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Abstract

Recent demands on data privacy have called for federated learning (FL) as a new distributed learning
paradigm in massive and heterogeneous networks. Although many FL algorithms have been proposed,
few of them have considered the matrix factorization (MF) model, which is known to have a vast number
of signal processing and machine learning applications. Different from the existing FL algorithms that
are designed for smooth problems with single block of variables, in federated MF (FedMF), one has to
deal with challenging non-convex and non-smooth problems (due to constraints or regularization) with
two blocks of variables. In this paper, we address the challenge by proposing two new FedMF algo-
rithms, namely, FedMAvg and FedMGS, based on the model averaging and gradient sharing principles,
respectively. Both FedMAvg and FedMGS adopt multiple steps of local updates per communication
round to speed up convergence, and allow only a randomly sampled subset of clients to communicate
with the server for reducing the communication cost. Convergence analyses for the two algorithms are
respectively presented, which delineate the impacts of data distribution, local update number, and partial
client communication on the algorithm performance. By focusing on a data clustering task, extensive
experiment results are presented to examine the practical performance of both algorithms, as well as
demonstrating their efficacy over the existing distributed clustering algorithms.

Keywords− Federated learning, matrix factorization, model averaging, gradient sharing, clustering.

I. INTRODUCTION

Matrix factorization (MF) is one of the most fundamental models which has vast applications in signal

processing and machine learning, including data clustering, dimension reduction, item recommendation,

hyperspectral unmixing, and biological analysis, to name a few [1], [2], [3]. Mathematically, a general

MF problem is formulated as follows

min
W,H

Φ(X,WH) +RW (W) +RH(H) (1a)

s.t. W ∈ W,H ∈ H, (1b)
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where X ∈ RM×N is the observation data, W ∈ RM×K and H = [h1, . . . ,hN ] ∈ RK×N are two matrix

factors, andW and H are some constraints, and RW (·) and RH(·) are regularization functions for W and

H, respectively. The cost function Φ(X,WH) measures the quality of the approximation X ≈WH; for

example, Φ(X,WH) = 1
N ‖X−WH‖2F is a popular cost function used in many applications. In view of

the increasing volume of real-life data, distributed MF methods that can process large-scale datasets have

gained significant interests in the last decade [4]. However, recent emphasis on user privacy has called

for new distributed schemes that can realize these MF based applications without revealing the users’

private data. Specific examples include processing distributed patient medical records stored in multiple

hospitals [5] and daily personal data of mobile users [6].

As an emerging distributed learning paradigm, federated learning (FL) has been introduced by Google

to enable collaborative model learning over distributed data owned by massive clients (e.g., mobile devices

or institutions). The FL runs under the orchestration of a central server without the need of knowing

the clients’ raw private data. Compared with traditional distributed learning schemes [7], FL faces new

challenges. This includes dealing with massively distributed clients in heterogeneous networks which have

unbalanced and non-i.i.d. data distribution, and limited communication resource for message exchanges

between the server and clients [6].

To train a model under the challenging FL setting, serveral FL algorithms have been proposed [8], [9],

[10], [11], [12], mostly based on the classical stochastic gradient descent (SGD) method. In particular,

[8] proposed a model averaging algorithm, called FedAvg, where the server coordinates the training by

iteratively averaging the local models learned by the clients via SGD. A salient feature of FedAvg over

the classical gradient sharing approach is local SGD, where the clients are allowed to perform multiple

epochs of SGD locally before sending the local model to the server for averaging. Local SGD has been

proven an effective strategy to reduce the required number of communication rounds for producing a good

model [8], [11], [12]. The second feature of FedAvg is partial client participation (PCP), where only

a small number of clients are sampled and communicate with the server in each communication round.

Partial participation can greatly alleviate the network congestion problem especially when the number

of clients is large and communication bandwidth is limited. It also models that a client might become

offline randomly due to poor link quality. We notice that, while many successful efforts have been made

for supervised FL tasks, few works have been done for the MF model (1) and its applications.

A. Related Works

For example, the recent works [13] and [14] studied the federated MF (FedMF) problem for recom-

mendation systems. They considered the gradient sharing strategy, where, in each communication round,
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the server aggregates the gradient information of the cost function from the clients and applies one step

of gradient descent for model training. However, as mentioned in [8], the gradient sharing based methods

would require a large number of communication rounds to produce a good model. It is also worth noting

that the existing model averaging based FL algorithms [8], [9], [10], [11], [12] are not directly applicable

to problem (1) because these existing studies have assumed smooth and unconstrained problems while (1)

is constrained, and the existing algorithms are designed to deal with problems with single-block variable

while (1) involves two blocks of variables.

On the other hand, although many distributed MF methods have been proposed, they did not consider

the FL scenario and address the associated issues. Specifically, a large body of the existing distributed

MF methods are parallel implementations of the centralized sequential SGD or alternating least square

(ALS) algorithms, either on MapReduce [15], [16], [17] or Parameter server [18]. Analogously, parallel

implementations of the multiplicative rule [19] and block coordinate descent [20], [4] on MapReduce are

developed for non-negative MF (NMF) models. Again, these works usually assume that there is a shared

memory that all nodes can access, and careful model/data partition is required for efficient parallelization.

Another category of works considered decentralized MF methods such as [21], [22], [23], [24] with the

absence of the central server. Consensus methods are often used to achieve distributed optimization.

However, the critical issues of FL such as unbalanced/non-i.i.d. data are not considered therein.

In summary, firstly, the existing FedMF and distributed MF algorithms have not been fully customized to

overcome the challenges of FL in massive and heterogeneous networks. Secondly, the current studies have

focused on specific applications (such as item recommendation), there still lacks a systematic algorithm

design for the general MF model (1) so that the designed algorithms can subsequently be employed

in various MF applications. Thirdly, the existing FedMF works do not present theoretical convergence

analysis and thus are not able to analytically explain how various factors, such as non-i.i.d. data distribution

and partial communication, can affect the algorithm performance.

B. Contributions

In this paper, we aim to investigate communication-efficient FedMF algorithms. In particular, we

propose two novel FedMF algorithms, based on the principles of model average (MA) and gradient sharing

(GS), respectively. We assume that W is a shared variable of all clients whereas H can be (column-wise)

partitioned into multiple local variables exclusively owned by respective clients; see Section II for the

detailed FedMF model.

1) We firstly propose a new FedMF algorithm, called FedMAvg, that judiciously combines the al-

ternating minimization method and the MA technique, where the former is a popular method for
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handling the MF model in (1) [25]. Specifically, in each communication round of FedMAvg, the

clients perform one round of local alternating minimization through multiple steps of local projected

gradient descent (local PGD) with respect to H and W, followed by averaging the locally learned

model W at the server. Besides, partial client communication (PCC) is adopted to reduce the overall

communication cost, where only a sampled subset of clients upload their models to the server in

each round. We present a convergence analysis which explicitly characterizes how the number of

local updates, PCC and non-i.i.d. data distribution can affect the algorithm convergence. The analysis

suggests that a diminishing number of local updates should be used for FedMAvg so that it can be

less sensitive to non-i.i.d. data. Unlike the existing analyses [8], [9], [10], [11], [12] which are for

smooth unconstrained problems, our analysis overcomes the challenge due to the constraints and

two-block variables in problem (1).

2) Secondly, we propose a new GS based FedMF algorithm, called FedMGS, which improves upon the

algorithms in [14], [13] in terms of convergence speed and communication efficiency. In FedMGS,

the clients are responsible for computing ∇WΦ and uploading it to the server which is in charge of

updating W. We focus on MF problems with the squared Frobenius norm cost, i.e., Φ(X,WH) =

1
N ‖X−WH‖2F . By exploring the fact that ∇WΦ has a linear separable structure, one can allow both

the clients and the server to perform multiple steps of PGD in each communication round, which

thus can improve the convergence speed in a way similar to MA based methods. Analogously, in

FedMGS, we allow only a sampled subset of clients to be active and communicate with the server,

which reduces the communication cost. Convergence analysis reveals that FedMGS is inherently

resilient to non-i.i.d. data distribution.

To examine the performance of the proposed FedMF algorithms, we apply them to the federated data

clustering task and test them on both synthetic dataset and real datasets including the TDT2 document data

[26], the TCGA cancer gene data [27], and the MNIST hand-writing digits data [28]. Extensive experiment

results are presented, which not only provide useful insights on how various algorithm parameters and data

distribution affect the algorithm performance, but also show the superiority of the proposed algorithms

over the existing distributed clustering methods.

Synopsis: Section II presents the FedMF problem model and its application to data clustering. Section

III and Section IV respectively present the proposed FedMAvg and FedMGS algorithms and their

convergence analyses. Experiment results are presented in Section V, and lastly the conclusion is drawn

in Section VI.

Notation: Rm×n denotes the set of m by n real-valued matrices. The (i, j)th entry of matrix A is

denoted by [A]ij ; superscript > stands for matrix transpose. 1 denotes the all-one vector, 0 is the all-zero
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vector, and Im is the m by m identity matrix, and ‖ · ‖F is the matrix Frobenius norm. 〈A,B〉 denotes

the inner product between matrices A and B. λmax(A) stands for the maximum eigenvalue of A.

II. FEDERATED MF AND APPLICATION TO CLUSTERING

A. FedMF Model

By considering the FL setting, we assume that the data matrix can be partitioned as X = [X1,X2, . . . ,XP ]

and respectively owned by P distributed clients. Specifically, each client p owns non-overlapping data

Xp ∈ RM×Np , where Np is the number of samples of client p and
∑P

p=1Np = N . Besides, we assume

that there is a server who coordinates the P clients to accomplish the MF task with all the distributed

data X1,X2, . . . ,XP being considered. Note that, under the FL scenario, the number of clients P could

be large, the data size Np, p = 1, . . . , P , could be unbalanced, and the data samples X1,X2, . . . ,XP

could be non-i.i.d. [29], [6].

Let H = [H1, . . . ,HP ] be partitioned in the same fashion as X, and let ωp = Np/N , p ∈ P ,
{1, . . . , P}. Moreover, assume that Φ(X,WH) =

∑P
p=1 Φp(Xp,WHp), RH(H) =

∑P
p=1RH(Hp) and

H = H1 ×H2 · · · × HP which are separable with respect to H1, . . . ,HP . Then, one can write the MF

problem (1) as

min
W, Hp,
p=1,...,P

F (W,H) ,
P∑

p=1

ωpFp(W,Hp) (2a)

s.t. W ∈ W,Hp ∈ Hp,∀p ∈ P, (2b)

where

Fp(W,Hp) =
Φp(Xp,WHp)

ωp
+
RH(Hp)

ωp
+RW (W) (3)

is the local cost function of each client p. As seen, W is a shared variable whereas Hp, p ∈ P , are

client local variables.

The FedMF algorithm should enable the server to coordinate the distributed clients to jointly solve the

MF problem (2) without the need of the clients revealing their private raw data. We should emphasize

here that problem (2) is much more challenging to solve than the FL problems considered in the literature

[8], [9], [10], [11], [12] because problem (2) is non-convex and non-smooth (due to the constraints) and

problem (2) involves two blocks of variables W and H. Thus, the existing FL algorithms that are designed

for smooth problems with single-block variable cannot be applied to problem (2). In addition, the GS

based methods in [13] and [14] are not communication-efficient solutions to problem (2), as mentioned

in Section ?? and will be verified in Section V.
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B. Federated Clustering via FedMF

As mentioned, the MF model (1) has many applications in signal processing and machine learning.

In this paper, we are particularly interested in applying the MF model (1) for data clustering, in view of

that clustering is one of the most fundamental data mining tasks.

Take clustering as the example. When Φ(X,WH) = 1
N ‖X −WH‖2F , RW (W) = RH(H) = 0 and

H = {H | 1>hj = 1, [H]ij ∈ {0, 1}, ∀i = 1, . . . ,K, j = 1, . . . , N}, the MF model (1) corresponds to

the classical K-means formulation [1]. Specifically, in (1), columns of W represent centroids of the K

clusters, while H ∈ H is the cluster assignment matrix where [H]ij = 1 indicates that data sample xj

is uniquely assigned to cluster i. Thus, the K-means algorithm is equivalent to solving the above MF

problem (1) via alternating minimization [30]. Interestingly, recent studies have shown that structured

MF models such as the orthogonal non-negative MF (NMF) [1], [31] can outperform the K-means in

many application scenarios.

However, there lacks algorithms that can perform clustering in FL network. In the literature, there

are two main categories for distributed clustering. In the first category, the methods are simply parallel

implementations of the centralized clustering algorithms, such as K-means [32], [33], [34] and density

based DBSCAN [35], but they usually assume a shared memory, which is opposite to the setting of FL.

Distributed clustering methods in the second category target at approximating the centralized clustering

methods via constructing so-called coreset, which is a small-sized set of weighted samples whose cost

approximates the cost of the original dataset. Thus, clustering over the coreset is approximately the same

as clustering over the original dataset, which resolves the large-scale clustering issue. For example, in

[36] distributed clients generate local coresets based on local data, and their union constitutes a global

coreset, while in [37], a global coreset is directly constructed from locally clustering results. Impressively,

these methods are communication efficient since the clients require to communicate with the server for

one or two rounds only. Approximation ratios with respect to the referenced algorithms (such as K-

means/K-median/K-centers) are also guaranteed [37], [36], [38], [39]. However, these coreset methods

are in general no better than their referenced algorithms.

In the next two sections, we present the proposed FedMF algorithms, and then examine their practical

performance on the data clustering task in Section V.

III. FEDERATED MF BY MODEL AVERAGING

In this section, we develop a MA based FedMF algorithm, termed FedMAvg, and establish its theoretical

property.
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A. FedMAvg Algorithm

Straightforward application of the MA technique to the distributed MF problem (2) would lead to an

iterative algorithm as follows. For round s = 1, 2, . . ., each client p obtains an approximate solution to

the corresponding local subproblem of (2), i.e.,

(Ws
p,H

s
p) = arg min

W,Hp

Fp(W,Hp) (4a)

s.t. W ∈ W,Hp ∈ Hp. (4b)

Since W in (2) is the shared variable, the server collects and takes certain average of Ws
1, . . . ,W

s
P ,

denoted by Ws, and broadcasts the average Ws to the clients for the next round of updates.

There are many possible ways to handling problem (4). One approach is simply employing one step

of the alternating minimization; that is, given Ws−1 in the previous round, each client p performs

Hs
p = arg min

Hp∈Hp

Fp(W
s−1,Hp), (5a)

Ws
p = arg min

W∈W
Fp(W,Hs

p). (5b)

In practice, it is sufficient to employ the simple PGD method for (5a) and (5b), respectively. In

particular, by following the same spirit as the multiple-step local SGD in FedAvg [8], we propose to

approximate (5a) by Q1 ≥ 1 consecutive steps of PGD with respect to Hp, i.e., for t = 1, . . . , Q1,

Hs,t
p =PHp

{
Hs,t−1
p − 1

csp
∇Hp

Fp(W
s−1,Hs,t−1

p )
}
, (6)

where Hs,0
p = Hs−1

p ; ctp > 0 is the step size, and PH denotes the projection operation onto the sets Hp.
Denote Hs

p = Hs,Q1
p for all p ∈ P .

Analogously, we approximate (5b) by Q2 ≥ 1 consecutive steps of GD (no projection) with respect to

W, i.e., for t = Q1 + 1 . . . , Q,

Ws,t
p = Ws,t−1

p − 1

ds
∇WFp(Ws,t−1

p ,Hs,Q1
p ), (7)

where Q = Q1 + Q2 and ds > 0 is a step size. After a total number of Q local model updates, each

client p sends its local model of Ws
p = Ws,Q

p to the server. The server takes the weighted average and

applies projection operation PW to it

Ws = PW
( P∑

p=1

ωpW
s−1,Q
p

)
. (8)

Diminishing Q2: As W is the shared variable, the local GD length Q2 should not be too large since

it may make the local variable deviate from the global one and slow down the algorithm convergence,
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especially in the presence of heterogeneous non-i.i.d. data. This insight was also found in the classical

FedAvg algorithm [8], [11], [12]. To overcome the issue, we propose to consider a diminishing Q2; for

example, we consider Qs2 = b Q̂s c + 1, where Q̂ is a preset number. The intuition is that in the early

iterations the clients should “explore” more by performing more GD updates based on its local data,

whereas when the algorithm is close to convergence, they should make small movements only to avoid

model deviation. As will be demonstrated later by theoretical analysis and empirical experiments, the

strategy of diminishing Q2 can benefit the algorithm convergence significantly.

Partial client communication (PCC): After a total number of Qs = Q1 + Qs2 local updates, each

client p sends Ws,Qs

p to the server for model averaging. Like FedAvg [8], we let the server samples a

small, fixed-size subset of clients (denoted by As with size |As| = m � P ) and ask them to upload

their local models Ws
p, p ∈ As. The server then simply takes the average of the uploaded messages by

Ws = PW
(

1

m

∑

p∈As−1

Ws−1,Q
p

)
, (9)

followed by projection onto W . Note that under PCC, the clients that are not selected are still active

in updating their local variables by (6)-(7), which is different from the PCP[8], [12] where non-selected

clients are completely inactive. It will be shown that the PCC scheme actually can provide significant

performance improvement, particularly in heterogeneous networks with non-i.i.d data.

The details of the proposed FedMAvg algorithm are summarized in Algorithm 1.

Remark 1 Rather than using the alternating minimization strategy (6)-(7), one may instead approximate

problem (4) by applying Q/2 consecutive proximal alternating linearization minimization (PALM) steps

[40] locally at each client p. That is, given Ws,0
p , Ws, and Hs,0

p , H
s−1,Q/2
p in the round s, each

client p performs for t = 1, . . . , Q/2

Hs,t
p = PH

{
Hs,t−1
p − 1

csp
∇Hp

Fp(W
s,t−1
p ,Hs,t−1

p )
}
, (15)

Ws,t
p = PW

{
Ws,t−1

p − 1

ds
∇WFp(Ws,t−1

p ,Hs,t
p )
}
. (16)

The above (15)-(16) are different from (6)-(7) in the order of updates. Intriguingly, our numerical

experience suggests that (15)-(16) may not be a good strategy. To gain the insight, one can see that when

Q → ∞ the updates in (6)-(7) merely correspond to applying a single step of alternating minimization

to the local problem (4), whereas applying Q/2 PALM steps (15)-(16) with Q → ∞ would reach a

stationary point of (4) [40]. Given solely locally observable data at the clients, the latter strategy in
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Algorithm 1 Proposed FedMAvg algorithm

Input: initial values of W0
1 = · · · = W0

P at the server side, initial values of {H0
p}Pp=1 at the clients, A0 = {1, . . . , P} and

Q̂.

for round s = 1 to S do

Server side: Compute

Ws = PW
(

1

m

∑

p∈As−1

Ws−1
p

)
, (10)

and select a set of clients As (with size |As| = m) by sampling with replacement according to probabilities {ω1, . . . , ωP },
and broadcast Ws to all clients.

Client side:

for client p = 1 to P in parallel do

Set Hs,0
p = Hs−1

p and Ws,0
p = Ws.

for epoch t = 1 to Q1 do

Hs,t
p =PHp

{
Hs,t−1

p −∇Hp
Fp(Ws,t−1

p ,Hs,t−1
p )

csp

}
, (11)

Ws,t
p = Ws,t−1

p . (12)

end for

for epoch t = Q1 + 1 to Qs = Q1 +Qs
2 do

Ws,t
p = Ws,t−1

p − ∇WFp(Ws,t−1
p ,Hs,t−1

p )

ds
, (13)

Hs,t
p = Hs,t−1

p . (14)

end for

Denote Ws
p = Ws,Qs

p and Hs
p = Hs,Qs

p .

if client p ∈ As then

Upload Ws
p to the server.

end if

end for

end for

(15)-(16) would be too greedy and may not benefit the global algorithm convergence, especially in the

presence of non-i.i.d. data.

B. Convergence Analysis of FedMAvg

We first make some proper assumptions on problem (2).
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Assumption 1 All local cost functions Fp are lower bounded, i.e., Fp(W,Hp) ≥ F > −∞, ∀ W ∈
W,Hp ∈ Hp, where the constraint sets W and Hp, p ∈ P , are compact and convex.

Assumption 2 Fp are continuously differentiable in both W and Hp. Moreover, ∇Hp
Fp(W

s, ·) is

Lipschitz continuous on Hp with constant LsHp
, and ∇WFp(·,Hs,Q

p ) is Lipschitz continuous on W with

constant LsWp
.

Note that by Assumption 2,∇WF (·,H) is Lipschitz continuous with constant LsW =
√∑P

p=1 ωp(L
s
Wp

)2.

Since W and Hp are compact by Assumption 1, there exist upper and lower bounds for LsWp
and LsHp

,

e.g., for all p ∈ P ,

LW ≥ LsWp
≥ LW > 0, LH ≥ LsHp

≥ LH > 0. (17)

In addition, under compact W and Hp, we can have the following bounds

‖∇WFp(W,Hp)−∇WF (W,H)‖2F ≤ ζ2, (18)

‖∇WF (W,H)‖2F ≤ φ2, (19)

for all W ∈ W and H ∈ H, where ζ and φ are some constants. Equation (19) means that the gradient

of F is bounded. Equation (18) implies that the deviation between the local gradient ∇WFp and global

gradient ∇WF are also bounded. It is worth noting that the term in (18) is usually used in the FL

literature [41] to quantify the effect of non-i.i.d. data. Different from [41] where (18) and (19) are made

as assumptions, in our work we have (18) and (19) to hold naturally since problem (2) is a constrained

problem.

To build the convergence condition, we define the following sequence

W̃s,t = PW
(

1

m

∑

p∈As

Ws,t
p

)
, W̃s,0 = Ws, (20)

t = 1, . . . , Qs, as the instantaneous weighted average of local models. Besides, we define the following

terms as the optimality gap between a stationary solution of problem (2)

GH(W̃s,t,Hs,t) ,
P∑

p=1

ωp(c
s
p)

2
∥∥Hs,t

p − PHp

(
Hs,t
p −

1

csp
∇Hp

Fp(W̃
s,t,Hs,t

p )
)∥∥2

F
, ∀t ∈ Q1, (21)

GW (W̃s,t,Hs,t) , (ds)2‖W̃s,t − PW
(
W̃s,t − 1

ds
∇WF (W̃s,t,Hs,t)

)
‖2F , ∀t ∈ Qs2, (22)

where Q1 , {1, . . . , Q1} and Qs2 , {Q1+1, . . . , Qs}. Note that if GH(W̃s,t,Hs,t) = GW (W̃s,t,Hs,t) =

0, then (W̃s,t,Hs,t) is a stationary solution of problem (2). The main theoretical results for FedMAvg

is given as follows.
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Theorem 1 Let Qs2 = b Q̂s c+1 and T =
∑S

s=1Q
s be the total number of gradient evaluations per client.

Moreover, let csp = γ1
2 LH , ds = γ2L

s
W , where γ1 > 1 and γ2 ≥ Q1

2

√
2(7 + 4L

2
W /L

2
W ), and let As (with

|As| = m ≤ P ) be obtained by sampling with probability {ω1, . . . , ωP } with replacement. Then, under

Assumptions 1 and 2, the sequence {(W̃s,t,Hs,t)} of FedMAvg satisfies

1

T

[ S∑

s=1

Q1∑

t=1

E[GH(W̃s,t−1,Hs,t−1
p )]

+

S∑

s=1

Qs∑

t=Q1+1

E[GW (W̃s,t−1,Hs,t−1)]
]

≤D
T

(
F (W̃1,0,H1,0)− F

)
+

(
8Dζ2

mγ2LW
+

96ζ2

m

)

+
2D(1 + 8/m)(113 ζ

2 + φ2)
∑S

s=1C
s
1

Tγ32LW

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

Tγ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2T
, (23)

where D , γ2
1LH

2(γ1−1) + 6(γ2
2+1)L

2

W

(γ2−1)LW
, and

Cs1 , Qs2(Qs2 − 1)(2Qs2 − 1), (24a)

Cs2 , 6(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)Cs1 . (24b)

Proof: See Appendix A.

The bound in (23) shows that the local GD length Q1, Qs2, non-i.i.d. data ζ and PCC m all have

strong impacts on the convergence of FedMAvg. One can notice that if constant Qs2 = Q2 = 1 is used,

then
∑S

s=1C
s
1 =

∑S
s=1C

s
2 = 0, which makes the last three terms in the right hand side (RHS) of (23)

vanish to zero. On the other hand, if T = SQ1 +
∑S

s=1Q
s
2 is fixed, then increasing Q1 or Qs2 can

potentially reduce the required number of communication rounds S. Thus, there need proper choices of

Q1 or Qs2 for a good trade off between convergence performance and communication efficiency. One

can see that if constant Qs2 = Q2 > 1 is used, then both
∑S

s=1C
s
1 and

∑S
s=1C

s
2 linearly increase with

S and are unbounded. On the contrary, if Qs2 = b Q̂s c + 1, then one can show (see [42, Section 3]) that

both
∑S

s=1C
s
1 = O(Q̂3) < ∞, ∑S

s=1C
s
2 = O(Q̂5) < ∞, and thereby the last three terms in the RHS

of (23) can decrease sublinearly when T is large. Therefore, the diminishing Q2 strategy can trade off

between convergence performance and communication efficiency in a better way than constant Q2.

It can also been seen from the 2nd term in the RHS of (23) that PCC would slow down the algorithm

convergence, especially under non-i.i.d. data. Interestingly, when m increases, such negative effect can
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be reduced. In fact, when |As| = |m| = P (full participation), the term
( 8Dζ2

mγ2LW
+ 96ζ2

m

)
vanishes, and

FedMAvg can converge to a stationary solution problem (2) in a sublinear rate.

Corollary 1 Consider full participation in FedMAvg, i.e., |As| = P, ∀s, and the use of weighted average

like (8). Let W̃s,t = PW
(∑P

p=1 ωpW
s,t
p

)
for all s and t. Then, under the same setting as Theorem 1,

the sequence {(W̃s,t,Hs,t)} of FedMAvg satisfies

1

T

[ S∑

s=1

Q1∑

t=1

GH(W̃s,t−1,Hs,t−1)

+

S∑

s=1

Qs∑

t=Q1+1

GW (W̃s,t−1,Hs,t−1)
]

≤D
T

(
F (W̃s,0,Hs,0)− F

)

+
1

T

[
3

2
(ζ2 + φ2)

S∑

s=1

Cs1 +
(11ζ

2

3 + φ2)

γ22

(
D
∑S

s=1C
s
1

γ2LW
+

S∑

s=1

Cs3

)]
. (25)

where Cs3 , 6(3Qs2(Q
s
2 − 1)/2 + 2)Cs1 , D and Cs1 are defined in Theorem 1.

Proof: See [42, Section 2].

IV. FEDERATED MF BY GRADIENT SHARING

In this section, we focus on MF models with the squared Frobenius norm loss function Φ(X,WH) =

1
N ‖X −WH‖2F . By carefully exploiting the linear structure of ∇WΦ, we present another FedMF

algorithm, termed FedMGS, and its convergence analysis.

A. FedMGS Algorithm

According to the GS principle [8], for problem (2) each client p should compute the gradient ∇WFp
and upload it to the server. After collecting ∇WFp, p ∈ P , the server performs one step of PGD with

respect to W, and broadcasts the new W to the clients. More specifically, given Ws−1 at the clients,

the client p computes ∇WFp(Ws−1,Hs
p) where

Hs
p = arg min

Hp∈Hp

Fp(W
s−1,Hp). (26)

The PGD performed by the server is

Ws = PW
{
Ws−1 − 1

ds

P∑

p=1

ωp∇WFp(Ws−1,Hs
p)

}
. (27)
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Analogous to (6), we can approximate (26) by Q1 ≥ 1 consecutive PGD steps with respect to Hp;

specifically, given Hs,0
p = Hs−1

p , each client p performs for t ∈ Q1,

Hs,t
p =PHp

(
Hs,t−1
p − 1

csp
∇Hp

Fp(W
s−1,Hs,t−1

p )
)
, (28)

and obtain Hs
p = Hs,Q1

p . For example, the FedMF algorithm in [14], [13] adopts Q1 = 1. However, as

pointed out in [8], the GS scheme will need a lot of communication rounds to produce a good model.

To overcome this, we not only require Q1 > 1, but also require the server to perform multiple steps of

(27), which however is not possible in general since the server cannot access the data and thus cannot

obtain the new gradient ∇WF (·,Hs).

Linear gradient structure: Intriguingly, for problem (2) with Φ(X,WH) = 1
N ‖X −WH‖2F , we

actually can allow the server to conduct multiple steps of PGD with respect to W in each communication

round if the linear gradient structure of ∇WF is utilized. Specifically, by (3), we have

∇WF (W,H) =

P∑

p=1

ωp∇WFp(W,Hp)

= 2W

P∑

p=1

HpH
>
p

N
− 2

P∑

p=1

XpH
>
p

N
+∇RW (W). (29)

Thus, it is sufficient for each client p to send Hs
p(H

s
p)
> and Xp(H

s
p)
> to the server, who is then able to

construct the gradient ∇WF (·,Hs) on its own by (29). With this ability, the server can perform multiple

PGD steps in each communication round. Particularly, given Ws,1 = . . . = Ws,Q1 = Ws−1, we let the

server perform Q2 ≥ 1 consecutive steps of PGD, i.e., for t ∈ Q2 = {Q1 + 1, . . . , Q}

Ws,t = PW
{
Ws,t−1 − 1

ds
∇WF (Ws,t−1,Hs,Q1)

}
. (30)

Partial client participation (PCP): We let the server select only a small subset of clients As (with

size m � P ) to participate in the FedMF task in each communication round. Different from the PCC

in FedMAvg, the clients that are not selected in As are completely inactive in FedMGS (who neither

perform local updates nor upload message to the server).

The FedMGS algorithm are summarized in Algorithm 2.
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Algorithm 2 Proposed FedMGS Algorithm

Input: Initial values of H0,Q
1 , . . . ,H0,Q

P at the clients, and initial value of W0,Q and

G0
1 =

P∑

p=1

2

N
H0,Q1

p (Hs,Q1
p )>, G0

2 =

P∑

p=1

2

N
Xp(H

0,Q1
p )>,

at the server.

for round s = 1 to S do

Server side: Select a subset of clients As ⊂ P (with size |As| = m), and broadcast Ws = Ws−1,Q to the clients in

As.

Client side:

for client p = 1 to P in parallel do

if client p /∈ As then

Set Hs,t
p = Hs−1,Q1

p , ∀t ∈ Q1.

else if client p ∈ As then

Set Hs,0
p = Hs−1,Q

p .

for epoch t = 1 to Q1 do

Hs,t
p =PHp

{
Hs,t−1

p − 1

csp
∇HpFp(W

s,Hs,t−1
p )

}
.

end for

Send the server

Us
p = Hs,Q1

p (Hs,Q1
p )>, Vs

p = Xp(H
s,Q1
p )>. (31)

end if

end for

Server side:

Set Ws,t = Ws, ∀t ∈ Q1, and compute

Gs
1 = Gs−1

1 +
2

N

∑

p∈As

(Us
p −Us−1

p ),

Gs
2 = Gs−1

2 +
2

N

∑

p∈As

(Vs
p −Vs−1

p ).

for epoch t = Q1 + 1 to Q do

Ws,t = PW{Ws,t−1− 1

ds
∇WF (Ws,t−1,Hs,Q1)}, (32)

where ∇WF (Ws,t−1,Hs,Q1) = Ws,t−1Gs
1 −Gs

2 +∇RW (Ws,t−1).

end for

end for
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B. Convergence Analysis of FedMGS

Here we establish the convergence conditions of FedMGS. For PCP, we assume that the server samples

the clients with a uniform probability without replacement to obtain As in each communication round1.

Besides, we define the following virtual sequence assuming that all clients are active in each round s,

i.e., for all p ∈ P and t ∈ Q1,

H̃s,t
p = PHp

{
H̃s,t−1
p − 1

csp
∇Hp

Fp(W
s,0, H̃s,t−1

p )
}
,

H̃s,0
p = Hs,0

p . (33)

The convergence result for FedMGS is stated below.

Theorem 2 Let csp = γ
2L

s
Hp

and ds = γ
2L

s
W , where γ > 1, and that As (with |As| = m ≤ P ) is obtained

by uniform sampling without replacement. Then, under Assumptions 1 and 2, we have for FedMGS

1

T

[ S∑

s=1

Q1∑

t=1

E[GH(Ws,t−1, H̃s,t−1)]

+

S∑

s=1

Q∑

t=Q1+1

E[GW (Ws,t−1,Hs,t−1)]
]

≤ 1

T

(
Pγ2LH

2m(γ − 1)
+

γ2LW
2(γ − 1)

)(
F (W1,0,H1,0)− F

)
. (34)

Proof: See [42, Section 4].

Since the RHS of (34) is bounded and can decrease to zero as T → ∞, both E[GH(Ws,0, H̃s,0)] =

E[GH(Ws,0,Hs,0)] → 0 and E[GW (Ws,0,Hs,0)] → 0 as s → ∞; this implies that FedMGS will

converge to a stationary point of problem (2). Interestingly, in contract to the FedMAvg which could

suffer from the non-i.i.d. data, we can see that FedMGS is resilient to non-i.i.d. data. This point will be

further examined via numerical experiments later. Besides, one can also see from (34) that Q1 > 1 and

Q2 > 1 can reduce the number of communication rounds if T is fixed.

Remark 2 Although both FedMAvg and FedMGS are based on alternating minimization and gradient

descent, they adopt very different strategies (MA and GS) for learning over the federated network.

Theorem 1 and Theorem 2 also suggest that the two algorithms have different convergence properties in

1Our analysis considers this uniform sampling without replacement, but can be easily extended to the case when the server

samples clients using probability {ω1, . . . , ωP } with replacement.
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the presence of non-i.i.d. data and partial active clients. Moreover, the experiment results in Section V

will show that FedMGS can exhibit favorable convergence behaviors than FedMAvg and better clustering

performance. However, we should emphasize that FedMGS is restricted to problem (2) with the linear

gradient structure in (29). By contrast, FedMAvg can handle a broader range of MF problems of the

form of (2) not limited to specific structured cost functions. In the future, it will be interesting to apply

FedMAvg to MF models with different cost functions such as the β-divergence [43].

V. EXPERIMENT RESULTS

In this section, we examine the convergence behavior and performance of the proposed algorithms by

applying them to the data clustering problem described in Section II-B.

A. Experiment setup

Model: We consider the orthogonal NMF based clustering model in [44, Eqn. (9)] which corresponds

to problem (2) with RW (W) = 0,

RH(Hp)=
ρ

2

Np∑

j=1

(
‖1Thp,j‖22 − ‖hp,j‖22

)
+
ν

2
‖Hp‖2F , (35)

Φ(X,WH) =
1

N
‖X−WH‖2F , (36)

W = {W ∈ RM×K |W ≥ [W]ij ≥W,∀i, j},

Hp = {Hp ∈ RK×Np |[Hp]ij ≥ 0, ∀i, j},

where W (resp. W ) is set to the maximum (resp. minimum) value of X, and ρ, ν > 0 are two penalty

parameters. If not mentioned specifically, we set ρ = 10−8 × ‖X‖2FN and ν = 10−10 × ‖X‖2FN . Detailed

explanation of RH(Hp) and choice of parameters can be found in [44]. State-of-the-art distributed

clustering methods will also be considered as benchmarks.

Datasets: Four kinds of datasets are considered for evaluation, including synthetic data, the TDT2 data

[26], the TCGA data [27], and the MNIST data [28]. Specifically, we follow the Gaussian linear model

X = WH + E in [45] to generate a synthetic dataset with M = 2000, N = 10000 and K = 20, where

E ∈ RM×N denotes the Gaussian noise and the signal to noise ratio (SNR) = 10 log10(‖WH‖2F /‖E‖2F )

dB is set to −3 dB. The TDT2 dataset is extracted from the TDT2 corpus which contains 9394 documents

in the largest 30 categories, i.e. K = 30, N = 9394,M = 5000. The TCGA dataset is obtained from the

Cancer Genome Atlas (TCGA) database which contains the gene expression data of 5314 cancer samples

belonging to 20 cancer types, i.e. K = 20, N = 5314,M = 5000. Note that the features of the TCGA
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and TDT2 datasets are chosen as top-ranked ones by the Pearson’s Chi-Squared Test. Lastly, following

[12], we generate a MNIST dataset with K = 10, N = 10000,M = 784.

We distribute the samples of each dataset to P = 100 clients in two ways: Case 1: we follow [37] to

obtain balanced and i.i.d. distributed data for the four datasets, respectively. Case 2: For the synthetic,

TDT2 and TCGA datasets, we follow the similarity-based partition [37] where the K-means algorithm is

applied to the dataset to cluster it into 100 clusters, and each of the cluster is assigned to one client. This

leads to a highly unbalanced and non-i.i.d. dataset. For the MNIST dataset, we follow [12] to obtain a

distributed data where each of the client contains images of two digits only and the numbers of samples

among clients are highly unbalanced.

Parameter setting: For FedMAvg, the step size csp and ds are set to csp = 1
2λmax((Ws,0

p )>Ws,0
p ), ds =

5λmax(Hs,Q1(Hs,Q1)>). For FedMGS, it is set to csp = 1
2λmax((Ws,0)>Ws,0) and ds = 1

2λmax(Hs,Q1

(Hs,Q1)>). The stopping condition for both algorithms is that the normalized change of the objective

value ε = |F (Ws,Hs,Q)−F (Ws−1,Hs−1,Q)|
F (Ws−1,Hs−1,Q) is smaller than 10−8 or 500 communication rounds are achieved.

All algorithms under test are initialized with 10 common, randomly generated initial points, and the

averaged results are presented.

Communication cost: Only the uplink communication cost is considered since it is the primary

bottleneck when P is large. We define the communication cost as the accumulated number of real values

sent to the server. For the sth round, the accumulated communication cost of FedMAvg is s(mMK)

while that of FedMGS is s(mMK +mK2).

Due to limited space, here we present results on the synthetic and the TCGA dataset only while

relegating the results on the TDT2 and MNIST datasets in [42]. The simulation codes are available at

https://github.com/wshuai317/FedMF.

B. Convergence of FedMAvg

In Fig. 1(a) and Fig. 1(b), we present the convergence curves of FedMAvg for Q1 = 10 and for

constant Q2 and diminishing Q2, on Case 1 and Case 2 of synthetic data, respectively. One can observe

from Fig. 1(a) that for constant Q2, increasing Q2 can speed up the convergence under Case 1 (i.i.d.

data). On the contrary, one can see from Fig. 1(b) that under Case 2 (non-i.i.d. data), increasing Q2 can

greatly cause larger floors, whereas, with diminishing Q2, a proper value of Q̂ can not only speed up

the convergence but also achieve a lower objective value. The choice of Q̂ may depend on the dataset.

As shown in [42, Fig. S1(a)], a small value of Q̂ = 5 can achieve a good convergence behavior for the

TCGA dataset.
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Fig. 1: Convergence curve versus number of rounds of FedMAvg with different values of Q1 and Q̂.

Fig. 1(c) considers the PCC scheme with m = 10. By comparing Fig. 1(c) with Fig. 1(b), one can see

that the degradation due to constant Q2 becomes more evident when only partial clients communicate with

the server, whereas the diminishing Q2 scheme with a smaller value of Q̂ can converge well. Moreover,

as displayed in Fig. 1(d), increasing Q1 property can also speed up the convergence for both full client

participation and PCC. While Fig. 1(d) is for Case 2, the same trend can be observed for Case 1; see

[42, Fig. S1(b)]. The above results well corroborate with Theorem 1.

As discussed in Section III-A, the adopted PCC scheme can yield better performance than the PCP

scheme. To verify this, we present in Fig. 2(a) the comparison results of FedMAvg with PCC and PCP,

respectively. One can observe that FedMAvg with PCC can significantly outperform that with PCP.

Lastly, we verify the discussion in Remark 1 that the proposed FedMAvg with sequential updating

in (11)-(14) is better than the direct application of PALM (15)-(16). In Fig. 2(b), we denote the latter

approach as “FedPALM”, and one can clearly see that FedPALM cannot perform well except for Q = 2
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Fig. 2: (a) Comparison between FedMAvg (PCP) and FedMAvg (PCC), and (b) comparison of FedMAvg

and naive FedPALM mentioned in Remark 1.

(one step of updates of Wp and Hp per client).

C. Convergence of FedMGS

In Fig. 3, the convergence curves of the FedMGS algorithm on the synthetic dataset are displayed. Fig.

3(a) shows that increasing Q1 can speed up the convergence, but the speedup with Q1 > 10 is not as

significant as that with Q1 = 10. One can also see that the method in [13] and [14], which corresponds

to FedMGS with Q1 = Q2 = 1, converges much slower than FedMGS with Q1 > 1 and Q2 > 1.

As shown in Fig. 3(b), increasing Q1 can monotonically improve the convergence rate when m = 10;

the same trend is also observed in Fig 3(c) for Case 2 non-i.i.d. data. On the other hand, one can see

from Fig. 3(d) that FedMGS with m = 100 (full client participation) and Q1 = 10 or 100 can have

monotonically improved convergence speed when Q2 increases. However, as shown in Fig. 3(e), when

m = 10, increasing Q2 can improve the convergence only if Q1 is also large (Q1 = 100). We remark

that similar insights apply to the Case 2 non-i.i.d data, which are shown in Fig 3(f). In summary, one

can conclude that the algorithm convergence can benefit from a large Q2 and small Q1 when m is large

while from both large Q1 and Q2 when m is small.

D. Effect of i.i.d and non i.i.d Data

We further examine the performance of FedMAvg and FedMGS when faced with i.i.d (Case 1) and non-

iid data (Case 2). One can see from Fig. 4(a) and Fig. 4(c) that data distribution can have a considerable

impact on the FedMAvg for both the synthetic and TCGA dataset (also see the results on TDT2 and

MNIST datasets in [42, Fig. S2]) although full participation (m = 100) may alleviate the degradation.
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Fig. 3: Convergence curve versus number of rounds of FedMGS for different values of Q1 and Q2.

In Fig. 4(b) and Fig. 4(d), the results of FedMGS are shown, and it can be observed that FedMGS is

more robust against the data distribution. In particular, when full participation (m = 100), FedMGS can

exhibit almost the same performance for both Case 1 and Case 2. This is because when full participation,
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Fig. 4: Convergence curve versus number of rounds FedMAvg and FedMGS on the four datasets. It is

set that Q1 = 10 for both FedMAvg and FedMGS for all datasets.

FedMGS is equivalent to applying the PALM to problem (2) over the network.

E. Comparison between FedMAvg and FedMGS

In Fig. 5, we compare the FedMAvg and FedMGS on the non-i.i.d. synthetic and TCGA dataset (also

see the results on TDT2 and MNIST datasets in [42, Fig. S3]). The setting of Q1 and Q2 (Q̂) is the

same as that in Section V-D. One can see from Fig. 5(a) and Fig. 5(c) that on the synthetic data FedMGS

performs significantly better than FedMAvg for almost all values of m under test. One can also see that

with increased m both algorithms have improved convergence speed.

Fig. 5(b) and Fig. 5(d) re-plot the same results but with respect to the communication cost. One can see

that PCC are quite effective in reducing the communication cost for FedMAvg since a smaller value of m

can yield comparable performance as full participation (m = 100) at the expense of significantly fewer
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Fig. 5: Convergence curve versus number of rounds and communication cost of FedMAvg and FedMGS

under non-i.i.d data.

communication costs. The effect of PCP for FedMGS is not that significant because the convergence

speed of FedMGS with m = 100 is far faster than that with m < 100 on these two dataset. However,

one can see from [42, Fig. S3] that on the MNIST dataset, the FedMGS with m = 10 can save the

communication cost than that with m = 100.

F. Clustering Performance

To evaluating the clustering performance of the proposed algorithms, we follow the successive non-

convex penalty (SNCP) approach in [44] to gradually increase the penalty parameter ρ in (35) whenever

problem (2) is solved with sufficiently small ε. Specifically, the initial ρ is set to 10−8 and is updated by

ρ = 1.5× ρ whenever ε < 1× 10−5 (resp. ε < 5× 10−5 ) for FedMAvg (resp. FedMGS). The stopping

condition is set to ε < 1× 10−8. The setting of Q1 and Q2 (Q̂) is the same as that in Section V-D. In
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Fig. 6: Clustering accuracy versus number of accumulated rounds or communication cost of FedMAvg

and FedMGS for different datasets.

addition, the centralized SNCP method [44, Algorithm 1 & 2] and the popular K-means++ [46] are also

implemented as two benchmarks.

Fig. 6 presents the clustering accuracy (ACC) [26] versus accumulated round number and communica-

tion cost on the synthetic and TCGA datasets (also see the results on TDT2 and MNIST datasets in [42,

Fig. S4]). One can observe that FedMGS outperforms FedMAvg and achieves much higher clustering

accuracy than K-means++. From Fig. 6(a)-(b), one can see that FedMGS yields comparable clustering

accuracy as the centralized SNCP. Surprisingly, one can see from Fig. 6(c)-(d) that FedMGS can even

perform better than the centralized SNCP on the TCGA data. More importantly, with m = 10 or 30, both

of the FedMGS and FedMAvg can quickly reach a higher clustering accuracy with lower communication

cost than their counterparts with m = 100.
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TABLE I: Clustering accuracy (%) of the considered five methods on the four datasets (Case 2).

Dataset syn TDT2 TCGA MNIST

KM|| 69.4 32.6 50.1 46.8

BEL 38.7 33.3 42.0 46.1

CAL 63.6 32.5 48.2 46.6

FedMAvg (m = 10) 86.2 47.2 58.4 48.8

FedMAvg (m = 100) 85.5 52.1 62.9 40.0

FedMGS (m = 10) 88.4 51.5 67.7 50.0

FedMGS (m = 100) 87.7 53.5 72.2 49.1
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Fig. 7: Visualized clustering results (by t-SNE [47]) of the considered five methods on the TCGA dataset

(Case 2).

G. Comparison with Existing Distributed Clustering Methods

We further examine the clustering performance of the proposed FedMAvg and FedMGS methods

against three state-of-the-art distributed clustering methods, including KM|| [33], BEL [37], and CAL

[39]. These methods require only few rounds of communications between the clients and the server. For

example, both of BEL and CAL need merely one round of communication to obtain the clustering results.

The distributed version of KM|| is similar to the parallel counterpart of the K-means++ which requires

few communication rounds as well.
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Table I shows the detailed clustering accuracy of all methods on the four datasets under Case 2 over 100

clients. Note that the parameter settings of FedMAvg and FedMGS are the same as those in Section V-F.

As seen in Table I, the proposed FedMGS achieves the highest clustering accuracy. Besides, although

FedMAvg provides worse performance than FedMGS, it still outperforms the other three distributed

clustering methods considerably. Fig. 7 presents the visualized clustering results (by t-SNE [47]) of all

methods on the TCGA dataset under Case 2. One can see that both of the FedMAvg and FedMGS greatly

outperform the other three distributed counterparts.

VI. CONCLUSION

In this paper, we have presented FedMAvg and FedMGS algorithms for FedMF problems and con-

sidered their application to the fundamental data clustering task. We have also provided theoretical

convergence analyses for the two algorithms. The analysis results have explicitly characterized the impacts

of non-i.i.d. data, partial client communication as well as local GD number on the convergence of of the

two algorithms. They have also suggested a diminishing Q2 strategy for FedMAvg to deal with the non-

i.i.d. data, and also imply that FedMGS is less sensitive to data distribution. Extensive experiment results

have demonstrated consistent convergence behaviors of the proposed algorithms on both synthetic and

real datasets, showing insights on the values of Q1 and Q2 (Q̂) that can improve the convergence speed

of both algorithms. It has also been shown that PCC/PCP can significantly reduce the communication

cost of both algorithms.

As the future works, it is worthwhile to devise FedMF algorithms for general MF models that can handle

outlier and noisy data [48] as well as considering other MF applications, such as item recommendation

and biological data analysis. Enhancing privacy and security [14] of FedMF algorithms is also of great

importance.

APPENDIX A

PROOF OF THEOREM 1

According to (20), we define

W̃s,t = PW(W
s,t

), W
s,t

=
1

m

∑

p∈As

Ws,t
p , (37)

for all s and t = {0} ∪ Q1 ∪Qs2. Then, by (12), we have

W̃s,t = W
s,0

= Ws = Ws,0
p , ∀t ∈ {0} ∪ Q1, p ∈ P. (38)
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We also define

Es−1 ={A1, . . . ,As−1, {H1,t}Q1

t=0, . . . , {Hs−1,t}Qs−1

t=0 ,

{W1,t}Q1

t=0, . . . , {Ws−1,t}Qs−1

t=0 ,

{c1p}Pp=1, . . . , {cs−1p }Pp=1, d
1, . . . , ds−1} (39)

as the collection of historical events up to round (s− 1).

Objective Descent w.r.t. H: According to [40, Lemma 3.2], (11), (12) and (38) imply

Fp(W̃
s,t,Hs,t

p )− Fp(W̃s,t−1,Hs,t−1
p )

≤− γ1 − 1

2
LH‖Hs,t−1

p −Hs,t
p ‖2F ,∀t ∈ Q1, (40)

since csp = γ1LH

2 . Summing up (40) from t = 1 to Q1 and taking expectation of it conditional on Es−1

yields

E[Fp(W̃
s,Q1 ,Hs,Q1

p )|Es−1]− E[Fp(W̃
s,0,Hs,0

p )|Es−1]

≤− γ1 − 1

2

Q1∑

t=1

LHE[‖Hs,t−1
p −Hs,t

p ‖2F |Es−1]. (41)

As a result, the objective function F descends with local updates of H as follows

E[F (W̃s,Q1 ,Hs,Q1)|Es−1]− E[F (W̃s,0,Hs,0)|Es−1]

≤− γ1 − 1

2

Q1∑

t=1

P∑

p=1

ωpLHE[‖Hs,t−1
p −Hs,t

p ‖2F |Es−1]. (42)

Objective Descent w.r.t. W: Note by (13) that Hs,t
p = Hs,t−1

p ,∀t ∈ Qs2. Since ∇WF (·,Hs,Q) is

Lipschitz continuous under Assumption 2, by the descent lemma [40, Lemma 3.1], we have

F (W̃s,t,Hs,t) ≤ F (W̃s,t−1,Hs,t−1) +
LsW
2
‖W̃s,t − W̃s,t−1‖2F

+ 〈∇WF (W̃s,t−1,Hs,t−1),W̃s,t − W̃s,t−1〉︸ ︷︷ ︸
,(a)

. (43)

The term (a) can be bounded by the following lemma which is proved in [42, Section 1.1].

Lemma 1 For any s and t ∈ Qs2, the following inequality holds.
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〈∇WF (W̃s,t−1,Hs,t−1),W̃s,t − W̃s,t−1〉

≤ − ds‖W̃s,t − W̃s,t−1‖2F

+

〈
∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p ),W̃s,t − W̃s,t−1
〉
. (44)

Thus, substituting (44) into (43) gives rise to

F (W̃s,t,Hs,t)

≤ F (W̃s,t−1,Hs,t−1)−
(
ds − LsW

2

)
‖W̃s,t − W̃s,t−1‖2F

+

〈
∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p ),W̃s,t − W̃s,t−1
〉

≤ F (W̃s,t−1,Hs,t−1)− ds − LsW
2

‖W̃s,t − W̃s,t−1‖2F

+
1

2ds

∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

, (45)

where (45) holds since 〈x,y〉 ≤ 1
2c‖x‖22 + c

2‖y‖22, ∀c > 0. Then, taking the expectation over the two

sides of (45) conditioned on Es−1 yields

E[F (W̃s,t,Hs,t)|Es−1]− E[F (W̃s,t−1,Hs,t−1)|Es−1]

≤− E
[
ds − LsW

2
‖W̃s,t − W̃s,t−1‖2F

∣∣∣∣Es−1
]

+
1

2ds
E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]
. (46)

We then proceed with the following lemma which is proved in [42, Section 1.2].

Lemma 2 For any s and t ∈ Qs2,

E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)

− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤
(

2 +
16

m

) P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] +

16

m
ζ2.
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By applying Lemma 2, we have

E[F (W̃s,t,Hs,t)|Es−1]− E[F (W̃s,t−1,Hs,t−1)|Es−1]

≤− E
[
ds − LsW

2
‖W̃s,t − W̃s,t−1‖2F

∣∣∣∣Es−1
]

+

(
1 + 8/m

ds

) P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] +

8ζ2

mds
, ∀t ∈ Qs2. (47)

Summing (47) up from t = Q1 + 1 to Qs yields

E[F (W̃s,Qs

,Hs,Qs

)|Es−1]− E[F (W̃s,Q1 ,Hs,Q1)|Es−1]

≤ −
(
ds − Ls

W

2

)
E
[ Qs∑

t=Q1+1

‖W̃s,t − W̃s,t−1‖2F
∣∣∣∣Es−1

]
+

8Qs
2ζ

2

mds

+
1 + 8/m

ds

Qs∑

t=Q1+1

P∑

p=1

ωp(Ls
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

︸ ︷︷ ︸
,(b)

. (48)

The term (b) can be bounded with the following lemma which is proved in [42, Section 1.3].

Lemma 3 Let γ2 ≥ Qs2
√

2(7 + 4L
2
W /L

2
W ). It holds that

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

≤2Cs1(11ζ
2

3 + φ2)

γ22
, (49)

where Cs1 , Qs2(Qs2 − 1)(2Qs2 − 1).

Since γ2 = max{Q1
2

√
2(7 + 4L

2
W /L

2
W ),
√
T} and Qs2 = b Q̂s c+1, we have γ2 ≥ Qs2

√
2(7 + 4L

2
W /L

2
W ).

Thus, (48) becomes

E[F (W̃s,Qs

,Hs,Qs

)|Es−1]− E[F (W̃s,Q1 ,Hs,Q1)|Es−1]

≤−
(
ds − LsW

2

) Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F |Es−1] +
2(1 + 8/m)(11ζ

2

3 + φ2)Cs1
dsγ22

+
8Qs2ζ

2

mds
(50)

≤− γ2 − 1

2

Qs∑

t=Q1+1

LsWE[‖W̃s,t − W̃s,t−1‖2F |Es−1] +
2(1 + 8/m)(11ζ

2

3 + φ2)Cs1
γ32L

s
W

+
8Qs2ζ

2

mγ2LsW
, (51)
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where (51) follows since ds = γ2L
s
W . Then combing (42) and (51) and taking expectation over two sides

yields

γ1 − 1

2

Q1∑

t=1

P∑

p=1

ωpLHE[‖Hs,t−1
p −Hs,t

p ‖2F ]

+
γ2 − 1

2

Qs∑

t=Q1+1

LsWE[‖W̃s,t − W̃s,t−1‖2F ]

≤E[F (W̃s,0,Hs,0)]− E[F (W̃s,Qs

,Hs,Qs

)]

+
2(1 + 8/m)(11ζ

2

3 + φ2)Cs1
γ32L

s
W

+
8Qs2ζ

2

mγ2LsW
. (52)

Derivation of the Main Result: We next derive the convergence in terms of the optimal gap functions

in (21) and (22). Since csp = γ1LH

2 , we have from (52) that

Q1∑

t=1

E[GH(W̃s,t−1,Hs,t−1)]

=

Q1∑

t=1

P∑

p=1

ωp(c
s
p)

2E[‖Hs,t−1
p −Hs,t

p ‖2F ]

≤ γ21LH
2(γ1 − 1)

(
E[F (W̃s,0,Hs,0)]− E[F (W̃s,Qs

,Hs,Qs

)]

)

+
(1 + 8/m)(11ζ

2

3 + φ2)Cs1γ
2
1LH

γ32(γ1 − 1)LsW
+

4Qs2ζ
2γ21LH

mγ2(γ1 − 1)LsW
, (53)

Then, summing (53) up from s = 1 to S yields

S∑

s=1

Q1∑

t=1

E[GH(W̃s,t−1,Hs,t−1)]

≤ γ21LH
2(γ1 − 1)

(
F (W̃1,0,H1,0)− F

)
+

4ζ2γ21LH
∑S

s=1Q
s
2

mγ2(γ1 − 1)LW

+
(1 + 8/m)(113 ζ

2 + φ2)γ21LH
∑S

s=1C
s
1

γ32(γ1 − 1)LW
. (54)

where (54) follows from (17).

Similarly, we can also have from (52) that
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S∑

s=1

Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F ]

≤ 2

(γ2 − 1)LW

(
F (W̃1,0,H1,0)− E[F (W̃S+1,0,HS+1,0)]

)

+

S∑

s=1

E
[

4(1 + 8/m)(11ζ
2

3 + φ2)Cs1
γ32(γ2 − 1)(LsW )2

+
16Qs2ζ

2

mγ2(γ2 − 1)(LsW )2

]

≤ 2

(γ2 − 1)LW

(
F (W̃1,0,H1,0)− F

)
+

16ζ2
∑S

s=1Q
s
2

mγ2(γ2 − 1)L2
W

+
4(1 + 8/m)(11ζ

2

3 + φ2)
∑S

s=1C
s
1

γ32(γ2 − 1)L2
W

. (55)

Then, we need the following lemma to bound the optimality gap GW (W̃s,t,Hs,t), which is proved in

[42, Section 1.5].

Lemma 4 For |As| < P , we have

S∑

s=1

Qs∑

t=Q1+1

E[GW (W̃s−1,t,Hs−1,t)]

≤ 3(γ22 + 2)L
2
W

S∑

s=1

Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F ]

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
+

96ζ2

m

S∑

s=1

Qs2,

where Cs2 , 6(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)Cs1 .

By applying Lemma 4, we obtain

S∑

s=1

Qs∑

t=Q1+1

E[GW (W̃s,t−1,Hs,t−1)]

≤3(γ22 + 2)L
2
W

[
2

(γ2 − 1)LW

(
F (W̃1,0,H1,0)− F

)

+
4(1 + 8/m)(113 ζ

2 + φ2)
∑S

s=1C
s
1

γ32(γ2 − 1)L2
W

+
16ζ2

∑S
s=1Q

s
2

mγ2(γ2 − 1)L2
W

]

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
+

96ζ2

m

S∑

s=1

Qs2
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≤6(γ22 + 2)L
2
W

(γ2 − 1)LW

(
F (W̃1,0,H1,0)− F

)

+
12(γ22 + 2)(1 + 8/m)(113 ζ

2 + φ2)L
2
W

∑S
s=1C

s
1

γ32(γ2 − 1)L2
W

+
48(γ22 + 2)ζ2L

2
W

∑S
s=1Q

s
2

mγ2(γ2 − 1)L2
W

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
+

96ζ2

m

S∑

s=1

Qs2. (56)

Combing (54) and (56) and dividing two sides of it by T =
∑S

s=1Q
s = SQ1 +

∑S
s=1Q

s
2 yields

1

T

[ S∑

s=1

Q1∑

t=1

E[GH(W̃s,t−1,Hs,t−1)] +

S∑

s=1

Qs∑

t=Q1+1

E[GW (W̃s,t−1,Hs,t−1)]
]

≤
(

γ21LH
2(γ1 − 1)

+
6(γ22 + 1)L

2
W

(γ2 − 1)LW

)[
1

T

(
F (W̃1,0,H1,0)− F

)

+
2(1 + 8/m)(113 ζ

2 + φ2)
∑S

s=1C
s
1

Tγ32LW
+

8ζ2
∑S

s=1Q
s
2

Tmγ2LW

]

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

Tγ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2T
+

96ζ2

m

∑S
s=1Q

s
2

T

≤D
T

(
F (W̃1,0,H1,0)− F

)
+

8Dζ2

mγ2LW
+

96ζ2

m

+
2D(1 + 8/m)(113 ζ

2 + φ2)
∑S

s=1C
s
1

Tγ32LW

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

Tγ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2T
, (57)

where D , γ2
1LH

2(γ1−1) + 6(γ2
2+1)L

2

W

(γ2−1)LW
, and the 2nd and 3rd terms in the right hand side of (57) follow because

∑S
s=1Q

s
2/T ≤ 1. This completes the poof. �
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Supplementary Materials: Proofs

1 Proofs of Lemmas for Theorem 1

1.1 Proof of Lemma 1

Firstly, by (13) and (37), we have

0 =
1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p ) + ds(W
s,t −W

s,t−1
). (S.1)

Secondly, consider the following term

〈∇WF (W̃s,t−1,Hs,t−1) + ds(W̃s,t − W̃s,t−1),W̃s,t−1 − W̃s,t〉

=

〈
∇WF (W̃s,t−1,Hs,t−1) + ds(W̃s,t − W̃s,t−1)

− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )− ds(Ws,t −W
s,t−1

),W̃s,t−1 − W̃s,t

〉
(S.2)

=

〈
∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(W̃s,t−1
p ,Hs,t−1

p ),W̃s,t−1 − W̃s,t

〉

+ ds〈W̃s,t −W
s,t
,W̃s,t−1 − W̃s,t〉+ ds〈W̃s,t−1 −W

s,t−1
,W̃s,t − W̃s,t−1〉

≥
〈
∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

ωp∇WFp(W̃s,t−1
p ,Hs,t−1

p ),W̃s,t−1 − W̃s,t

〉
, (S.3)

where (S.2) holds due to (S.1), and (S.3) follows because

〈W̃s,t −W
s,t
,W̃s,t−1 − W̃s,t〉 ≥ 0,

〈W̃s,t−1 −W
s,t−1

,W̃s,t − W̃s,t−1〉 ≥ 0. (S.4)

Inequalities in (S.4) are obtained by the fact that W̃s,t = PW{Ws,t} and W̃s,t−1 = PW{Ws,t−1},
and the application of the optimality condition 〈x? − z,x − x?〉 ≥ 0, ∀x ∈ X of the projection
problem x? = arg min

x∈X
1
2‖x−z‖22, where X is a closed convex set [?, Proposition 3.1.1]. Rearranging

the terms in (S.3) yields

〈∇WF (W̃s,t−1,Hs,t−1),W̃s,t − W̃s,t−1〉
≤ − ds‖W̃s,t − W̃s,t−1‖2F

+

〈
∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p ),W̃s,t − W̃s,t−1
〉
. (S.5)
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1.2 Proof of Lemma 2

Firstly, we have ∀t ∈ Qs2,

E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

=E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)−

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )

+
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤2E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)−

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

︸ ︷︷ ︸
,(S.a)

+ 2E
[∥∥∥∥

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

︸ ︷︷ ︸
,(S.b)

, (S.6)

where the inequality (S.6) follows because of the basic inequality ‖∑n
i=1 ai‖22 ≤ n

∑n
i=1 ‖ai‖22. The

term (S.a) can be bounded by

E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)−

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

=E
[∥∥∥∥

P∑

p=1

ωp

(
∇WFp(W̃s,t−1,Hs,t−1

p )−∇WFp(Ws,t−1
p ,Hs,t−1

p )

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤
P∑

p=1

ωpE[‖∇WFp(W̃s,t−1,Hs,t−1
p )−∇WFp(Ws,t−1

p ,Hs,t−1
p )‖2F |Es−1]

≤
P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]. (S.7)

We can also bound the term (S.b) by

E
[∥∥∥∥

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

=
1

m2
E
[∥∥∥∥

∑

p′∈As

( P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp′(Ws,t−1
p′ ,Hs,t−1

p′ )

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

=
1

m2
E
[ ∑

p′∈As

∥∥∥∥
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp′(Ws,t−1
p′ ,Hs,t−1

p′ )

∥∥∥∥
2

F

∣∣∣∣Es−1
]
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+ E
[ ∑

p1 6=p2∈As

〈 P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp1(Ws,t−1
p1 ,Hs,t−1

p1 ),

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp2(Ws,t−1
p2 ,Hs,t−1

p2 )

〉∣∣∣∣Es−1
]

=
1

m2
E
[ ∑

p′∈As

∥∥∥∥
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp′(Ws,t−1
p′ ,Hs,t−1

p′ )

∥∥∥∥
2

F

|Es−1
]

(S.8)

=
1

m2
m

P∑

i=1

ωi

∥∥∥∥
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFi(Ws,t−1
i ,Hs,t−1

i )

∥∥∥∥
2

F

(S.9)

≤ 1

m

P∑

i=1

ωi

P∑

p=1

ωp ‖∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFi(Ws,t−1
i ,Hs,t−1

i )‖2F︸ ︷︷ ︸
,(S.c)

, (S.10)

where (S.8) and (S.9) follow due to independent sampling with replacement and unbiasedness,
i.e., Ep′ [∇WFp′(Ws,t−1

p′ ,Hs,t−1
p′ )|Es−1] =

∑P
p=1 ωp∇WFp(W

s,t−1
p ,Hs,t−1

p ); (S.10) follows because of

convexity of ‖ · ‖22. The term (S.c) can be bounded as follows.

(S.c) =‖∇WFi(Ws,t−1
i ,Hs,t−1

i )−∇WFp(Ws,t−1
p ,Hs,t−1

p )‖2F

≤
∥∥∥∥∇WFi(W

s,t−1
i ,Hs,t−1

i )−∇WFi(W̃s,t−1,Hs,t−1
i )

+∇WFi(W̃s,t−1,Hs,t−1
i )−∇WF (W̃s,t−1,Hs,t−1) +∇WF (W̃s,j ,Hs,t−1)

−
(
∇WFp(Ws,t−1

p ,Hs,t−1
p )−∇WFp(W̃s,t−1,Hs,t−1

p )

+∇WFp(W̃s,t−1,Hs,t−1
p )−∇WF (W̃s,t−1,Hs,t−1) +∇WF (W̃s,t−1,Hs,t−1)

)∥∥∥∥
2

F

≤4‖∇WFi(Ws,t−1
i ,Hs,t−1

i )−∇WFi(W̃s,t−1,Hs,t−1
i )‖2F

+ 4‖∇WFi(W̃s,t−1,Hs,t−1
i )−∇WF (W̃s,t−1,Hs,t−1)‖2F

+ 4‖∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WFp(W̃s,t−1,Hs,t−1
p )‖2F

+ 4‖∇WFp(W̃s,t−1,Hs,t−1
p )−∇WF (W̃s,t−1,Hs,t−1)‖2F

≤4(LsWi
)2‖W̃s,t−1 −Ws,t−1

i ‖2F + 8ζ2 + 4(LsWp
)2‖W̃s,t−1 −Ws,t−1

p ‖2F , (S.11)

where the first term and the third term in the right hand side (RHS) of (S.11) come from the
Lipschitz continuity of ∇WFp(·,Hp), and the second term in the RHS of (S.11) follows because of
the bound in (18). Substituting (S.11) into (S.10) yields
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E
[∥∥∥∥

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤ 1

m

P∑

i=1

ωi

P∑

p=1

ωp

(
4(LsWi

)2‖W̃s,t−1 −Ws,t−1
i ‖2F + 8ζ2 + 4(LsWp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F

)
(S.12)

≤ 8

m
ζ2 +

8

m

P∑

p=1

ωp(LWp)2‖W̃s,t−1 −Ws,t−1
p ‖2F . (S.13)

Then, after further substituting (S.7) and (S.13) into (S.6), we have

E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤2

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] +

16

m
ζ2

+
16

m

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F

=2

(
1 +

8

m

) P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] +

16

m
ζ2. (S.14)

�

1.3 Proof of Lemma 3

Firstly, we have

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

≤
Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2
(

2E[‖W̃s,t−1 −W
s,t−1‖2F |Es−1] + 2E[‖Ws,t−1 −Ws,t−1

p ‖2F |Es−1]
)

=2

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −W
s,t−1‖2F |Es−1]

︸ ︷︷ ︸
,(S.d)

+ 2

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖Ws,t−1 −Ws,t−1
p ‖2F |Es−1]

︸ ︷︷ ︸
,(S.e)

. (S.15)

In order to obtain the bound of (S.d) and (S.e), we need the following lemma which is proved
in Section 1.4.
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Lemma 5 For all t ∈ {Q1} ∪ Qs2, we have

E[‖Ws,t −Ws,t
p ‖2F |Es−1]

≤ 4(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωq(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1] +

8(t−Q1)
2

(ds)2
ζ2

+
4(t−Q1)

(ds)2

t−1∑

j=Q1

(LsWp
)2E[‖W̃s,j −Ws,j

p ‖2F |Es−1], (S.16)

E[‖W̃s,t −W
s,t‖2F |Es−1]

≤ 3(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1] +

3(t−Q1)
2(ζ2 + φ2)

(ds)2
. (S.17)

By applying Lemma 5, we have

(S.e) =

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖Ws,t−1 −Ws,t−1
p ‖2F |Es−1]

≤
Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2
(

4(t− 1−Q1)

(ds)2

t−2∑

j=Q1

P∑

q=1

ωq(L
s
Wq

)2E[‖W̃s,j −Ws,j
q ‖2F |Es−1]

+
4(t− 1−Q1)

(ds)2

t−2∑

j=Q1

(LsWp
)2E[‖W̃s,j −Ws,j

p ‖2F |Es−1] +
8(t− 1−Q1)

2

(ds)2
ζ2
)

=

Qs∑

t=Q1+1

4(t− 1−Q1)

(ds)2/(LsW )2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

+

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2
4(t− 1−Q1)

(ds)2/(LsW )2

t−2∑

j=Q1

(LsWp
)2

(LsW )2
E[‖W̃s,j −Ws,j

p ‖2F |Es−1]

+

Qs∑

t=Q1+1

8(t− 1−Q1)
2

(ds)2/(LsW )2
ζ2 (S.18)

≤
Qs∑

t=Q1+1

4(t− 1−Q1)

(ds)2/(LsW )2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

+

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2
4(t− 1−Q1)

(ds)2/(LsW )2

(
L
2
W

L2
W

) t−2∑

j=Q1

E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

+

Qs∑

t=Q1+1

8(t− 1−Q1)
2

(ds)2/(LsW )2
ζ2 (S.19)

5



=

Qs∑

t=Q1+1

4(t− 1−Q1)

γ22

(
1 +

L
2
W

L2
W

) t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

+

Qs∑

t=Q1+1

8(t− 1−Q1)
2

γ22
ζ2 (S.20)

≤2Qs2(Q
s
2 − 1)

γ22
(1 +

L
2
W

L2
W

)

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

+
4Qs2(Q

s
2 − 1)(2Qs2 − 1)ζ2

3γ22
, (S.21)

where (S.18) follows since (LsW )2 =
∑P

p=1 ωp(L
s
Wp

)2; (S.19) follows due to Assumption 2 and
(Ls

Wp
)2

(Ls
W )2
≤ L

2
W

L2
W

; (S.20) holds since ds = γ2L
s
W , and (S.21) follows because ∀aj > 0,

Qs∑

t=Q1+1

(t− 1−Q1)
t−2∑

j=Q1

aj ≤
Qs∑

t=Q1+1

Qs2(Q
s
2 − 1)

2
at−1, (S.22)

and

Qs∑

t=Q1+1

(t− 1−Q1)
2 =

Qs2(Q
s
2 − 1)(2Qs2 − 1)

6
. (S.23)

Similarly, we can bound (S.d) as follows.

(S.d) =

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −W
s,t−1‖2F |Es−1]

≤
Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2
(

3(t− 1−Q1)
2(ζ2 + φ2)

(ds)2

+
3(t− 1−Q1)

(ds)2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

)

≤
Qs∑

t=Q1+1

3(t− 1−Q1)

(ds)2/(LsW )2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2F |Es−1]

+

Qs∑

t=Q1+1

3(t− 1−Q1)
2(ζ2 + φ2)

(ds)2/(LsW )2
(S.24)

≤ 3Qs2(Q
s
2 − 1)

2(ds)2/(LsW )2

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

+
Qs2(Q

s
2 − 1)(2Qs2 − 1)(ζ2 + φ2)

2(ds)2/(LsW )2
(S.25)
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=
3Qs2(Q

s
2 − 1)

2γ22

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

+
Qs2(Q

s
2 − 1)(2Qs2 − 1)(ζ2 + φ2)

2γ22
, (S.26)

where (S.24) follows since (LsW )2 =
∑P

p=1 ωp(L
s
Wp

)2; (S.25) follows due to (S.22) and (S.23), and

(S.26) holds since ds = γ2L
s
W . Then, substituting (S.26) and (S.21) into (S.15) yields

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

≤ Qs2(Q
s
2 − 1)

γ22

(
7 + 4

(LW )2

(LW )2

) Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

+
Cs1(113 ζ

2 + φ2)

γ22
, (S.27)

where

Cs1 , Qs2(Qs2 − 1)(2Qs2 − 1). (S.28)

Since γ2 ≥ Qs2
√

2(7 + 4L
2
W /L

2
W ), then γ22 > 2Qs2(Q

s
2− 1)(7 + 4L

2
W /L

2
W ). After rearranging (S.27),

we obtain

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1]

≤ Qs2(Q
s
2 − 1)(2Qs2 − 1)(11ζ

2

3 + φ2)

γ22 −Qs2(Qs2 − 1)(7 + 4L
2
W /L

2
W )

≤ 2Cs1(11ζ
2

3 +G2)

γ22
, (S.29)

where (S.29) follows since γ22 −Qs2(Qs2 − 1)(7 + 4L
2
W /L

2
W ) >

γ22
2 . �

1.4 Poof of Lemma 5

According to the definition of W
s,t

, we have ∀t ∈ Qs2,

W
s,t

=
1

m

∑

p∈As

Ws,t
p

=
1

m

∑

p∈As

(
Ws − 1

ds

t−1∑

j=Q1

∇WFp(Ws,j
p ,Hs,j

p )

)
(S.30)

= Ws − 1

dsm

t−1∑

j=Q1

∑

p∈As

∇WFp(Ws,j
p ,Hs,j

p ), (S.31)
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where (S.30) is obtained by applying (13), i.e.,

Ws,t
p = Ws − 1

ds

t−1∑

j=Q1

∇WFp(Ws,j
p ,Hs,j

p ). (S.32)

As a result, by (S.31) and (S.32), we have

E[‖Ws,t −Ws,t
p ‖2F |Es−1]

=E
[∥∥∥∥Ws − 1

dsm

t−1∑

j=Q1

∑

p∈As

∇WFp(Ws,j
p ,Hs,j

p )

−
(
Ws − 1

ds

t−1∑

j=Q1

∇WFp(Ws,j
p ,Hs,j

p )

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

=
1

(ds)2
E
[∥∥∥∥

1

m

t−1∑

j=Q1

∑

p∈As

∇WFp(Ws,j
p ,Hs,j

p )−
t−1∑

j=Q1

∇WFp(Ws,j
p ,Hs,j

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤(t−Q1)

(ds)2

t−1∑

j=Q1

E
[∥∥∥∥

1

m

∑

i∈As

∇WFi(Ws,j
i ,Hs,j

i )−∇WFp(Ws,j
p ,Hs,j

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤(t−Q1)

(ds)2m

t−1∑

j=Q1

E
[ ∑

i∈As

‖∇WFi(Ws,j
i ,Hs,j

i )−∇WFp(Ws,j
p ,Hs,j

p )‖2F
∣∣∣∣Es−1

]

=
(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

i=1

ωi ‖∇WFi(Ws,j
i ,Hs,j

i )−∇WFp(Ws,j
p ,Hs,j

p )‖2F︸ ︷︷ ︸
,(S.f)

, (S.33)

where (S.33) follows since As is obtained by sampling with replacement. The term (S.f) can be
bounded by the same procedure to obtain (S.11), i.e.,

(S.f) ≤ 4(LsWi
)2‖W̃s,j −Ws,j

i ‖2F + 8ζ2 + 4(LsWp
)2‖W̃s,j −Ws,j

p ‖2F . (S.34)

Then, substituting (S.34) into (S.33) yields

E[‖Ws,t −Ws,t
p ‖2F |Es−1]

≤ (t−Q1)

(ds)2

t−1∑

j=Q1

P∑

i=1

ωi

(
4(LsWi

)2‖W̃s,j −Ws,j
i ‖2F + 8ζ2

+ 4(LsWp
)2‖W̃s,j −Ws,j

p ‖2F
)

=
4(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

i=1

ωi(L
s
Wi

)2‖W̃s,j −Ws,j
i ‖2F +

8(t−Q1)
2

(ds)2
ζ2

+
4(t−Q1)

(ds)2

t−1∑

j=Q1

(LsWp
)2‖Ws,j −Ws,j

p ‖2F . (S.35)
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On the other hand, to prove (S.17), note that

‖W̃s,t −W
s,t‖2F ≤‖Ws −W

s,t‖2F , (S.36)

since W̃s,t = PW(W
s,t

). Then, by (S.36) and (S.31), we have

E[‖W̃s,t −W
s,t‖2F |Es−1]

≤E
[∥∥∥∥Ws −Ws +

1

dsm

t−1∑

j=Q1

∑

p∈As

∇WFp(Ws,j
p ,Hs,j

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.37)

=
1

(ds)2
E
[∥∥∥∥

t−1∑

j=Q1

1

m

∑

p∈As

∇WFp(Ws,j
p ,Hs,j

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.38)

≤(t−Q1)

(ds)2m

t−1∑

j=Q1

E
[ ∑

p∈As

‖∇WFp(Ws,j
p ,Hs,j

p )‖2F
∣∣∣∣Es−1

]
(S.39)

≤(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp‖∇WFp(Ws,j
p ,Hs,j

p )‖2F (S.40)

=
(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp‖∇WFp(Ws,j
p ,Hs,j

p )−∇WFp(W̃s,j ,Hs,j
p )

+∇WFp(W̃s,j ,Hs,j
p )−∇WF (W̃s,j ,Hs,j) +∇WF (W̃s,j ,Hs,j)‖2F (S.41)

≤(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp

(
3‖∇WF (W̃s,j ,Hs,j)‖2F

+ 3‖∇WFp(Ws,j
p ,Hs,j

p )−∇WFp(W̃s,j ,Hs,j
p )‖2

+ 3‖∇WFp(W̃s,j ,Hs,j
p )−∇WF (W̃s,j ,Hs,j)‖2

)
(S.42)

≤3(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,j −Ws,j
p ‖2 +

3(t−Q1)
2(ζ2 + φ2)

(ds)2
, (S.43)

where (S.39) and (S.42) are obtained by the basic inequality ‖∑n
i=1 ai‖22 ≤ n

∑n
i=1 ‖ai‖22, (S.40)

is obtained by the Jensen’s inequality for the convex function ‖ · ‖2F , and (S.43) holds due to
Assumption 1 and the bound in (18). �

1.5 Poof of Lemma 4

We have ∀t ∈ Qs2, and ∀p ∈ P,

Ws,t
p = Ws,t−1

p − ∇WFp(W
s,t−1
p ,Hs,t−1

p )

ds
. (S.44)

Then, due to PCC, we obtain

W̃s,t = PW(W
s,t

) = PW
(
W

s,t−1 − 1

mds

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

)
, (S.45)
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where |As| < P . Thus, we have

E[GW (W̃s,t,Hs,t)|Es−1]

=E
[
(ds)2

∥∥∥∥W̃s,t − PW
(
W̃s,t − ∇WF (W̃s,t,Hs,t)

ds

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

=E
[
(ds)2

∥∥∥∥PW
(
W

s,t−1 − 1

mds

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

)

− PW
(
W̃s,t − ∇WF (W̃s,t,Hs,t)

ds

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤E
[
(ds)2

∥∥∥∥W
s,t−1 − W̃s,t

− 1

ds

(
1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.46)

≤E
[
(ds)2

∥∥∥∥W
s,t−1 − W̃s,t−1 + W̃s,t−1 − W̃s,t

− 1

ds

(
1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

)∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.47)

≤3(ds)2 E[‖Ws,t−1 − W̃s,t−1‖2F |Es−1]︸ ︷︷ ︸
,(S.g)

+3(ds)2E[‖W̃s,t−1 − W̃s,t‖2F |Es−1]

+ 3E
[∥∥∥∥∇WF (W̃s,t,Hs,t)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

︸ ︷︷ ︸
,(S.h)

. (S.48)

Then, we need to obtain the bounds of (S.g) and (S.h). By applying (S.17) in Lemma 5, we have

(S.g) ≤3(t− 1−Q1)

(ds)2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1] +

3(t− 1−Q1)
2(ζ2 + φ2)

(ds)2

≤3(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1] +

3(t−Q1)
2(ζ2 + φ2)

(ds)2
. (S.49)

Moreover, for (S.h), we have

(S.h) =E
[∥∥∥∥∇WF (W̃s,t,Hs,t)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.50)

=E
[∥∥∥∥∇WF (W̃s,t,Hs,t)−∇WF (W̃s,t−1,Hs,t−1)

+∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

(S.51)
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≤2E[‖∇WF (W̃s,t,Hs,t)−∇WF (W̃s,t−1,Hs,t−1)‖2F |Es−1]

+ 2E
[∥∥∥∥∇WF (W̃s,t−1,Hs,t−1)− 1

m

∑

p∈As

∇WFp(Ws,t−1
p ,Hs,t−1

p )

∥∥∥∥
2

F

∣∣∣∣Es−1
]

≤2(LsW )2E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+ 4

(
1 +

8

m

) P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] +

32

m
ζ2, (S.52)

where (S.52) follows by Assumption 2 and (S.14) in Lemma 2. Substituting (S.49) and (S.52) into
(S.48) yields

E[GW (W̃s,t,Hs,t)|Es−1]

≤9(t−Q1)
t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1] + 9(t−Q1)

2(ζ2 + φ2)

+ 3(ds)2E[‖W̃s,t−1 − W̃s,t‖2F |Es−1] + 6(LsW )2E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+ 12(1 + 8/m)

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F +

96ζ2

m

≤9(t−Q1)

t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1] + 9(t−Q1)

2(ζ2 + φ2)

+ 3(γ22 + 2)(LsW )2E[‖W̃s,t−1 − W̃s,t‖2F |Es−1]

+ 12(1 + 8/m)
P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F +

96ζ2

m
, (S.53)

where (S.53) follows since ds = γ2L
s
W . Then, summing (S.53) up from t = Q1 to Qs − 1 yields

Qs−1∑

t=Q1

E[GW (W̃s,t,Hs,t)|Es−1]

≤9

Qs−1∑

t=Q1

(t−Q1)
t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,j −Ws,j
p ‖2|Es−1]

+ 9

Qs−1∑

t=Q1

(t−Q1)
2(ζ2 + φ2) +

96Qs2ζ
2

m

+ 3(γ22 + 2)(LsW )2
Qs−1∑

t=Q1

E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+ 12(1 + 8/m)

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] (S.54)
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≤9Qs2(Q
s
2 − 1)

2

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t −Ws,t
p ‖2|Es−1]

+
3Qs2(Q

s
2 − 1)(2Qs2 − 1)(ζ2 + φ2)

2
+

96Qs2ζ
2

m

+ 3(γ22 + 2)(LsW )2
Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+ 12(1 + 8/m)

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2F |Es−1] (S.55)

≤3(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2E[‖W̃s,t−1 −Ws,t−1
p ‖2|Es−1]

+ 3(γ22 + 2)(LsW )2
Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+
3Cs1(ζ2 + φ2)

2
+

96Qs2ζ
2

m
(S.56)

≤3(γ22 + 2)(LsW )2
Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F |Es−1]

+
Cs2(113 ζ

2 + φ2)

γ22
+

3Cs1(ζ2 + φ2)

2
+

96Qs2ζ
2

m
, (S.57)

where

Cs2 , 6(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)Cs1 , (S.58)

the first term in the right hand side of (S.55) follows because ∀aj > 0,

Qs−1∑

t=Q1

(t−Q1)
t−1∑

j=Q1

aj ≤
Qs−1∑

t=Q1

Qs2(Q
s
2 − 1)

2
at; (S.59)

the second term in the RHS of (S.55) follows due to (S.23); the fourth term in the RHS of (S.55)

follows because W̃s,Q1 = W̃s,Q1−1; the first term in the RHS of(S.56) follows because W̃s,Q1 =
Ws,Q1

p , and (S.57) follows by applying Lemma 3 to the first term in the RHS of (S.56). Then,
taking expectation over two sides of (S.57) and summing it up from s = 1 to S yields

S∑

s=1

Qs−1∑

t=Q1

E[GW (W̃s,t,Hs,t)]

≤3(γ22 + 2)L
2
W

S∑

s=1

Qs∑

t=Q1+1

E[‖W̃s,t − W̃s,t−1‖2F ]

+
(113 ζ

2 + φ2)
∑S

s=1C
s
2

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
+

96ζ2

m

S∑

s=1

Qs2. (S.60)

�
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2 Poof of Corollary 1

Objective Descent w.r.t. H: Using the same procedure as to obtain (41) in the proof of Theorem
1, we have

F (W̃s,Q1 ,Hs,Q1)− F (W̃s,0,Hs,0)

≤− γ1 − 1

2

Q1∑

t=1

P∑

p=1

ωpLH‖Hs,t−1
p −Hs,t

p ‖2F . (S.61)

Objective Descent w.r.t. W: Using the same procedure as to obtain (45) in the proof of The-
orem 1, we have

F (W̃s,t,Hs,t)

≤F (W̃s,t−1,Hs,t−1)− ds − LsW
2

‖W̃s,t − W̃s,t−1‖2F

+
1

2ds
‖∇WF (W̃s,t−1,Hs,t−1)−

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )‖2F (S.62)

≤F (W̃s,t−1,Hs,t−1)− ds − LsW
2

‖W̃s,t − W̃s,t−1‖2F

+
1

2ds

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F . (S.63)

Then, summing (S.63) up from t = Q1 + 1 to Qs yields

F (W̃s,Qs
,Hs,Qs

)

≤F (W̃s,Q1 ,Hs,Q1)− ds − LsW
2

Qs∑

t=Q1+1

‖W̃s,t − W̃s,t−1‖2F

+
1

2ds

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F (S.64)

≤F (W̃s,Q1 ,Hs,Q1)− ds − LsW
2

Qs∑

t=Q1+1

‖W̃s,t − W̃s,t−1‖2F

+
Cs1(11ζ

2

3 + φ2)

γ32L
s
W

, (S.65)

where (S.65) follows because of Lemma 3 and ds = γ2L
s
W . By combing (S.61) and (S.65), we have

γ1 − 1

2

Q1∑

t=1

P∑

p=1

ωpLH‖Hs,t−1
p −Hs,t

p ‖2F +
γ2 − 1

2

Qs∑

t=Q1+1

LsW ‖W̃s,t − W̃s,t−1‖2F

≤ F (W̃s,0,Hs,0)− F (W̃s,Qs
,Hs,Qs

) +
Cs1(11ζ

2

3 + φ2)

γ32L
s
W

, (S.66)
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which implies that

Q1∑

t=1

GH(W̃s,t−1,Hs,t−1)

=

Q1∑

t=1

P∑

p=1

ωp(c
s
p)

2‖Hs,t−1
p −Hs,t

p ‖2F

≤ γ21LH
2(γ1 − 1)

(
F (W̃s,0,Hs,0)− F (W̃s,Qs

,Hs,Qs
)

)
+
γ21LHC

s
1(11ζ

2

3 +G2)

2γ32(γ1 − 1)LsW
. (S.67)

Then summing up (S.67) from s = 1 to S yields

S∑

s=1

Q1∑

t=1

GH(W̃s,t−1,Hs,t−1)

≤ γ21LH
2(γ1 − 1)

(
F (W̃s,0,Hs,0)− F

)
+
γ21LH(11ζ

2

3 + φ2)
∑S

s=1C
s
1

2γ32(γ1 − 1)LW
. (S.68)

Similarly, we can also have from (S.66) that

Qs∑

t=Q1+1

‖W̃s,t − W̃s,t−1‖2F

≤ 2

(γ2 − 1)LsW

(
F (W̃s,0,Hs,0)− F (W̃s,Qs

,Hs,Qs
)

)
+

2Cs1(11ζ
2

3 + φ2)

γ32(γ2 − 1)(LsW )2
. (S.69)

By summing up (S.69) from s = 1 to S, we have

S∑

s=1

Qs∑

t=Q1+1

‖W̃s,t − W̃s,t−1‖2F

≤ 2

(γ2 − 1)LW

(
F (W̃s,0,Hs,0)− F

)
+

2(11ζ
2

3 + φ2)
∑S

s=1C
s
1

γ32(γ2 − 1)L2
W

. (S.70)

We then proceed with the following lemma which is proved in Section 2.1.

Lemma 6 Suppose that |As| = P, ∀s. Then

S∑

s=1

Qs−1∑

t=Q1

GW (W̃s,t,Hs,t)

≤3(γ22 + 2)L
2
W

S∑

s=1

Qs∑

t=Q1+1

‖W̃s,t−1 − W̃s,t‖2F

+
(11ζ

2

3 + φ2)
∑S

s=1C
s
3

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
, (S.71)
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where

Cs3 , 6(3Qs2(Q
s
2 − 1)/2 + 2)Cs1 , (S.72)

and Cs1 is defined in (S.28).

By applying Lemma 6, we have

S∑

s=1

Qs∑

t=Q1+1

GW (W̃s,t−1,Hs,t−1)

≤(11ζ
2

3 + φ2)
∑S

s=1C
s
3

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2

+ 3(γ22 + 2)L
2
W

[
2

(γ2 − 1)LW

(
F (W̃s,0,Hs,0)− F

)
+

2(11ζ
2

3 + φ2)
∑S

s=1C
s
1

γ32(γ2 − 1)L2
W

]
(S.73)

≤6(γ22 + 2)L
2
W

(γ2 − 1)LW

(
F (W̃s,0,Hs,0)− F

)
+

6(γ22 + 2)L
2
W (11ζ

2

3 + φ2)
∑S

s=1C
s
1

γ32(γ2 − 1)L2
W

+
(11ζ

2

3 + φ2)
∑S

s=1C
s
3

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
. (S.74)

Combing (S.68) and (S.74) and then dividing both sides by T =
∑S

s=1Q
s
2 yields

1

T

[ S∑

s=1

Q1∑

t=1

GH(W̃s,t−1,Hs,t−1) +
S∑

s=1

Qs∑

t=Q1+1

GW (W̃s,t−1,Hs,t−1)
]

≤
(

γ21LH
2(γ1 − 1)

+
6(γ22 + 2)L

2
W

(γ2 − 1)LW

)[
1

T

(
F (W̃s,0,Hs,0)− F

)
+

(11ζ
2

3 + φ2)

(∑S
s=1C

s
1

)

Tγ32LW

]

+

(11ζ
2

3 + φ2)

(∑S
s=1C

s
3

)

Tγ22
+

3(ζ2 + φ2)

(∑S
s=1C

s
1

)

2T
(S.75)

≤D
T

(
F (W̃s,0,Hs,0)− F

)
+

1

T

[
3

2
(ζ2 + φ2)

( S∑

s=1

Cs1

)
+

(11ζ
2

3 + φ2)

γ22

(
D
∑S

s=1C
s
1

γ2LW
+

S∑

s=1

Cs3

)]
,

(S.76)

where

D , γ21LH
2(γ1 − 1)

+
6(γ22 + 1)L

2
W

(γ2 − 1)LW
. (S.77)

2.1 Poof of Lemma 6

Suppose that |As| = P, ∀s. Since W̃s,t = PW
(∑P

p=1 ωpW
s,t
p

)
, we have ∀t ∈ Qs2,

W̃s,t = PW(W
s,t

) = PW
(
W

s,t−1 − 1

ds

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )

)
, (S.78)
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and then

GW (W̃s,t,Hs,t)

=(ds)2
∥∥∥∥W̃s,t − PW

(
W̃s,t − ∇WF (W̃s,t,Hs,t)

ds

)∥∥∥∥
2

F

=(ds)2
∥∥∥∥PW

(
W

s,t−1 − 1

ds

P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )

)
− PW

(
W̃s,t − ∇WF (W̃s,t,Hs,t)

ds

)∥∥∥∥
2

F

≤(ds)2
∥∥∥∥W

s,t−1 − W̃s,t − 1

ds

( P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

)∥∥∥∥
2

F

(S.79)

≤(ds)2
∥∥∥∥W

s,t−1 − W̃s,t−1 + W̃s,t−1 − W̃s,t

− 1

ds

( P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

)
‖2F (S.80)

≤3(ds)2 ‖Ws,t−1 − W̃s,t−1‖2F︸ ︷︷ ︸
,(S.m)

+3(ds)2‖W̃s,t−1 − W̃s,t‖2F

+ 3

∥∥∥∥
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

∥∥∥∥
2

F
︸ ︷︷ ︸

,(S.n)

(S.81)

The term (S.m) can be bounded by applying Lemma 5 as follows.

(S.m) ≤ 3(t− 1−Q1)

(ds)2

t−2∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,j −Ws,j
p ‖2 +

3(t− 1−Q1)
2(ζ2 + φ2)

(ds)2

≤ 3(t−Q1)

(ds)2

t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,j −Ws,j
p ‖2 +

3(t−Q1)
2(ζ2 + φ2)

(ds)2
. (S.82)

We can also bound (S.n) by

(S.n) =

∥∥∥∥
P∑

p=1

ωp∇WFp(Ws,t−1
p ,Hs,t−1

p )−∇WF (W̃s,t,Hs,t)

∥∥∥∥
2

F

=

∥∥∥∥
P∑

p=1

ωp

(
∇WFp(Ws,t−1

p ,Hs,t−1
p )−∇WFp(W̃s,t−1,Hs,t−1

p )

)

+∇WF (W̃s,t−1,Hs,t)−∇WF (W̃s,t,Hs,t)

∥∥∥∥
2

F

(S.83)

≤ 2

∥∥∥∥
P∑

p=1

ωp

(
∇WFp(Ws,t−1

p ,Hs,t−1
p )−∇WFp(W̃s,t−1,Hs,t−1

p )

)∥∥∥∥
2

F

+ 2‖∇WF (W̃s,t−1,Hs,t)−∇WF (W̃s,t,Hs,t)‖2F (S.84)
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≤ 2

P∑

p=1

ωp(L
s
Wp

)2‖Ws,t−1
p − W̃s,t−1‖2F + 2(LsW )2‖W̃s,t−1 − W̃s,t‖2F , (S.85)

where (S.83) follows because Hs,t
p = Hs,t−1

p ,∀t ∈ Qs2, and (S.85) follows due to the convexity of
‖ · ‖22 and Lipschitz continuity of ∇WFp(·, ·) and ∇WF (·, ·). Then, substituting (S.82) and (S.85)
into (S.81) yields

GW (W̃s,t,Hs,t)

≤9(t−Q1)
t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,j −Ws,j
p ‖2 + 9(t−Q1)

2(ζ2 + φ2)

+ 3(γ22 + 2)(LsW )2‖W̃s,t−1 − W̃s,t‖2F

+ 6

P∑

p=1

ωp(L
s
Wp

)2‖Ws,t−1
p − W̃s,t−1‖2F . (S.86)

By summing (S.86) up from t = Q1 to Qs2 − 1, we have

Qs−1∑

t=Q1

GW (W̃s,t,Hs,t)

≤
Qs−1∑

t=Q1

9(t−Q1)
t−1∑

j=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,j −Ws,j
p ‖2 + 9

Qs−1∑

t=Q1

(t−Q1)
2(ζ2 + φ2)

+ 3(γ22 + 2)(LsW )2
Qs−1∑

t=Q1

‖W̃s,t−1 − W̃s,t‖2F

+ 6

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F

≤9Qs2(Q
s
2 − 1)

2

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t −Ws,t
p ‖2 +

3Cs1(ζ2 + φ2)

2

+ 3(γ22 + 2)(LsW )2
Qs−1∑

t=Q1

‖W̃s,t−1 − W̃s,t‖2F

+ 6

Qs−1∑

t=Q1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2F (S.87)

=3(3Qs2(Q
s
2 − 1)/2 + 2)

Qs∑

t=Q1+1

P∑

p=1

ωp(L
s
Wp

)2‖W̃s,t−1 −Ws,t−1
p ‖2

+ 3(γ22 + 2)(LsW )2
Qs∑

t=Q1+1

‖W̃s,t−1 − W̃s,t‖2F +
3Cs1(ζ2 + φ2)

2
(S.88)
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≤3(γ22 + 2)(LsW )2
Qs∑

t=Q1+1

‖W̃s,t−1 − W̃s,t‖2F +
Cs3(11ζ

2

3 + φ2)

γ22
+

3Cs1(ζ2 + φ2)

2
, (S.89)

where

Cs3 , 6(3Qs2(Q
s
2 − 1)/2 + 2)Cs1 , (S.90)

the first term in the RHS of (S.87) follows because of (S.59); the second term in the RHS of (S.87)

follows due to (S.23), and (S.88) follows because W̃s,Q1 = W̃s,Q1−1 and W̃s,Q1 = Ws,Q1
p . Then,

summing up (S.89) from s = 1 to S yields

S∑

s=1

Qs−1∑

t=Q1

GW (W̃s,t,Hs,t)

≤3(γ22 + 2)(LW )2
S∑

s=1

Qs∑

t=Q1+1

‖W̃s,t−1 − W̃s,t‖2F

+
(11ζ

2

3 + φ2)
∑S

s=1C
s
3

γ22
+

3(ζ2 + φ2)
∑S

s=1C
s
1

2
. (S.91)

�

3 Lemma 7 and its proof

Lemma 7 For any s, if Qs2 = b Q̂s c+ 1, the following equalities hold.

S∑

s=1

Cs
1 = O(Q̂3),

S∑

s=1

Cs
2 = O(Q̂5),

S∑

s=1

Cs
3 = O(Q̂5). (S.92)

Poof: Firstly, we have

Q̂∑

s=1

Q̂

s
= Q̂

(
1 +

Q̂∑

s=2

1

s

)

≤ Q̂
(

1 +

∫ Q̂

1

1

s
ds

)

= Q̂+ Q̂ ln Q̂, (S.93)
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and for any n > 1,

Q̂∑

s=1

(
Q̂

s

)n
= Q̂n

(
1 +

Q̂∑

s=2

1

sn

)

≤ Q̂n
(

1 +

∫ Q̂

1

1

sn
ds

)

= Q̂n
(

1−
(

1

(n− 1)Q̂n−1
− 1

n− 1

))

= Q̂n
(

n

n− 1
− 1

(n− 1)Q̂n−1

)

=
Q̂nn

n− 1
− Q̂

(n− 1)
. (S.94)

Then, since Qs2 = bQ̂/sc+ 1, Q̂ > 1, we have

S∑

s=1

Cs1 =
S∑

s=1

Qs2(Q
s
2 − 1)(2Qs2 − 1)

=
S∑

s=1

(⌊
Q̂

s

⌋
+ 1

)⌊
Q̂

s

⌋(
2

⌊
Q̂

s

⌋
+ 1

)

≤
Q̂∑

s=1

(
Q̂

s
+ 1

)(
Q̂

s

)(
2
Q̂

s
+ 1

)

=2

Q̂∑

s=1

(
Q̂

s

)3

+ 3

Q̂∑

s=1

(
Q̂

s

)2

+

Q̂∑

s=1

Q̂

s

≤2

(
3Q̂3

2
− Q̂

2

)
+ 3

(
2Q̂2 − Q̂

)
+ Q̂+ Q̂ ln Q̂ (S.95)

=3Q̂3 + 6Q̂2 − 3Q̂+ Q̂ ln Q̂ (S.96)

=O(Q̂3). (S.97)

For Cs2 , we have

S∑

s=1

Cs2 =
S∑

s=1

6(3Qs2(Q
s
2 − 1)/2 + 4 + 32/m)Cs1

≤9
S∑

s=1

(Qs2)
2(Qs2 − 1)2(2Qs2 − 1) + 216

S∑

s=1

Cs1 (S.98)

=9
S∑

s=1

(⌊
Q̂

s

⌋
+ 1

)2(⌊Q̂
s

⌋)2(
2

⌊
Q̂

s

⌋
+ 1

)
+ 216

S∑

s=1

Cs1 (S.99)
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≤9

Q̂∑

s=1

(
Q̂

s
+ 1

)2(Q̂
s

)2(
2
Q̂

s
+ 1

)
+ 216

S∑

s=1

Cs1 (S.100)

=O(Q̂5). (S.101)

Similarly, we have for Cs3 that

S∑

s=1

Cs3 ≤
S∑

s=1

6(3Qs2(Q
s
2 − 1)/2 + 2)Cs1

≤9
S∑

s=1

(Qs2)
2(Qs2 − 1)2(2Qs2 − 1) + 12

S∑

s=1

Cs1 (S.102)

≤18

(
5Q̂5

4
− Q̂

4

)
+ 45

(
4Q̂4

3
− Q̂

3

)
+ 36

(
3Q̂3

2
− Q̂

2

)

+ 9

(
2Q̂2 − Q̂

)
+O(Q̂3) (S.103)

=O(Q̂5), (S.104)

where (S.103) follows by using the same procedure as in (S.100).
�

4 Proof of Theorem 2

Firstly, we define Q1 , {1, . . . , Q1},Q2 , {Q1 + 1, . . . , Q}, and P = {1, . . . , P}. From Algorithm
2, firstly note that

Ws,Q = Ws+1,0 = Ws+1, Ws,t = Ws,t−1, t ∈ Q1,

Hs,Q = Hs+1,0, Hs,t = Hs,t−1, t ∈ Q2. (S.105)

Secondly, under partial client participation, the local updates of Hs,t
p are

Hs,t
p =

{
PHp

{
Hs,t−1
p −∇HpFp(Ws,0,Hs,t−1

p )

csp

}
, if p ∈ As,

Hs,t−1
p , otherwise,

for t ∈ Q1, where only clients in As perform PGD. We also define Es−1 by the same way as that in
the proof of Theorem 1, and denote IpAs as the indicator function which is one if the event p ∈ As
is true and zero otherwise.
Objective Descent w.r.t. H: Let us consider the descent of the objective function with respect
to the update of H when Es−1 is given. Specifically, we have the following chain

E[F (Ws,0,Hs,Q1)|Es−1]− E[F (Ws,0,Hs,0)|Es−1]

=E
[ ∑

p∈As

ωp

(
Fp(W

s,0, H̃s,Q1
p )− Fp(Ws,0,Hs,0

p )

)
|Es−1

]
(S.106)

=E
[ P∑

p=1

IpAsωp

(
Fp(W

s,0, H̃s,Q1
p )− Fp(Ws,0,Hs,0

p )

)
|Es−1

]
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=

P∑

p=1

E[IpAs |Es−1] ωp
(
Fp(W

s,0, H̃s,Q1
p )− Fp(Ws,0,Hs,0

p )

)
(S.107)

=
m

P

P∑

p=1

ωp

(
Fp(W

s,0, H̃s,Q1
p )− Fp(Ws,0,Hs,0

p )

)
(S.108)

=
m

P

P∑

p=1

ωp

Q1∑

t=1

(
Fp(W

s,0, H̃s,t
p )− Fp(Ws,0, H̃s,t−1

p )

)
(S.109)

≤− m(γ − 1)

2P

( Q1∑

t=1

P∑

p=1

ωpL
s
Hp
‖H̃s,t−1

p − H̃s,t
p ‖2F

)
, (S.110)

where (S.106) is due to partial client participation (PCP); (S.107) holds because Fp(W
s,0,Hs,0

p )−
Fp(W

s,0, H̃s,Q1
p ) is deterministic given Es−1; (S.108) is true since E[IpAs |Es−1] = m/P when uniform

sampling without replacement is employed; (S.110) follows (40) according to [?, Lemma 3.2] and
csp = γ

2L
s
Hp

.

Objective Descent w.r.t. W: By applying [?, Lemma 3.2] to the update of W in (32) with

ds = γ
2L

s
W and noting from (S.105) that Ws,Q1 = Ws,0, Ws,Q = Ws+1,0 and Hs,Q1 = Hs+1,0, we

immediately obtain

E[F (Ws+1,0,Hs+1,0)|Es−1]− E[F (Ws,0,Hs,Q1)|Es−1]

=

Q∑

t=Q1+1

E[F (Ws,t,Hs,Q1)− F (Ws,t−1,Hs,Q1)|Es−1]

≤− γ − 1

2

Q∑

t=Q1+1

LsWE[‖Ws,t −Ws,t−1‖2F |Es−1]. (S.111)

Derivation of the Main Result: After combing (S.110) and (S.111), we have

m(γ − 1)

2P

Q1∑

t=1

P∑

p=1

ωpL
s
Hp

E[‖H̃s,t
p − H̃s,t−1

p ‖2F |Es−1]

+
γ − 1

2

Q∑

t=Q1+1

LsWE[‖Ws,t −Ws,t−1‖2F |Es−1]

≤E[F (Ws,0,Hs,0)]− E[F (Ws+1,0,Hs+1,0)]. (S.112)

Since csp =
γLs

Hp

2 , and LsH1
= . . . = LsHP

, we have from (S.112) that

Q1∑

t=1

P∑

p=1

ωp(c
s
p)

2E[‖H̃s,t
p − H̃s,t−1

p ‖2F |Es−1]

≤
Pγ2LsHp

2m(γ − 1)

(
E[F (Ws,0,Hs,0)− F (Ws+1,0,Hs+1,0)|Es−1]

)
. (S.113)
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By taking expectation over two sides of (S.113) and summing it up from s = 1 to S, we have

S∑

s=1

Q1∑

t=1

P∑

p=1

ωpE[(csp)
2‖H̃s,t

p − H̃s,t−1
p ‖2F ]

≤ Pγ2LH
2m(γ − 1)

(
F (W1,0,H1,0)− E[F (WS+1,0,HS+1,0)]

)

≤ Pγ2LH
2m(γ − 1)

(
F (W1,0,H1,0)− F

)
, (S.114)

where (S.114) follows because of Assumption 1 and 2. Then, we have

S∑

s=1

Q1∑

t=1

E[GH(Ws,t−1, H̃s,t−1)]

≤ Pγ2LH
2m(γ − 1)

(
F (W1,0,H1,0)− F

)
, (S.115)

Similarly, by using the same procedure as to obtain (S.115), we have

S∑

s=1

Q∑

t=Q1+1

E[GW (Ws,t−1,Hs,t−1)]

≤ γ2LW
2(γ − 1)

(
F (W1,0,H1,0)− F

)
(S.116)

Combing (S.115) and (S.116) and then dividing two sides by T = SQ yields

1

T

[ S∑

s=1

Q1∑

t=1

E[GH(Ws,t−1, H̃s,t−1)]

+

S∑

s=1

Q∑

t=Q1+1

E[GW (Ws,t−1,Hs,t−1)]
]

≤ 1

T

(
Pγ2LH

2m(γ − 1)
+

γ2LW
2(γ − 1)

)(
F (W1,0,H1,0)− F

)
(S.117)
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Supplementary Materials: Figures
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Figure S1: Convergence curve versus number of rounds of FedMAvg with different values of Q1

and Q̂.
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(a) FedMAvg, TDT2, F v.s. round s
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(b) FedMGS, TDT2, F v.s. round s
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(c) FedMAvg, MNIST, F v.s. round s

0 100 200 300 400 500
0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37
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Figure S2: Convergence curve versus number of rounds of FedMAvg and FedMGS on the TDT2
and MNIST dataset. It is set that Q1 = 10 for both FedMAvg and FedMGS.
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(b) TDT2, F v.s. com. cost
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Figure S3: Convergence curve versus number of rounds/communication cost of FedMAvg and
FedMGS under non-i.i.d data.
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(a) TDT2
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Figure S4: Clustering accuracy versus number of accumulated rounds/communication cost of Fed-
MAvg and FedMGS for the TDT2 and MNIST datasets.
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