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Sampling and Reconstruction of Sparse Signals in
Shift-Invariant Spaces: Generalized Shannon’s

Theorem Meets Compressive Sensing
Tin Vlašić , Student Member, IEEE, and Damir Seršić , Member, IEEE

Abstract—This paper introduces a novel framework and cor-
responding methods for sampling and reconstruction of sparse
signals in shift-invariant (SI) spaces. We reinterpret the ran-
dom demodulator, a system that acquires sparse bandlimited
signals, as a system for the acquisition of linear combinations
of the samples in the SI setting with the box function as the
sampling kernel. The sparsity assumption is exploited by the
compressive sensing (CS) paradigm for a recovery of the SI
samples from a reduced set of measurements. The SI samples
are subsequently filtered by a discrete-time correction filter to
reconstruct expansion coefficients of the observed signal. Fur-
thermore, we offer a generalization of the proposed framework
to other compactly supported sampling kernels that span a
wider class of SI spaces. The generalized method embeds the
correction filter in the CS optimization problem which directly
reconstructs expansion coefficients of the signal. Both approaches
recast an inherently continuous-domain inverse problem in a
set of finite-dimensional CS problems in an exact way. Finally,
we conduct numerical experiments on signals in polynomial B-
spline spaces whose expansion coefficients are assumed to be
sparse in a certain transform domain. The coefficients can be
regarded as parametric models of an underlying continuous-
time signal, obtained from a reduced set of measurements. Such
continuous signal representations are particularly suitable for
signal processing without converting them into samples.

Index Terms—B-spline, compressive sensing, inverse problems,
sampling theory, shift-invariant spaces, sparse signal recovery

I. INTRODUCTION

SAMPLING theorems are an essential tool that allows for
processing of real-world signals on a digital processor. Due

to its elegance and practicality, the Nyquist-Shannon theorem
[1], [2] is the most prevalent sampling theorem. It states that
a signal must be sampled at the rate that is at least twice
the highest frequency contained in the signal. However, real-
world signals are rarely exactly bandlimited and can often
be much better represented in alternative bases [3], [4] other
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than Fourier. This led to a generalization of the Shannon’s
sampling theorem to other classes of functions. In particular,
the concept extends nicely to the spline and wavelet spaces
in which signals are expressed as a linear combination of the
integer shifts of a generator [5]–[7]. Sampling of signals in
shift-invariant (SI) spaces resembles the Shannon’s sampling
theorem with additional discrete-time correction filtering of
samples which are not necessarily the pointwise values of
the signal. Unlike the sinc function, there exist B-spline and
wavelet scaling functions that have finite support, which makes
the reconstruction formula in the SI sampling theorem feasible.
In an SI sampling setting, the signal is sampled at least at the
rate of innovation, and similarly to the conventional sampling
theorem, it is challenging to build sampling hardware that
operates at a sufficient rate when the innovation is high.

Recently, sparsity has received growing attention in the field
of signal processing. It lies at the heart of compressive sensing
(CS) [8]–[11], a sampling and reconstruction paradigm that
has been extensively researched over the past decade. The
goal of discrete CS is to recover a signal x ∈ RN from linear
measurements y ∈ RM given by y = Θx, where Θ ∈ RM×N
is a sensing matrix and M < N . The exact recovery from such
an ill-posed inverse problem is possible if the signal is Q-
sparse, i.e., it has at most Q� N nonzero entries, and under
certain conditions [9], [12] on the sensing matrix Θ. While CS
reduces the number of measurements sufficient for an exact
recovery, and consequently the sampling rate, it increases the
computational complexity of the reconstruction [13].

The vast majority of papers concerning CS focus on discrete
inverse problems. Since the most of real-world signals are
continuous, there are many works that extend discrete CS to
the analog domain. These works mostly rely on a discretization
or heuristics in order to adopt an infinite-dimensional inverse
problem to a finite CS setting. The discrete model Θ of a
continuous measurement procedure is often an approximation,
which introduces errors in the system. However, some papers
are focused on solving infinite-dimensional CS problems [14]–
[17]. Furthermore, hardware realizations for CS of analog
signals were proposed in [18]–[22]. Alternative approaches
that aim to solve continuous-domain inverse problems are
in the fields of super-resolution [23]–[28] and finite-rate-of-
innovation sampling [29]–[31]. These approaches are typically
based on the assumption that the signal or its certain order of
derivative consists of finite number of Dirac delta functions
per time unit and the goal is to recover exact locations of the
jumps at super-resolution.
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In this paper, we propose a framework for CS of analog
signals that lie in an arbitrary SI space. The inverse problem
we treat is inherently continuous, as the unknown signal
we want to recover is a function f : Ω→ R, where Ω ⊂ R
is a finite interval. Although the signal in an SI space is
continuous, it is uniquely characterized by a sequence of
coefficients, which makes a discretization method elegant.
We show that the continuous-domain inverse problem can
exactly be recast as a set of finite-dimensional CS problems.
Initially, we develop a CS system based on the front-end
configured as a parallel version of the random demodulator
(RD) [32]. The RD’s high-rate pseudo-random sequence can be
reinterpreted as a combination of the box sampling functions
in the conventional SI setting. Integration and sub-Nyquist
sampling that follow demodulation produce samples that are
linear combinations of several samples in the standard SI setting.
The SI samples are recovered by solving a finite-dimensional
CS problem prior to filtering by a discrete-time correction
filter in order to reconstruct the signal. Furthermore, we
extend the measurement procedure of the proposed framework
to a wider class of SI sampling functions. The front-end
configuration remains the same with an only difference in
the sampling kernel. For this type of a continuous inverse
problem, we propose a reconstruction procedure in which
the discrete-time correction filter is embedded in the finite-
dimensional CS problem. Solving the proposed CS problem
directly recovers expansion coefficients that characterize the
signal. We show that the discretization is exact for the SI basis
functions of compact support. In numerical experiments, we
demonstrate the effectiveness of the proposed framework by
using the polynomial B-splines. This manuscript is a more
fully developed publication based on a conference paper [33].

The main contributions of the paper are:
• We reinterpret the RD, a system that acquires sparse

bandlimited signals, as a system for sampling of sparse
signals that lie in a wider class of SI subspaces;

• We show that the inherently continuous-domain inverse
problem can be discretized into a set of finite-dimensional
problems of a CS type in an exact way by using the
principles of generalized sampling in SI spaces;

• We introduce a novel framework for reconstruction of
signals in SI spaces acquired by a parallel version of
the RD. The signal is recovered by combining CS and
the SI reconstruction procedure. The proposed framework
significantly reduces the sampling rate for acquisition of
sparse signals in SI spaces;

• We offer a generalization of the proposed sampling and
reconstruction method to other compactly supported sam-
pling kernels that span an SI space. In order to reconstruct
acquired signals, we propose a method that embeds
correction filtering in the CS optimization problem;

• We conduct the proposed framework on signals that are
synthetically made Q-sparse and real-world signals. We
provide experimental results of our methods in which the
signal model is a polynomial B-spline.

The reminder of the paper is organized as follows. In
Section II, we relate our work to the findings of other studies.
We provide a short review on sampling in SI spaces and a

TABLE I
LIST OF SYMBOLS AND NOTATIONS USED IN THE PAPER

Symbol Description
x Sparse vector of coefficients
y Vector of measurements
R̃ Correction matrix
Θ Sensing matrix
Φ Measurement matrix
Ψ Sparsity matrix
pa, ps Degrees of B-spline basis functions for a(t) and s(t)
q Sparsity ratio, q = Q/N

H Number of rows in R̃, H = N + 2dps/2e
K Number of intervals in a region of interest
L Number of columns in R̃, L = N + 2dpa/2e
M Number of measurements in y
N Dimension of sparse vector x
Q Number of nonzeros in x
T Period of basis functions
ρ Rate of innovation of f(t)
τ Integration interval in random demodulator, τ = NT
a(t) Signal generator
bp(t) B-spline of degree p
f(t) Observed signal
s(t) Sampling kernel
zi(t) Demodulating signal
A, S SI subspaces spanned by the shifts of a(t) and s(t)
c[n] Sequence of samples in SI sampling scheme
d[m] Sequence of expansion coefficients of f(t)
h[n] Correction filter
rsa[n] Cross-correlation sequence between s(t) and a(t)
δ[n] Kronecker delta impulse
φi[n] Sequence of expansion coefficients of zi(t)

formulation of a CS problem in Section III. In Section IV, we
reinterpret the RD as a system that allows for CS of a wide class
of signals in an SI subspace. We propose a measurement model
that discretizes the continuous-domain measurements of the RD
in an exact way. In Section V, a framework for reconstruction
of signals in SI spaces acquired by a parallel version of the
RD is proposed. In Section VI, we offer a generalization of
the proposed method to other compactly supported sampling
kernels. Numerical experiments are provided in Section VII
and we conclude the paper in Section VIII.

The list of important symbols and notations used in the
proposed paper is summarized in Table I.

II. RELATED WORK

The random demodulator [32], [34], [35] is a sampling
system that is used to acquire sparse bandlimited signals. The
RD demodulates a signal by multiplying it with a high-rate
pseudo-random sequence of ±1s, referred to as the chipping
sequence. The chipping sequence switches between the levels
±1 at the Nyquist rate. The demodulated signal is integrated
between taking two successive samples at a low rate. The
mixer that runs at the Nyquist rate can be easily designed
using inverters and multiplexers [32]. The modulated wideband
converter (MWC) [36] is a CS-type front-end for acquisition
of multiband signals with unknown band locations. Basically,
the MWC is a parallel version of the RD with lowpass filters
instead of the integrators that follow demodulation. The authors
consider the MWC for sampling of a sparse signal supported
on N frequency bands, with at most Q� N bands active. The
idea behind the RD and the MWC is aliasing of the spectrum,
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in such a way that each spectrum band appears in the baseband,
before sampling at a low rate. The recovery is possible due to
the sparse harmonic or band support.

In [37] and [38], Eldar and Mishali introduce methods for
CS of analog signals in a union of SI subspaces. Sparsity
is modeled by assuming that only Q out of N generating
functions are active. Conventionally, such signals are acquired
using N parallel sampling filters prior to sampling at a rate 1/T ,
leading to a system with sampling rate N/T [39]. The authors
show how to sample such signals at a system rate much lower
than N/T by using M sampling filters, where 2Q ≤M < N .
However, the sampling rate in each channel remains 1/T . The
method can be extended to a special case of sampling of signals
that lie in an SI space spanned by a single generator with a
periodic sparsity pattern, i.e., out of consecutive group of N
coefficients, there are at most Q nonzero expansion coefficients,
in a given pattern. Each integer shift of the generator in a period
NT is modeled as a single subspace. The unknown signal is
prefiltered by a set of M filters whose impulse responses
are weighted linear combinations of the shifts of a function
biorthogonal to the generator [37], leading to a system with
sampling rate M/(NT ), where 2Q ≤M < N . Such sampling
filters may be quite difficult to implement in hardware and are
often approximated, which leads to reconstruction errors.

In [40] and [41], the authors introduce frameworks for solv-
ing continuous inverse problems that have sparse polynomial
spline solutions by using the total-variation regularization.
The unknown signal is assumed to be piecewise smooth
and intrinsically sparse with at most Q innovations. In [40],
the theorem states that there exist L-spline solutions to the
considered problems with sparsity Q ≤M −N0, where M is a
number of linear measurements and N0 is a spline order. Papers
[42]–[45] rely on the main results of the method proposed in
[40] and use grid-based discretization strategies that lead to
convex optimization problems.

In this paper, we take a different approach. First of all,
we use a parallel version of the RD in order to sample
and reconstruct signals in a wider class of SI spaces. We
discretize the continuous measurement procedure of the RD
in an exact way by using the theory of generalized sampling
in SI spaces, and argue that the bandlimited signal model in
the conventional CS problem that uses RD measurements is
just an approximation. Additionally, we propose a framework
for a discretization of a continuous-domain inverse problem
when the chipping sequence in an RD is replaced with a
compactly supported sampling kernel that spans an SI subspace.
In contrast to the cited works in which different SI spaces
induce sparsity, we use SI spaces to model the underlying
analog signal and discretize the continuous-domain inverse
problem. The proposed framework encompasses a wider class
of signals in SI spaces that may not be sparse by themselves.
Similarly to the majority of papers where the pointwise values
of the signal, referred to as the expansion coefficients of the sinc
function, are assumed sparse in a transform domain, we assume
that the coefficients of the SI signal model are sparse in a certain
dictionary. Even though the proposed framework is not solely
limited to the polynomial B-spline function spaces, throughout
the paper, we put the emphasis on them since they lead to

s(−t)
f (t)

t = nT

h [n] × a(t)
c[n] d [n]

+∞∑
n=−∞

δ(t− nT )

f̂(t)

Fig. 1. Sampling and reconstruction of a signal in a shift-invariant space.

an efficient implementation and an exact discretization. Such
a signal model is an alternative to the bandlimited model in
the RD and its polynomial interpretation offers many practical
advantages in signal processing applications.

III. BACKGROUND: GENERALIZED SAMPLING IN SI SPACES
AND COMPRESSIVE SENSING

We give a short review and the most important formulations
of sampling in SI spaces and CS, which we later use to
successfully combine these two methods. Excellent reviews
that extensively describe generalized sampling in SI spaces can
be found in [5] and [7].

A. Sampling of Signals in Shift-Invariant Spaces

Sampling in SI spaces retains the basics of the Shannon’s
theorem in which sampling and reconstruction are implemented
by filtering. An SI subspace A of L2 is spanned by the shifts
of a generator a(t) with period T [5], [7]. Any signal f(t) ∈ A
has the form [5]:

f(t) =
∑
m∈Z

d[m]a(t−mT ), (1)

where d[m] are expansion coefficients that characterize the
signal. Notice that the expansion coefficients d[m] are not
necessarily pointwise values of the signal. Shannon’s theorem
is a special case of SI sampling in which the generator a(t)
corresponds to the sinc function. However, signals are often
better represented in other SI spaces such as splines [4], [46],
[47] and wavelet scaling functions [3].

In order to guarantee a stable SI sampling theorem and a
unique signal representation, a(t) is typically chosen to form
a Riesz basis [7]. A set of functions {a(t −mT )} generate
a Riesz basis if it is complete and there exist two positive
constants α > 0 and β <∞ such that [5]

α‖d‖2`2 ≤

∥∥∥∥∥∑
m∈Z

d[m]a(t−mT )

∥∥∥∥∥
2

L2

≤ β‖d‖2`2 , (2)

where ‖d‖2`2 =
∑
m |d[m]|2 is the squared `2-norm of the

coefficients d[m]. Riesz bases provide linear independence
of the basis functions and a property that a small modification
of d[m] results in a small distortion of the signal [5], [7].

The SI sampling framework shares a similar sampling
scheme (see Fig. 1) with the Nyquist-Shannon theorem. By
analogy with antialiasing, in the SI sampling scheme the
unknown signal is prefiltered by a sampling filter s(−t) [5],
[7]. The shifts of the sampling kernel s(t) form a Riesz basis
and span an SI subspace S. Uniform sampling of rate 1/T
follows the prefiltering stage. The sampling rate is determined
by the number of degrees of freedom in the signal or the rate
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of innovation [29], which is in an SI sampling setting dictated
by the number of expansion coefficients d[m] per time unit that
uniquely characterize the signal. Samples c[n] of the signal
f(t) defined in (1) are given by:

c[n] =

∞∫
−∞

f(t)s(t− nT )dt , 〈f(t), s(t− nT )〉 , (3)

where 〈·, ·〉 is the conventional L2-inner product. The SI
samples c[n] in (3) are equal to

c[n] =

〈∑
m∈Z

d[m]a(t−mT ), s(t− nT )

〉
=
∑
m∈Z

d[m] 〈a(t−mT ), s(t− nT )〉 (4)

=
∑
m∈Z

d[m]rsa[n−m],

where rsa[n] is a sampled cross-correlation sequence between
the sampling kernel and the generator 〈a(t), s(t− nT )〉.

To be able to reconstruct f(t) from the samples c[n], the
discrete-time Fourier transform (DTFT) of the sampled cross-
correlation sequence, denoted by ϕSA(ejω), has to satisfy a
mild requirement [7]: ∣∣ϕSA(ejω)

∣∣ > α, (5)

for some constant α > 0. The sequence of samples c[n]
in (4) have the DTFT given by C(ejω) = D(ejω)ϕSA(ejω),
where C(ejω) and D(ejω) denote the DTFT of c[n] and d[m],
respectively. Consequently, a recovered sequence d̂[n] of the
expansion coefficients is obtained by discrete-time filtering of
c[n] with a correction filter h[n] determined by [5], [7]

H(ejω) =
1

ϕSA(ejω)
. (6)

Notice that rsa[n] is the Kronecker delta impulse δ[n] in the
case of orthogonal and biorthogonal functions a(t) and s(t),
thus H(ejω) = 1. For example, a(t) and s(t) are orthogonal
in the Shannon’s theorem. For compactly supported B-spline
functions s(t) and a(t), rsa[n] has only a few nonzero entries
around n = 0, which leads to efficient realizations of the
reconstruction procedure [5]. Finally, a reconstruction f̂(t)
of f(t) is obtained by modulation of the recovered coefficients
d̂[n] with an impulse train with period T , followed by filtering
with a corresponding analog filter a(t).

B. Compressive Sensing

Basically, an inverse problem is to recover a signal f from a
finite set of noisy measurements y = (z(f) + e) ∈ RM , where
z(f) = [〈z1, f〉 . . . 〈zM , f〉]T are noise-free linear measure-
ments and e is an additive noise term that is usually assumed
to be independent of the signal. Most real-world signals are
continuous and the number of measurements is finite, thus the
inverse problem is ill-posed. The conventional approach to solve
such an inverse problem is to select some finite-dimensional
reconstruction space R spanned by {ψn}Nn=1. By assuming
that f ∈ R and denoting the expansion coefficients of f in

×
f(t)

Pseudo-random
sequence

zi(t)

Seed

∫
t = kτ

yi[k]

Fig. 2. Block diagram of a single channel of a bank of random demodulators.

the basis {ψn}Nn=1 by x ∈ RN , the original inverse problem
can be converted to the discretized version y = Θx + e.
Matrix Θ is an M ×N sensing matrix whose entries are
[Θ]m,n = 〈zm, ψn〉.

The CS theory [8], [9] asserts that a perfect reconstruction
of the signal f from less than N measurements is possible
if f is Q-sparse in a finite-dimensional basis {ψn}Nn=1, i.e.,
‖x‖`0 ≤ Q� N . The signal recovery is obtained by solving
the constrained `1-optimization problem [48]

min
x∈RN

‖x‖`1 subject to ‖y −Θx‖`2 ≤ κ, (7)

where κ is a threshold parameter determined by a priori
estimate of an error e such that κ ≥ ‖e‖`2 [10]. The CS theory
asserts that a perfect recovery of f is achievable from M
measurements that are in the order of Q log(N/Q) under strict
conditions on Θ, namely restricted isometry property (RIP) and
incoherence [8], [9], [12], [49]. The finite-dimensional setting
of CS often leads to approximations and a replacement of
continuous measurements to its discrete counterparts, e.g., the
continuous Fourier transform is replaced by its discrete analog.
Modeling of a continuous-domain inverse problem in this way
often encounters problems due to the samples discrepancy.

IV. RD-BASED MEASUREMENT MODEL FOR SIGNALS IN
SHIFT-INVARIANT SPACES

In this section, we reinterpret the RD as a system for
acquisition of signals that lie in a wide class of SI subspaces.
We treat the case in which the input signal is demodulated by
the conventional picewise-constant signal of ±1 values. The SI
function spaces are used to model the underlying continuous-
domain demodulating and input signals, and the principles
of generalized sampling are used to discretize the continuous
measurements of an RD. The discretization method is exact
and avoids approximations that lead to reconstruction errors.

We propose an acquisition system consisting of a bank of
RDs as a hardware front-end. Conventionally, in the i-th RD
channel (see Fig. 2), a bandlimited signal f(t) is multiplied
by a continuous-time demodulating signal zi(t) created from
a pseudo-random chipping sequence of ±1. That is, zi(t)
switches between the levels ±1 at least at the Nyquist rate of
the signal f(t). The demodulated signal is integrated prior to
being sampled at a low rate 1/τ . The integrator is being reset
after each sample yi[k] is taken.

In this paper, we consider signals that lie in a more general
class of SI spaces. We assume that an input signal f(t), in an
SI subspace A of L2, is spanned by a single generator a(t).
The signal is given by (1) with a rate of innovation ρ = 1/T .
The signal is multiplied by a chipping sequence zi(t) that

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3141009

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



5

switches between levels ±1 at the rate of innovation ρ. Let
us define the box function which is also referred to as the
B-spline of degree 0:

b0(t) =

{
1, 0 < t ≤ 1

0, otherwise
, (8)

which satisfies (2). In fact, the basis functions {b0(t − n)}
are orthonormal, i.e., the constants α = β = 1. If we define a
sampling kernel s(t) = b0(t/T ), where 1/T is the switching
rate of zi(t), then the shifts of the sampling kernel {s(t−nT )}
span an SI subspace S . The chipping sequence in the RD can
be modeled as a signal that lie in the SI subspace S and is
given by

zi(t) =

N−1∑
n=0

φi[n]
∑
k∈Z

s(t− nT − kNT ), (9)

where φi[n] are expansion coefficients of ±1 values. Without
loss of generality, in the proposed setting we set demodulating
functions to be periodic with a period τ = NT and φi[n]
are cyclically repeated. The demodulated signal f(t) · zi(t) is
integrated and subsequently sampled at a low rate 1/τ to obtain
a sequence of measurements {yi[k]}, for k = 1, . . . ,K, where
K is a finite number of intervals in a region of interest.

A single measurement in the i-th channel of the acquisition
system is given by:

yi[k] =

(k+1)τ∫
kτ

f(t)zi(t)dt, (10)

where k denotes an integration interval. By applying (1) and
(9), (10) is expanded to:

yi[k]=

N−1∑
n=0

φi[n]
∑
m∈Z

d[m]

(k+1)τ∫
kτ

a(t−mT )s(t−nT−kτ)dt. (11)

Since the integration interval covers the whole support of
exactly N basis functions of the SI subspace S , the integration
result in (11) for given k, n and m is equal to the sampled
cross-correlation sequence

rsa[n+ kN −m] = 〈a(t−mT ), s(t− nT − kτ)〉. (12)

By using (12), we can discretize the continuous-domain
measurement procedure in an exact way. Thus, (11) is given
by

yi[k] =

N−1∑
n=0

φi[n]
∑
m∈Z

d[m]rsa[n+ kN −m], (13)

which, by applying (4), becomes simply

yi[k] =

N−1∑
n=0

φi[n]ck[n]. (14)

Here, ck[n] represents the conventional samples in an SI
sampling setting, with the B-spline of order 0 as the sampling
kernel, corresponding to the k-th integration interval. Using the
proposed strategy, low-rate RD-based measurements {yi[k]}
are weighted linear combinations of the SI samples ck[n].

The system’s front-end consists of M channels with various
demodulating functions {zi(t)}Mi=1 ∈ S, where M < N . In
each channel, the demodulated signal is integrated and sampled
at a rate 1/τ , which leads to a system with a sampling rate
M/τ = M/(NT ). Not only that the proposed framework leads
to an exact discretization of the RD measurement procedure,
but also it allows for sampling of signals in SI subspaces with
a much lower sampling rate in contrast to the conventional
high-rate method described in Section III-A. The front-end
of the proposed system is illustrated on the left hand side
in Fig. 3. The chipping sequence in the RD scheme can be
replaced by an analog filter s(t) whose impulse response is a
box function in this particular case. The input to the filter s(t)
is a modulated impulse train

∑
n φi[n]δ(t− nT ).

The measurement procedure of the system with additive
noise is given in a matrix form by y1[k]

...
yM [k]

 =

 φ1[0] · · · φ1[N − 1]
...

...
...

φM [0] · · · φM [N − 1]

 ·
 ck[0]

...
ck[N − 1]

+ ek

or
yk = Φck + ek, (15)

where Φ is an M ×N measurement matrix consisting of ±1
values and ek ∈ RM is an unknown error term. Furthermore,
yk and ck are vectors of the measurements and SI samples,
respectively. Since M < N , the proposed finite-dimensional
inverse problem is underdetermined. In the next section, we
show how to recover the SI samples from an underdetermined
set of equations by using the combination of CS and the
reconstruction procedure in generalized SI sampling.

In the conventional RD setting, the ck samples in (15) are
considered as pointwise values f(nT+kτ) of the signal, which
is based on the assumption that the underlying signal is bandlim-
ited, i.e., a(t) = sinc(t/T ). By considering the measurement
model proposed in this paper, such an inverse problem is just an
approximation since a(t) = sinc(t/T ) 6⊥ s(t) = b0(t/T ), and
thus rsa[n] 6= δ[n] and ck[n] 6= d[n] = f(nT + kτ). However,
the conventional RD problem is exact if a(t) is assumed to
be the box function, i.e., if a(t) = s(t) = b0(t/T ), since it
is orthonormal to its integer shifts (rsa[n] = δ[n]) and since
its expansion coefficients d[n] correspond to the pointwise
values f(nT + kτ) of the signal. The proposed framework
allows one to use an SI model that suits better to the observed
underlying signal and which leads to exact discretization and
reconstruction.

V. RECONSTRUCTION OF SIGNALS IN SI SPACES FROM
RD-BASED MEASUREMENTS

The objective is to recover SI samples ck from a reduced
set of linear measurements yk. To be able to recover the SI
samples by exploiting the CS theory, the samples have to be
sparse in the time or a transform domain. The vast majority of
works, such as [29], [37], [40], assume that an analog signal
in an SI subspace is sparse in the time domain, i.e., the signal
is characterized by only a few nonzero expansion coefficients
d[m]. Analogously, we could have assumed that the SI samples
ck in the proposed measurement model are sparse in the time
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f(t)

×

s(t)

∫

×∑
n∈Z

δ(t− nT )

t = kτ

×

s(t)

∫

×∑
n∈Z

δ(t− nT )

t = kτ

φ1[n]

φM [n]

CS
Recovery

y1[k]

yM [k]

h[n]
ĉ[n]

×
d̂[n]

∑
n∈Z

δ(t− nT )

a(t)
f̂(t)...

Fig. 3. Block diagram of a system for compressive sensing of signals in shift-invariant subspaces with a sampling kernel s(t) and a correction filter h[n].

domain for signals that are spanned by a generator with a
narrow support. However, in this paper, the SI model of the
underlying continuous-time signal provide an alternative to the
traditional bandlimited model. We consider signals that are
assumed to lie in SI subspaces, but they may not have such a
low rate of innovation that would make them sparse in these
subspaces. Instead, we treat the case in which the SI samples
ck are assumed to be sparse in a certain representation basis Ψ.
This leads to the same forward model as in the conventional
RD setting, which has proven to be a reasonable assumption
in many real-world CS applications.

The SI samples can be represented as ck =
∑N
l=1 xk[l]ψl,

where {xk[l]}Nl=1 = xk is a set of coefficients and ψl are
columns of Ψ ∈ RN×N . Equation (15) is then given by

yk = ΦΨxk + ek = Θxk + ek, (16)

where Θ is an M ×N sensing matrix. The vector of coeffi-
cients xk, which is to be recovered, is exactly the same as in
the conventional RD setting. The only difference is that Ψxk
approximates the pointwise values f(nT + kτ) of the signal
in the conventional setting, and, in the proposed framework, it
is equal to a set of samples {ck[n]} which are characteristic
for generalized sampling in SI spaces with s(t) = b0(t/T ).

Compressive sensing is concerned with the RIP [9], [12], [49]
which, similarly to the condition in (2), secures that the sensing
matrix Θ preserves the geometry of the Q-sparse vector x.
Additionally, Θ should be made of a low-coherent pair (Φ,Ψ)
of a measurement and a representation matrix to allow for
a high subsampling [9]. A combination of a measurement
matrix built using random entries from a certain probability
distribution and any fixed representation basis has the RIP with
high probability [50], [51]. Moreover, the pair of a random
matrix and any fixed representation basis is largely incoherent,
which makes random matrix a good choice for the measurement
matrix in a CS setup [9].

Real-world signals are rarely truly sparse, but rather asymp-
totically sparse [11], [52]. That is, the vectors x of expansion
coefficients have a lot of small coefficients, but only a few
true zeros if any, and the signals have a structure of being far
sparser at fine scales (or high frequencies) than at coarse scales.

A refined theory of CS [11], [52] offers generalized principles
of incoherence and uniform random sampling, and avoids
the RIP, which may be too strong an assumption in practice.
The theory introduces asymptotic incoherence and sparsity, and
multilevel sampling [11], [52], [53] instead of universal random
subsampling. Briefly, a sensing matrix Θ is asymptotically
incoherent if the first few rows or columns of the matrix
are large and values get asymptotically smaller as we move
away from this region. Fourier/wavelet and Hadamard/wavelet
transform matrices are examples of asymptotically incoherent
pairs because of a high correlation of low-order frequencies
and scales, and a decrease in the correlation as frequencies
get higher and scales become finer. Asymptotic incoherence
and sparsity structure lead to a multilevel sampling. That is,
we should fully sample high coherence rows where important
information about the signal is likely to be contained and as
coherence starts to decrease, we can subsample gradually. The
sparsity structure of the signal is exploited by using multilevel
sampling of asymptotically incoherent matrices, which, in
many real-world cases, leads to better reconstructions than
the universal subsampling with random matrices [11], [52].
The implementation of multilevel sampling for the proposed
framework is described in more detail in Section VII-B.

In this paper, we assume that the SI samples are sparse
in a representation basis such as the discrete Fourier (DFT),
cosine (DCT) and wavelet transform (DWT). In numerical
experiments, we use the universal subsampling strategy with
random matrices for synthetically Q-sparse signals and the
multilevel sampling strategy with asymptotically incoherent
matrices for real-world signals. We propose to use measurement
matrices with only ±1 values in order to maintain the low
complexity of the mixer design. The random Bernoulli and
Walsh-Hadamard transform (WHT) matrices fit the proposed
setup and their row entries are used as expansion coefficients
φi[n] of a demodulating function zi(t).

Once the measurements are obtained, we recover the SI sam-
ples by solving the Quadratically-Constrained Basis Pursuit
(QCBP):

min
xk∈RN

‖xk‖`1 s. t. ‖yk −Θxk‖`2 ≤ κ, (17)
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for k = 1, . . . ,K, where κ ≥ ‖ek‖`2 . In practice, ek is often
unlikely to be known. Despite that, the QCBP shows to be
quite robust even when the error is underestimated [54].

A recovered set {ĉk} of the SI samples {ck} is further used
to reconstruct the signal in the conventional way for the SI
sampling setting as described in Section III-A. The recovered
SI samples {ĉk}Kk=1 in K intervals of length N are arranged
into a sequence ĉ[n] and filtered by the correction filter (6)
to obtain expansion coefficients d̂[n] of the signal f̂(t) ∈ A.
The obtained expansion coefficients d̂[n] are modulated by an
impulse train with period T and filtered by the corresponding
analog filter a(t). The reconstruction scheme is illustrated on
the right hand side of the block diagram in Fig. 3. The proposed
framework can be interpreted as a procedure of recovering
of the samples from the conventional RD measurements by
standard CS which is then followed by discrete-time filtering
that corrects the samples in order to fit the reconstruction to a
more appropriate signal subspace.

Even though, theoretically, various functions belong to the
class of SI spaces, the correction filter H(ejω) may be difficult
to implement in practice. There are numerous filter design
techniques that can be used to closely approximate the desired
response of H(ejω) with a finite impulse response (FIR) or
an infinite impulse response (IIR) filter. However, in case
when the generator a(t) is a polynomial B-spline, H(ejω)
can be determined analytically [5]. The filter is then a non-
causal IIR filter with a few coefficients corresponding to values
of the cross-correlation sequence rsa[n]. The filter can be
decomposed into a causal and an anti-causal part, which leads
to a forward\backward filtering [46], [47] of the recovered
SI samples. Alternatively, as an impulse response of the IIR
filter has a fast decay, it can be approximated by a FIR filter
allowing for a continuous filtering of the SI samples with a
short delay.

VI. GENERALIZATION OF THE PROPOSED METHOD TO
OTHER SAMPLING KERNELS

Physical devices often impose the sampling operator, leaving
limited freedom to design the sampling strategy. That is,
the sampling kernel is not always possible to be the box
function proposed in Section IV. It is desirable to adopt the
method proposed in the previous sections to other sampling
operators which may lead to new realizations of the acquisition
hardware specified for CS or may allow refined applications
of CS to existing hardware. For example, one choice can
be to demodulate the observed signal by a continuous-time
function that has linear transition between different levels.
Such a function can be modeled by the integer shifts of a
B-spline kernel of order 1. Thus, we offer a generalization
of the framework proposed in the previous sections, which
adopts the system to other sampling kernels that form a Riesz
basis for L2 (2). To recover the expansion coefficients from
such measurements, we embed the correction filter into the
CS optimization problem in a form of a correction matrix
that keeps the cross-correlation between the sampling kernel
and signal generator. In general, the correction matrix can be
infinite if one of the a(t) or s(t) kernels is of infinite support. In

this section, in order to exactly recast the infinite-dimensional
inverse problem into a finite CS setting, we restrict a(t) and
s(t) to compactly supported kernels whose integer shifts form
Riesz bases for L2, such as polynomial B-splines, which leads
to the perfect truncation of the correction matrix.

A single measurement in the i-th channel of the proposed
acquisition system is given in (10), where f(t) denotes an
input signal in an SI subspace A, k ∈ {1, . . . ,K} denotes an
interval of duration τ = NT and zi(t) is a demodulating signal
lying in an SI subspace S . Here, S is spanned by the shifts of
a sampling kernel s(t) from a wider class of SI spaces. Notice
that the sampling kernel is not necessarily a box function
b0(t/T ) as it was the case in Section IV. The measurement is
given by

yi[k]=
∑
n∈Z

φi[n]
∑
m∈Z

d[m]

(k+1)τ∫
kτ

a(t−mT )s(t− nT )dt. (18)

Since s(t) can be a sampling kernel with a wider support than
b0(t/T ), the basis functions may overlap each other. Thus,
in general, we must include cases in which the integration
interval covers more than exactly N basis functions of the SI
subspace S. It follows that the integration results in (18) can
not be substituted simply by the cross-correlation sequence as
in Section IV, but they can be written in an infinite matrix Rk

with rows and columns corresponding to n and m, respectively.
The continuous-domain measurement procedure is given in a
discrete form by

yi[k] =
∑
n∈Z

φi[n]
∑
m∈Z

d[m]Rkn,m, (19)

where Rkn,m is an entry of Rk for given n and m. Since we
restricted s(t) and a(t) to have finite supports, the infinite Rk

matrix is mainly filled with zeros except for a few entries
around the diagonal for values of n and m close to kN . Thus,
the nonzero values in Rk are perfectly truncated and can be
concisely written in a submatrix R̃ of finite dimensions which
is universal for all integration intervals denoted by k. For B-
splines, R̃ is particularly easy to implement and, from now
on, we assume that the sampling kernel s(t) and generator
a(t) are polynomial B-spline basis functions. A special case
occurs when both s(t) and a(t) are the B-splines of degree 0,
then R̃ is an N ×N identity matrix. In the conventional RD-
based measurement setting with s(t) = b0(t/T ), the matrix
R̃ is a rectangular matrix with a cross-correlation sequence
rsa[n] on its diagonal. Let us denote the orders of the B-spline
generator and sampling kernel with pa and ps, respectively.
The matrix R̃ is then of H × L size, where H = N + 2dps/2e
and L = N + 2dpa/2e, for pa, ps ∈ N0. An example of the R̃
matrix, when both s(t) and a(t) are polynomial B-splines of
degree 1, is given in Appendix A.

By applying R̃ ∈ RH×L, the measurement in (19) becomes

yi[k] = φi,kR̃dk, (20)

where φi,k ∈ RH is a row vector of the expansion coefficients
corresponding to the sampling basis functions whose support is
included in the k-th integration interval. Analogously, dk ∈ RL
is a vector of the expansion coefficients corresponding to signal
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basis functions whose support is included in the k-th integration
interval. The system’s front-end consists of M < N channels.
The demodulated signal is integrated and sampled at rate 1/τ ,
leading to a system with a sampling rate M/τ = M/(NT ).
The front-end of the system is illustrated on the left hand side
of the block diagram in Fig. 3. Notice that contrarily to the
setting in Section IV, the sampling kernel s(t) of the system
is not necessarily a box function b0(t/T ).

The measurement procedure of the proposed system cor-
rupted by noise ek is given by

yk = ΦkR̃dk + ek, (21)

where Φk is a measurement matrix with rows {φi,k}Mi=1. The
proposed system of equations is underdetermined. To recover
the expansion coefficients dk, we induce the sparsity and
use the CS reconstruction technique. We can assume that
the signal is sparse in the time domain, i.e., the vector of
expansion coefficients dk has only a few nonzero entries.
Such an assumption is exploited in [40], [42]–[45] where
the observed signals lie in the L-spline and B-spline spaces.
However, in this paper, such basis functions do not provide a
sparsity domain, but an SI representation model for an exact
discretization of the underlying continuous-domain signal. To
induce sparsity, we assume that the expansion coefficients dk
are sparse in a certain transform domain Ψ ∈ RL×L. This
assumption is particularly intuitive from the wavelet theory
point of view, where Ψ is a DWT matrix and dk are projections
of the signal onto the analysis scaling functions at 20 resolution.
The wavelet theory asserts that such coefficients are used to
efficiently calculate approximation coefficients at coarser scales
and wavelet coefficients of the detail signals by using the
DWT [3], which has proven to yield sparse representations
for wide variety of continuous-time signals. Furthermore, the
dk expansion coefficients can also be viewed as a sequence
of numbers that is assumed to be a realization of a non-
sparse Gaussian stationary process [55], for which the DCT
is a universal transform which has proven to perform well in
practice [56]. The expansion coefficients are represented as
dk = Ψxk, where xk ∈ RL is a sparse vector of coefficients
in the transform domain. The problem in (21) is written as

yk = ΦkR̃Ψxk + ek = Θxk + ek, (22)

where Θ = ΦkR̃Ψ is an M × L sensing matrix.
We introduced the R̃ matrix into the inverse problem, so

the recovery ability of the forward model Θ = ΦkR̃Ψ should
be addressed. Traditionally, random matrices Φ are largely
incoherent with any sparsity-inducing matrix Ψ [9] and provide
the RIP with high probability [12], [50], leading to a universal
choice for measurement matrices. In the proposed framework,
since R̃ is based on the measurement setup and the choice of the
underlying SI basis function, the measurement matrix is given
by linking Φk and R̃. The R̃ matrix is a convolution matrix
consisting mainly of the cross-correlation sequence rsa[n] on
its diagonal, corresponding to FIR filtering, and consequently
affects the CS properties of the forward model in comparison
to the standard (Φ,Ψ)-pair of a random measurement matrix
and a sparsity matrix.

In Section VII-A, by conducting extensive experiments,
we evaluate the impact of R̃ on the perfect recovery rates
of Q-sparse signals for various B-spline basis functions in
comparison to the conventional (Φ,Ψ)-pair. We show that for
many settings of the proposed framework, the Φk matrix of
random ±1s is an adequate hardware-friendly choice, which
leads to a perfect recovery of Q-sparse signals for a comparable
number of measurements as for the conventional (Φ,Ψ)-pair.

For the theoretical completeness, we offer a way to annihilate
the impact of R̃ on the CS properties of the forward model.
We can introduce H in between of Φk and R̃ in (22), where
H is the inverse IIR filter of R̃. This corresponds to filtering of
the coefficients φi[n] that construct Φk by the IIR filter given
in (6). Thus, HR̃ is a matrix consisting of ones on the main
diagonal, except on the edges due to the interval’s boundary
conditions. Obviously, for such filtered random coefficients
φi[n], the system fits traditional CS by satisfying the RIP with
high probability, but the implementation of ΦkH is far less
convenient in real-world hardware. Fortunately, experiments
show that such a procedure can be avoided in practice.

For acquisition of real-world signals, we use deterministic
measurement matrices, e.g., the WHT, and the multilevel
subsampling strategy [11], [52] to exploit the asymptotic
incoherence and sparsity. The experiments in Section VII-B
show that R̃ does not severely affect CS properties of the
forward model, and the results prove that the proposed
framework in all settings yields better reconstruction results
than the standard CS approach in the RD system.

The expansion coefficients are recovered by solving the
QCBP optimization program for K intervals:

min
xk∈RL

‖xk‖`1 s. t. ‖yk −Θxk‖`2 ≤ κ, (23)

where κ ≥ ‖ek‖`2 . The vector of coefficients xk ∈ RL, where
L ≥ N , is used to obtain the expansion coefficients d̂k ∈ RL.
The number of recovered coefficients is equal to the number
of coefficients N corresponding to the k-th integration interval
plus the L−N coefficients that correspond to the neighboring
intervals. Next, we concatenate the expansion coefficients
{d̂k}Kk=1 obtained in K intervals of length τ = NT . We
apply the weighted average to the expansion coefficients on
the boundaries of the integration intervals which appear in
two consecutive vectors d̂k. The weights are determined by
the amount of area under a basis function in the observed
integration interval. An example of the concatenation for
expansion coefficients of B-splines of order 1 is given in
Appendix B. The concatenated expansion coefficients d̂[n] are
modulated by an impulse train with period T and filtered by
the corresponding analog filter a(t) in order to reconstruct the
signal f(t). The reconstruction scheme is similar to the one
in Fig. 3, but without a correction filter h[n], which is here
embedded in the CS reconstruction procedure.

VII. NUMERICAL EXPERIMENTS

We validate the proposed system based on simulations
conducted on signals that are synthetically made Q-sparse and
real-world signals that can be seen as asymptotically sparse. All
the simulations were performed in the programming language
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Fig. 4. B-spline basis functions of degrees p = 0 to 3. As p increases, the
basis functions flatten out and their support expands.

MATLAB and the `1-optimization programs were solved using
SPAMS v2.6 optimization toolbox [57].

A. Q-Sparse Signals

To prove that the proposed framework perfectly reconstructs
observed signals in an SI subspace under the sparsity assump-
tion, we synthetically induced sparsity in a real-world audio
signal which was previously interpolated by polynomial B-
spline basis functions of various degrees.

1) Test Signals: A test signal is of the form

f(t) =
∑
m∈O

d[m]a(t−mT ), (24)

where a(t) is a generator whose shifts span a B-spline subspace
A of degree pa. Since the observed audio signal is of finite
length, we restrict ourselves to a subset of KN + 2dpa/2e
basis functions with m ∈ O, where O is a set of integers in a
region of interest. For simplicity, we set the period T = 1. Fig.
4 illustrates the generators of the polynomial B-spline subspaces.
The signal is divided in intervals of length τ = NT = 1024 so
that dk ∈ RN is a vector of expansion coefficients associated
with the k-th interval. The number of intervals is set to K = 71.
The expansion coefficients {dk}Kk=1 are synthetically made
Q-sparse in the DCT domain. We select the sparsity ratio
q = Q/N to 10%, 15% and 20%, which correspond to Q:
102, 154 and 205 nonzeros, respectively.

2) Measurements:
a) RD-Based Measurement: This case simulates the

measurement procedure of the conventional RD, which is
described in detail in Section IV. Demodulating signals
{zi(t)}Mi=1, where M < N , lie in the B-spline subspace of
degree zero (9). Expansion coefficients {φi[n]} of {zi(t)} are
i.i.d. random values of ±1s, which cyclically repeat with period
N = 1024. Sampling rate in a single channel is N times lower
than the rate of innovation ρ = 1/T = 1 of the signals. Vector
of measurements yk ∈ RM , that is obtained at the end of an
interval k, is a weighted linear combination of the SI samples
contained in a vector ck ∈ RN and is given by (15).

b) Measurement with a wider class of sampling ker-
nels: Here, measurements are obtained by simulating the
measurement procedure of the generalized method, in which the
sampling kernel s(t) lies in a wider class of SI subspaces (see
Section VI). In our settings, demodulating signals {zi(t)}Mi=1,
where M < N , lie in a B-spline subspace of degree ps,
for ps = 0, 1 or 2. The expansion coefficients {φi[n]} and
the sampling rate are the same as those in the previous
measurement case. The expansion coefficients {φi[n]} construct
a measurement matrix Φk ∈ RM×H , where H ≥ N . The

TABLE II
CORRECTION FILTERS FOR B-SPLINE GENERATORS OF DEGREE pa

pa 0 1 2 3

H(z) 1 8
z+6+z−1

6
z+4+z−1

384
z2+76z+230+76z−1+z−2

relation between a(t) and s(t) in a single integration interval
is contained in R̃ ∈ RH×L. Vector of measurements yk ∈ RM
is given by the expression in (21).

3) Reconstruction:
a) CS recovery followed by a discrete-time filter h[n]:

We use this type of reconstruction (see Section V) exclusively
for measurements acquired by the conventional RD system as
described in VII-A2a. The SI samples ck, which are assumed
sparse in the DCT domain, are recovered by solving the
optimization problem (17). The threshold parameter κ should
be tuned according to the measurement error and to the
type of a generator a(t). Furthermore, when the generator
a(t) = s(t) = b0(t), SI samples are equal to the expansion
coefficients dk, due to the orthonormality of the basis functions.
Thus, the SI samples ck are ideally Q-sparse in the DCT
domain. However, the equality ck = dk does not hold for other
choices of the generator a(t). Consequently, the recovered SI
samples ĉk are arranged into a sequence ĉ[n] and are filtered
by a discrete-time correction filter h[n] in order to obtain the
expansion coefficients dk, which characterize the signal in the
subspace A. Correction filters for various B-spline generators
a(t) are given in Table II. The correction filters are symmetric
and stable, i.e., the poles are reciprocal and do not lie on the
unit circle [46].

b) CS recovery with an embedded discrete-time filter:
This reconstruction procedure is a generalization of the RD-
based measurement and recovery to sampling kernels from a
wider class of SI subspaces, described in detail in Section VI.
The measurements are given in VII-A2b. We recover dk by
solving the `1-minimization problem (23). The sensing matrix
Θ consists of three matrices, namely the random measurement
matrix Φk, the correction matrix R̃, and the DCT matrix Ψ.
The threshold parameter κ in (23) is tuned according to the
measurement error.

4) Experimental Results: We simulated every setting 20
times in order to obtain reliable results. We selected 20 sets of
{φi[n]}Ni=1, for n = 0, . . . , N − 1, that are i.i.d. random values
of ±1s. These expansion coefficients of the demodulating
signals, which are periodic with NT , were used in the
simulations for all of the proposed settings. Since the test
signals had been made synthetically Q-sparse, we were able
to calculate the perfect recovery rate for various number of
measurements M . Signal-to-noise ratio (SNR) assesses the
quality of reconstructions, where the reconstruction error is
treated as noise. We considered SNR of ≥70 decibels to
correspond to a perfect reconstruction, due to the numerical
errors. In noise-corrupted measurements, the additive noise
term was modeled by white Gaussian noise with variance σ2

n.
The standard deviation σn was set to 5% and 10% of the
measurement vector’s standard deviation σy .

a) RD-based experiments: In this case, we used the
conventional RD-based measurements and the CS recovery
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Fig. 5. RD-based measurements and CS recovery. Perfect recovery rates
of a Q-sparse signal in the B-spline space of degree 0 for various number of
measurements M and sparsity ratios q.

TABLE III
RECONSTRUCTION QUALITY IN TERMS OF SNR IN DECIBELS FOR

Q-SPARSE SIGNALS AND RD-BASED MEASUREMENTS

q=10% q=15% q=20%

σn 0
σy
20

σy
10

0
σy
20

σy
10

0
σy
20

σy
10

B0 83.93 17.34 12.36 75.72 16.61 12.30 82.17 16.11 12.36
B1 40.69 17.16 12.34 39.82 16.56 12.39 41.17 16.28 12.56
B2 37.33 17.34 12.59 38.39 16.82 12.66 37.19 16.53 12.74
B3 34.92 17.65 13.13 35.88 17.31 13.16 34.54 17.02 13.14

followed by a discrete-time filter h[n]. Since the SI samples
ck are ideally Q-sparse only for the B-spline generator a(t) of
degree 0, we calculated perfect recovery rates for this setting
using various number of measurements M and sparsity ratios
q of the test signal (see Fig. 5). This setting can be seen as
the traditional CS problem and the simplest of the proposed
settings. The graph shows that in all simulations, more than
99% of the intervals are exactly recovered for M/Q ratios:
3.8, 3.2 and 2.8, which are associated to sparsity ratios 10%,
15% and 20%, respectively. These M/Q ratios correspond to
number of measurements M : 388 (q = 10%), 490 (q = 15%)
and 571 (q = 20%). The same numbers of measurements were
subsequently used in the assessment of the reconstruction
results for other settings.

Reconstruction results of the proposed framework for B-
spline generators a(t) of degree p = 0, . . . , 3 and various
sparsity ratios are given in Table III. The reconstruction quality
is the highest for noiseless settings with B-spline generator a(t)
of degree 0, clearly because of the sparsity property. However,
even though the SI samples are not ideally Q-sparse in the
DCT domain for B-spline generators a(t) of degree 1, 2 and 3,
the framework has shown to be robust in these cases, too. In
noiseless experiments, reconstruction quality deteriorates as the
degree of the B-spline generators a(t) increases. This is mainly
due to the relation of the SI samples ck and the expansion
coefficients dk, which are more similar for lower degrees
of B-splines. Additionally, the correction filters progressively
amplify high-frequency components as the degree of the B-
spline generator increases. This results in an amplification of
the reconstruction error, which is more of the high-frequency
nature, and consequently deteriorates the reconstruction quality.
For noise-corrupted measurements, the framework achieves
similar or slightly better results than the simplest setting which
is related to the traditional CS.

TABLE IV
RECONSTRUCTION QUALITY IN TERMS OF SNR IN DECIBELS FOR

Q-SPARSE SIGNALS (q = 15%) AND MEASUREMENTS WITH VARIOUS
SAMPLING KERNELS

s(t)=b0(t) s(t)=b1(t) s(t)=b2(t)

σn 0
σy
20

σy
10

0
σy
20

σy
10

0
σy
20

σy
10

B0 75.72 16.61 12.30 85.52 19.00 13.82 84.37 18.95 13.98
B1 86.28 19.96 14.74 85.61 20.08 15.00 83.73 19.82 14.99
B2 82.31 19.03 14.59 48.08 18.46 14.50 31.60 17.99 14.34
B3 28.00 17.69 14.32 23.06 17.33 14.20 21.41 17.10 14.10

b) Experiments based on the generalized method: Here,
we used measurements obtained by the generalized acquisition
method and the CS recovery with an embedded discrete-time
filter. First, we calculated the perfect recovery rates for settings
where the B-spline generators a(t) are of degree 0, 1, 2 and 3,
and sampling kernels s(t) are of degree 0, 1 and 2 (see Fig.
6). The sparsity ratio q is set to 15%. Notice that the perfect
recovery rate of a signal in B-spline subspace of degree 0 in
Fig. 6a matches the rate of a signal with sparsity ratio q = 15%
in Fig. 5, since these two inverse problems are equal. The same
perfect recovery rate is achieved in all settings if the random
values {φi[n]} are filtered with the appropriate IIR filters given
in (6). However, as we see in Fig. 6, the generalized method
also offers a perfect reconstruction of expansion coefficients
by using random measurement matrices Φk without filtering
of their entries, which is a more hardware-friendly approach. It
can be seen that the minimal M for a perfect recovery is smaller
than in the traditional problem of (Φ,Ψ)-pair for a(t) = b1(t)
and a(t) = b2(t) in Fig. 6a, a(t) = b0(t) and a(t) = b1(t) in
Fig. 6b and Fig. 6c. However, as the degree of B-spline basis
functions a(t) and s(t) increases, the impact of R̃ on the
CS properties of the forward model negatively affects the
minimal number of measurements M that is needed for a
perfect recovery.

In order to compare reconstruction results with the ones in
Table III, we set sparsity ratio q to 15% and the ratio M/Q to
3.2. Table IV shows SNRs of the reconstructions for various
degrees of the B-spline generators and sampling kernels. In
noiseless experiments, while the number of measurements is
large enough for a perfect recovery, the generalized method
achieves much better results than the previous one. However,
when the degrees of B-spline basis functions a(t) and s(t)
increase, the reconstruction quality decreases below the recon-
struction quality of the method with a correction filter. The
generalized method achieves better results than the method
with a correction filter in all noise-corrupted experiments. This
is due to the frequency responses of the correction filter H(z)
and its inverse filter. While H(z) amplifies reconstruction error
after the CS recovery in the framework with a discrete-time
correction filter, its inverse filter is lowpass and is embedded
in the CS recovery of the generalized method.

B. Real-World Signals

Simulations for real-world signals were conducted on pub-
licly available free samples of a high-resolution audio [58].
The original audio signal was sampled at the rate of 192 kHz.
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(a) s(t) = b0(t). (b) s(t) = b1(t). (c) s(t) = b2(t).

Fig. 6. Generalized reconstruction method with a wider class of sampling kernels. Perfect recovery rates of a Q-sparse signal in the B-spline space of
degree p = 0, . . . , 3 for various number of measurements M . The sampling kernel s(t) is a B-spline basis function of degree: (a) 0, (b) 1 and (c) 2.

(a) Method with discrete-time correction filtering. (b) Generalized method, s(t)=b0(t).

(c) Generalized method, s(t)=b1(t). (d) Both methods with various s(t), a(t)=b3(t).

Fig. 7. Reconstruction results of a real-world signal. (a), (b) and (c) Reconstruction quality for various measurement settings and reconstruction methods in
which the signal was assumed to lie in B-spline subspaces of degree 0, . . . , 3. (d) Comparison of reconstruction results of the two methods, namely the one
with discrete-time correction filtering (corr) and the generalized method. We used s(t) of degrees 0, 1 and 2, and the generator a(t) was of degree 3.

The signal is asymptotically sparse in the Fourier basis with
large coefficients corresponding to low-order frequencies and
a lot of small coefficients, but only a few true zeros.

We simulated the measurement procedure described in
Sections IV and VI with B-spline sampling kernels of order
ps = 0, 1 and 2. To exploit the asymptotic sparsity, we used
WHT matrix rows as expansion coefficients {φi[n]}Mi=1 of
demodulating functions {zi(t)}Mi=1, which cyclically repeat
with period τ = NT . The rows were picked in the multilevel-
subsampling fashion [52]. We selected log2(N) sampling levels
and the number of rows in the measurement matrix assigned
to the j-th level is 2j−1, for j = 1, . . . , log2(N). The amount
of measurement vectors picked in each sampling level Mj was
uniformly assigned, i.e., Mj = M/ log2(N). Let us denote
the set of indices corresponding to the j-th sampling level
as Uj = {Uj−1+1, . . . , Uj}, where 0 < U1 < · · · < Ulog2(N),
and N =

∑log2(N)
j=1 Uj . Indices corresponding to the picked

rows were Ij ⊆ {Uj−1+1, . . . , Uj}, |Ij | = Mj , and had been
chosen uniformly at random. In case when Mj > Uj − Uj−1,
the residual was transferred to the next sampling level.

In experimental settings, we selected the rate of innovation

of demodulating signals to be 8 times lower than the sampling
rate of the original audio signal, and consequently the rate of
innovation of a reconstructed signal was ρ = 1/T = 24 kHz.
The amount of coefficients corresponding to a single interval
was set to N = 1024. Furthermore, to simulate the analog
integration, we interpolated the high-resolution audio signal
(between 192 kHz samples) by the zero-order hold model. Such
a model is sufficient since the sampling rate of 192 kHz is
a lot higher than the highest frequency of interest in audio
signals and since the integration interval duration τ = NT is
much longer than T . The small discrepancies can be modeled
as the measurement noise.

The audio signal was reconstructed from a reduced set of
measurements by using the two proposed methods, namely the
method with discrete-time correction filtering that follows the
CS recovery (see Section V) and the generalized method with an
embedded correction filter (see Section VI). We simulated every
setting 20 times for various indices Ij and calculated the mean
of the reconstruction results. The quality of reconstructions
in terms of SNR are given in Fig. 7. In Fig. 7a and Fig.
7b, the graphs show that for both the reconstruction methods,
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representations of the signal in B-spline subspaces of degree
pa > 0 achieve much better reconstruction results than the
representation with the B-spline of degree pa = 0, which can
be seen as the traditional CS method. That is, the parametric
models obtained directly by the proposed methods represent
signals much better than the samples obtained by the traditional
method. Fig. 7c shows that as we increase the degree of a
B-spline generator a(t), we can accordingly expect higher SNR
of a reconstruction. This is due to the support of the B-spline
basis functions, which expands as the degree increases. Thus,
the coefficients are recovered from additional information from
neighboring intervals and the model asymptotically approaches
the sinc reconstruction formula that fits audio signals.

The results in Fig. 7d show that the generalized method with
an embedded correction filter outperforms the method with
discrete-time filtering. The method with discrete-time filtering
recovers exactly N SI samples which are later additionally
filtered with an amplifying correction filter from Table II.
Contrarily, the generalized method directly recovers L ≥ N
expansion coefficients, which is caused by the overlapping
basis functions from the neighboring intervals. Thus, the latter
method improves a recovery and mitigates the blocking artifacts.
While the blocking artifacts are usually avoided by complex
postprocessing methods, the proposed generalized method
possesses the ability to reject them within the CS recovery
procedure. Even though the difference between reconstruction
qualities of the two methods are apparent from the SNR
values, the ability to mitigate the blocking artifacts additionally
enhances the reconstruction quality of the generalized method.
A few reconstructions of a small segment of the audio signal are
provided in the supplementary material, which clearly confirm
the superiority of the generalized method over the method with
discrete-time filtering and traditional CS.

Finally, the generalized method offers measurement proce-
dures with a wider class of SI sampling kernels s(t) and Fig. 7d
shows that the sampling kernels of degree 1 and 2 outperform
the standard RD-based measurements with s(t) of degree 0.

The benefits of the proposed methods are twofold: First, the
results on the real audio signal show that our discretization
method is exact and leads to representations that better suit
the observed analog signal. Even though the conventional RD
assumes bandlimitedness, i.e., that the signal lies in an SI
subspace spanned by the integer shifts of the sinc basis function
which should perfectly fit audio signals, we show that this is an
approximation which exactly corresponds to the B-spline signal
model of order 0. This is clearly too coarse model for an audio
signal and our framework allows to use more suitable signal
spaces by elegantly linking the generalized sampling theory
with the CS paradigm. Second, the recovered expansion coeffi-
cients can be regarded as a parametric model of the underlying
continuous-time signal, which are in the proposed framework
obtained directly from a reduced set of measurements. Such
continuous signal representations offer an alternative to the
traditional bandlimited model and are particularly suitable
for signal processing without converting them into samples.
For example, gradients and higher-order derivatives can be
computed analytically, avoiding their approximation with finite
difference.

VIII. CONCLUSION

We proposed a framework for sampling and reconstruction
of signals in shift-invariant spaces whose expansion coefficients
are assumed to be sparse in a certain transform domain.
We introduced two methods based on a combination of the
principles in generalized sampling in shift-invariant spaces and
compressive sensing. The methods allow for reconstruction of
sparse signals with a much lower sampling rate in contrast to
the traditional shift-invariant setting. The shift-invariant model
of the underlying continuous-domain signal leads to the exact
discretization of the inverse problem and offers an alternative
and often more appropriate approach to the traditional ban-
dlimited model. We implemented the proposed methods for
sampling and reconstruction of signals that are assumed to lie
in polynomial B-spline function spaces. Numerical experiments
conducted on synthetically sparse data prove that our methods
are robust and that a perfect reconstruction of ideally Q-sparse
signals in B-spline function spaces is achievable for various
settings. By considering the proposed measurement model, we
argue that the conventional inverse problem in the random
demodulator which uses bandlimited signal model is just an
approximation. Reconstruction results of the real-world audio
signals acquired by the random demodulator showed that the
proposed framework yields higher reconstruction quality than
the conventional CS setting when B-spline generators of higher
orders are used.

We believe that the proposed methods can refine the way
how sparse signals are acquired and modeled, as opposed to
the classical bandlimited approach.

APPENDIX A

Entries R̃n,m of the matrix R̃ are determined by

R̃n,m =

(k+1)τ∫
kτ

a(t−mT )s(t− nT )dt. (25)

For simplicity, we set the period of the functions to T = 1 and
the index k to 0. We choose N = 32 and s(t) and a(t) are
both B-splines of degree 1. Shift-invariant subspaces A and
S are identical and are spanned by {a(t −m)} and {s(t −
n)}, respectively. The SI subspace A is illustrated in Fig.
8. The function a(t+ 1) corresponds to the left integration
interval (k = −1), but it overlaps the boundary and impacts the
integration in the observed interval (k = 0). Analogously, the
function a(t− 32) overlaps the right boundary. The sampling

. . . . . .

0
m=0 t

Fig. 8. Shift-invariant subspace A spanned by {a(t−m)}. The left boundary
of the integration interval is the black line at t = 0. The generator a(t) is
illustrated by solid lines and its integer shifts by dashed lines.
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functions {s(t− n)} act the same way. Thus, the matrix R̃ is
an H × L = (N + 2)× (N + 2) dimension matrix:

R̃ =



1
24

1
12 0 0 0 · · · 0

1
12

15
24

1
6 0 0 · · · 0

0 1
6

2
3

1
6 0 · · · 0

... · · ·
. . . . . . . . . · · · 0

0 · · · 0 1
6

2
3

1
6 0

0 · · · 0 0 1
6

15
24

1
12

0 · · · 0 0 0 1
12

1
24


. (26)

Notice that the entries on the diagonal repeat when we
move away from the corners and they are equal to the
nonzero values of the sampled cross-correlation sequence
rsa[n] = [. . . , 0, 1/6, 2/3, 1/6, 0, . . . ].

APPENDIX B

In our example, we consider the concatenation of B-spline
expansion coefficients of order 1. For simplicity, we set the
period of the functions to T = 1 and index k to 0. Two
basis functions, namely a(t+ 1) and a(t−N), overlap the
integration interval, one at the left and another at the right
boundary of the integration interval. Thus, the recovered
vector of expansion coefficients is d̂0 ∈ RL, where L = N + 2.
Previously, we recovered the vector of expansion coefficients
d̂−1 ∈ RL for the interval when k = −1. The last two entries
in d̂−1 and the first two entries in d̂0 characterizes the same
two expansion coefficients, namely d[−1] and d[0]. In order
to determine d[−1] and d[0], we apply the weighted average

d[−1] = w2d̂−1,L−1 + w1d̂0,1

d[0] = w1d̂−1,L + w2d̂0,2,
(27)

where wi are the weights. The weights are efficiently calculated
from the entries of the matrix R̃. The weights are equal to
the sum of the entries in the first L−N columns of R̃. In
the case when the generator a(t) is the B-spline of degree
1, L−N = 2 and the weights are w1 = 1/8 and w2 = 7/8.
Notice that the weights correspond to the amount of area under
the basis functions in the observed integration interval and
using the matrix R̃ is an efficient way of calculating the areas.
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