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Abstract—Motivated by the emerging role of interpolating
machines in signal processing and machine learning, this
work considers the computational aspects of over-parametrized
matrix factorization.

In this context, the optimization landscape may contain spuri-
ous stationary points (SSPs), which are proved to be full-rank
matrices. The presence of these SSPs means that it is impossible
to hope for any global guarantees in over-parametrized matrix
factorization. For example, when initialized at an SSP, the
gradient flow will be trapped there forever.

Nevertheless, despite these SSPs, we establish in this work
that the gradient flow of the corresponding merit function
converges to a global minimizer, provided that its initialization
is rank-deficient and sufficiently close to the feasible set of the
optimization problem. We numerically observe that a heuristic
discretization of the proposed gradient flow, inspired by primal-
dual algorithms, is successful when initialized randomly.

Our result is in sharp contrast with the local refinement meth-
ods which require an initialization close to the optimal set of the
optimization problem. More specifically, we successfully avoid
the traps set by the SSPs because the gradient flow remains
rank-deficient at all times, and not because there are no SSPs
nearby. The latter is the case for the local refinement methods.
Moreover, the widely-used restricted isometry property plays
no role in our main result.

Index Terms—rank-constrained matrix factorization, Burer-
Monteiro factorization, over-parametrization, interpolation,
nonconvex optimization, stationary points

I. INTRODUCTION

Rank-constrained matrix factorization from limited data
is central to various applications in signal processing and
machine learning [1], and more recently has also served
as a platform to gain theoretical insight into unexplained
phenomena in deep neural networks [2], [3], [4].

Despite recent strides, we face key theoretical questions
in matrix factorization, particularly in the emerging areas
that are motivated by the study of neural networks. The aim
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of this work is to take a step towards answering one such
question.

To be concrete, we are interested in the computational
(rather than statistical) aspects of solving the problem

min
UPRdˆp

}U}2F subject to ApUUJq “ b, }U} ď ξ, (1)

where A : Rdˆd Ñ Rm is a linear operator and b P Rm.
Above, we have limited the spectral norm of U to ξ ą 0 for
technical convenience. By setting ξ sufficiently large, we can
practically ignore the constraint }U} ď ξ in (1).

Even though our interest in problem (1) is purely compu-
tational, the statistical significance of problem (1) can be
motivated as follows.
‚ The (often nonconvex) problem (1) corresponds to the

Burer-Monteiro factorization [5] of the (convex) nuclear
norm minimization problem. This latter convex problem is at
the heart of low-rank matrix sensing and completion, phase
retrieval and quadratic sensing, and blind deconvolution, to
name a few [6].

Compared to its convex analogue, which has dpd`1q{2 op-
timization variables, problem (1) has pd variables. Therefore,
solving problem (1) can offer computational gains when p
is sufficiently small [6], [7].
‚ Solving problem (1) is equivalent to minimizing the

empirical risk of the shallow linear network x Ñ UUJx
with weight decay regularization. The corresponding training
data is collected in the vector b [8]. Understanding linear
neural networks, such as this one, is a necessary first step in
studying (nonlinear) neural networks [9].

Kurzgesagt. In a nutshell, the contribution of this work
is a gradient flow that provably solves problem (1) in the
over-parametrized regime (p Á m{d), whenever this flow is
initialized at a rank-deficient matrix U0 that is sufficiently
close to the feasible set of problem (1).

In the over-parametrized regime, note that we cannot
possibly hope for a global scheme for solving problem (1)
because the feasible set of problem (1) may contain spurious
stationary points. These spurious points can trap the gradient
flow, when initialized arbitrarily.

It is then necessary to restrict the initialization U0 in some
way, and our particular choice of a “sufficiently feasible” U0
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has several precedents within the nonconvex optimization
literature [4], [7], [10].

We will also describe, albeit less formally, how one can
find an appropriate initialization for the gradient flow.

At the same time, our contribution is fundamentally dif-
ferent from the local refinement methods, within the signal
processing literature: These methods rely on local strong
convexity in a small neighborhood of an isolated global
minimizer [6, Chapter 5].

To be specific, even though our gradient flow requires an
initialization U0 that is sufficiently close to the feasible set of
problem (1), this initialization might be far from any global
minimizer of problem (1). Moreover, a small neighborhood of
the feasible set of problem (1) contains all spurious stationary
points of problem (1), whereas a small neighborhood of an
isolated global minimizer contains no other stationary points.

This work appears to be the first to study problem (1)
in the over-parametrized regime (p Á m{d). Therefore, to
better motivate our contributions, let us first discuss below
the concepts of interpolation and under/over-parametrization,
both central to this work. Even though we are solely interested
in the computational aspects of solving problem (1), whenever
possible, we will also motivate the statistical significance of
these concepts to enrich the presentation.

A. Interpolation
A distinct feature of problem (1) is its interpolation property.

That is, by design, any global minimizer U of problem (1)
satisfies the equality constraints ApU UJq “ b. For example,
if we interpret xÑ U U

J
x as a shallow linear network [9],

this network perfectly interpolates its training data b and thus
achieves zero training error.

This interpolation property has attracted growing attention
within machine learning, in part because modern deep
neural networks appear to satisfy this property [11]. Conse-
quently, better understanding the statistical and computational
strengths of interpolating learning machines has become a
major research target [12], [13]. For instance, stochastic
gradient descent provably exhibits built-in variance reduction
under the interpolation property [14].

To summarize, motivated by the success of modern neural
networks, our interest in problem (1) partly stems from
the need to better understand the computational aspects of
interpolating learning machines, such as problem (1).

Moreover, through the lens of signal processing, the
interpolation property of problem (1) indicates a subtle but
important shift in statistical perspective, described next.

In the context of low-rank matrix recovery [1], let b :“
ApX6q` e for a hidden model X6 P Rdˆd and measurement
noise vector e ‰ 0. Alternatively, we can also let b :“
ApX6 `Eq, where the matrix E ‰ 0 represents the model
mismatch. In both cases, the equality constraints ApUUJq “
b in problem (1) replace the relaxed constraints }ApUUJq´
b} ď ε, which is more common in signal processing [15].

This shift in statistical perspective imitates the success of
deep neural networks, which often interpolate their training
data and yet generalize well on test data [11]. Furthermore,
whenever reliable prior knowledge about the probability
distributions of the noise e and mismatch E is lacking, it
might be wise to opt for problem (1), instead of incorporating
the relaxed constraints with a (possibly) incorrect choice of
norm } ¨ } and ε.
B. Under- and Over-Parametrization

By counting the number of optimization variables in
problem (1), we can distinguish two regimes: Under- and
over-parametrized.

The focus of this work is on the over-parametrized regime
of problem (1), which has never been studied before, to the
best of our knowledge. To better appreciate the computational
challenges of the over-parametrized regime, both regimes are
juxtaposed together below.

1) (UNDER-PARAMETRIZED REGIME) When p À m{d,
the landscape of problem (1) is often benign in the sense
that problem (1), even though nonconvex, has no spurious
stationary points [6]. Therefore, in this regime, problem (1)
can be solved to global optimality with a range of algorithms,
including the gradient descent algorithm and its perturbed
variants [16], [17].

More specifically, often in the under-parametrized regime,
every feasible point of problem (1) is a global minimizer.
That is, the target function }U}2F in problem (1) is redundant
and it suffices to minimize the feasibility gap }ApUUJq´b}22.
The latter can be done successfully with, for example, the
gradient descent algorithm [6], [18], [16].

As a toy example, in the left panel of Figure 1, the
(discretized) gradient flow of the feasibility gap converges
to the only feasible point of problem (1), which is unique
up to a sign. This limit point is also evidently the global
minimizer of problem (1) in this toy example.

From a signal processing perspective, the under-
parametrized regime of problem (1) is particularly well
suited for low-rank matrix recovery in the absence of noise:
Let b :“ ApX6q for a rank-r matrix X6 P Rdˆd, and suppose
that A is a generic linear operator. Then, with the choice
of p “ r, solving problem (1) uniquely recovers the true
model X6, provided that m Á pd “ rd. Here, we have
ignored logarithmic factors for simplicity [6].

2) (OVER-PARAMETRIZED REGIME) In contrast, when p Á
m{d, the feasible set of problem (1) may contain spurious
stationary points which can trap first- or second-order
optimization algorithms, including the gradient descent. The
presence of spurious stationary points means that we cannot
hope to globally solve problem (1). For example, if we
initialize any first-order optimization algorithm at a spurious
stationary point of problem (1), the algorithm will be trapped
there forever!

In the over-parametrized regime, we can visualize the
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computational challenges of solving problem (1) with a nu-
merical example: In a precise sense, solving the (constrained)
problem (1) is equivalent to minimizing its (smooth) merit
function [19]. In the right panel of Figure 1, the (discretized)
gradient flow of this merit function converges to a particular
feasible point of problem (1) which is not a global minimizer.

This discouraging observation rules out the possibility of
a global scheme for solving problem (1), but not all is lost.
Indeed, the contribution of this work is a non-global (but
also non-local) scheme for solving problem (1) in the over-
parametrized regime.

Let us next motivate the statistical significance of the over-
parametrized regime. First, recall that modern neural networks
are highly over-parametrized [11]. In this sense, the over-
parametrized regime of problem (1) more faithfully represents
the training of a neural network with weight decay, compared
to the under-parametrized regime.

Second, from a signal processing perspective, the over-
parametrized regime can be motivated as follows. Consider
the problem of low-rank matrix recovery in the presence of
noise: Let b :“ ApX6q ` e for a hidden rank-r model X6

and measurement noise e P Rm.
With this choice of A, b and p “ r, problem (1) is not

necessarily even feasible because of its interpolation property!
That is, with the choice of p “ r, we cannot necessarily
find a matrix that satisfies the constraints of problem (1). A
larger value of p is often needed. In particular, in view of
the Pataki’s lemma [20], [21], it suffices to set p Á

?
2m.

(Under the mild assumption that m ď 2d2, it is easy to
verify that p Á

?
2m ùñ p Á m{d. That is, p Á

?
2m falls

well within the over-parametrized regime.) This observation
motivates the study of problem (1) in the over-parametrized
regime, from a signal processing viewpoint.

On the downside, the price that we pay for the interpolation
property in problem (1) is a larger computational burden:
Larger p in the over-parametrized regime means more vari-
ables to optimize in problem (1). As a result, in the context
of low-rank matrix recovery, where problem (1) is the Burer-
Monteiro factorization of a convex optimization problem [6],
some but not necessarily all of the computational gains of
the Burer-Monteiro factorization will be lost inevitably.

C. Scope and Contributions

At last, we are now in position to fix the scope of this
work: We are interested here in the computational (rather than
statistical) aspects of solving the (interpolating) machine (1)
in the over-parametrized regime (p Á m{d). This has never
been studied before, to the best of our knowledge.

Let us summarize below the contributions of this work
in a simplified and, at times, inaccurate language. In short,
this paper designs a gradient flow that provably solves the
nonconvex problem (1) to global optimality in the over-
parametrized regime, even though the optimization landscape

may contain spurious stationary points. An informal statement
of our main result is presented below.

Theorem 1 (SIMPLIFIED MAIN RESULT, THEOREM 21).
Suppose that p Á m{d. Suppose also that problem (1) has a
finite optimal value and a tight convex relaxation. We also
consider the set

Mb :“
 

U : ApUUJq “ b, }U} ă ξ
(

, (2)

which contains all (strictly) feasible matrices in problem (1).
Suppose that Mb is a smooth submanifold of Rdˆp.

Then there exists a gradient flow that almost surely con-
verges in limit to a global minimizer of problem (1), provided
that its initialization U0 P Rdˆp is rank-deficient and
sufficiently close to the manifold Mb. (Such an initialization
matrix exists under mild assumptions.)

Restricting the initialization is necessary above and we
cannot hope to improve Theorem 1 and obtain global
guarantees. Indeed, the feasible set of problem (1) may
contain spurious stationary points in the over-parametrized
regime which can trap the gradient flow, when initialized
arbitrarily, see Figure 1.

At the same time, in Theorem 1, note that the neighborhood
of the set Mb contains all spurious stationary points of
problem (1). In that sense, Theorem 1 is not a local
convergence result.

As a practical remark, we later empirically observe that a
random initialization U0 is often a good choice that avoids
the worst-case scenario in the right panel of Figure 1.

A tight convex relaxation in Theorem 1 is a mild assumption
which is met, for example, if we take p Á

?
2m [20], [21].

The manifold assumption in Theorem 1 is minimal in the
sense that it corresponds to the weakest sufficient conditions
under which there is in general any hope for the gradient
flow to efficiently find a feasible matrix for problem (1), i.e.,
a matrix that satisfies the constraints of (1). This assumption
has several precedents within the nonconvex optimization
literature [4], [10], [22].

Theorem 1 radically departs from the established literature
of rank-constrained matrix factorization. To begin, the re-
stricted isometry property, defined later, which dominates
the low-rank matrix recovery literature [1], [6], cannot hold
in the over-parametrized regime of this paper and does not
appear in Theorem 1. A review of the related work will
follow shortly.

TECHNICAL NOVELTY. The proof of Theorem 1 relies
on a spectral argument that does not have any precedents
within the matrix factorization literature, to the best of our
knowledge. This argument builds on the observation that,
perhaps remarkably, matrix rank does not increase along the
gradient flow of the merit function. We have, however, used
simpler versions of this argument in earlier works [4], [9].
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Fig. 1: For a toy example, this figure visualizes the differences between the under- and over-parametrized regimes of problem (1). In particular, in this
toy example, the feasible set of problem (1) contains a spurious stationary point in the over-parametrized regime (left panel) that traps the optimization
algorithm, in a sharp contrast with the under-parametrized regime (right panel).
To be specific, we set d “ m “ 2, ξ “ 8 and generate A, b randomly, as detailed in the code. A and b are identical in both top and bottom panels. The
left panel corresponds to p “ 1 whereas, in the right panel, we have p “ 2. The blue dot in the left panel is the only feasible point of problem (1), up to
a sign, and also evidently its global minimizer. On the other hand, the blue surface in the right panel shows a section of the feasible set of problem (1).
The three-dimensional mesh in the right panel was created with [23].
The left panel shows the trajectory of the (discretized) gradient flow of the feasibility gap }ApUUJq ´ b}22, whereas the right panel plots the (discretized)
gradient flow of the merit function of problem (1), to be defined later. Recall that left and right panels correspond to p “ 1 and p “ 2, respectively.
Accordingly, in the left panel, the gradient flow is initialized at U0 P Rdˆ1 whereas, in the right panel, the gradient flow is initialized at rU0 ,

`

0
0

˘

s P Rdˆ2.
The choice of initialization U0 is detailed in the code.
In each panel, the limit point of the trajectory is a feasible point and also a stationary point of problem (1). In the left panel, the (discretized) gradient
flow successfully finds the global minimizer whereas, in the right panel, the (discretized) gradient flow is trapped by a spurious stationary point.
The stationary point in the right panel is spurious because the optimal value of problem (1) equals 0.24 in the right panel (obtained by CVX [24], [25]),
whereas the (discretized) gradient flow reaches the suboptimal value of 4.22 ą 0.24. The MATLAB code will be available online.
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With explicit reg.
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Fig. 2: With a numerical example, this figure illustrates the importance of explicit regularization in problem (1). That is, this figure shows that implicit
regularization might fail in general. More specifically, we generated a random rank-1 matrix X6 P Rdˆd with d “ 20 and }X6}F “ 1. We also
set m “ 4rd “ 40 and chose the linear operator A : Rdˆd Ñ Rm randomly and then set b :“ ApX7q.
For p “ 10 and with a random initialization, we then tried to recover X7 with two approaches: 1 First, by following the trajectory of the (discretized)
gradient flow of the feasibility gap }ApUUJq ´ b}22 with no explicit regularization of the variable U P Rdˆp. 2 Second, by following the (discretized)
gradient flow of the merit function of problem (1), which is explicitly regularized by }U}2F.
The left and right panels show the feasibility gap and recovery error, respectively. Notably, the first approach, which only relies on the implicit regularization
of the gradient flow, fails to recover X7. The MATLAB code will be made available with the paper.
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D. Approach and Organization of the Paper

Let us now outline our approach to establish Theorem 1.
After a formal setup in Sections III-V, we first study the
nonconvex geometry of problem (1) in Section VI. We
then review the local and global optimality conditions for
problem (1) in Sections VII and VIII, respectively. In
particular, we show that any rank-deficient second-order
stationary point (SOSP) of problem (1) is also its global
minimizer [7]. Finally, in Section IX, we introduce a merit
(or exact penalty) function [19], denoted by hγ , that allows
us to reformulate problem (1) as a smooth and unconstrained
optimization problem.

The main technical contribution of this work appears in
Section X. Theorem 21 therein is the detailed version of the
simplified Theorem 1 and can be summarized as follows:
Once initialized rank-deficient and sufficiently close to the
feasible set of problem (1), the gradient flow of hγ converges
to a rank-deficient SOSP of problem (1) and thus solves
problem (1) to global optimality. Theorem 21 is then followed
by several remarks that justify our assumptions.

Lastly, in Section XI, we introduce a heuristic discretization
of the gradient flow of hγ . We then show the potential of this
algorithm for solving problem (1) with a numerical example.
However, we leave a comprehensive study of this algorithm
as a future research question.

II. RELATED WORK

We are not aware of any prior literature on solving
problem (1) in the over-parametrized regime (p Á m{d).
Let us instead review a number of closely related works.

If we move the constraints in problem (1) to its target
function (in the form of a penalty term), then [26, The-
orem 17] provides a high-level procedure for solving the
penalized problem that might not converge in polynomial
time or might not converge at all; the procedure might hop
from one local minimizer to another, without ever visiting a
global minimizer.

An additional concern is that, in nonconvex optimization,
often the solutions of the penalized problem approach
feasibility only in the limit as the penalty weight grows
increasingly large [19, Section 17.1].

Indeed, polynomial time convergence to a global (rather than
local) minimizer and the constrained nature of problem (1)
both will pose significant technical challenges for us.

We should also mention the literature of implicit regu-
larization, which attempts to recover a planted low-rank
matrix X7 P Rdˆd by following the gradient flow of
the feasibility gap }ApUUJq ´ b}22, where U P Rdˆd
and b :“ ApX7q. Often, this gradient flow is initialized
near the origin [2], [3], [4], [27], and the literature of
implicit regularization relies heavily on the restricted isometry
property (RIP) of the operator A [1].

In contrast, we do not assume the RIP in this work and the
gradient flow can be initialized anywhere sufficiently close

to the feasible set of (factor), rather than near the origin.
We also consider the more general case where U P Rdˆp
with p Á m{d, rather than the square factorization U P Rdˆd.

Perhaps most importantly, problem (1) is explicitly reg-
ularized by }U}2F. This regularization directly promotes a
low-rank solution, in contrast with the literature of implicit
regularization which lacks any explicit regularization.

In Figure 2, the importance of explicit regularization
is visualized with a numerical example in the context
of low-rank matrix recovery. Implicit regularization fails
spectacularly in this figure. Lastly, the technical machinery
involved in this work is fundamentally different from that in
the literature of implicit regularization.

It is also worth noting that we can adapt the literature
of over-parametrized linear networks to our situation: This
literature is concerned with solving the optimization problem
minU }ApUUJq ´ b}22 for a particular choice of the linear
operator A. Here, the common approach in [8] is often
criticized as “lazy training” [28], because it linearizes the map
U Ñ UUJ near a global minimizer of minU }ApUUJq´b}22
and then replaces the nonconvex target function with its local
convex approximation.

The approach in [8] thus relies on an initialization near a
global minimizer of minU }ApUUJq ´ b}22, which can be
generated randomly when the map U Ñ UUJ is sufficiently
over-parametrized. We refer to Definition 2 and Theorem 1
in [8] for more information. Outside of this lazy training
regime, we are only aware of the recent work [9] for linear
neural networks. In contrast, our Theorem 1 relies on an
initialization near the feasible set (rather than the optimal
set) of problem (1). Lazy training is also highly popular in
the context of nonlinear neural networks, e.g., [29].

We also mention the very over-parametrized regime of p Á
d. In this regime and in the context of nonlinear shallow
neural networks, the landscape of the feasibility gap is known
not have any spurious SOSPs [30], [31]. We can translate
this fact to our setup: If p ě d, then it is not difficult to
verify from (4) and Definition 10 that any full-rank SOSP
of problem (1) is also a global minimizer of problem (1).
Moreover, any rank-deficient SOSP of problem (1) is a global
minimizer of problem (1) by Proposition 14.

In analogy with [30], [31], we thus obtain the following
result: When p ě d, problem (1) does not have any spurious
SOSPs. This very over-parametrized regime (p ě d) is
evidently not interesting in the context of rank-constrained
matrix factorization, and is not studied in this work.

Problem (1) can also be interpreted as the Burer-Monteiro
factorization [5] of a particular semi-definite program (SDP).
More specifically, if we replace the target function of prob-
lem (1) with xC,UUJy for a generic symmetric matrix C,
then the new optimization problem is known not have any
spurious SOSPs when p Á

?
2m [7, Theorem 2].

However, the randomness of the cost matrix C means that [7,
Theorem 2] is not applicable to our problem. Moreover, p Á
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?
2m ùñ p Á m{d, under the mild assumption that m ď

2d2. In words, the over-parametrized regime (p Á m{d)
studied in this paper absorbs p Á

?
2m as a special case.

Lastly, to read about matrix factorization in the under-
parametrized regime (p À m{d), we wish to refer the reader
to the survey [6, Section 9] and the references therein.

III. NONCONVEX OPTIMIZATION PROBLEM

For symmetric matrices tAiumi“1 Ă Rdˆd, let us consider
the linear operator A : Rdˆd Ñ Rm, defined as

ApXq :“ rxA1, Xy, ¨ ¨ ¨ , xAm, Xys
J. (3)

We can now formally introduce the nonconvex optimization
problem at the center of this work. For ξ ą 0, integer p and
a vector b P Rm, we will study the optimization problem

min
UPRdˆp

}U}2F subject to ApUUJq “ b, }U} ď ξ, (factor)

where }U} denotes the spectral norm of the matrix U .
Above, we have limited the spectral norm to ξ for technical
convenience. For a sufficiently large ξ, we can practically
ignore the constraint }U} ď ξ above.

Even though we are purely interested in the computational
aspects of solving (factor), the statistical significance of this
problem was motivated in the introduction: (factor) arises
as the Burer-Monteiro factorization of the (convex) nuclear
norm minimization problem. Alternatively, (factor) can be
interpreted as regularized empirical risk minimization for
training a shallow linear network.

It is worth noting that, in the context of low-rank matrix
recovery, the literature also offers some alternatives which
can be statistically superior to the learning machine (factor)
and its convex relaxation [32], [33].

IV. A CONVEX RELAXATION

It is also be helpful to introduce a convex relaxation
of (factor), specified by the semi-definite program

min
XPRdˆd

trpXq subject toApXq “ b, 0 ď X ď ξ2Id, (SDP)

where IdP Rdˆd is the identity matrix, and ď denotes the
positive semi-definite (PSD) pseudo-order. Indeed, it is easy
to obtain (SDP) by relaxing the rank restriction in (factor).

In the other direction, we can also interpret (factor) as the
Burer-Monteiro factorization of (SDP). In particular, (SDP)
explicitly enforces the PSD constraint (X ě 0) which was
implicit in (factor). Moreover, if p is sufficiently small,
(factor) would have fewer optimization variables compared
to (SDP) and can offer computational savings [6], [7].

Note that the restriction to PSD matrices does not reduce the
generality of (SDP). That is, if we choose A1 : Rd1ˆd2 Ñ Rm
and b1 P Rm appropriately, the optimization problem

min
ZPRd1ˆd2

}Z}˚ subject toA1pZq “ b1, }Z} ď ξ

reduces to (SDP). Above, } ¨ }˚ stands for the nuclear norm.
For completeness, we record this observation below.

Remark 2 (RESTRICTION TO PSD MATRICES). The restric-
tion in (SDP) to PSD matrices is, for our purposes, without
any loss of generality, because a matrix Z P Rd1ˆd2 with
}Z} ď ξ can be mapped or lifted to a PSD matrix X via
the map

Z Ñ X :“

„

ξ2Id1 Z
ZJ Id2



.

For future reference, we also record that a matrix X P Rdˆd
is a (global) minimizer of problem (SDP) if there exists a
dual certificate λ P Rm such that

Id ´A˚pλq ě 0,
`

Id ´A˚pλq
˘

X “ 0,

0 ď X ă ξ2Id, ApXq “ b. (4)

Above, A˚ : Rm Ñ Rdˆd is the adjoint of the linear
operator A in (3), defined as

A˚pλq :“
m
ÿ

i“1

λiAi, (5)

and λi is the ith coordinate of the vector λ P Rm.

V. TARGET

After introducing the nonconvex problem (factor) and its
convex relaxation (SDP) in Sections III and IV, we are now
in position to formally state the target of this work.

First, let us record two key assumptions. The first assump-
tion below ensures that the convex relaxation of (factor) is
tight, i.e., (SDP) has a minimizer with rank at most p. The
second assumption below reflects the limited sampling budget
that is common in signal processing. If we regard xÑ UUJx
as a shallow linear network with weight sharing, the second
assumption below also corresponds to the over-parametrized
regime prevalent in neural networks [9], [34].

Assumption 3 (MATRIX FACTORIZATION).

(i) (Equivalence) (factor) and (SDP) have the same optimal
value, which is assumed to be finite throughout.

(ii) (Over-parametrized) m ă pd if p ă d{2 and m ă

dpd` 1q{2 otherwise.
Assumption 3.(i) is not too restrictive: For example, con-

sider a planted matrix X7 such that rankpX7q ď p and
set b :“ ApX7q. Then it is not difficult to verify that
Assumption 3.(i) is fulfilled when the linear operator A
satisfies the RIP of order 2r [1]. As another example, for
an arbitrary linear operator A : Rdˆd Ñ Rm, we can use
the Pataki’s lemma to verify that Assumption 3.(i) holds
whenever p Á

?
2m [20][21, Theorem 6.1]. As mentioned

in Section II, p Á
?

2m does not violate Assumption 3.(ii),
under the mild assumption that m “ Opd2q. Let us now state
our target.
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Target 4. Suppose that Assumption 3 is fulfilled. Our
aim is to solve (factor) to global optimality.

We will soon see that Target 4 is out of the reach for
the current literature of matrix factorization. The main
contribution of this paper is to achieve Target 4: Sections VI-
IX will help us develop the necessary tools to achieve Target 4
and our main result is then presented in Section X.

For technical convenience, let us also define the functions
f : Rdˆp Ñ R, g : Rdˆp Ñ Rm and G : Rdˆp Ñ R as

fpUq :“
1

2
}U}2F, gpUq :“

1

2
pApUUJq ´ bq,

GpUq :“
1

2
}gpUq}22. (6)

Note that (factor) has the same minimizers as the optimization
problem minU fpUq subject to gpUq “ 0 and }U} ď ξ.
We can interpret G in (6) as the (scaled) feasibility gap
associated with (factor). The new functions f, g,G will
frequently appear in our analysis throughout.

VI. NONCONVEX GEOMETRY

In Section III, we introduced (factor) as the nonconvex
optimization program at the center of this work. Now, as
our first step towards Target 4, we study in this section the
geometry of the feasible set of (factor).

In Figure 1, the blue dot and the blue surface visualize
parts of the feasible set of (factor) for two toy examples.
For brevity, we will denote the interior of the feasible set of
(factor) by Mb. That is,

Mb :“
 

U : ApUUJq “ b, }U} ă ξ
(

Ă Rdˆp

“ tU : gpUq “ 0, }U} ă ξu. (see (6)) (manifold)

In particular, note that (factor) has the same minimizers as
the optimization problem minU fpUq subject to U P clpMbq,
where clpMbq denotes the closure of Mb.

After recalling (6), we also observe that (factor) finds the
distance from the origin to the set Mb. As a minor trans-
gression, in our qualitative discussions, we will occasionally
refer to Mb as the feasible set of (factor), even thought Mb

is the interior of that feasible set, strictly speaking.
In the rest of this section, we will study the geometry of

the set Mb. For future reference, let us record that the (total)
derivative of g at U is the linear operator DgpUq : Rdˆp Ñ
Rm, specified as

DgpUqr∆s :“ Ap∆UJq, (7)

and its adjoint pDgpUqq˚ : Rm Ñ Rdˆp is defined as

pDgpUqq˚rδs :“ A˚pδq ¨ U “
m
ÿ

i“1

δiAiU, (8)

where A˚ was defined in (5) and δi is the ith entry of
the vector δ P Rm. To obtain (7), we leveraged the fact

that tAiumi“1 are symmetric matrices. Also for later reference,
the neighborhood of the set Mb is defined as follows.

Definition 5 (NEIGHBORHOOD OF Mb). The neighborhood
of radius ρ ą 0 of the set Mb in (manifold) is the (closed)
set

tU : distpU,Mbq ď ρu Ă Rdˆp, (neighborhood)

where

distpU,Mbq :“ inf
 

}U ´ U 1}F : U 1 PMb

(

“ min
 

}U ´ U 1}F : U 1 P clpMbq
(

“ distpU, clpMbqq (metric)

is the distance from the matrix U to the set Mb and its
closure. For brevity, we often use the term ρ-neighborhood
of Mb throughout. We will also often say U is sufficiently
close to Mb to mean that distpU,Mbq is sufficiently small.

As claimed above, the ρ-neighborhood of Mb is indeed
a closed set because distpU,Mbq is a continuous function
of U and r0, ρs is a closed interval. A short remark follows
next to justify our choice of metric in Definition 5.

Remark 6 (INVARIANCE OF THE METRIC). The metric in
Definition 5 is invariant under rotation from right. That is,
for any U P Rdˆp and R P Op, it holds that

distpUR,Mbq “ inf
U 1PMb

}UR´ U 1}F

“ inf
U 1PMb

}UR´ U 1R}F

“ inf
U 1PMb

}U ´ U 1}F

“ distpU,Mbq. (9)

Above, Op “ tR
1 : R1JR1 “ Ipu Ă Rpˆp is the orthogonal

group and IpP Rpˆp is the identity matrix. Moreover, the
second line above holds because U 1 P Mb if and only if
U 1R P Mb, see (manifold). The third line above holds by
the rotational invariance of the Frobenius norm.

We are now in position to state the central assumption of
this work, which also subsumes the earlier Assumption 3.
Assumption 7 is similar to [22, Assumption 1.1] or [4]. As
clarified later, Assumption 7 enables us to efficiently find
feasible points of (factor) which is evidently necessary for
solving (factor).

Assumption 7 (MANIFOLD). Assumption 3 is fulfilled and
it also holds that

rankpDgpUqq “ m, (10)

for every matrix U in a sufficiently small neighborhood of the
set Mb, i.e., the matrices tAiUumi“1 are linearly independent
for every matrix U that is sufficiently close to the set Mb.

Under Assumption 7, note that Mb is a closed embedded
submanifold of Rdˆp of co-dimension m, see [35, Corol-
lary 5.24]. As suggested by Assumption 7, we will frequently
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use the qualifiers “sufficiently small” and “sufficiently close”
throughout this work. This decision is justified below.

Remark 8 (SUFFICIENTLY SMALL / CLOSE). A conservative
lower bound for the radius of the neighborhood in Assump-
tion 7 is given by [4, Proposition 13].

However, the lower bound in [4] is of little practical value
because it involves certain geometric attributes of the set Mb

in (manifold) which are difficult to estimate.
In view of this practical limitation and also to avoid any

unnecessary clutter, we opted not to precisely specify the
neighborhood size in Assumption 7.

Instead, Assumption 7 and most of our results are stated
for a “sufficiently small” neighborhood of the set Mb with
respect to (metric). We will revisit this issue later on. Note
also that the set Mb and its neighborhood are often large
sets, i.e., our results are not local.

Before closing this section, we collect below the geometric
properties of Mb: It is not difficult to verify that the normal
space of the smooth manifold MbĂ Rdˆp at the matrix
U PMb can be identified with the linear subspace

NUMb :“ rangeppDgpUqq˚q

“ range ptAiUu
m
i“1q Ă Rdˆp. (see (8)) (11)

The tangent space of Mb at U PMb immediately follows
from the fundamental theorem of linear algebra. That is,

TUMb :“ nullpDgpUqq, (see (11)) (12)

where nullpDgpUqq denotes the null space (or kernel) of the
linear operator DgpUq in (7).

In view of (11), the orthogonal projection onto the tangent
space at U P Mb is the linear operator PTUMb

: Rdˆp Ñ
TUMb that maps the matrix ∆ P Rdˆp to

PTUMb
p∆q :“ ∆´

`

pDgpUqq˚ ˝ ppDgpUqq˚q:
˘

r∆s

“ ∆´ pDgpUqq˚
“

ppDgpUqq˚q:r∆s
‰

“: ∆´A˚pλpU,∆qq ¨ U, (see (8)) (13)

where, for brevity, above we defined

λpU,∆q :“ ppDgpUqq˚q:r∆s. (multipliers)

In (13), ˝ represents the composition of two operators
and : stands for the Moore-Penrose pseudo-inverse. The
vector λpU,Uq in (multipliers) plays a key role in the
ensuing arguments and we close this section with a technical
observation about this quantity.

Lemma 9 (DERIVATIVE OF LAGRANGE MULTIPLIERS).
Suppose that Assumption 3.(ii) holds. For a matrix U P Rdˆp,
λpU,Uq in (multipliers) has the closed-form expression

λpU,Uq “ KpUq:ApUUJq,
KpUq :“ rxAiU,AjUys

m
i,j“1 P Rmˆm. (14)

Suppose now that Assumption 7 holds. Then, λpU,Uq is an
analytic function of U on a sufficiently small neighborhood
of Mb in (manifold). For completeness, the directional
derivative of λpU,Uq with respect to U is given explicitly
by (51) in the supplementary material.

VII. LOCAL OPTIMALITY

In Section VI, we studied the geometry of the feasible
set of (factor). See Mb in (manifold). As our next step
towards Target 4, we will review in this section the sufficient
conditions for local optimality in (factor).

To begin, recall that the manifold gradient of f in (6) at the
matrix U PMb is defined as the projection of the (Euclidean)
gradient of f onto the tangent space of the manifold at U [36].
That is,

∇Mb
fpUq :“ PTUMb

p∇fpUqq
“ PTUMb

pUq (see (6))

“ pId ´A˚pλpU,Uqq ¨ U P Rdˆp, (15)

where the last line above follows from (13). Above, ∇ stands
for (Euclidean) gradient and ∇Mb

denotes the manifold
gradient for Mb.

For (factor), the matrix U PMb is a first-order stationary
point if the manifold gradient of f vanishes at U . More specif-
ically, after recalling the notation in (6) and (multipliers), we
record the following.

Definition 10 (FOSP). Consider a matrix U P Rdˆp such
that }U} ă ξ. This matrix U is a first-order stationary
point (FOSP) of (factor) if

gpUq “
1

2
pApU ¨ U

J
q ´ bq “ 0,

∇Mb
fpUq “ pId ´A˚pλpU,Uqq ¨ U “ 0. (16)

Moving on to second-order optimality, we denote the
manifold Hessian of f in (6) at the matrix U PMb with the
bilinear map ∇2

Mb
fpUq : TUMb ˆ TUMb Ñ R [36]. This

bilinear operator maps r∆,∆s P Rdˆp ˆ Rdˆp to the scalar

∇2
Mb

fpUqr∆,∆s

:“

˜

∇2fpUq ´
m
ÿ

i“1

λipU,Uq ¨∇2gipUq

¸

r∆,∆s (17)

“ }∆}2F ´
@

A˚pλpU,Uqq,∆∆J
D

, (see (6),(8))

for ∆ P TUMb. Above, ∇2 stands for (Euclidean) Hessian.
Also, λipU,Uq and gipUq are the ith coordinates of the
vectors λpU,Uq and gpUq, respectively.

For (factor), a second-order stationary point has a PSD
manifold Hessian, as detailed below.

Definition 11 (SOSP). Consider a matrix U P Rdˆp such
that }U} ă ξ. This matrix U is a second-order stationary
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point (SOSP) of (factor) if, in addition to (16), the manifold
Hessian ∇2

Mb
fpUq in (17) is a PSD linear operator:

@

∆,
`

Id ´A˚pλpU,Uqq
˘

∆
D

ě 0, if ∆ P TUMb. (18)

Above, TUMb is the tangent space of the manifold Mb at
the matrix U , see (12).

VIII. GLOBAL OPTIMALITY

In Section VII, we reviewed the local optimality conditions
for (factor), e.g., see Definition 11 of an SOSP. In general,
however, not every SOSP of (factor) is a global minimizer.
That is, some SOSPs might be local minimizers or non-strict
saddle points of (factor). We label such points as the spurious
SOSPs of the optimization problem (factor).

Definition 12 (SPURIOUS SOSP). An SOSP of (factor) is
spurious if it is not a global minimizer of (factor).

In the under-parametrized regime (p À m{d), a generic
linear operator A in (3) often satisfies the RIP of order 2p [1].

Based on this observation, it can be shown that every
feasible point of (factor) is also a global minimizer of (factor).
In other words, (factor) does not have any spurious SOSPs
in the under-parametrized regime for a generic operator A.

In this under-parametrized regime, even though noncon-
vex, (factor) can be solved to global optimality by a variety
of first- or second-order optimization algorithms, including
the gradient descent [16].

While the focus of this work is on the over-parametrized
regime (p Á m{d), the under-parametrized regime of (factor)
is also reviewed in the arXiv version of this paper for
completeness, see also [6].

Unlike the under-parametrized regime and its benign
optimization landscape, it is far more difficult in general
to solve (factor) in the over-parametrized regime:

Remark 13 (SPURIOUS SOSPS). Under Assumption 3.(ii),
we see by counting the degrees of freedom that the linear
operator A in (3) cannot satisfy the RIP of order 2p, unlike
the under-parametrized regime.

(factor) might therefore have spurious SOSPs which could
trap a first- or second-order optimization algorithm, including
the gradient descent. A toy example of this pathological
situation appeared earlier in Figure 1 (right panel).

This discouraging observation rules out the possibility
of a global scheme for solving problem (1). For instance,
initialized at a spurious stationary point, gradient descent
remains there forever.

Fortunately, not all is lost. In the remainder of this work,
we will devise a gradient flow that solves (factor) to global
optimality and achieves Target 4, when initialized within a

“capture neighborhood” of the feasible set of (factor).
Lastly, note that the feasible set and its neighborhood are

often large sets, i.e., our results are not local.

Before closing this section, let us recall a sufficient condition
for global optimality of an SOSP, see [7], [26].

Proposition 14 (GLOBAL OPTIMALITY). Any rank-deficient
SOSP U of (factor) with }U} ă ξ is also a global minimizer
of (factor). Moreover, U U

J
is a (global) minimizer of (SDP).

By rank-deficient, we mean that U is a singular matrix.

IX. MERIT FUNCTION

Our next step towards Target 4 is as follows: While (factor)
is a constrained optimization program, we introduce in this
section a merit (or exact penalty) function that allows us
to reformulate (factor) as a smooth (and unconstrained)
optimization program.

The main contribution of this paper, as we will see shortly, is
using the gradient flow of this merit function to solve (factor).

To begin, for γ ą 0, let Lγ : Rdˆp ˆ Rm Ñ R denote the
(scaled) augmented Lagrangian [19] associated with (factor),
defined as

LγpU, λ
1q :“ fpUq ´ xgpUq, λ1y `

γ

2
}gpUq}22, (AL)

where f and g were specified in (6). The augmented
Lagrangian has two remarkable properties that are listed
in the next proposition, inspired by [19, Theorem 17.5].

Loosely speaking, Proposition 15 posits that the augmented
Lagrangian encodes the optimality criteria of (factor). The re-
sult below also allows us to interpret λpU,Uq in (multipliers)
as the (dual) optimal Lagrange multipliers for a feasible
matrix U PMb in (manifold).

Proposition 15 (AUGMENTED LAGRANGIAN). Suppose that
Assumption 7 holds. Consider a matrix U P Rdˆp that is
sufficiently close to Mb and satisfies }U} ă ξ. For γ ą 0,
the following statements are true:
(i) ∇1LγpU, λpU,Uqq “ 0 implies that U is an FOSP of

(factor) and, in particular, U PMb.
(ii) If, in addition, ∇2

1LγpU, λpU,Uqqr∆,∆s ě 0 for every
tangent direction ∆ P TUMb in (12), then U is also an
SOSP of (factor).

Above, ∇1Lγ and ∇2
1Lγ are the (Euclidean) gradient and

Hessian of Lγ with respect to its first argument, respectively.
For example, ∇1LγpU, λpU,Uqq is the gradient of Lγp¨, ¨q
with respect to its first argument and evaluated at the
pair pU, λpU,Uqq.

Inspired by the properties of the augmented Lagrangian, let
us now consider the function hγ : Rdˆp Ñ R, defined as

hγpUq :“ LγpU, λpU,Uqq, (merit)

also known as the Fletcher’s augmented Lagrangian [19].
Before we uncover the key property of hγ and its namesake,
let us first record that hγ is an analytic function.

Lemma 16 (DERIVATIVE OF hγ ). Suppose that Assumption 7
holds. Then, hγpUq in (merit) is an analytic function of U
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on a sufficiently small neighborhood of Mb in (manifold).
Its derivative is specified as

∇hγpUq “ pId ´A˚pλpU,UqqqU ` γ

2
A˚

`

ApUUJq ´ b
˘

U

´
1

2
pDλpU,Uqq˚rApUUJq ´ bs, (19)

where IdP Rdˆd is the identity matrix. Above, λpU,Uq and
its (total) derivative DλpU,Uq were both defined in Lemma 9.

The next lemma asserts that, when γ is sufficiently large, hγ
is a merit (or exact penalty) function for (factor), i.e., we
can focus on minimizing the smooth function hγ , instead of
the constrained problem (factor).

While we are not aware of a precise precedent, the
proposition below is similar to [37, Proposition 4.22].

Proposition 17 (MERIT FUNCTION). Suppose that As-
sumption 7 holds. Consider a matrix U P Rdˆp that is
sufficiently close to Mb and satisfies }U} ă ξ, see (factor)
and (manifold). For a sufficiently large γ, the following
statements are true:
(i) If U is an FOSP of hγ , then U is also an FOSP of (factor)

and, in particular, U PMb.
(ii) If, in addition, U is an SOSP of hγ , then U is also an

SOSP of (factor).

We are now ready and fully equipped to reach Target 4.

X. MAIN RESULT

In Sections VI-VIII, we studied the nonconvex geometry
and optimality conditions of (factor). In Section IX, we then
introduced hγ , a (smooth) merit function for (factor).

We will establish in this section that the gradient flow for
the merit function hγ , when initialized properly, converges
almost surely to a global minimizer of (factor) and thus
achieves Target 4, without getting trapped by any spurious
SOSPs present in the feasible set of (factor).

The main result of this work is summarized in Theorem 21
and the rest of this section is devoted to the proof of this
theorem. We begin with an outline of the proof below.

Proof sketch of Theorem 21. At a high-level, we will take the
following steps in the remainder of this section to ultimately
prove Theorem 21. We will establish in this section that
(i) Rank does not increase along the gradient flow of hγ .

(ii) The gradient flow does not escape from a “capture
neighborhood” around the feasible set Mb of (factor).

(iii) When initialized rank-deficient and within this capture
neighborhood, the gradient flow of hγ converges to a
rank-deficient stationary point of hγ .

(iv) Finally, because hγ is a merit function for (factor), any
rank-deficient limit point of the gradient flow is, in fact,
a global minimizer of (factor).

Let us now turn to the details. For an initialization U0 P

Rdˆp, the gradient flow of hγ in (merit) is specified as
9Uptq “ ´∇hγpUptqq, Up0q “ U0, (gradient flow)

where we used the shorthand 9Uptq “ dUptq{dt.
The first lemma in this section posits that rank does not

increase along (gradient flow), as long as the flow remains
sufficiently close to the feasible set of (factor).

Lemma 18 (RANK OF GRADIENT FLOW). Suppose that
Assumption 7 holds. For a sufficiently small ρ0 ą 0, suppose
also that the initialization U0 P Rdˆp of (gradient flow)
satisfies distpU0,Mbq ă ρ0.

Let τ P p0,8q (if it exists) denote the smallest number such
that distpUpτq,Mbq “ ρ0. Then it holds that

rankpUptqq ď rankpU0q, if t P r0, τ s. (20)

Proof sketch of Lemma 18. This claim follows from
writing the analytic singular value decomposition (SVD)
of UptqUptqJ, then taking the derivative of this SVD with
respect to time t, and finally establishing that any zero
singular value of UptqUptqJ remains zero afterwards.

To successfully apply Lemma 18 for all times t, we
must ensure that (gradient flow) never escapes the ρ0-
neighborhood of the feasible set Mb of (factor). To that
end, we need the following lemma, which uses the re-
maining freedom in Lemma 18 in order to tighten the
inequality distpUptq,Mbq ď ρ0 to obtain the new inequal-
ity distpUptq,Mbq ď ρ0{2, for every t P r0, τ s.

Lemma 19 (FLOW REMAINS NEARBY). Suppose that As-
sumption 7 holds. Suppose also that ξ in (factor) and γ
in (gradient flow) are sufficiently large, and that ρ0 ą 0
in Lemma 18 is sufficiently small. Suppose lastly that the
initialization U0 P Rdˆp of (gradient flow) is sufficiently
close to Mb, see (manifold). Then it holds that

distpUptq,Mbq ď ρ0{2, if t P r0, τ s, (21)

where τ was defined in Lemma 18.

Proof sketch of Lemma 19. Moving along the trajectory
of (gradient flow) evidently reduces hγ . Intuitively, when γ
is large enough, moving along this trajectory also reduces
the feasibility gap 1

2}gpUq}
2
2, see (6), (AL) and (merit).

In the proof, we first quantify the above observation, i.e.,
formally establish that the feasibility gap does not increase
along (gradient flow) when γ is sufficiently large.

The remaining technical challenge is then translating
the above observation into a statement about the distance
between Uptq to the manifold Mb.

In the remainder of this section, for the sake of brevity,
we freely invoke earlier lemmas and propositions without
restating their assumptions.

Recalling the definition of τ in Lemma 18, it immediately
follows from Lemma 19 that

distpUptq,Mbq ď ρ0{2, if t ě 0. (22)

That is, (gradient flow) always remains near the feasible
set Mb of (factor), as desired. The key observation in (22)
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will enable us to prove the convergence of (gradient flow),
after recalling the Łojasiewicz’s Theorem [38], [39].

Theorem 20 (ŁOJASIEWICZ’S THEOREM). If h1 : Rn Ñ R
is an analytic function and the curve r0,8q Ñ Rn, tÑ zptq
is bounded and solves the gradient flow 9zptq “ ´∇h1pzq,
then this curve converges to an FOSP of h1.

To apply Theorem 20, we proceed as follows. When ρ0 ą 0
is sufficiently small, recall from Lemma 16 that hγ is an
analytic function on the set tU : distpU,Mbq ď ρ0{2u. Let
h1 : Rdˆp Ñ R be the analytic continuation of hγ from the
neighborhood tU : distpU,Mbq ď ρ0{2u to Rdˆp.

Recall also from (manifold) and (22) that (gradient flow)
is bounded and solves 9Uptq “ ´∇h1pUptqq. Therefore, by
Theorem 20, (gradient flow) converges to an FOSP of h1,
denoted by U . To reiterate, U is both the limit point
of (gradient flow) and an FOSP of h1.

By (22) and continuity of dist, the limit point U also
satisfies distpU,Mbq ď ρ0{2. By construction of h1 as
the analytic continuation of hγ , we then observe that U
is also an FOSP of hγ . To summarize, we have proved so
far that (gradient flow) converges to an FOSP of hγ , which
we have denoted by U .

Moreover, by Theorem 3 of [16], the FOSP U of hγ
is almost surely also an SOSP of hγ (rather than just an
FOSP). After recalling Proposition 17 about the relationship
between hγ and (factor), it follows that U is also an SOSP
of (factor), provided that γ is sufficiently large.

Suppose lastly that the initialization U0 of (gradient flow)
is rank-deficient, i.e., we have rankpU0q ă p. Then, using
Lemma 18 about the rank along the trajectory and also using
the fact that tU : rankpUq ď rankpU0qu is a closed set, we
find that the limit point U of (gradient flow) also satisfies

rankpUq ď rankpU0q ă p. (23)

We have established that the limit point U of (gradient flow)
is almost surely a rank-deficient SOSP of (factor).

Finally, by combining Proposition 14 and (23), we conclude
that the SOSP U of (factor) is almost surely a global
minimizer of (factor). The main result below summarizes
our findings and achieves Target 4.

Theorem 21 (MAIN RESULT). Suppose that Assumption 7
holds. Suppose also that ξ in (factor) and γ in (gradient flow)
are sufficiently large. Suppose lastly that the initialization
U0 P Rdˆp of (gradient flow) is rank-deficient and suffi-
ciently close to Mb, see (manifold).

Then (gradient flow) almost surely converges to a global
minimizer U of (factor). Moreover, U U

J
is a global

minimizer of (SDP). Above, the notion of distance to Mb

was made precise in Definition 5 and Remark 8.

Theorem 21 is a theoretical (rather than practical) recipe
for successful over-parametrized matrix factorization. In
particular, note that the operator A in (3) is not required

above to satisfy the RIP, which dominates the literature of
matrix sensing [1].

We also note that the existence of the initialization pre-
scribed in Theorem 21 can be ensured under the same
mild conditions that were listed after Assumption 3. In the
remainder of this section, we justify the assumptions made
in Theorem 21.

Remark 22 (ASSUMPTION 7 IS MINIMAL). Assump-
tion 7 corresponds to the standard constraint qualifications
for (factor). More specifically, Assumption 7 corresponds
to the weakest sufficient conditions under which the KKT
conditions [19], [40] are necessary for global optimality
in (factor), similar to [22, Section 5] or [4].

Without Assumption 7, in general there cannot be be any
hope of efficiently finding a matrix U that satisfies the
constraints ApUUJq “ b of (factor).

That is, without Assumption 7, the feasibility gap G in (6)
is not necessarily dominated by its gradient p∇GpUq “
0 œ GpUq “ 0q. In this scenario, a first-order optimization
algorithm cannot in general find a feasible matrix U (a
matrix U that satisfies GpUq “ 0). Such peculiarities are
not uncommon in nonconvex optimization [41].

From this perspective, Assumption 7 is minimal in order to
achieve Target 4.

Even though Assumption 7 has several precedents within
the nonconvex optimization literature [4], [7], [10], [37], we
note that verifying this assumption is often difficult in practice.
In this sense, Theorem 21 should be regarded as a theoretical
result that sheds light, for the first time, on the nonconvex
geometry of over-parametrized matrix factorization.

Remark 23 (INITIALIZATION). In Theorem 21, we cannot
obtain global guarantees because the feasible set of (factor)
may contain spurious stationary points that can trap the
gradient flow with an arbitrary initialization, see Figure 1.

It is then necessary to restrict the initialization in some way,
e.g., the initilization near the feasible set in Theorem 21.

Formally, Theorem 21 is a “capture theorem”, common in
nonconvex optimization literature [4], [7], [10], which pred-
icates on an initialization within a specific “capture neigh-
borhood” of the feasibility problem minU GpUq, see (6).

In Theorem 21, this capture neighborhood coincides with
a sufficiently small neighborhood of the feasible set Mb

of (factor), i.e., Theorem 21 applies only when (gradient flow)
is initialized near Mb.

We do not provide a provable scheme for finding a suffi-
ciently feasible initialization for (gradient flow). In that sense,
Theorem 21 should not be viewed as a practical initialization
scheme for (gradient flow) but rather a theoretical result
about the nonconvex geometry of (factor).

Nevertheless, as an important practical remark, we later
empirically observe that a random initialization U0 is often
a good choice that avoids the worst-case scenario in the
right panel of Figure 1.
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Remark 24 (LOCAL REFINEMENT RESULTS). Capture
theorems, including Theorem 21, are fundamentally different
from local refinement results that appear within the signal
processing literature [6, Chapter 5].

Indeed, note that the local refinement results rely on an
initialization within a small neighborhood of an isolated
global minimizer, in which the target function is locally
strongly convex.

In contrast, even though Theorem (21) requires a sufficiently
feasible initialization, this initialization might be far from
any global minimizer of (factor).

Moreover, a small neighborhood of the feasible set contains
all spurious stationary points of (factor), whereas a small
neighborhood of a global minimizer will contain no other
stationary points, by design.

In other words, even though Theorem 21 requires a
sufficiently feasible initialization, (gradient flow) might have
to travel far within the capture neighborhood and avoid
the spurious stationary points, before eventually reaching a
global minimizer.

Remark 25 (SUFFICIENTLY SMALL / CLOSE / LARGE).
Adding to the earlier Remark 8, we note that the requirements
in Theorem 21 on ξ, γ, U0 involve certain geometric attributes
of Mb in (manifold) which are difficult to estimate.

Even though the requirements on the initialization U0 are
specified precisely in the proofs, we chose not to present
them in the body of the paper because of their little added
value and to avoid any unnecessary clutter.

XI. DISCRETIZATION

It is not difficult to verify that (gradient flow) converges
at the rate of 1{t. Its limit point is almost surely a global
minimizer of (factor), by virtue of Theorem 21.

The literature often focuses on flows rather than their
discretization, for the sake of simplicity and insight [2],
[4], [9], [42]. Nevertheless, discretization of (gradient flow)
is an important computational consideration, which we now
discuss in this section.

We will not pursue an explicit Euler (or forward) discretiza-
tion of (gradient flow). We do so to avoid stability concerns
about the derivative of λpU,Uq, see Lemma 9.

Instead of a forward discretization, we consider here
a heuristic discretization of (gradient flow). Our heuristic
discretization below is inspired by [43] in the context of
optimization with orthogonality constraints.

In short, at iteration k, we move along the direc-
tion ´∇1LγpUk, λkq, where λk :“ λpUk, Ukq. Recall
that λp¨, ¨q was defined in (14) and ∇1Lγ is the partial
derivative of the augmented Lagrangian in (AL) with respect
to its first argument.

The details are presented in Algorithm 1. The convergence
analysis of Algorithm 1 is an important and nontrivial
research question that lies beyond of the scope of this

theoretical paper. Nevertheless, we next present a numerical
example to showcase the potential of Algorithm 1 for
solving (factor).

Input: Symmetric dˆ d matrices tAiumi“1 and the
corresponding operator A in (3), vector b P Rm,
integer p such that pd ě m, initialization
U0 P Rdˆp, positive penalty weight γ and positive
step sizes tηkuk.

Set k “ 0. Until convergence, repeat
1) Update the dual variables as λk :“ λpUk, Ukq,

see (14).
2) Update the primal variables as

Uk`1 “ p1´ ηkqUk

`

m
ÿ

i“1

ηk

´

λk,i ´
γ

2
pxAi, UkU

J
k y ´ biq

¯

AiUk,

where λk,i and bi are the ith entries of the vectors λk
and b, respectively.

3) k Ð k ` 1
Algorithm 1: Discretization of (gradient flow)

XII. NUMERICAL EXAMPLE

This section presents a small numerical example that shows
the potential of Algorithm 1 for over-parametrized matrix
factorization. A comprehensive numerical study remains as
a future research target, alongside developing a convergence
theory for Algorithm 1.

Recall the setup of (factor). In our numerical example, we
set d “ 15, m “ 30, p “ r

?
2ms, ξ " 1. invoke the Pataki’s

lemma [20][21, Theorem 6.1] to verify that Assumption 3 is
fulfilled. (In particular, we are indeed in the over-parametrized
regime, see Assumption 3.(ii).)

We also choose the linear operator A : Rdˆd Ñ Rm
and the vector b P Rm both randomly. More specifically,
the upper triangle entries of every matrix Ai P Rdˆd are
independently drawn from the zero-mean and unit-variance
Gaussian distribution. Similarly, b is a standard Gaussian
random vector. Moreover, tAiumi“1 and b are independent
from one another.

Because Assumption 3.(i) is fulfilled, (SDP) is a tight relax-
ation of (factor). In particular, the optimal value of (factor)
coincides with the optimal value of the convex problem (SDP).
As a benchmark, we can use CVX [24], [25] to solve (SDP)
and obtain the common optimal value of (SDP) and (factor).

We then attempt to solve (factor) with Algorithm 1, where
we set the penalty weight and step sizes to γ “ 100 and ηk “
2 ¨ 10´5 for every k. We use three different initializations for
Algorithm 1, detailed below:
(i) A deterministic initialization, where U0 P Rdˆp is filled

by zeros and ones.



13

(ii) A “partial oracle” initialization, where U0 contains only
one correct column of a global minimizer of (factor).
The remaining entries of U0 are all set to one. Here, we
can obtain a global minimizer of (factor) by taking the
square root of CVX’s output of (SDP).

(iii) U0 is a standard Gaussian random matrix.
In all cases, we then normalize U0 to ensure that }U0}F “ 3.
This last step is for convenience and allows us to use the
same step size for all three initializations.

Figure 3 shows the feasibility gap and the target value
of (factor) across the iterations of Algorithm 1, using the
above three initializations. For comparison, the optimal
value of problem (factor) is shown with a dashed line. The
MATLAB code will be made available with the paper.

Algorithm 1 with both the deterministic and partial oracle
initializations converges to stationary points of hγ but neither
of these two limit points is feasible for (factor).

That is, Algorithm 1 fails for both initializations to produce
an output that satisfies the constraints in (factor). In both
cases, note that the output of Algorithm 1 is not a spurious
stationary point of (factor).

The failure of Algorithm 1 with these two initializations
hints at the complex landscape of the merit function hγ
and, in turn, the difficulty of solving (factor) in the over-
parametrized regime.

Nevertheless, Algorithm 1 with a generic initialization
successfully solves (factor) to global optimality in Figure 3.
Remarkably, our experience was that a generic initialization
always avoids the worst-case scenarios, such as the right
panel of Figure 1 or the first two initializations in Figure 3.
This observation is briefly discussed in the next section.

It is also worth noting that we found it helpful in our
simulations to stabilize Algorithm 1 by replacing KpUkq
in (14) by KpUkq`10´9Im, where Im is the identity matrix.

Lastly, note that it is difficult to verify the manifold
requirement for Mb or to numerically identify its capture
neighborhood. In this sense, Theorem 21 should be regarded
as a theoretical contribution that sheds light, for the first
time, on the nonconvex geometry of (factor) in the over-
parametrized regime, rather than a practical initialization
scheme for Algorithm 1. In practice, a generic initialization
seems to be an excellent choice for Algorithm 1.

XIII. FINAL THOUGHTS

This work raises a few intriguing questions. First, as
mentioned earlier, a stable and provable discretization
of (gradient flow) is an interesting and nontrivial future
research question. In particular, the convergence analysis
of Algorithm 1 remains an open problem.

Second, in our numerical examples, recall that we came
across both spurious stationary points of (factor) and infeasi-
ble stationary points of its merit function hγ , see the right
panel of Figures 1 and 3, respectively. These observations

0.5 1 1.5 2 2.5 3
105

10-20

10-10

100
Deterministic
Partial oracle
Random

0 0.5 1 1.5 2 2.5 3
105

0

2

4
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8
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Fig. 3: For the numerical example of Section XII, this figure
shows the feasibility gap (top panel) and the target value
(bottom panel) of (factor) across the iterations of Algorithm 1,
using three different initializations.

suggest that (factor) is a difficult problem to solve in the
over-parametrized regime.

At the same time, what explains the surprising success of
Algorithm 1 when the linear operator A and the initialization
are both generic? Answering this interesting question might
require new technical tools beyond our toolbox in this paper.

APPENDIX A
PROOF OF LEMMA 19

An important ingredient of the proof is the following
technical lemma, which states that the feasibility gap is
non-increasing along (gradient flow).

Lemma 26 (FLOW REMAINS NEARLY FEASIBLE). Suppose
that the same assumptions made in Lemma 19 are fulfilled.
Then it holds that

}gpUtq}2 ď }gpU0q}2, if t P r0, τ s, (24)
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where g was defined in (6).

Before proving Lemma 26 in a later appendix, let us here
complete the proof of Lemma 19. The technical challenge
ahead is translating the upper bound in (24) into an upper
bound on the distance from Ut to the set Mb in (manifold).
We first write that

}gpU0q}2 ě }gpUtq}2 (see Lemma 26)

“
1

2
}ApUtUJt q ´ b}2 (see (6)), (25)

for every t P r0, τ s. To lower bound the last norm above, the
idea is to replace b above with the image of a particular point
in Mb under the map U Ñ ApUUJq, see (manifold). That
particular point is the projection of Ut onto Mb, as detailed
next: When ξ is sufficiently large, let Vt P Mb denote a
projection of Ut onto Mb in (manifold). That is, when ξ is
sufficiently large, there exists Vt PMb such that

}Ut ´ Vt}F “ distpUt,Mbq

ď }Ut ´ V }F, if V PMb, (26)

where the second inequality above follows from (metric).
Recall also that the normal space of the smooth manifold Mb

was specified in (11). In particular, note that Ut ´ Vt P
NVtMb by (26). Equivalently, there exists a vector αt P Rm
such that

Ut “ Vt ` pDgpVtqq
˚rαts. (see (11), (26)) (27)

It follows that

distpUt,Mbq “ }Ut ´ Vt}F (see (26))
“ }pDgpVtqq

˚rαts}F (see (27))
ď }pDgpVtqq

˚} ¨ }αt}2

“ }DgpVtq} ¨ }αt}2

ď ξ}A} ¨ }αt}2. (28)

The last line above follows from the observation that

}DgpVtq} ď }Vt}}A} (see (7))
ď ξ}A}. p(manifold) and Vt PMbq (29)

Under Assumption 7, we can also write a converse for (28).
That is,

distpUt,Mbq “ }Ut ´ Vt}F (see (26))
“ }pDgpVtqq

˚rαts}2 (see (27))
ě σmpDgpVtqq ¨ }αt}2 pm ď pdq

ě σmpMbq ¨ }αt}2. pVt PMbq (30)

For brevity, above we set

σmpMbq :“ mintσmpDgpUqq : U P clpMbqu ą 0. (31)

Note that σmpMbq above is positive under Assumption 7
because Mb in (manifold) is bounded. The two inequalities

in (28) and (30) relate distpUt,Mbq to αt. These two
inequalities will be useful for us later in the proof.

To continue, note also that we have ApVtV Jt q “ b because
Vt P Mb by construction, see also (manifold). Using this
last observation, we now revisit (25) and write that

2}gpU0q}2

ě }ApUtUJt q ´ b}2 (see (25))

“ }ApUtUJt ´ VtV Jt q} (see (manifold))

“

›

›

›
2AppDgpVtqq˚rαtsV Jt q

`AppDgpVtqq˚rαts ¨ ppDgpVtqq˚rαtsqJq
›

›

›

2
, (32)

where we used (27) in the last identity above. There, we also
benefited from the symmetry of tAiumi“1 in (3). By applying
the reverse triangle inequality to the last line above, it follows
from (32) that

2}gpU0q}2 ě 2}AppDgpVtqq˚rαtsV Jt q}2
´ }AppDgpVtqq˚rαts ¨ ppDgpVtqq˚rαtsqJq}2
ě 2}AppDgpVtqq˚rαtsV Jt q}2
´ }A}} ¨DgpVtq}2 ¨ }αt}22
“ 2}ppDgpVtqq ˝ pDgpVtqq

˚qrαts}2

´ }A} ¨ }DgpVtq}2 ¨ }αt}22, (see (7)) (33)

where ˝ denotes the composition of two operators. Recalling
the fact that Vt P Mb by construction, the last line above
can be lower bounded as

2}gpU0q}2 ě 2σmpMbq
2}αt}2

´ }A} ¨ ξ2}A}2 ¨ }αt}22 (see (29), (31))

ě σmpMbq
2}αt}2, (34)

where the last line above holds if }α}2 is sufficiently small,
i.e., the last line above holds if

}αt}2 ď
σmpMbq

2

ξ2}A}3
. (35)

In view of (28) and (30), it follows from (34) and (35) that

distpUt,Mbq ď
σmpMbq

3

ξ2}A}3

ùñ distpUt,Mbq ď
2ξ}A}}gpU0q}2

σmpMbq
2

. (36)

Recalling the assumptions of Lemma 19, note that
distpUt,Mbq ď ρ0 for every t P r0, τ s. Suppose that ρ0
is sufficiently small, i.e., take

ρ0 ď
σmpMbq

3

ξ2}A}3
. (37)

Then, (36) immediately implies that

distpUt,Mbq ď
2ξ}A} ¨ }gpU0q}2

σmpMbq
2

, if t P r0, τ s. (38)
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Let us now rephrase the right-hand side of (38). Specifically,
we next upper bound }gpU0q}2 above by the initial distance
to the manifold, i.e., distpU0,Mbq. Recall from (26) that
V0 PMb denotes a projection of U0 on Mb in (manifold).
In particular, V0 P Mb implies that ApV0V J0 q “ b
by (manifold). Using this last observation and (26), we
bound }gpU0q}2 as

}gpU0q}2 “
1

2
}ApU0U

J
0 q ´ b}2 (see (6))

“
1

2
}ApU0U

J
0 ´ V0V

J
0 q}2 (see (manifold))

ď
1

2
}A} ¨ }U0U

J
0 ´ V0V

J
0 }F

ď
1

2
}A} ¨ p}U0} ` }V0}q ¨ }U0 ´ V0}F

ď }A}ξ ¨ }U0 ´ V0}F

“ }A}ξ ¨ distpU0,Mbq, (see (26)) (39)

where the second-to-last line above assumes that ξ is
sufficiently large, i.e., ξ ě }U0}. The second-to-last line
in (39) also uses the fact that V0 PMb in (manifold) and, in
particular, }V0} ď ξ. By combining (38) and (39), we arrive
at

distpUt,Mbq ď
2ξ2}A}2 distpU0,Mbq

σmpMbq
2

, if t P r0, τ s,

provided that ξ is sufficiently large. By setting distpU0,Mbq

sufficiently small, i.e., by taking

distpU0,Mbq ď
σmpMbq

2ρ0
4ξ2}A}2

, (40)

we can ensure that

distpUt,Mbq ď ρ0{2, if t P r0, τ s. (41)

Above, ρ0 was defined in Lemma 18. This completes the
proof of Lemma 19.

APPENDIX B
PROOF OF LEMMA 26

Recall that ρ0 denotes the radius of the neighborhood in
Lemma 18. Recall also from (6), (8) and (19) that

∇hγpUtq “ pI ´A˚pλpUt, UtqqqUt ` γpDgpUtqq˚rgpUtqs
´ pDλpUt, Utqq

˚rgpUtqs, (42)

for every t P r0, τ s. Recall from (6) the definition of the
(scaled) feasibility gap G : Rdˆp Ñ R. To study the evolution
of the feasibility gap along (gradient flow), we write that

dGpUtq

dt
“ x∇GpUtq, 9Uty (chain rule)
“ ´x∇GpUtq,∇hγpUtqy (see (gradient flow))
“ ´xpDgpUtqq

˚rgpUtqs,∇hγpUtqy ((6) and chain rule)
“ ´xpDgpUtqq

˚rgpUtqs, pId ´A˚pλpUt, UtqqqUty
´ γ}pDgpUtqq

˚rgpUtqs}
2
F

` xpDgpUtqq
˚rgpUtqs, pDλpUt, Utqq

˚rgpUtqsy (see (42))
ď }DgpUtq} ¨ }gpUtq}2 ¨ }Id ´A˚pλpUt, Utqq} ¨ }Ut}F
´ γpσmpDgpUtqqq

2 ¨ }gpUtq}
2
2

` }DgpUtq} ¨ }DλpUt, Utq} ¨ }gpUtq}
2
2 (Cauchy-Schwarz)

“
a

2GpUtq ¨
´

}DgpUtq} ¨ }Id ´A˚pλpUt, Utqq} ¨ }Ut}F

´ γpσmpDgpUtqqq
2
a

2GpUtq

` }DgpUtq} ¨ }DλpUt, Utq}
a

2GpUtq
¯

. (see (6)) (43)

To control the terms in the last identity above, we make two
observations:
1) Recall that both clpMbq in (manifold) and its neigh-

borhood tU : distpU,Mbq ď ρ0u are compact sets.
Because ρ0 ă ρ by design, note also that g in (6)
and λ are both continuously-differentiable functions on
tU : distpU,Mbq ď ρ0u, see Lemma 9. Here, ρ is the
radius of the neighborhoods both in Assumption 7 and
Lemma 9.
It follows that the functions U Ñ }DgpUq}, U Ñ

}Id ´A˚pλpU,Uqq}, U Ñ }U}F, and U Ñ }DλpU,Uq}
are all bounded on the set tU : distpU,Mbq ď ρ0u.
Consequently, the corresponding terms in the last identity
of (43) are bounded on the interval r0, τ s.

2) Moreover, Assumption 7 and ρ0 ă ρ together imply that
the function U Ñ σmpDgpUqq is bounded away from
zero on the set tU : distpU,Mbq ď ρ0u. Consequently,
the corresponding term in the last identity of (43) is
bounded away from zero on the interval r0, τ s.

If GpUt0q “ 0 for t0 P r0, τ s, we find from (43) that GpUtq “
0 for every t P rt0, τ s. That is, once feasible, (gradient flow)
remains feasible afterwards. On the other hand, in view of
the above two observations, we see that dGpUtq{dt ă 0
for every t P r0, t0q, provided that γ is sufficiently large.
We conclude that dGpUtq{dt ă 0 for every t P r0, τ s,
provided that γ is sufficiently large. This completes the proof
of Lemma 26.
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Supplementary Material

APPENDIX A
PROOF OF LEMMA 9

In order to find an explicit expression for λpU,Uq
in (multipliers), we first calculate ppDgpUqq˚q: as follows.
Under Assumption 3.(ii) and after recalling (8), note that
ppDgpUqq˚q: : Rdˆp Ñ Rm is specified as

ppDgpUqq˚q:r∆s :“ pKpUqq:Ap∆UJq,
KpUq :“ rxAiU,AjUys

m
i,j“1 P Rmˆm, (44)

for ∆ P Rdˆp. We then recall the definition of λpU,Uq
in (multipliers) to write that

λpU,Uq “ ppDgpUqq˚q:rU s (see (multipliers))

“ pKpUqq:ApUUJq, (see (44)) (45)

which proves (14).
We next prove the second claim in Lemma 9. Recall that

Assumption 7 holds and let ρ denote the radius of the
neighborhood specified in Assumption 7. That is,

rankpDgpUqq “ m, if distpU,Mbq ď ρ. (46)

Equivalently, by definition of pDgpUqq˚ in (8), the matrices
tAiUu

m
i“1 are linearly independent for every U such that

distpU,Mbq ď ρ. From (44) and (46), it immediately follows
that

rankpKpUqq “ m, if distpU,Mbq ď ρ. (47)

Note that KpUq in (45) is an analytic function of U in
Rdˆp. By (47) and the boundedness of Mb in (manifold),
pKpUqq´1 is also an analytic function of U on the set

Mb,ρ :“ tU : distpU,Mbq ă ρu. (48)

In view of (45), λpU,Uq is also an analytic function of U on
the set Mb,ρ, which proves the second claim in Lemma 9.

We next prove the third and final claim in Lemma 9. To
compute the derivative of λpU,Uq with respect to U , we
begin by computing the (total) derivatives of KpUq and
pKpUqq´1, see (44). For ∆ P Rdˆp, note that the directional
derivative of KpUq at U and along the direction ∆ is given
by

DKpUqr∆s “ 2 rxAi∆, AjUys
m
i,j“1 “: 2 rKpU,∆q. (49)

To compute the directional derivative of pKpUqq´1 at U P
Mb,ρ and along ∆ P Rnˆp, we compute the directional

derivative of both sides of the identity KpUq ¨ pKpUqq´1 “

Im, along a direction ∆ P Rdˆp. That is,

DKpUqr∆s ¨ pKpUqq´1 `KpUq ¨DpKpUqq´1r∆s “ 0,

which, after rearranging, yields that

DpKpUqq´1r∆s

“ ´pKpUqq´1 ¨DKpUqr∆s ¨ pKpUqq´1

“ ´2pKpUqq´1 ¨ rKpU,∆q ¨ pKpUqq´1. (see (49)) (50)

Having computed in (50) the directional derivative of
pKpUqq´1 at U PMb,ρ, we are now ready to compute the
derivative of λpU,Uq with respect to U as follows. Using the
definition of λpU,Uq in (45) and for a direction ∆ P Rdˆp,
the directional derivative of λpU,Uq along ∆ is given by

DλpU,Uqr∆s (51)

“ DpKpUqq´1r∆s ¨ApUUJq ` 2pKpUqq´1Ap∆UJq
“ ´2pKpUqq´1

rKpU,∆qpKpUqq´1ApUUJq
` 2pKpUqq´1Ap∆UJq (see (50))

“ 2pKpUqq´1
´

´ rKpU,∆qpKpUqq´1ApUUJq `Ap∆UJq
¯

.

This completes the proof of Lemma 9.

APPENDIX B
PROOF OF PROPOSITION 15

Recalling (manifold), let us fix U P Rdˆp such that
distpU,Mbq ď ρ and }U} ă ξ, where ρ is the radius of
the neighborhood in Assumption 7. Recall also (AL). For
λ1 P Rm, note that the gradient of the augmented Lagrangian
with respect to its first argument is specified as

∇1LγpU, λ
1q

“ ∇fpUq ´ pDgpUqq˚rλ1s ` γpDgpUqq˚rgpUqs. (52)

17



18

With the choice of λ1 “ λpU,Uq from (multipliers), we
rewrite (52) as

∇1LγpU, λpU,Uqq

“ ∇fpUq ´ pDgpUqq˚rλpU,Uqs ` γpDgpUqq˚rgpUqs
“ ∇fpUq ´

`

pDgpUqq˚ ˝ ppDgpUqq˚q:
˘

rU s

` γpDgpUqq˚rgpUqs (see (multipliers))

“ ∇fpUq ´
`

pDgpUqq˚ ˝ ppDgpUqq˚q:
˘

r∇fpUqs
` γpDgpUqq˚rgpUqs (see (6))

“ pId´ pDgpUqq˚ ˝ ppDgpUqq˚q:qr∇fpUqs
` γpDgpUqq˚rgpUqs, (53)

where Id is the shorthand for the identity map. Note that the
two terms in the last line above are in fact orthogonal to one
another; one is in the range of the operator pDgpUqq˚ and
the other is orthogonal to rangeppDgpUqq˚q. In particular,
∇1LγpU, λpU,Uqq “ 0 implies that both

pId´ pDgpUqq˚ ˝ ppDgpUqq˚q:qr∇fpUqs “ 0,

and pDgpUqq˚rgpUqs “ 0. (54)

Moreover, recall the earlier assumption that distpU,Mbq ď ρ,
where ρ is the radius of the neighborhood of Mb in
Assumption 7. From this assumption, it follows that DgpUq :
Rdˆp Ñ Rm is a rank-m linear operator. In particular, the
operator DgpUq˚ has a trivial null-space. This observation
allows us to simplify the second identity in (54). More
specifically, we find that both

pId´ pDgpUqq˚ ˝ ppDgpUqq˚q:qr∇fpUqs “ 0

and gpUq “ 0. (55)

Note that gpUq “ 0 above and the earlier assumption that
}U} ă ξ together imply that U P Mb, see (manifold). In
view of (13) and (15), we also identify the first expression
above as ∇Mb

fpUq. We can therefore rewrite (55) as

∇Mb
fpUq “ 0 and gpUq “ 0 and }U} ă ξ. (56)

That is, in view of Definition 10, U is an FOSP of (factor).
This proves the first item of Proposition 15.

To prove the second item in Proposition 15, let U be an
FOSP of (factor). For λ1 P Rm, note that the Hessian of the
augmented Lagrangian with respect to its first argument is
the bilinear operator specified as

∇2
1LγpU, λ

1q “ ∇2fpUq ´
m
ÿ

i“1

pλ1i ´ γgipUqq∇2gipUq

` γpDgpUqq˚ ˝DgpUq (see (AL))

“ ∇2fpUq ´
m
ÿ

i“1

λ1i∇2gipUq

` γpDgpUqq˚ ˝DgpUq, (see (16)) (57)

where λ1i and gipUq are the ith coordinates of the vectors
λ1 P Rm and gpUq, respectively. In the second line above,

we used the fact that gpUq “ 0 for the FOSP U . For the
choice of λ1 “ λpU,Uq from (multipliers), we reach

∇2
1LγpU, λpU,Uqq “ ∇2fpUq ´

m
ÿ

i“1

λipU,Uq∇2gipUq

` γpDgpUqq˚ ˝DgpUq, (58)

where λipU,Uq is the ith coordinate of the vector λpU,Uq.
Let PTUMb

denote the projection onto the tangent space
TUMb. Suppose also that ∇2

1LγpU, λpU,Uqqr∆,∆s ě 0 for
every tangent direction ∆ P TUMb. It then follows that

0 ď PTUMb
˝∇2

1LγpU, λpU,Uqq ˝ PTUMb

“ PTUMb
˝

´

∇2fpUq ´
m
ÿ

i“1

λipU,Uq∇2gipUq

` γpDgpUqq˚ ˝DgpUq
¯

˝ PTUMb
(see (58))

“ PTUMb
˝

˜

∇2fpUq ´
m
ÿ

i“1

λipU,Uq∇2gipUq

¸

˝ PTUMb

“ PTUMb
˝∇2

Mb
fpUq ˝ PTUMb

. (see (17)) (59)

To obtain the second identity above, we used (11), and
the orthogonality of tangent and normal spaces. In view
of Definition 11, we conclude from (59) that U is an SOSP
of (factor). This proves the second item in Proposition 15
and completes the proof of Lemma 15.

APPENDIX C
PROOF OF LEMMA 16

Recall from Lemma 9 that λpU,Uq is an analytic function of
U on the set tU : distpU,Mbq ă ρu, where ρ is the radius
of the neighborhood in Assumption 7. It follows that hγ
in (merit) is also an analytic function of U in the same set.
See also (6) and (AL) to review the notation used in this
paragraph.

To derive an expression for the derivative of hγ in (19),
we calculate the directional derivative of hγ at U such that
distpU,Mbq ă ρ and along the direction ∆ P Rdˆp, i.e.,

DhγpUqr∆s

“ DLγpU, λpU,Uqqr∆s (see (merit))
“ DfpUqr∆s ´ xpDgpUqq˚rλpU,Uq ´ γgpUqs,∆y

´ xpDλpU,Uqq˚rgpUqs,∆y (see (AL))

“ xpId ´A˚pλpU,UqqqU,∆y ` γ

2
xA˚

`

ApUUJq ´ b
˘

U,∆y

´
1

2
xpDλpU,Uqq˚rApUUJq ´ bs,∆y. (see (6), (8))

Above, the derivative of λpU,Uq with respect to U was com-
puted in Lemma 9. This completes the proof of Lemma 16.
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APPENDIX D
PROOF OF PROPOSITION 17

The proof is similar to that of Proposition 15. Recall-
ing (manifold), we fix U P Rdˆp such that distpU,Mbq ď ρ1

and }U} ă ξ. Here, ρ1 ą 0 is sufficiently small. To be
specific, we assume that ρ1 ă ρ, where ρ is the radius of
the neighborhood in Assumption 7. Our starting point is the
expression for ∇hγpUq in (19). By comparing this expression
with (6), (7) and (13), we can rewrite (19) as

∇hγpUq “
`

Id´ pDgpUqq˚q ˝ ppDgpUqq˚q:
˘

r∇fpUqs
` γpDgpUqq˚rgpUqs ´ pDλpU,Uqq˚rgpUqs. (60)

Note that the second term on the right-hand side above is in
the range of the operator pDgpUqq˚, whereas the first term
on the right-hand side above is orthogonal to this range. For
brevity, let PU :“ ppDgpUqq˚q ˝ ppDgpUqq˚q: denote the
orthogonal projection onto the subspace rangeppDgpUqq˚q.
After projecting both sides of (60) onto rangeppDgpUqq˚q:

PU r∇hγpUqs
“ γpDgpUqq˚rgpUqs ´ pPU ˝ pDλpU,Uqq˚qq rgpUqs
“: OγpUqrgpUqs. (61)

Below we make two observations about (61).
1) It follows from the boundedness of Mb in (manifold) that

the neighborhood tU : distpU,Mbq ď ρ1u is a compact
set. In view of Assumption 7, we therefore have that

min
 

σmpDgpUqq : distpU,Mbq ď ρ1
(

ą 0, (62)

where ρ1 was specified earlier.
2) Recall from the first item above that tU : distpU,Mbq ď

ρ1u is a compact set. Recall also from Lemma 9 that Dλ
is a continuous function on the this set because, earlier
in this appendix, we specified that ρ1 ă ρ. Consequently,

max
 

}PU ˝ pDλpU,Uqq˚q} : distpU,Mbq ď ρ1
(

ď

max
 

}pDλpU,Uqq˚q} : distpU,Mbq ď ρ1
(

ă 8, (63)

where the first inequality above uses the fact that PU is
an orthogonal projection.

In view of (62) and (63), for sufficiently large γ, we conclude:

min
 

σmpOγpUqq : distpU,Mbq ď ρ1
(

ą 0. (64)

In particular, the operator OγpUq has a trivial null space for
every U such that distpU,Mbq ď ρ1.

Next, let us consider U such that distpU,Mbq ď ρ1 and
}U} ă ξ. Suppose also that U is an FOSP of hγ , i.e.,
∇hγpUq “ 0. It follows from (61) that OγpUqrgpUqs “ 0.
Since we just established in (64) that OγpUq has a trivial
null space, OγpUqrgpUqs “ 0 in turn implies that gpUq “ 0.
Combined with the assumption that }U} ă ξ, we reach
that U P Mb, see (6) and (manifold). From this point, by
following the same steps as in the proof of Proposition 15,

we find that U is an FOSP of (factor). This proves the first
item in Proposition 17.

To prove the second item in Proposition 17, for the same
U as in the above paragraph, we can use (AL) and (merit)
to calculate the (Euclidean) Hessian of hγ at U as

∇2hγpUq “ ∇2fpUq ´
m
ÿ

i“1

pλipUq ´ γgipUqq∇2gipUq

´ pDgpUqq˚ ˝DλpUq ´ pDλpUqq˚ ˝DgpUq

` γpDgpUqq˚ ˝DgpUq ´
m
ÿ

i“1

gipUq∇2λipUq

“ ∇2fpUq ´
m
ÿ

i“1

λipUq∇2gipUq

´ pDgpUqq˚ ˝DλpUq ´ pDλpUqq˚ ˝DgpUq

` γpDgpUqq˚ ˝DgpUq, (see (16)) (65)

where the the second identity above uses the fact that U is
an FOSP of (factor); in particular, gpUq “ 0 by (16).

Next, let us assume that ∇2hγpUq ě 0. It follows that
PTUMb

˝ ∇2hγpUq ˝ PTUMb
ě 0, where PTUMb

is the
orthogonal projection onto the tangent space of Mb at U :

0 ď PTUMb
˝∇2hγpUq ˝ PTUMb

“ PTUMb
˝

´

∇2fpUq ´
m
ÿ

i“1

λipUq∇2gipUq

´ pDgpUqq˚ ˝DλpUq ´ pDλpUqq˚ ˝DgpUq

` γpDgpUqq˚ ˝DgpUq
¯

˝ PTUMb
(see (65))

“ PTUMb
˝

´

∇2fpUq ´
m
ÿ

i“1

λipUq∇2gipUq
¯

˝ PTUMb

“ PTUMb
˝∇2

Mb
fpUq ˝ PTUMb

, (see (17)) (66)

where, in the second identity above, we used the fact that the
tangent space at U PMb is orthogonal to rangeppDgpUqq˚q,
see (11). From the last line above, we conclude that U is
also an SOSP of (factor), see Definition 11. This proves the
second item and completes the proof of Proposition 17.

APPENDIX E
PROOF OF LEMMA 18

Throughout the remaining proofs, we will often show the
dependence on time t as a subscript. For example, we will
write Ut instead of Uptq. In this particular proof, we assume
that the radius ρ0 of the neighborhood specified in Lemma 18
is strictly smaller than ρ, where ρ is the radius of the
neighborhood in Assumption 7 and Lemma 9. That is, ρ0 ă ρ.
Recall from (6) and (19) that

∇hγpUtq “ pId ´A˚pλpUt, UtqqqUt ` γA˚pgpUtqqUt
´ pDλpUt, Utqq

˚rgpUtqs, (67)
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for every t P r0, τ s. Let us also define

Xt :“ UtU
J
t P Rdˆd, if t P r0, τ s. (68)

Note that the above flow in Rdˆd satisfies

X0 “ U0U
J
0 , (see (68)) (69)

9Xt “ 9UtU
J
t ` Ut

9UJt (see (68))

“ ´∇hγpUtqUJt ´ Utp∇hγpUtqqJ (see (gradient flow))
“ ´pId ´A˚pλpUt, UtqqqXt ´ γA˚pgpUtqqXt

` pDλpUt, Utqq
˚rgpUtqsU

J
t ´XtpId ´A˚pλpUt, Utqqq

´ γXtA˚pgpUtqq ` Ut ppDλpUt, Utqq˚rgpUtqsq
J
,

where the last identity above uses (67) and (68). In the
last identity above, we also used the fact that tAiumi“1

are symmetric matrices, see (3). The next technical result
establishes that the flow (69) has an analytic singular value
decomposition (SVD).

Lemma 27 (ANALYTIC SVD). Suppose that the assumptions
made in Lemma 18 are fulfilled. Then the flow (69) has the
analytic SVD

Xt
SVD
“ VtStV

J
t , if t P r0, τ s, (70)

where Vt P Rdˆd is an orthonormal basis and the diagonal
matrix St P Rdˆd contains the singular values of Xt in no
particular order. Moreover, Vt and St are analytic functions
of t on the interval r0, τ s.

Proof. Recall from Lemma 16 that hγpUq is an analytic
function of U in the set tU : distpU,Mbq ď ρ0u, where ρ0
was specified in the beginning of this appendix. By construc-
tion, (gradient flow) remains in the ρ0-neighborhood of Mb

on the interval r0, τ s. That is, distpUt,Mbq ď ρ0 for every
t P r0, τ s. It therefore follows from Theorem 1.1 in [44]
that Ut is an analytic function of t on the interval r0, τ s.
Consequently, Xt “ UtU

J
t is also an analytic function of t

on the interval r0, τ s, see (68). In view of Theorem 1 in [45],
it follows that Xt has an analytic SVD, as claimed.

By comparing (68) and (70), we record another simple
technical lemma for later use.

Lemma 28 (DECOMPOSITION). Suppose that the assump-
tions made in Lemma 18 are fulfilled. Then there exist
tRtut Ă Rdˆp such that

Ut “ Vt
a

StRt, if t P r0, τ s, (71)

where the nonzero rows of Rt P Rdˆp are orthonormal.

Proof. Since Vt is an orthonormal basis by Lemma 27, we
let Ut “ VtQt for a matrix Qt P Rdˆp. It follows from (68)
and (70) that QtQJt “ St. For notational convenience,
suppose that only the first l diagonal entries of the diagonal
matrix St are nonzero, for an integer l ď p. We let St,l P Rlˆl

denote the corresponding submatrix of St. We can then write
that

QtQ
J
t “

„

St,l 0lˆpd´lq
0pd´lqˆl 0pd´lqˆpd´lq



. (72)

It follows from (72) that

Qt,lQ
J
t,l “ St,l, Qt,l` “ 0, (73)

where Qt,l P Rlˆp is the row submatrix of Qt that
corresponds to its first l rows. Similarly, Qt,l` P Rpd´lqˆp
contains the remaining rows of Qt. It follows from (73)
that the rows of Qt,l are orthogonal to one another. That is,
Qt,l “

a

St,lRt,l for a matrix Rt,l P Rlˆp with orthonormal
rows. Here,

a

St,l is well-defined because the diagonal
matrix St,l contains the positive singular values of Xt, see
Lemma 27. In turn it follows that Qt “

?
StRt, where we

set the remaining row subset of Rt P Rdˆp to zero.

In view of Lemma 27, we take the derivative with respect
to t of both sides of (70) to find that

9Xt “ 9VtStV
J
t ` Vt

9StV
J
t ` VtSt

9V Jt , if t P r0, τ s. (74)

By multiplying both sides above by V Jt and Vt from left
and right, we reach

V Jt
9XtVt “ V Jt

9VtSt ` 9St ` St 9V Jt Vt, if t P r0, τ s. (75)

On the right-hand side above, we used the fact that Vt is an
orthonormal basis by Lemma 27, i.e., V Jt Vt “ Id. Taking
the derivative of both sides of the last identity also yields

9V Jt Vt ` V
J
t

9Vt “ 0, if t P r0, τ s. (76)

That is, V Jt 9Vt is a skew-symmetric matrix. In particular, both
9V Jt Vt and V Jt 9Vt are hollow matrices, i.e., both matrices have

zero diagonal entries. By taking the diagonal part of both
sides of (75), we thus arrive at

9st,i “ vJt,i
9Xtvt,i, if t P r0, τ s, (77)

where st,i is the ith singular value of Xt and vt,i P Rd is
the corresponding singular vector. By substituting above the
expression for 9Xt from (69), we find that

9st,i “ ´2st,i ¨ v
J
t,i pId ´A˚pλpUt, Utqqq vt,i

´ 2γst,i ¨ v
J
t,iA˚pgpUtqqvt,i

` 2
?
st,i ¨ v

J
t,ipDλpUt, Utqq

˚rgpUtqs ¨R
J
t ei, (78)

for every t P r0, τ s. Above, we used (69), (71) and (77).
Above, we also used multiple times the fact that pst,i, vt,iq
is by definition a pair of singular value and its corresponding
singular vector for Xt. Also, ei P Rd in (78) stands for the ith

canonical vector. That is, only the ith entry of ei is nonzero
and that entry equals one.

In view of the evolution of singular values, specified by (78),
it is evident that

rankpUtq “ rankpXtq ď rankpX0q “ rankpU0q, (79)

for every t P r0, τ s. This completes the proof of Lemma 18.
The two identities above follow from (68).
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