X + t
#»

D ∈ RN×L
S ,

we get that

f (t) = RC(S� (X + tD))

= t2 #»

DTS̃TCS̃
#»

D + 2t
#»

XTS̃TCS̃
#»

D +
#»

XTS̃TCS̃
#»

X ,

where � denotes the Hadamard product and S̃ ∈
RNL×NL the diagonal matrix with

#»

S on its diagonal.
Obviously, the restriction of f equals g where C is
replaced by S̃CS̃ which gives the first claim. The second
claim follows since S̃

#»

D ∈ ±RNL
+ , for D ∈ ±RN×L

S .
Proposition 6 states that if restricted to single orthants,
RC(|·|) behaves well along rays. In particular, the func-
tion RC(|·|) is convex along all rays passing through the
origin.

Corollary 7. For any D ∈ RN×L, the function

t 7→ RC(|tD|)

is convex.

An important consequence of Proposition 6 is that
if one had oracle knowledge on the orthant of X, the
program in (14) could be restricted accordingly and
would become better conditioned.
The naive approach thus would be to pick any initializa-
tion sharing the same sign with X and then restricting
(14) to the corresponding orthant. Unfortunately, the

possibly most common initialization, the back-projection
of Y by the pseudo-inverse A† of A

X0 = A†Y = argmin
Z∈RN×L

‖Z‖F, subject to AZ = Y, (16)

in general does not have this property as the following
theorem shows1.

Theorem 8. For any (at least 2-sparse) vector x0 ∈ RN (here
L = 1), there exists A ∈ RN×N and y ∈ RN such that x0
fulfills (16) and there exists a 2-sparse vector xsp which solves
the linear system, i.e., Axsp = y, but lies in another orthant.

Proof: Without loss of generality let x0 ≥ 0 (entry-
wise) and assume that its two first entries are non-zero.
Define xsp = (−a, b, 0, 0, . . . ) with a, b > 0 and ϑ = x0 −
xsp. Choose a, b > 0 such that

0 = 〈ϑ, x0〉 = ‖x0‖2
2 + a(x0)1 − b(x0)2,

which is equivalent to

b =
‖x0‖2

2 + a(x0)1

(x0)2
. (17)

Now, let A ∈ RN×N be any matrix with span(ϑ) =
ker(A) and define y = Ax0. Then x0 is perpendicular
to the kernel and thus the minimum norm solution of
(16). Furthermore, Axsp = y but xsp lies in a different
orthant than x0.

Instead of searching for suitable alternative initializa-
tion procedures, we propose to modify the optimiza-
tion problem. Indeed, we can embed (2) into higher
dimensional spaces and work with the augmented linear
system

A±Z± = Y (18)

where A± = (A,−A) ∈ Rm×2N and Z± ∈ R2N×L.
Obviously, the original solution X solves (18) by defining

X± =

(
X
0

)
. (19)

More importantly, if we define X+ ∈ RN×L
+ and X− ∈

RN×L
+ as positive and negative part of X (containing only

the positive/negative entries of X in absolute value and
setting the rest to zero such that X = X+−X−), we have
that the matrix

X±pos =

(
X+

X−

)
solves (18), shares the structural complexity of X, and
lies within the positive orthant. To summarize the last
lines, increasing the dimension of the linear system only
by a factor of two, we can guarantee that a structured
solution (from which the original X is directly recovered)
may be found by applying an appropriate solver to (14)
restricted to the positive orthant. From now on, we hence

1Although the initialization in (16) does not always provide the
necessary orthant information, we mention that it often succeeds in
numerical experiments.
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assume without loss of generality that X itself lies within
the positive orthant and consider the restricted program

min
Z∈RN×L

+

‖AZ− Y‖2
F + λRC(Z). (20)

III. OPTIMIZATION VIA GRADIENT DESCENT

In order to approximate solutions to (20) we use
gradient descent. For F(Z) := ‖AZ− Y‖2

F + λRC(Z) the
gradient is given by

∇F(Z) = 2AT(AZ− Y) + 2λ vec−1[C
#»

Z ],

where vec−1[·] : RNL → RN×L inverts vectorization. To
prevent gradient descent from leaving RN×L

+ , we replace
the gradient by a projected version

[∇̃F(Z)]i,j :=

{
0 if [∇F(Z)]i,j > 0, Zi,j = 0,
[∇F(Z)]i,j else.

(21)

Note that ∇̃F(Z) still points into a descent direction.
To compute a suitable step-size, we use the particular
geometry of RC. Let us define the descent ray function

fZ(t) = F(Z− t∇̃F(Z)), fZ : R→ R,

for all Z ∈ RN×L. Note that fZ can be written as

fZ(t) =
(
(
∥∥A∇̃F(Z)

∥∥2
F + λvec−1

[ #             »

∇̃F(Z)TC
#             »

∇̃F(Z)
])

t2

+
(

2
〈
A∇̃F(Z), AZ− Y

〉
−λ

#»

ZTC
#             »

∇̃F(Z)− λ
#             »

∇̃F(Z)TC
#»

Z
)

t + c

= at2 + bt + c,

where c ∈ R collects all terms not depending on t. We
can now compute

σ̃1 = inf
Zi,j>0,

[∇̃F(Z)]i,j>0

Zi,j∣∣[∇̃F(Z)]i,j
∣∣ (22)

as the maximal allowed step-size to stay within RN×L
+ .

Moreover, if a > 0, the function fZ is strictly convex and
the optimal (unconstrained) step-size is given by

σ̃2 = − b
2a

. (23)

If a ≤ 0, we set σ̃2 = 1. We thus use

σ = min{σ̃1, σ̃2, 1} (24)

as step-size for our algorithm. Note that the choice of 1
as an upper bound for σ̃2 and σ̃2 is generic. Alternative
choices would be 1

‖∇̃F(Z)‖ or ∞.

Remark 9. The structure encoding matrix C is a high-
dimensional object. For an efficient implementation of Al-
gorithm 1 it is crucial to construct C such that it allows
fast vector-matrix multiplication. The heuristic we propose in
Appendix A fulfills this requirement, see Remark 13.
The recent work [29] (which concentrates on X being a natural

Algorithm 1 : Structural Sparse Recovery (SSR)

Given: F(Z) = ‖AZ− Y‖2
F + λRC(Z)

1: X0 ← 0
2: while stop condition is not satisfied do
3: σk ← max{σ̃1, σ̃2, 1} . see (22) - (24)
4: Xk+1 ← Xk + σk∇̃F(Xk) . see (21)
5: end while

return Xrec

image) alternatively suggests to learn the projection operator
onto the set of natural images via deep learning techniques
and then to apply ADMM [10] to reconstruct X from lin-
ear measurements. In our setting this would correspond to
learning the projection onto Ss

C for a certain type of ground-
truths, e.g., seismic data, and then applying ADMM. Note,
however, that compared to ours this approach has two major
drawbacks. First, training a deep network requires massive
amounts of data that are not always available. Second, one
cannot interpret the structure of the sparsity in X from a
learned network whereas this is possible to some extent when
using C, cf. Figure 8. It would be interesting to compare both
approaches numerically in future work.

A. Convergence of gradient descent

As the objective functional is non-convex, the question
arises under which assumptions Algorithm 1 can be ex-
pected to converge. The following observation provides
a sufficient condition for this to happen. We omit the
proof which is straight-forward (recall that C has only
non-negative entries).

Lemma 10. The objective function in (33) is bounded from
below on RN×L

+ . If

{Z ∈ RN×L
+ : RC(Z) = 0} ∩ ker(A) = {0} , (25)

then it is coercive as well. Consequently, minimizers exist and
all minimizers are contained in a finite ball around the origin.

Remark 11. The assumption in (25) is natural since it
requires A to distinguish elementary structures from 0. When
considering elementary structures generalizing row-sparsity,
i.e., each column of the structured matrix contains at most one
non-zero entry, the condition is fulfilled if A contains no zero
columns. In case of more complex elementary structures with
up to s-elements per columns in the structured matrix, (25)
is implied by A having a null-space property of order s. In
the context of solving underdetermined linear systems, null-
space properties are a well-known concept from the compressed
sensing literature [17].

IV. NUMERICAL EXPERIMENTS

Finally, let us demonstrate the power of the proposed
Structural Sparse Recovery (SSR), see Algorithm 1. In
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(a) (b) (c)

Figure 2. Three examples of structures that may appear in applications:
diagonals (a), oscillating lines (b), and partial row-sparsity (c).

(a) (b) (c)

Figure 3. Simulated data (oscillating lines) with low noise (a) (PSNR
24.92), medium noise (b) (PSNR 12.46), and high noise (c) (PSNR 1.97).

Sections IV-A and IV-B, we perform basic tests on ar-
tificial data to validate our theoretical considerations.
In Section IV-C, we present how SSR performs when
applied to real-world data.

To quantify noise robustness, we use the notation of
peak signal to noise ratio (PSNR). The reconstructed
signal is denoted by Xrec.

A. Parameter heuristic test

Let us first empirically validate whether the heuristic
for constructing C as proposed in Appendix A yields
practical results and whether the computed estimates
for the therein used parameters α and β are meaningful.
We choose three different X ∈ R32×32, see Fig. 2, each
of which contains two elementary structures (diagonal,
slightly oscillating rows, partial rows), and a convolu-
tional kernel A ∈ R32×32 modeling the measurement
process. We add three different levels of Gaussian noise
– PSNR of 24.92 (low noise), 12.46 (moderate noise),
and 1.97 (high noise) – to obtain corresponding mea-
surements Y ∈ R32×32, see Fig. 3. When constructing C,
for fixed A and Y there are only finitely many thresholds
(α, β) of interest, cf. (26). We can thus reconstruct X from
A and Y for all possible choices of α and β to obtain a
benchmark for the heuristic. Note that we optimize in
each reconstruction the additional parameters λ1, λ2 ∈
[0, 1], cf. (33), over a fine grid.

Fig. 4 depicts the `1-error after scaling Xrec to have
the same `1-norm as X. This re-scaling balances the
norm shrinkage caused by the penalty-term to allow
for more meaningful comparisons. For the particularly
chosen matrix A, a choice of α = 0.7313 considers two
atoms that are shifted by at most one pixel as similar
while for α = 0.99 each atom is only similar to itself, i.e.,

(a) diagonal (b) oscillating (c) row-sparse

Figure 4. Reconstruction error for different parameters α (y-axis), β (x-
axis) and different noise levels low (top row), medium (middle row),
and high (bottom row).

we enforce row-sparsity. These thresholds can clearly be
seen in Fig. 4 (in particular, when comparing a) and b)
with c) in the low- and medium-noise cases). With in-
creasing noise level it becomes more important to choose
α sufficiently large in order to enforce structural sparsity.
As the heuristic in Appendix A suggests, a choice of
β ≤ α yields optimal reconstruction results. As the noise
level increases, the value of β has to be diminished such
that more measurements are considered to be similar.
This is as expected since more information is needed to
reconstruct the signal in this case. Note that, for small to
medium noise, the reconstruction performance is quite
stable with respect to perturbations of the parameters α
and β.

The diagonal case is most problematic in this regard
(compare the color bars for the high-noise case) and
demonstrates the limits of multiple measurements under
this structure model. The strength of MMV is, to consider
information of several columns at once to reconstruct
the support. In the extreme case of row-sparsity, all
columns can be taken into account at once. For localized
structures such as Fig. 2 a) where the support changes
fast the advantage of MMV is limited as only a small
neighborhood carries information about the actual sup-
port of a column. Considering a larger neighborhood
(i.e., decreasing β in our model) can help to improve
the results. However, due to the fast changes of the
support, we also need to consider more atoms as similar
in the same step (i.e., decreasing α) which diminishes
the gained information. Thus, if the noise level is too
high, the model is not able to gain enough information
for a suitable reconstruction. One way to overcome this
problem might be to design a matrix C that is highly
adapted to allow only diagonal structures.
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Structure max column row-sparsity structural
Fig. 2 sparsity max

k
‖xk‖0 ‖X‖row−0 sparsity ‖X‖C,0

a) 2 32 2
b) 2 6 2
c) 1 2 2

Table I
SPARSITY OF THE STRUCTURES SHOWN IN FIG. 2 UNDER DIFFERENT

NORMS.

B. Comparison

Let us now benchmark SSR against five state-of-the-
art methods for the detection of sparsity and row-
sparsity: Iterative Soft-Thresholding Algorithm (ISTA)
[14], Group-Iterative Soft-Thresholding Algorithm (G-
ISTA) [39], Orthogonal Matching Pursuit (OMP) and
Rank Aware Order Recursive Matching Pursuit (RA-
ORMP) [33], [15], and Sparse Bayesian Learning for row-
sparsity (SBL) [35] (where we use the implementation of
Z. Zhang [40]). ISTA is a technique for sparse recovery
and G-ISTA its generalization to group sparse recovery
of signals from underdetermined linear systems. RA-
ORMP is an extension of the OMP algorithm for simul-
taneous sparse approximation. Last but not least, Sparse
Bayesian Learning is a probabilistic regression method
that has been developed in the context of machine
learning.

We use for X the same structure types as considered
in the previous section, see Fig. 2. Note that the different
methods intend to minimize different sparsity measures.
While OMP and ISTA minimize the individual sparsity
of each column, G-ISTA, RA-ORMP and SBL minimize
the row-sparsity. Hence, for different X some algorithms
might be more suitable than others. Table I shows that
Fig. 2 a) is clearly not row-sparse and thus favors our
approach as well as the single measurement algorithms.
In Fig. 2 b) row sparsity and structural sparsity are of
comparable order. Finally, Fig. 2 c) has the same row and
structural sparsity such that the comparison is not biased
towards one single MMV method. When applying the
different reconstruction algorithms we assume that the
sparsity level is known, i.e., the iterative algorithms per-
form the exact amount of iterations needed. Moreover,
the exact rank of X was given to RA-ORMP. Further
hyper-parameters have been optimized over a grid to
ensure best possible performance of all methods in the
direct comparison.

To create our test data we use four different measure-
ment matrices A, two convolution matrices A ∈ R32×32

with a Gauss kernel (similar to the previous section)
as well as two random Gaussian matrices A ∈ R10×32.
This is a typical case of undersampling as considered
in compressed sensing. In order to compare the results
we re-scale the reconstruction Xrec as described above.
In Fig. 5 the average `1-error of 300 runs is plotted for
11 different noise levels (PSNR of 2 to 25) where the
range of the y-axis is restricted by the `1-norm of the
ground-truth. It is clearly visible that the SSR algorithm
outperforms all competitors, especially in the case of

(a) diagonals (b) oscillating lines (c) row-sparse

Figure 5. Mean `1-error (scaled) vs. different noise levels for the
different structures.

Figure 6. Absolute value of reconstructions for different algorithms on
row-sparse structures with medium noise level (PSNR 12.46).

oscillating lines. This suggests that it is more robust
to row-sparsity defects. A reconstruction example for
each algorithm on the row-sparse structure is depicted in
Fig. 6. We display the reconstructions in absolute value
since small negative entries would otherwise change the
colormap where 0 is supposed to be black, and thus
make a comparison with the original more difficult.

C. Applications
Finally, we apply SSR to real-world data to show its

capability of analyzing mixtures of different types of
complex structures.

1) Non-destructive testing: The first example comes
from the manufacturing industry in the field of non-
destructive testing. Here, one tries to detect material
defects and other anomalies from ultrasonic images of
an object. In Fig. 7 ultrasonic images from scanning
the weld seam of a steel pipe are depicted where the
different structures result from the lateral signal and the
back wall echo (horizontal lines) and the anomalies. The
two images show different types of anomalies in the
weld: in Fig. 7 (a) we presumably see pores, whereas
Fig. 7 (b) shows a lack of fusion at the end of the pipe,
where the last part of the weld seam has been ground.
For representation of a received signal, one supposes
that it can be obtained as a linear combination of time-
shifted, energy-attenuated versions of the reconstructed
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(a) (b)

Figure 7. Original ultrasonic non-destructive testing measurements of
pores (a) and lack of fusion (b).

(a) (b) (c)

Figure 8. Impulse functions (a), auto-correlation and the parameter α
(dashed line, separates the fourth and fifth entry marked in black) (b)
exemplary for NDT 1 in (a), and matrix Cβ (β = 0.75) for the data in
Fig. IV-C1.

pulse function (see Fig. 8 (a)), where each shift is caused
by an isolated flaw scattering the transmitted pulse [5].
This linear combination is described by the measurement
matrix A, a convolution matrix.

We expect a sparse reconstruction Xrec as we assume
the material to have only few anomalies. Moreover, Xrec
exhibits structure since adjacent measurements will give
similar results. In particular, any anomaly will be seen
in several adjacent measurements.

For the reconstruction of X we use the SSR model
(33) with λ1 = 10−4 and λ2 = 106. (We choose here
λ1 = O(L−2) following the intuition in Remark 14.
Since the data is rather noisy we set λ2 = O(L2)
instead of λ2 = O(1) to prevent SSR from detecting
multiple similar atoms per column.) The parameter α
can be estimated using the auto-correlation of the wave
impulse. Given the ultrasonic speed in the material,
the time sampling of the signal, and the measurement
setup, we can derive by how many pixels a signal
from the same source can shift in between different
measurements. For the examples given here a maximum
shift of four respectively two pixels indicates a signal
coming from the same source. Now, we choose α such
that it separates the fourth and fifth respectively the
second and third entry of the auto-correlation, cf. Fig.
8 (b). For the example with the pores we set α = 0.8 and
for the example with the lack of fusion α = 0.78. For the
construction of C2 we choose a smaller value, namely
α/5, to enforce a gap between different structures. This
way, the reconstruction results are further improved. As
the noise level is low, we set β = 0.75 in both examples.
We can see that for this choice the data structure already

(a) (b)

Figure 9. Reconstructed structures (absolute value) in log-scale.

becomes evident in Cβ, e.g., the blocks appearing in
Fig. 8 (c) divide the measurements (columns in Fig. 8
(c)) in three qualitatively different segments: the first
segment contains two bands of which the lower one is
diffuse, the second segment contains two well-separated
bands, and the third contains the same two bands plus
an additional artifact. The example thus perfectly fits
into the structural sparsity framework of the paper. The
reconstruction results are shown in Fig. 9. It can be seen
that the method is able to detect both types of defects.

2) Seismic exploration: The second example is from
the field of seismic exploration where the goal is to
reconstruct soil layers in order to find natural resources
such as gas and oil deposits or minerals. For this pur-
pose, a wave is generated in a field experiment (e.g. by
an explosion) and sensors that are arranged on a grid
around the source register incoming seismic waves over
time. The measured data form a 3D tensor of which we
are looking at a slice (measured data along a straight
line). For this reason, the example is very similar to the
previous one and the reconstruction can be determined
again with the same approach provided that the wave
function is known (analogous to the pulse function in
non-destructive testing). In [6], [7] it is described how to
calculate a wave model as accurate as possible from the
measurement data. This wave is then used again to set
up the measurement matrix A.

In Fig. 10 one can see slices from two different exper-
iments with very different structures. While the seismic
waves in the left image are all quite similar, the right
image contains a mixture of longer and shorter waves.
This indicates that for the right image the combination
of a shorter and a longer wave impulse may be useful.
A short wave impulse would reconstruct the diagonal
structures in the middle and bottom left of the image
well, but would not detect all horizontal structures in the
upper part. This could only be achieved by using many
short waves contradicting the assumption of sparsity. If
we used only one longer wave instead, we would not
capture the diagonal structures.

The parameters can be estimated as in the previous
section. To compensate noise and model approximation
we choose α · 10−3 when constructing C2, i.e., no inter-
ference between structures is admitted. The values of the
parameters are depicted in Table II. When choosing λ1



10

(a) (b) (c) (d) long and short wave

Figure 10. Original seismic measurements (a,b) and the reconstructed structures (absolute value) in log-scale (c,d). Note that we show the
reconstruction for the long and short wave impulse separately in (d).

α β λ1 λ2
Example 1 0.5 0.4 10−6 106

Example 2 0.7 0.6 1 1.5 ∗ 106

Table II
PARAMETERS FOR SEISMIC EXPLORATION.

and λ2 we apply in Example 1 the same reasoning as in
the non-destructive testing experiment; in Example 2, we
increase both parameters to prevent long seismic waves
from being replaced by multiple short ones.

The results are given in Fig. 10. Again, all kinds
of structures have been reconstructed. The usage of
two wave functions pays off as the row-like structures
(Fig. 10 (d), left) could be reconstructed separately from
the diagonal-like structures.

3) Meteorology: As a third variation, we analyze the
hourly precipitation in Germany from 25th to 28th of
November 2008 (96 hours) using data of 932 weather
stations shown in Fig. 11 (a). Note that stations that were
moved during this time or had too many missing values
have not been taken into account. From these data we
want to extract rain areas that are connected in time
and space over as long a period as possible. We assume
that the wind speed is constantly less than 75 km/h.
Translated into our setting, this means that a connected
rain area is a structure and X ∈ R465×932 divides the total
rain into disjoint, connected rain areas. The atoms of the
system matrix A will represent rain showers of different
lengths (two to six hours) observed at one station. Hence,
A ∈ {0, 1}96×465 is the block band matrix

A = [A2, A3, . . . , A6] and (Ak)j,l =

{
1 1 ≤ j− l < k
0 else

.

Instead of correlation between the atoms we use the
starting time difference of these showers and instead
of correlation between measurements we use the dis-
tance between the weather stations. This way, C ∈
{0, 1}932·465×932·465 encodes the geographical informa-
tion. More precisely, C(j,l),(j′ ,l′) = 0 only if the distance
between the stations is smaller than 75km/h times the
starting time difference. Note that there is more mete-
orological data, such as wind direction or precise wind
speeds of the according days available that could be used
to construct a refined C such as wind direction or precise
wind speeds of the according days. However, for this
example we stick to the simpler model.

The measurement data shows the amount of precipita-
tion in mm per hour. We simplify this to a binary matrix
by setting Y ∈ {0, 1}96×932 where 0 indicates no rain and
1 indicates rain at a certain station at a certain time. This
perfectly suits our system matrix A and guarantees that
the linear system has a solution.

Despite the tremendous size of this system of equa-
tions it can be solved efficiently due to the fact that C
is binary and can be factorized as a Kronecker prod-
uct. Thus, the matrix multiplications can be reduced
to summations. Moreover, we do not have to take the
detour described in (18) as all involved matrices are non
negative by definition.

In our computations we set λ1 = 200 to just get one
rain area per time interval and λ2 = 0 since we do not
enforce the structures to be sparse.

In Fig. 11 the two longest connected rain areas during
the recorded period are depicted. In Fig. 11 (d) we see
a rain area moving from north to south-east starting at
about 34 hours and ending at 51 and in Fig. 11 (e) we
see a rain area at the boarder to the Netherlands moving
from south to north and starting at 56 hours and ending
at about 75.

V. CONCLUSION

We presented in this paper a novel and user friendly
model for handling structural sparsity in jointly sparse
reconstruction tasks like MMV. We showed that our
model is capable of representing various sparsity pat-
terns of practical relevance. It, furthermore, lends itself
to efficient reconstruction via projected gradient descent.
In practice, the model parameters that determine the
structures of interest can be heuristically learned from
application specific environmental parameters, which
are usually known to the practitioner. Comprehensive
empirical studies confirmed efficacy of our method.
There remain several intriguing questions to be ad-
dressed in future work. First, we restricted the present
work to introducing resp. motivating the model and
empirically demonstrating its applicability. It would be
desirable to derive supportive theoretical guarantees,
both for the parameter heuristic in Appendix A and the
(non-convex) projected gradient descent.
Second, it might be beneficial to modify the construction
of C to allow entries with values in (0, 1), e.g., by using
a soft-thresholding procedure. This could be used to
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(a) (b) (c) (d) (e)

Figure 11. Overall precipitation in Germany over 96 hours in November 2008 (b) (log scale) measured at locations (a). Exemplary data of two
weather stations is given in (c). Tracked rain showers with longest duration (d,e).

enlargen the scope of representable structures, although
it will presumably complicate parameter tuning.
Finally, it would be worthwhile to examine alternative
constructions of C and compare their performance to our
current heuristic in Appendix A.

APPENDIX

A. Structural Sparsity Matrices
There is no unique admissible way to construct a

structural matrix C for (6). For our purpose a simple
heuristic approach suffices that constructs C from A
and Y. As our numerical examples in Section IV-C
illustrate, the approach lends itself to further refinement
depending on the concrete application. It is based on
the idea that if two measurement vectors yl = Axl and
yl′ = Axl′ are similar, then the corresponding atoms
activated by xl and xl′ in A, i.e.,

{
aj : j ∈ supp(xl)

}
and{

aj : j ∈ supp(xl′)
}

, should be similar as well.

Definition 12. Let 0 < α, β < 1 be two predefined threshold
parameters. We say that two atoms aj and aj′ are similar if

Corr(aj, aj′) =
|〈aj, aj′〉|
‖aj‖2‖aj′‖2

> α.

Two measurements yl and yl′ are similar if

Corr(yl , yl′) =
|〈yl , yl′〉|
‖yl‖2 ‖yl′‖2

> β.

Let Ā and Ȳ denote copies of A and Y with re-
normalized columns, i.e., ĀTĀ and ȲTȲ contain the pair-
wise correlation of all atoms and measurement vectors.
We define

Cβ ∈ {0, 1}L×L, (Cβ)j,k =

{
1 (ȲTȲ)j,k > β

0 (ȲTȲ)j,k ≤ β
, (26)

and Cα ∈ RN×N accordingly where Ȳ is replaced with
Ā. Consequently, Cβ is 1 for each pair of similar mea-
surement vectors and 0 otherwise. A naive design for C
is then

Csimple = Cβ ⊗ (1−Cα) ∈ RNL×NL. (27)

Now C(j,l),(j′ ,l′) is 1 whenever the measurement vectors
yl and yl′ are similar but the chosen atoms aj and aj′ are
not.

Constructing C as in (27), (5) penalizes whenever two
measurement vectors yl and yl′ are similar but the atoms
of A activated by xl and xl′ are not. It does not penalize
activation of similar atoms aj and aj′ by a single xl , i.e.,
in the same measurement vector yl . Numerical exper-
iments show that blurring effects in the reconstruction
are a consequence. To overcome the problem, we instead
construct C as a composition of L2 blocks of size N× N
in the following way:

C = + +=

= C1 + C2 + C3.

Here, C1 is the penalization for pairwise different mea-
surement vectors, C2 compares each column of the so-
lution with itself and C3 compares each element with
itself. Since the comparison of each element with itself
does not give any structural information, we set C3 = 0.
Pairwise different measurements can be treated as in the
example above and thus

C1 = (Cβ − Id)⊗ (1−Cα), (28)

where using (Cβ − Id) instead of Cβ sets C1 to zero on
the diagonal blocks. For C2 we use the contrary heuristic:
whenever two elements in the same column xl of X
are non-zero, the corresponding activated atoms in A
should not be similar as otherwise one of them would
be redundant. We set

C2 = Id⊗ (Cα − Id), (29)

where subtracting the identity sets C2 to zero on the
main diagonal. This construction of C exhibits sound
performance in numerical experiments, see Section IV.

Remark 13. The Kronecker form of the above matrices allows
fast matrix-vector multiplication. This becomes important
later on as C is of high dimension and multiplication by C is
a fundamental operation for our numerical simulations.

Choosing α and β: When using the above construction
method, we need to choose suitable parameters α and
β controlling the shape of C. As in Proposition 3, we
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assume here that each column of X contains at most
one non-zero entry per active elementary structure, cf.
Remark 4.
A meaningful parameter α can be directly deduced from
prior knowledge on the concrete application. See Section
IV for examples on how these priors can look like and
how α is derived from them. If α is given, β can be
estimated from Y and A. To this end, let y, y′ be two
columns of Y and x, x′ the corresponding columns of
X, i.e., y = Ax and y′ = Ax′. Recall from (27) that at
this point we are interested in determining β such that,
by Definition 12, y and y′ are similar only if x and x′

activate similar atoms. For simplicity, we assume here
that A has unit norm columns; the argument can be
easily adapted to the general case. Assume s elementary
structures are active in X where we do not need to
know s. We introduce copies ξ, ξ′ ∈ Rs of x, x′ which
are reduced to the support of x, x′ and re-ordered such
that ξk and ξ ′k belong to the same elementary structure,
for all k ∈ [s]. If there is no noise on the measurements,
we can write y and y′ as

y =
s

∑
k=1

ξkajk and y′ =
s

∑
k=1

ξ ′kaj′k
,

where ajk , aj′k
are the atoms activated by the k-th structure

in x resp. x′. Hence, the inner product of y and y′ is

〈y, y′〉 =
s

∑
k=1

ξkξ ′k〈ajk , aj′k
〉+

s

∑
k,k′=1
k 6=k′

ξkξ ′k′〈ajk , aj′
k′
〉. (30)

The first term represents the correlation of each of the
s structures with itself, while the second represents
interference between different structures. Note that the
first sum only contains inner products of atoms ajk and
aj′k

activated by the same structure. Since we consider
here the situation that activated atoms are similar, by
Definition 12, the absolute value of these inner products
is limited from below by α. If we assume that
(A) there are no sudden phase shifts in the elementary

structures of our ground-truth X,
i.e., sign(ξk) = sign(ξ ′k), for all k ∈ [s],

then all terms in the first sum are positive. If, in addi-
tion2,
(B) the interference between elementary structures is

bounded by 0 < ε� α〈ξ, ξ′〉,
we know from (30) that

〈y, y′〉 ≥ α〈ξ, ξ′〉 − ε and ‖y‖2 ≤ ‖ξ‖2
2 + ε. (31)

For the correlation of the two measurements we thus
obtain

Corr(y, y′) =
〈y, y′〉
‖y‖2‖y′‖2

≥ α〈ξ, ξ′〉 − ε√
‖ξ‖2

2 + ε
√
‖ξ′‖2

2 + ε

≈ α Corr(ξ, ξ′),

(32)

2Both assumptions, (A) and (B), are mild and often hold in applica-
tions. Assumption (B), e.g., holds whenever the elementary structures
are separated or destructive interference is occurring.

such that we can choose β = αCorr(ξ, ξ′). Note that
Corr(ξ, ξ′) is close to 1 whenever the entries of X
do hardly vary along elementary structures, and it is
small for highly fluctuating entries along elementary
structures. In applications the (expected) correlation
Corr(ξ, ξ′) should be given approximately. Let us men-
tion that the above assumptions are not required to hold
for arbitrary y, y′ and elementary structures. To have
a reliable heuristic parameter choice, it suffices if they
apply to the majority of the measurements.

In the presence of noise, we decrease the estimate (32)
relative to the noise level. By this the measurements are
still considered similar even if they are corrupted by
noise. The simulations in Section IV show efficacy of the
heuristic.

Let us finally mention that while testing in numerical
experiments the performance of (20) with C as con-
structed above, it turned out that depending on the
concrete problem setting the tuning of λ is challenging.
The main problem appears to be the different contribu-
tions of C1 and C2 in (28) and (29) to the regularizing
function RC. While C1 compares pairwise different mea-
surements and enforces global structure, C2 compares
each column of the solution with itself enforcing spar-
sity along the columns. Consequently, it is beneficial to
additionally balance between C1 and C2 by introducing
parameters λ1, λ2 > 0 and defining Cλ = λ1C1 + λ2C2,
for λ = (λ1, λ2). Then, the program (20) becomes

min
Z∈RN×L

+

‖AZ− Y‖2
F + λ1RC1(Z) + λ2RC2(Z). (33)

The preceding results — Lemma 5, Propostion 6, and
Corollary 7 — extend in a straight-forward way to
(33) by using linearity of R in C, i.e., λ1RC1(Z) +
λ2RC2(Z) = RCλ

(Z).

Remark 14. Let us briefly comment on why λ1 and λ2 may
notably differ in applications. Recall the proof of Proposition 3.
In particular, the bounds in inequality (10) are dominated by
the influence of C1. Considering both matrix parts separately,
one could refine the bound to be

1 ≤ # »

Xk
TC1

#»

Xj ≤ L2 and 0 ≤ # »

Xk
TC2

#»

Xj ≤ L.

The second term penalizes structures that are overlapping
or close to each other. Since this hardly happens throughout
all measurements, we expect the upper bound to be overpes-
simistic. In applications, one would rather have O(1) than
O(L). Considering C1, i.e., the first inequality, however, a
scaling of L2 seems realistic whenever the structures are
active throughout all measurements. Hence, the influence of
C1 on the penalty term is up to L2-times larger compared
to C2 which can be compensated by scaling λ2 accordingly.
In addition, λ1 balances the structural sparsity and must be
chosen smaller the more structures appear in the data while
λ2 handles the sparsity within single structures and is mostly
independent of the number of active elementary structures.
As Section IV shows, a parameter setup with very small
λ1 = O(L−2) and λ2 � 1 is not unusual.
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[18] P. Heins, M. Moeller, and M. Burger, “Locally sparse reconstruc-
tion using the `1,∞-norm.” Inverse Problems and Imaging, vol. 9,
no. 4, pp. 1093–1137, 2015.

[19] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured
sparsity.” Journal of Machine Learning Research, vol. 12, no. 11, pp.
3371–3412, 2011.

[20] J. Huang and T. Zhang, “The benefit of group sparsity,” The Annals
of Statistics, vol. 38, no. 4, pp. 1978–2004, 2010.

[21] S. M. Katz, “Estimation of probabilities from sparse data for the
language model component of a speech recognizer,” IEEE Trans.
Acoust. Speech Signal Process., vol. 35, no. 3, pp. 400–401, 1987.

[22] S. Lee, Y. Liao, M. Seo, and Y. Shin, “Structural change in sparsity.”
arXiv preprint arXiv:1411.3062, 2014.

[23] L. Lian, A. Liu, and V. Lau, “Exploiting dynamic sparsity for
downlink fdd-massive mimo channel tracking.” IEEE Trans. Signal
Processing, vol. 67, no. 8, pp. 2007–2021, 2019.

[24] X. Lu, H. Yuan, P. Yan, Y. Yuan, and X. Li, “Geometry constrained
sparse coding for single image super-resolution,” 2012 IEEE Conf.
Computer Vision and Pattern Recognition, pp. 1648–1655, 2012.

[25] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse mri: The appli-
cation of compressed sensing for rapid mr imaging,” Magnetic
Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[26] T. Peleg, Y. C. Eldar, and M. Elad, “Exploiting statistical depen-
dencies in sparse representations for signal recovery,” IEEE Trans.
Signal Process., vol. 60, no. 5, pp. 2286–2303, 2012.

[27] B. D. Rao, “Signal processing with the sparseness constraint,” in
Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP ’98, Seattle, Washington, USA,
May 12-15, 1998. IEEE, 1998, pp. 1861–1864.

[28] X. Rao and V. K. N. Lau, “Distributed compressive CSIT estima-
tion and feedback for FDD multi-user massive MIMO systems,”
IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3261 – 3271, 2014.

[29] J. Rick Chang, C.-L. Li, B. Poczos, B. Vijaya Kumar, and A. C.
Sankaranarayanan, “One network to solve them all–solving linear
inverse problems using deep projection models,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
5888–5897.

[30] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-
beam computed tomography by constrained, total-variation mini-
mization,” Physics in medicine and biology, vol. 53, no. 17, pp. 4777–
4807, 2008.

[31] J.-L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal
Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge
University Press, 2010.

[32] J. A. Tropp, “Algorithms for simultaneous sparse approximation:
part ii: Convex relaxation,” Signal Process., vol. 86, no. 3, pp. 589
– 602, 2006.

[33] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for si-
multaneous sparse approximation. part I: greedy pursuit,” Signal
Process., vol. 86, no. 3, pp. 572–588, 2006.

[34] N. Vaswani and W. Lu, “Modified-cs: Modifying compressive
sensing for problems with partially known support.” IEEE Trans.
Signal Processing, vol. 58, no. 9, pp. 4595–4607, 2010.

[35] D. Wipf and B. D. Rao, “An empirical bayesian strategy for
solving the simultaneous sparse approximation problem,” IEEE
Trans. Signal Process., vol. 55, no. 7, pp. 3704–3716, 2007.

[36] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, 2009.

[37] Y. Wu, Y.-J. Zhu, Q.-Y. Tang, C. Zou, W. Liu, R.-B. Dai, X. Liu,
E. X. Wu, L. Ying, and D. Liang, “Accelerated MR diffusion
tensor imaging using distributed compressed sensing,” Magnetic
Resonance in Medicine, vol. 71, no. 2, pp. 764 – 772, 2014.

[38] L. Yu, H. Sun, J.-P. Barbot, and G. Zheng, “Bayesian compressive
sensing for cluster structured sparse signals,” Signal Process.,
vol. 92, no. 1, pp. 259–269, 2012.

[39] M. Yuan and Y. Lin, “Model selection and estimation in regression
with grouped variables,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[40] Z. Zhang, “(5) SBL (Sparse Bayesian Learning),” ver. 1.1
(02/12/2011), (accessed 09/02/2021). [Online]. Available: http:
//dsp.ucsd.edu/∼zhilin/Software.html

[41] Z. Zhang and B. D. Rao, “Sparse signal recovery in the presence
of correlated multiple measurement vectors,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP 2010, 14-19 March 2010, Sheraton Dallas Hotel,
Dallas, Texas, USA, 2010, pp. 3966–3989.

[42] ——, “Extension of sbl algorithms for the recovery of block sparse
signals with intra-block correlation,” IEEE Trans. Signal Process.,
vol. 61, no. 8, pp. 2009–2015, 2013.

[43] H. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai,
“Graph regularized sparse coding for image representation,” IEEE
Trans. Image Processing, vol. 20, no. 5, pp. 1327–1336, 2011.

[44] H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total
least-squares for perturbed compressive sampling,” IEEE Transac-
tions on Signal Processing, vol. 59, no. 5, pp. 2002–2016, 2011.

[45] J. Ziniel and P. Schniter, “Dynamic compressive sensing of time-
varying signals via approximate message passing,” IEEE Trans.
Signal Process., vol. 61, no. 21, pp. 5270–5284, 2013.

[46] ——, “Efficient high-dimensional inference in the multiple mea-
surement vector problem,” IEEE Trans. Signal Process., vol. 61,
no. 2, pp. 340–354, 2013.

http://dsp.ucsd.edu/~zhilin/Software.html
http://dsp.ucsd.edu/~zhilin/Software.html

	I Introduction
	I-A Contribution
	I-B Related Work
	I-C Notation and Outline

	II Structural Sparsity
	II-A The Basic Model
	II-B Ways of Relaxation

	III Optimization via Gradient Descent
	III-A Convergence of gradient descent

	IV Numerical Experiments
	IV-A Parameter heuristic test
	IV-B Comparison
	IV-C Applications
	IV-C1 Non-destructive testing
	IV-C2 Seismic exploration
	IV-C3 Meteorology


	V Conclusion
	Appendix
	A Structural Sparsity Matrices

	References

