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Fairness-Oriented Multiple RIS-Aided mmWave
Transmission: Stochastic Optimization Methods

Gui Zhou, Cunhua Pan, Hong Ren, Kezhi Wang, and Marco Di Renzo Fellow, IEEE

Abstract—In millimeter wave (mmWave) systems, it is chal-
lenging to ensure reliable communication links due to the high
sensitivity to the presence of blockages. In order to improve
the robustness of mmWave systems in the presence of random
blockages, we consider the deployment of multiple reconfigurable
intelligent surfaces (RISs) to enhance the spatial diversity gain,
and the design of robust beamforming schemes based on stochas-
tic optimization methods that minimize the maximum outage
probability among multiple users so as to ensure fairness. Under
the stochastic optimization framework, we adopt the stochastic
majorization-minimization (SMM) method and the stochastic
successive convex approximation (SSCA) method to construct
deterministic surrogate problems at each iteration, and to obtain
closed-form solutions of the precoding matrix at the base station
(BS) and the beamforming vectors at the RISs. Both stochastic
optimization methods are proved to converge to the set of
stationary points of the original stochastic problems. Simulation
results show that the proposed robust beamforming for RIS-
aided systems can effectively compensate for the performance
loss caused by the presence of random blockages, especially when
the blockage probability is high.

Index Terms—Reconfigurable intelligent surface (RIS), intelli-
gent reflecting surface (IRS), millimeter wave communications,
stochastic optimization, robust beamforming design.

I. INTRODUCTION

Millimeter wave (mmWave) communication is expected to
be a promising technology to meet the growing demand for
data rate in current and future wireless networks. mmWave
communication systems are affected by severe signal attenu-
ations. Thanks to the small signal wavelength, however, the
high pathloss can be compensated by deploying antenna-
arrays with a large number of antennas at the transmitters
and receivers [2]. In addition, the high-directional beams ob-
tained by utilizing large antenna-arrays can mitigate the inter-
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user interference. However, mmWave communication systems
suffer from high penetration losses [3]-[5]. Hence, mmWave
systems are much more susceptible to the presence of spatial
blockages than sub-6 GHz systems, and the reliability of the
communication links cannot always be guaranteed throughout
the whole network [3]-[5].

In particular, spatial blockages can be divided into static
blockages (e.g., buildings and other static objects), dynamic
blockages (e.g., human beings, vehicles, or moving obstruc-
tions) and self-blockages (e.g., hand blocking of the user
itself and blockage from other parts of the body). To account
for the impact of blockages, statistical models have been
proposed to characterize the properties of dynamic blockages
and self-blockages [4]-[6]. The authors of [7] have developed
a distance-dependent blockage probability model, in which the
probability that a link is blocked increases exponentially with
the length of the link. Furthermore, the authors of [8] and [9]
have proposed an approach to predict the blockage probability
via machine learning. If the blockage probability is known
or is estimated, robust beamforming design strategies can be
utilized to address the channel uncertainties caused by the
presence of random blockages [10], [11]. Specifically, the au-
thors of [10] have proposed a worst-case robust beamforming
design for application to coordinated multipoint (CoMP) sys-
tems in which all possible combinations of blockage patterns
are considered. Due to the high computational complexity of
the method introduced in [10], an outage-minimum strategy
based on a stochastic optimization method has been proposed
in [11] to improve the robustness of mmWave systems against
random blockages. The use of multiple base stations (BSs)
in CoMP systems may be an option to compensate for the
performance loss caused by the presence of random blockages
by exploiting spatial diversity gains. However, this solution
incurs in excessive hardware cost and power consumption.
Another possible solution consists of deploying cost-efficient
reconfigurable intelligent surfaces (RISs) so as to create alter-
native and reliable communication links in mmWave systems
[12].

Specifically, RISs have attracted major research interest
since they operate without the need of power amplifiers
and digital processing units, thus enabling energy-efficient
and spectral-efficient communications [13]-[16]. An RIS is
a thin surface that consists of nearly-passive and reconfig-
urable reflecting elements, which reflects the impinging radio
waves without amplifying the signals and processing them
in the digital domain. The RIS elements can be tuned to
alter their electromagnetic response such that the reradiated
signals are constructively superimposed to enhance the signal



power at the intended receiver or are destructively combined
to avoid the leakage of information to undesired receivers.
These characteristics make RISs an appealing technology in
various communication systems [17]. For instance, RISs can
be applied in single-cell multiple-input and multiple-output
(MIMO) systems [18]-[22], multicell MIMO communications
[23], simultaneous wireless information and power transfer
(SWIPT) systems [18], [24], secure communications [25],
mmWave systems [26]-[29] and terahertz (THz) systems [30],
[31].

Although the performance advantages of deploying RISs
in mmWave systems have been demonstrated in recent con-
tributions, there still exist major open problems to solve.
Examples include the following. The authors of [27] have
only considered the BS-RIS-user channels and have assumed
that the direct BS-user communication links are completely
blocked by obstacles. However, this assumption only applies
to the case of static blockages with blockage probability equal
to one, but it does not apply in the presence of dynamic
blockages since the blockage probability lies in [0,1] [3]-
[5]. The numerical results illustrated in [28], for example,
have shown that the gain from additional reflections can
compensate for the performance loss caused by the presence of
random blockages. However, the impact of blockages was not
considered in the beamforming design. Most recently, we have
considered the design of robust beamforming methods for RIS-
aided mmWave communication systems by taking the presence
of random blockages into consideration [12]. However, the
considered optimization problem is the minimization of the
sum outage probability. Therefore, the considered optimization
problem cannot ensure the fairness among all the users.

A. Novelty and Contributions

Against the above background, this paper proposes a robust
transmission strategy for application to RIS-aided mmWave
communication systems, which accounts for the channel un-
certainties caused by the presence of random blockages while
ensuring the fairness among the users. Typical methods to
handle the presence of channel uncertainties at the design
stage are the outage constrained robust optimization and the
worst-case robust optimization techniques [32]. However, both
methods rely on the estimation of the instantaneous CSI.
Furthermore, the worst-case robust optimization method is
conservative and hence suboptimal due to the low probability
of occurrence of the worst case. In this paper, we consider
the design of robust beamforming schemes for application
to mmWave systems without relying on the knowledge of
instantaneous CSI. The proposed approach is based, on the
other hand, on the knowledge of large-scale CSI and the
blockage probability. The proposed approach is motivated by
the results reported in [5], where the authors have shown
that the time-scale at which mmWave signals are randomly
disrupted by spatial blockages, such as the hands and the
human body, is of the order of a few 100 milliseconds (or
more), as well as the results reported in [7], where the authors
have shown that the blockage probability is determined by the
transmission distance and by some environment-specific pa-
rameters. Therefore, a mmWave link is disrupted by the same

blockages for several physical layer resource blocks and the
associated probability can be assumed to be known if the large-
scale CSI is assumed to be known. Specifically, we formulate a
maximum outage probability minimization problem and solve
it by using a stochastic optimization framework.

The main contributions of this work can be summarized as
follows:

o To the best of our knowledge, this is the first work
that introduces a robust beamforming design for RIS-
aided downlink multiuser mmWave systems that relies
on the knowledge of large-scale CSI and blockage prob-
ability. Specifically, the considered optimization criterion
is based on minimizing the maximum outage probability
of all the users. In contrast to the sum outage probabil-
ity minimization problem in [11], [12], the considered
min-max outage probability problem ensures the desired
quality of service (QoS) performance to the worst-case
user. Because of the non-differentiable objective func-
tion of the considered problem, the stochastic gradient
descent (SGD) method adopted in [11], [12] cannot be
directly applied. To circumvent this issue, two stochastic
optimization frameworks are introduced for jointly opti-
mizing the beamforming at the BS and at the RIS.

« First, we consider the single-user case and optimize the
beamforming schemes at the BS and RIS by minimizing
the outage probability given the large-scale CSI and the
blockage probability. Since the objective function of the
considered problem is not formulated in a closed-form
expression, we approximate it with the statistical expec-
tation of a smooth function that is twice differentiable.
The resulting expectation optimization problem is solved
by adopting the stochastic majorization—minimization
(SMM) method. Specifically, an upper bound surrogate
function of the original differentiable function is con-
structed for any new channel realization at each iteration.
The constructed surrogate problem is shown to have a
closed-form solution and to be computationally efficient.
We prove that the proposed SMM method is guaranteed
to converge to the set of stationary points of the original
expectation minimization problem.

e Then, we consider the multi-user case and we formu-
late a min-max outage probability optimization problem.
To tackle the non-differentiability of the max objec-
tive function, we replace it with the log-sum-exp upper
bound. Then, we employ the stochastic successive convex
approximation (SSCA) method, which offers a greater
flexibility than the SMM method in terms of selecting the
surrogate function and results in closed-form expressions
at each iteration. Also in this case, we prove that the
proposed SSCA method is guaranteed to converge to
the set of stationary points of the original expectation
minimization problem.

o We demonstrate through numerical results that the pro-
posed robust beamforming algorithm outperforms its non-
robust counterpart and the robust beamforming algorithm
for conventional systems in the absence of RISs. If
the blockage probability is high, the proposed methods
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Fig. 1: Multiple RIS-aided mmWave communication system.
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outperform the others in terms of maximum outage
probability and minimum effective rate. Moreover, de-
ploying multiple small-size RISs is shown to provide
better performance than deploying a single large-size RIS
in terms of improving the performance of the worst-case
user.

The remainder of this paper is organized as follows. Sec-

tion II introduces the system model. The outage probability
minimization problem for the single-user case is formulated
in Section III. In Section IV, the min-max outage probability
problem for multiuser systems is discussed. Finally, Sections
VI and VII report the numerical results and the conclusions,
respectively.
Notations: The following mathematical notations and symbols
are used throughout this paper. Vectors and matrices are
denoted by boldface lowercase letters and boldface uppercase
letters, respectively. The symbols X*, XT, X" and ||X||r
denote the conjugate, transpose, Hermitian (conjugate trans-
pose), Frobenius norm of matrix X, respectively. The symbol
[|x||2 denotes the 2-norm of vector x. The symbols Tr{-},
Re{-}, |-, A(*), and Z (-) denote the trace, real part, modulus,
eigenvalue, and angle of a complex number, respectively.
diag(x) is a diagonal matrix with the entries of x on its
main diagonal. [x],, denotes the m-th element of vector x.
The Kronecker product between two matrices X and Y is
denoted by X ® Y. X > Y means that X — Y is positive
semidefinite. The symbol C denotes the complex field, R
denotes the real field, and j £ /—1 is the imaginary unit.
The inner product (e, e) : CM*N x CM*N _ R is defined
as (X,Y) = Re{Tr{X"Y}}.

II. SYSTEM MODEL
A. Signal Model

As shown in Fig. 1, we consider an RIS-aided downlink
mmWave communication system. In order to ensure high
QoS for the users in the presence of random blockages, U
RISs, each of which has M reflecting elements, are deployed
to assist the communication from the BS equipped with N
active antennas to K single-antenna users (denoted by K £
{1,...,K}). The RISs are assumed to be connected to con-
trollers that exchange control information with the BS through

dedicated channels [18], [23]. The baseband transmitted signal
at the BS is x = Fs, where s € CE*1 ~ GN(0,1) is the
Gaussian data symbol vector and F = [f}, ..., fx] € CNXK
denotes the full-digital beamforming matrix. The baseband
transmit power is limited to the total transmit power P, ;.-
Hence, F belongs to the set 8y = {F | [|F||%< Praz}-

Let h, , € CV*1, H, € CM*N and h,,;, € CM*! denote
the channels of the links from the BS to the k-th user, from
the BS to the u-th RIS, and from the u-th RIS to the k-th
user, respectively. Then, the received signal intended to the
k-th user is expressed as !

U
Yp = (hﬁk +> hﬁkEuH,u) X + N, (1)

u=1

where nj, ~ CN(0,07) is the additive white Gaussian noise
(AWGN), and E, = (diag([e(u—1)pm+1,---,€un]) is the
reflection coefficient matrix (also known as the RIS beam-
forming matrix) of the u-th RIS. The element e(,_1)as4m is
the m-th unit modulus reflection coefficient at the u-th RIS,
and ¢ € [0, 1] denotes the reflection efficiency. We assume,
independently of the applied phase shift and of the angle
of incidence, ( = 1 for simplicity, since it offers the best
reflection performance for the RIS.

By defining the matrices hy = [h}';,... h ] and
H = [HY,... HH", we obtain the equivalent channel G, =
diag(hlH

hil, € CUMADXN petween the BS and the k-
th user. The corresponding equivalent reflection coefficient
vector is given by e = [e1,...,eppy1|T € CUMHHxI
which belongs to the set S, = {e | |en*= 1,1 < m <
UM, eyn+1 = 1}. Then, (1) can be rewritten in a compact
form as

Yp = eHGsz—i—nk. 2)

Therefore, the corresponding achievable signal-to-

interference-plus-noise ratio (SINR) is
le" Gy £ |2

Fk (F,e) = .
Zgék|eHkai|2+az

3)

B. Channel Model

We consider a typical Saleh-Valenzuela (SV) [34] channel
model for application to mmWave systems. For simplicity, we
ignore the randomness introduced by the presence of hardware
impairments that may affect the performance of mmWave
systems. In particular, it is assumed that a uniform planar
array (UPA) is deployed at the BS and at the RIS. The steering
vector of each UPA is denoted by a (¢, ¢), where ¢(¢) denotes
the azimuth (elevation) angle of departure (AoD) and angle of
arrival (AoA) depending on whether a transmitter or a receiver
is considered. We assume that Ly, 5, L, and Ly, sparse
scatterers exist on the links from the BS to the k-th user,
from the wu-th RIS to the k-th user, and from the BS to the
u-th RIS, respectively. Also, we assume that each scatterer

!For simplicity, we ignore the reflections of signals between the RISs, since
they are typically weak in the mmWave frequency band. The impact of the
reflected signals between RISs was recently addressed in [33].



comprises I subpaths. In the far-field region, therefore, the
mmWave channels can be expressed as

AoD AoD
hy, i =g0 (%%Oa b50)
Lok I
AoD AoD
Z glz Qpbcl)clz’ bcl)clz)?Vka (4)
ILbk
=1 =1
AoD AoD
huk*g() a(@u%Ov u,cl)g 0)
Luk T
oD AoD
Zzg @uklz? u,ok,l,i,) ’Vkvvuv
=1 =1
(5)
AoA AoA AoD AoD
Hu*gO a(<pu% ) u,% ) ((pb% ’ b% )
Lyw I
AoA | AoA AoD AoD
Z glz 901L?73 u,?,i) ((pbcl)lv b?z) )
ILbu
=1 =1
Vu, (6)
where, by denoting an arbitrary element ¢ €

{(ba k)v (uv k)? (bv U) }Vk‘,Vu’ gg (@58]3’ ¢AOD) is the
line-of-sight (LoS) component whose fading coefficient has
distribution g& ~ GN(0,¢Z107%), where ¢! = 115 is the
power that corresponds to the Rician factor x, and PL is
the distance-dependent pathloss. The remaining paths are the
non-LoS (NLoS) components whose fading coefficients have
distribution g}/, ~ GN(O,Cl‘IlO%) where (/! =
is the corresp(;nding power fraction.

We assume that the users’ locations are quasi-static over
milliseconds or even seconds. Therefore, the large-scale fad-
ing parameters, such as the distance-dependent pathloss, the
number of clusters, the Rician factor, the cluster central angles,
and the angular spreads, change relatively slowly and can be
assumed to be known by the BS [35], [36]. However, the
instantaneous CSI, which is given by {hy, ;, h, x, H,}, vary
during the data transmission because of the rapidly varying
small-scale fading coefficients {gg,g/;}, AoDs and AoAs.
In general, these parameters vary according to an ergodic
stationary process. For example, the AoDs and AoAs can be
generated according to a Gaussian distribution, whose mean
value coincide with the central angles of the clusters and the
variance coincides with the angular spread [35].

Besides the pathloss and the small-scale fading, the reliabil-
ity of the communication links in the mmWave frequency band
is determined by the presence of blockages [37]. In the context
of RIS-aided communications, most existing contributions
have considered the worst-case scenario where the BS-user
links are completely blocked due to the presence of obstacles
during the whole transmission, while the RIS-related links are
not affected by the presence of blockages since the locations
of the RISs can be appropriately chosen to ensure line-of-sight
transmission. However, this assumption may not represent all
possible deployment scenarios. Traditionally, the presence of
blockages is incorporated in the shadowing model, along with
the impact of reflections, scattering, and diffraction [6]. In
contrast, we adopt a recently proposed probabilistic model
[11] to characterize the channel uncertainties caused by the
presence of random blockages. The considered model is more

1
(T DIATA)

realistic, since the impact of blockages and the corresponding
blockage probability depends on the transmission distance [6].
Specifically, let us introduce the blockage parameters wy, ; €
{0,1},0 < I < Ly, Vk € K, which are random variables
with a Bernoulli distribution. In particular, these random
variables take the value one with probability pj, which is
referred to as the blockage probability. With the aid of these
random variables, the presence of blockages can be taken
into account in the formulation of the mmWave channels.
Specifically, the BS-user links in (4) are modified as

A A
hy, x =wk 090" (@b?cDm b(l)sDO)
Ly k
AoD AoD
E klE g“ (pbcl)elzv bcl)slz)7Vk’
ILb =
(7N

As far as the blockage probability is concerned, it is known
that it usually depends on the transmission distance. For
example, the authors of [6] have shown that the probability
that a link is blocked, i.e., there is at least one object in
between the transmitter and the receiver, can be formulated
as pr(dp) = max(0,1 — e~ %outdrtbout)  where dj, is the
transmission distance between the BS and the k-th user in the
considered system model and a,,; and b,,; are environment-
dependent parameters that can be obtained from theory or can
be obtained from curve fitting from data [7], [Table II, 38].

C. Problem Formulation

Since the RISs are not equipped with power amplifiers and
with digital signal processing units, the acquisition of CSI is
difficult to obtain. This is especially true if the BS and the
RISs are optimized based on perfect instantaneous CSI, since
a large training overhead would be needed [38]. Therefore,
it is important to develop robust beamforming schemes that
do not necessarily rely on the knowledge of the instantaneous
CSI, but still account for the impact of the large-scale CSI,
which is easier to acquire at a reduced overhead, and that are
robust to the presence of random blockages. Motivated by this
consideration, we aim to design robust beamforming schemes
for RIS-aided systems that depend only on the large-scale CSI
and the blockage probability, but are independent of the short-
term CSI, i.e., the fast fading. Also, we aim to ensure that the
beamforming schemes provide fairness to the network users.

To this end, we formulate the following min-max outage
probability optimization problem

<
1{7111131 rkne&?%(Pr{Fk (F,e) <y} (8a)
st. Fe8; (8b)
ec€ ., (8¢)

where the outage probability Pr{l'; (F,e) < 4} is the
probability that the SINR T'y, (F, e) of the k-th user is less than
the SINR reliability threshold ~; for all possible realizations
of the random channel G = [Gy,..., Gk]. Specifically, the
probability in (8) is computed as a function of the small-scale
fading coefficients, the AoDs and the AoAs of the subpaths of

the scatterers. Notably, the outage probability in (8) depends



on the transmission distance, the blockage probability, the
number of clusters and their centers and angular spreads.

Compared with the sum outage probability minimization
problem formulated in [12], the objective function in (8)
ensures fairness among the users. However, due to the min-
max formulation, the objective function is not smooth and
differentiable, which makes the algorithms proposed in [12]
not directly applicable to solve the problem in (8).

III. SINGLE-USER SYSTEM

In this section, we consider a single-user system model in
order to obtain some design insights. By setting X' = 1 and
omitting the user index, the problem in (8) reduces to

r?in Pr{l (f,e) <~} (9a)
stt. fe S‘f (9b)
e € S.. 9¢)

A. Problem Reformulation

The probability Pr{T'(f,e) < ~} has no closed-form
expression and thus the problem in (9) is prohibitively chal-
lenging to be solved. To tackle this issue, we reformulate
the probability function in terms of an equivalent expectation
function, ie., Pr{I'(f,e) < 74} = Eg[lr<,] where Ir<,
denotes the step function applied to the event I' < ~.
Thanks to this reformulation, several stochastic programming
techniques can be used to solve the problem in (9). However,
the step function is discontinuous, and the existing stochastic
programming methods cannot be directly applied.

To circumvent this issue, we approximate the step function
with the following smooth approximating function

1
1+ e 02’
where © = v — I" and 0 is a smooth parameter that controls
the approximation error. Specifically, the larger 6 is the closer
to an ideal step function the function in (10) is.
By defining f (f,e|G) = u (yo? — [e"Gf|?), a convenient
approximation of the problem formulated in (9) is

g(f,e|G) =E [f (f’elG)] :

u(x) = (10)

min
feS; ecs,

11

B. Stochastic Majorization-Minimization Method

A simple approach for solving the problem in (11) is the
sample average approximation (SAA) method. However, the
SAA method is computationally prohibitive since it requires
large-size memory storage due to the fact that the solution
obtained at each iteration is calculated by averaging over
a large number of channel realizations. To overcome these
difficulties, we adopt the widely used SMM [39] (also known
as stochastic successive minimization [40]) method. Accord-
ingly, an appropriately chosen upper bound approximation for
the function f(f,e|G) is constructed at each iteration of the
algorithm and for each channel realization. The solution is
obtained as the average over the channel realizations at each
iteration.

The typical approach to apply this method consists of intro-
ducing an upper bound approximation function for f(f,e|G)
that makes the corresponding surrogate problem easy to solve.
In some cases, a closed-form solution may be found as well.
Let x € {f, e} denote the optimization vector whose feasible
set is 8, € {8,8.}. The surrogate function f(x,x""'|G) of
f(x|G) around any feasible point x'~! needs to satisfy the
following assumptions [40].

Assumptions A

Al):
A2):
A3):

) :

(x x'"'|G) is continuous in x for Vx'~' € §,.

FeExTNG) = f(xTHG), v T €8,
f(x, x’ HaG) > f(x|G) vx,x'7t €8,
f&xYG;d) = f (x*1G:d), for all X! € 8,

and for all feasible directions d at x* 1,

where f (xi=1G;d) is the directional
f(x*7!|G) in the direction d and is given by

f(xTP+ Ad|G) —
A

The Assumptions (A2)-(A3) indicate that the surrogate

function f(x,x"~1|G) is a local upper bound of the orig-

inal function f(x|G) around the feasible point x‘~!. The

Assumption (A4) is a consistency condition for the first-order

directional derivative. To ensure the convergence of the SMM

algorithm, the following conditions need to be fulfilled [40].
Assumption: B

(
(
(
(A4

derivative of

Xi—l
f(xYG;d) = lim JxTHG)

(B1) : The feasible set S, and the channel realizations are
bounded.
(B2) : The functions f(x,x'"'|G) and f(x|G), their

derivatives, and their second-order derivatives are

uniformly bounded.

Since the variables f and e are highly coupled with each
other, we adopt an alternating optimization (AO) method to
update them. Based on the above assumptions, the variables f
and e are updated, at the n-th iteration of the algorithm, by
solving the following two SMM subproblems

f* = arg mln —Zf £.£71GY), (12)
and
R ilek
= — G'), 13
ST S CEC D
where G', G2, ... are some independent samples of the ran-

dom equivalent channel G 2 Furthermore, f (f Jfil |Gi)
denotes the surrogate function associated to f when e is given,
and f (e,e'7!|G?) is the surrogate function that corresponds
to e when f is given.

2More precisely, we assume that the large-scale fading parameters are kept
fixed, and that the samples of G are constituted by {hy, ;,, hy 1, Hy} , which
are obtained by generating the random variables {gg, gl'{i}, AoDs and AoAs
according to their distributions whose parameters are assumed to be known,
as well as the Bernoulli random variables wy,; whose blockage probability
pg is assumed to be known.



1) Optimizing f: First, we construct f (£, £~1|G?) so as to
fulfill the Assumptions A and B. This is given in the following
lemma.

Lemma 1 Given the twice differentiable function f(f|G?), we
consider the following second-order upper bound approxima-
tion around any given £i—1

F(£,£71G) = 2Re {dj;Hf} + o ||E|3+consts,  (14)

where
b =mj —aff (15a)
i fe= o' GiHgi—lgi—1Hcgipi—1 15b
= (14—e—ey)2 ¢ ° ’ (156)
I’i — 70,2 - ‘eifl,HGif’ifl‘Q’ (ISC)
. g2 , S
0y = o Prasle’  IGIGH e, (15d)
i i1 i i||pie i, H pi—
consty = f(£'71G") + of||f 1\|572Re{mf f 1}
(15e)
Proof: See Appendix A. | |

By using (14) and ignoring irrelevant constants, the sub-
problem in (12) for updating f is reformulated as

. 1 n - 1 n . )
;reléI; 2Re{n;df f}+n;af||f|2. (16)

The optimization problem in (16) is convex and can be solved
by computing its Lagrange function given by

I\~ im L o2
L(f,m)zQRe{nde f}+n;ozf||f|2
+ (|I€]5-

where x > 0 is the Lagrange multiplier associated with the
power constraint. By setting 9L(f)/0f* = 0, the globally
optimal solution of f at the n-th iteration is

a7)

max) i

fr = (18)

K+ = leaf Zdl

Also, (18) must satisfy the power constraint in (9b), which
yields

IS G,
(vt 5 i af)? = "

Since the left hand side of (19) is a decreasing function of &,
we obtain the following closed-form solution

-1 n i
WZ* dp

7na—r

i
e 2ie 4

19)

127, d¥ll3
f (Zl N f)? SPma:m

otherwise,

f’n —

(20)
where the first case in (20) is obtained by setting x = 0, and
the second case follows because there must exist a k > 0 for
which (19) holds with equality.

2) Optimizing e: Similar to the optimization of f, we first
construct a surrogate function for e.

Lemma 2 Given the twice differentiable function f (e\Gi),
we consider the following second-order upper bound approx-
imation around any feasible e~

f(e, e 1GY) = 2Re {dMe} + const!, (21)
where
di = m o/ et (22a)
i —fe=0"" dpimlpim1,H i H i—1
m, = ——G'f" "G e T, (22b)
(1+e0")
2 . o
al = ?(UM + 1) HGHEGIE2, (22¢)

consty, = f(e'!|G") +2(UM + 1)a; — 2Re {m"e' ' }.
(22d)

Proof: The proof of Lemma 2 is similar to that of Lemma
1 and it is hence omitted for brevity. |
By substituting (21) into the objective function of the sub-
problem in (13) and ignoring irrelevant constants, we obtain

) dzH
(rerenri Re{ Z }

The globally optimal solution of the optimization problem in
(23) is

(54 8], )

where [-],, denotes the m-th element of the vector, j = /—1
is the imaginary unit, / (-) denotes the angle of a complex
number, and exp {jZ (-)} is an element-wise operation.

(23)

C. Algorithm Development

By leveraging the SMM method, we have obtained the
closed-form solutions in (20) and (24) for f and e, respectively.
The closed-form solutions, at each iteration of the algorithm,
greatly reduce the computational complexity. The whole nu-
merical recipe is reported in Algorithm 1, which is referred to
as the SMM-OutMin algorithm.

Algorithm 1 SMM-OutMin Algorithm

Initialize: Initialize f° € 8; and €” € 8. Set n = 1.
1: repeat
2:  Obtain the sample channel G™.
3:  Update f™ according to (20).
4:  Update e™ according to (24).
5
6

n=n-+1.

. until [|[f* — £~ !|3— 0 and ||e” — " !||]s— 0.




1) Convergence analysis: The convergence of Algorithm 1
is analyzed in the following theorem.

Theorem 1 Assume that Assumptions A and B are satisfied.
Then, the sequence of the solutions obtained in each iteration
of Algorithm 1 converges to the set of stationary points of the
problem in (11) almost surely.

Proof: See Appendix B. |

2) Complexity analysis: The computational complexity for
updating f™ and e" at each iteration mainly depends on the
computation of (20) and (24), respectively. In particular, due
to the update rule in {7, %, >0, d%, >0, di}, only
{ag,d},di} need to be calculated at the n-th iteration.
Therefore, the approximate complexity of each iteration is
O(4UMN + 12N).

IV. MULTIUSER SYSTEM

In this section, we consider the general multiuser setup and
solve the optimization problem in (8). The min-max problem
in (8) is more challenging to tackle as compared with the
problem in (9) due to the presence of the max function. To
tackle the problem in (8), we extend the SMM method applied
to the single user case.

A. Problem Reformulation

We first approximate the probability function in the original
formulation of the problem in (8) by still using the smooth
function in (10). To this end, we define fj (F,e|G) =
u (e"GLFY,FEGlle + y;,02), where Y, is a diagonal ma-
trix whose diagonal entries are all equal to ~; with the
exception of the k-th diagonal element that is equal to —1.
Therefore, an approximate expression for the objective func-
tion in (8) is maxgex E [fx (F, e|G)]. However, the obtained
objective function is still intractable since the maximization
operation and the expectation operation make the functions
fr,Vk and the different channel states coupled, respectively.
To circumvent these issues, we use Jensen’s inequality

glea%la [fx (F,e|G)] <E [glea%fk (F,e|G)} ; (25

since the max function maxgex{x1,..., 2K} is convex [41].

Furthermore, the non-differentiable max function,
maxgex [k (F,e|G), is approximated by adopting a
smooth log—sum—exp upper-bound [42]

F ~ F(F
Iglea:‘})({fk:( ,E|G) ( 7e|G)
1
:uln(Z exp{ufk (F,e|G)}>, (26)

keX

where © > 0 is a smoothing parameter that fulfills the
condition

<
max fi (F,e|G) < F'(F,e|G)

1
< —_ .
< Iz?eaﬂ}cifk (F,e|G) + . log (|X]). (27)

When p is appropriately chosen, a smooth approximation
for the problem in (8) is

min

pelin G (F.elG) =E[F (F,elG)].

(28)

B. Stochastic Successive Convex Approximation Method

Similar to the optimization problem in (11), the optimization
problem in (28) may be solved by adopting the SMM method.
However, the function F' (F, e|G) in (26) is more complex and
its second-order derivative, which is necessary to construct the
upper bound surrogate function of F' (F,e|G) as shown in
Appendix A, is not easy to be calculated. Furthermore, the
coefficient of the second-order term in the final upper bound
surrogate function of F' (F, e|G) (a;} in (14)) may not be very
tight, which eventually results in a very slow convergence rate
of the SMM algorithm.

Therefore, we adopt the SSCA method to overcome these
issues. The surrogate functions employed by the SSCA method
do not need to be upper bound of the original function but
they only need to preserve the first-order properties of the
original function. Accordingly, the surrogate function, which
is denoted by F'(-), needs to satisfy Assumption B and the
following assumptions [43].

Assumption C

P (x, xi71|G) is strongly convex in x for Vx'~! € 8.
CP(xLxTG) = F(xXTHG), vxT e 8,
Vi F(x7 L xHG) = Vo F(xHG), vx,x L e 8,

where V,F' (-) denotes the gradient operation applied to
complex-valued functions [44]. Assumption C cannot ensure
that the sequences of the approximate objective values are
monotonically decreasing at each iteration. To guarantee the
convergence of the algorithm, however, the variables can be
updated, at each iteration, by choosing an appropriate step
size that ensures that the objective value decreases. Based on
the above assumptions, we choose the proximal gradient-like
approximation to construct the surrogate function, which is
[45]

F(x,x71G) =F (x'7!G) + Vo F(x'1G) T (x — x71)

+ %foxi*l”z, (29)
where 7¢ can be any positive number.

1) Optimizing F: By using (29) and the complex dif-
ferential formula dF(X,X*) Tr((ZEXXD)Tax
(%)de*) (Eq. (3.4.55) in [46]), we can construct
a surrogate function for F around Fi~! when e is given. The
surrogate function is given in (30), which is shown at the top of

the next page, where the following parameters are introduced

. . Ti .

WL — 7Fz71 31

f f 2 ’ ( a)

b= Z Gitei e IGLFITITy
keX

(31b)



OF

OF*

F(F,FG)=F (F'G) +Tr <8F(F1|G)> (F—F~1)| +Tr (aF(F”G)) (F* — Foi-1)

Tt ;
+ TR - F

=F (F'G) +2 ) LiRe {Tr (T, F "HGlle’ e MG (F - F' 7))} + g||F -F%

keX

= 2Re {I&« (PfHF)}

T ;
+ 5||F||2F+Consl’.

(30)

96799:};

exp {ifk (Fiflyeifl|Gi)}

i _

k= . ! . N2
Sescexp {3 (B1 G | (14 001 )
(3lc)
of = PHGIF I F G e T 07, (B1d)
consl’ = F (F'~'|GY) + %||Fi—1||%
— 9Re {Tr (WfHFfl)} . (le)

By using (30), the optimization subproblem in (28) as a
function of F' is formulated, at the n-th iteration, as

ZF (F,F1G").

min
FeSr N

(32)
The obtained optimization problem in (32) can be solved by
using the same methods as for the optimization problem in
(16). Specifically, the global minimizer of the optimization
problem in (32) is

o IS Py
g _ ) s E Zz P - TS < Pae,
HE TSP ZZ P, otherwise.
(33)

2) Optimizing e: Similarly, the optimization subproblem in
(28) as a function of e when F' is given, can be formulated,
at the n-th iteration, as

1 . ) .
~ ) Flee™ G 34
i 5 2 FleeEY, 64
where (evei_llgi) = 2Re {pé’He} + cons2’, and
p.=w. — Eez_l, (35a)
Wi _ Z lkaFiflrkFifl,HGHeifl7 (35b)
kex

cons2’ = F (e'"1|G') + /(UM +1) — 2Re {w e ' }.

(35¢)

Therefore, the minimizer of the optimization problem in
(34) is

(£ 5], )

C. Algorithm Development

The closed-form solutions for F in (33) and for e in (36)
can greatly reduce the computational complexity. Algorithm
2 summarizes the proposed SSCA-based robust beamforming
design for RIS-aided multiuser mmWave systems in which the
BS-user links are subject to random blockages. The proposed
algorithm is referred to as the SSCA-OutMin algorithm.

Algorithm 2 SSCA-OutMin Algorithm

Initialize: Initialize F° € 8 and €° € 8. Set n = 0.
1: repeat
22 n=n+1
Obtain the sample channel G™.
Calculate F™ according to (33).

3
4:
5 Update F* = F" 147 (B — ).
6
7
8

Calculate €" according to (36).
Update € = e"~! + £ (e" —e™ ).

- until [|[F? — F"!|2— 0 and ||e” — e" " |]2— 0.

1) Step-size selection: It is worth noting that the approx-
imation in (30) has the same form as that in (14). How-
ever, 7° in the SSCA method can be any positive number,
and F (F,F~!|G) might not be a global upper bound of
F (F|G). To account for this issue, the step sizes {} and
&l in Algorithm 2 need to be carefully chosen to ensure
convergence.

As an example, let us consider the choice of £} to illustrate
the update rule, which is a line-search (also called Armijo
step-size) rule. Consider 50 > 0and ¢ f,co 5 € (0,1). Let £}
be the largest element in {f f02 f}t 0,1,.. such that

F(F”1 +&7 (f” - F"l)) < F(F"71)

+or €T (VFF(F"—l)T (1?‘" - F"—l)) RNEY)

Theorem 2 If {5}1}7,;1727“_ is chosen according to the line-
search rule, then
lim |[F" —F* 1| =0
n—oo
Proof: See Theorem 7 in [43]. |
2) Convergence analysis: The convergence of Algorithm 2
is given in the following theorem.
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Fig. 2: The simulated system setup.

Theorem 3 Assume that Assumptions B and C are satisfied.
Then, every limit point of the iterations generated by Algorithm
2 is a stationary point of the optimization problem in (28)
almost surely.

Proof: See Appendix C. |

3) Complexity analysis: The computational complexity for
updating f" and e" at each iteration mainly depends on
the computation of (33) and (36), respectively. In particular,
only {P’,p¢} needs to be calculated at the n-th iteration.
Therefore, the approximate complexity of each iteration is
given by O((K+2)2UMN+UMK+NK+(N+2)K?+2N).

4) Initial point: The optimization problem in (28) has, in
general, multiple local minima due to the non-convex unit-
modulus constraint and to e € §8.. The accurate selection
of the initial points in Algorithm 2 plays an important role
for the convergence speed and the quality of the obtained
local solution. To that end, we first initialize e to maximize
the minimum equivalent total channel gain, resulting in the
following optimization problem

0= in|le"GP|[3. 38
e’ =argmax min|le” G|l (38)

ke

The optimization problem in (38) can be efficiently solved
by using the SDR method as follows

m]gx t (39a)
st. Ti{GYGY'E} > t,Vk € K (39b)
E > 0,rank(E) = 1, [E},;.m = 1, Vm, (39¢)

where E = ee! and ¢ is an auxiliary variable.
Furthermore, F is initialized by using the maximum-ratio
transmission (MRT) solution as

GOe?
F' = Pohop——. 40
1G]] 0

V. NUMERICAL RESULTS AND DISCUSSION
A. Simulation setup

In this section, we numerically evaluate the performance of
the proposed algorithms. All experiments are performed on a
PC with a 1.99 GHz i7-8550U CPU and 16 GB RAM. We
adopt the polar coordinates to describe the simulated system
setup as shown in Fig. 2. Specifically, the BS is located at (0 m,
0°), and the four RISs are deployed in the locations (10 m, 0°),
(10 m, 45°), (10 m, 20°) and (10 m, 30°) which are close to the
BS. The users are randomly placed in a region that is identified
by the polar diameter d; €[50 m, 80 m] and the polar angle

¥ € [0,45°], where dj is used to calculate the distance-
dependent blockage probability. The large-scale fading, which
corresponds to an urban micro (UMi)-street canyon scenario
[36], is PL = 32.4 4 201og,((f.) + 10alog,((D) + £ in dB,
where D is the link distance (in meters), « is the path loss
exponent, and & ~ CN(0,02) is the log-normal shadowing
where o2 denotes the shadbwing variance. The mmWave
system oberates at a carrier frequency f. = 28 GHz and the
bandwidth is 20 MHz. Since the macro-scattering environment
between the BS and the users is complex, only NLoS clusters
are assumed to exist in the BS-user links, i.e., the Rician factor
is K = 0. The large-scale parameters of the NLoS links are
a = 3.5 and o¢ = 8.2 dB [36]. In practice, the RISs can be
installed such that the BS-RIS links and the RIS-user links are
blockage-free. Thus, the channels in (5) and (6) are assumed
to have only the LoS cluster with a Rician factor Kk — o0.
The large-scale parameters of the LoS link are « = 2 and
o¢ = 4 dB according to [36]. Unless stated otherwise, we
assume Ly, = Ly, = Ly, = 5 and I = 20. The transmit
power limit of the BS is P4, = 30 dBm and the noise power
at each user is 07 = ... = 0% = —94 dBm. For simplicity,
we consider an equal blockage probability, pi ; = Pblock, ¥k, [,
and an equal target SINR, v = v; = ... = g, which yields
the target rate Riars = logy(1 + ). The smooth parameters
are chosen to be 0 = m and p = ﬁ.

To evaluate the performance of the proposed stochastic
optimization algorithms, we consider the following benchmark
schemes. 1) Perfect-Instantaneous: Perfect instantaneous CSI
is assumed to be known, including the instantaneous chan-
nel gains, AoAs, AoDs, and blockage status of the links.
This scheme is regarded as the performance upper bound.
Specifically, we generate 1000 channel realizations, wherein
each path is randomly blocked with probability phiock, €.2.,
each path is, on average, randomly blocked 500 times if
DPblock = 0.5. Then, the beamforming is optimized for each
instantaneous and fixed channel realization. 2) NoRIS: In this
case, no RIS is employed and the precoding at the BS is
obtained by using the SMM or SSCA methods. This scheme is
regarded as the performance lower bound. 3) No-robust: In this
scheme, the beamforming schemes at the BS and at the RIS are
designed by using the SMM or SSCA methods by taking into
account the random small-scale parameters while assuming
Dblock = 0. 4) Imperfect CSI: In this scheme, the beamforming
schemes at the BS and at the RIS are designed by using the
SMM or SSCA methods based on the imperfect knowledge
of the central angles of the clusters. Specifically, we assume
that the estimation error of the central angles of the clusters is
0.2 degrees, i.e., AE{¢(¢)} = 0.2. 5) Quantization-1/2/3 bit:
In this scheme, the optimal continuous-valued phase shifts of
the RISs are first obtained by using the SMM algorithm and
are then quantized with 1 bit or, 2 bit or 3 bit resolution. 6)
SAA: In this scheme, we generate 300 independent channel
realizations in advance, and the solutions at each iteration of
the algorithms are obtained as the average over the 300 channel
samples. Also, the surrogate function used at each iteration is
obtained by adopting the MM or SCA methods. To be specific,
let us consider the beamforming design in the single-user case



TABLE I: Comparison of the CPU time

[ Algorithms | The CPU time (sec) per iteration | The CPU time (sec) |

SMM 0.0025 1.8750
SSCA 0.0042 4.6719
SAA 0.3557 20.9844

as an example. The beamforming designed by using the SAA-
MM method is obtained by modifying the problems in (12)
and (13) with the following updating rules

300
n—1 [
" —argnelg; %Zf APHGY) 41)
and
300
e" =argmin Zoo Zf “GY) (42)

In order to demonstrate the robustness of the proposed
algorithms, we consider two performance metrics: the outage
probability and the effective rate. In particular, the outage
probability of each user is calculated by averaging over 1000
independent channel realizations. The corresponding effective
rate of the k-th user is defined as Reg i e E[log,(1 +
I'y(F,e))] if Tx(F,e) > v and Reg = 0 otherwise.

B. Convergence

Figure 3 illustrates the convergence behavior of the consid-
ered stochastic optimization algorithms. For comparison, we
consider the single-user case in the presence of RIS 1 depicted
in Fig. 2, and the other parameters are given in Fig. 3. In Fig. 3,
the y-axis shows the objective value of the problems in (16) or
(32), and it is not the actual outage probability of the original
problem. It is observed that the SMM and SSCA algorithms
are characterized by an oscillatory convergence behavior,
which depends on the random channel generations at each
iteration. On the other hand, using 300 channel realizations for
each iteration leads to the monotonic convergence behavior of
the SAA algorithm when adopting a monotonically decreasing
surrogate function for each channel realization. Although the
SAA algorithm requires the least number of iterations to
converge, it is much more computationally demanding than the
other two algorithms. This observation is confirmed in Table I,
which compares the CPU time consumption of each iteration
and the total CPU time consumption for the three considered
algorithms. Theoretically, the computational complexity of
each iteration of the SAA algorithm is 300 times higher than
that of the SMM or SAA algorithms, because each parameter
needs to be calculated 300 times for all channel realizations
at each iteration of the SAA algorithm.

C. Single-user Case Study

We consider a single-user system where the transmission
of data is assisted by the RIS 1 in Fig. 2 and the target rate
iS Riarg = 0.1 bps/Hz. Figure 4 illustrates the performance
of different algorithms as a function of the blockage proba-
bility. We see that the SMM-based beamforming scheme with
M = 128 outperforms the NoRIS scheme when ppjocx > 0.1.
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Fig. 3: Convergence behavior of different algorithms, when
N =8 M=128, K =1,U =1, and Ras = 0.1 bps/Hz.

If ppiock < 0.1, on the other hand, the direct BS-user channel
is much stronger than the cascaded BS-RIS-user channel,
as the latter is subject to the double path loss law, which
dominates the performance for long transmission distances
at high frequency bands. When the blockage probability is
small (pplock < 0.1), therefore, the BS tends to allocate
the transmit power to the stronger direct path, thus reducing
the contribution of the RIS to the system performance. If
the number of reflecting elements at the RIS is increased
to M = 160, the proposed SMM algorithm outperforms
the NoRIS system for any value of the blockage probability
(.e., 0 < pplock < 1). The reason is that the RIS-aided
channel provides a beamforming gain that compensates for
the performance loss caused by the presence of blockages
even if ppocc = 0. In addition, we see that the SMM-
based beamforming scheme and the SAA-based beamforming
scheme offer the same performance. As far as the impact
of the phase quantization is concerned, we see that 1-bit
resolution has a non-negligible negative impact on the system
performance, while 3-bit resolution is sufficient to obtain
performance very close to the continuous-valued phase shifts.
As expected, the Perfect-Instantaneous scheme outperforms all
the other schemes at the price of frequent channel estimations
in each channel coherence block. Finally, the proposed robust
designs outperform the NoRobust case and the imperfect CSI
case, since the impact of random blockages is accounted for
at the design stage.

Figure 5 shows the impact of the size of the RIS and the
size of the antenna array at the BS on the outage probability.
The SMM algorithm is considered. It can be observed from
Fig. 5(a) that, when BS is equipped with N = 8 antennas,
the RIS plays a significant role in guaranteeing the desired
user’s QoS and in improving the system robustness as the
number of reflecting elements increases (M : 64 — 256).
Specifically, a large-size RIS with M > 224 provides an
outage probability smaller than 0.1, even if the direct channel
from the BS to the user is blocked with unit probability. A
similar trend is observed in Fig. 5(b) as the number of BS
antennas is increased while the number of RIS elements is
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Fig. 4: Comparison of the outage probability and effective rate
as a function of the blockage probability ppiock for NV = 8,
K =1,U =1, and Ry, = 0.1 bps/Hz.

kept fixed and is equal to M = 128. The main difference is
that the NV antennas at the BS require power amplifiers, digital
processing units, and multiple RF chains.

D. Multiuser Case Study

In this section, we analyze a multiuser system with K = 3
users, and assume that the target rate is Riarg = 0.1 bps/Hz.
Multiple RISs are distributed as shown in Fig. 2. For fair-
ness, we keep fixed the total number of RIS elements, i.e.,
UM = 240. From Fig. 6, we conclude that, compared with the
single-RIS case, distributing the total number of RIS elements
between two RISs significantly improves the system perfor-
mance in terms of maximum outage probability and minimum
effective rate. This is because a better spatial diversity gain
is ensured in this case, while ensuring the each RIS has a
sufficient number of reflecting elements to compensate for
the path loss of the RIS-aided links. If the total number of
reflecting elements is distributed among three or four RISs,
the system performance is reduced. This is because each
RIS cannot compensate the distance-dependent path loss. In a
multi-RIS scenario, therefore, the size of each RIS (i.e., the
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Fig. 5: Outage probability as a function of M with fixed N = 8§
and as a function of N with fixed M = 128, when K = 1,
U =1, and Rare = 0.1 bps/Hz.

number of reflecting elements) is an optimization parameter
that needs to be judiciously chosen. Furthermore, we note
that the proposed robust designs significantly outperform the
NoRobust and the NoRIS schemes, under similar setups.
Finally, Fig. 7 illustrates the maximum outage probability as
a function of the number of users. For a fair comparison, we
consider the setup N = 16, M = 120 and U = 2. We see that
the gain with respect to the NoRIS scheme is almost constant
as the number of users K increases. Therefore, the proposed
RIS-aided scheme can guarantee the desired QoS performance
for the worst-case user even if the number of users increases.

VI. CONCLUSIONS

In this work, we have introduced schemes for improving the
reliability of a mmWave system in the presence of random
blockages by deploying multiple RISs and designing the
corresponding robust beamforming. In order to reduce the
system outage, we have formulated and solved a maximum
outage probability minimization problem which belongs to the
family of stochastic optimization problems. More precisely,
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Fig. 6: Comparison of the maximum outage probability and
minimum effective rate as a function of the blockage proba-
bility ppiock for N = 16, K = 3, and Rtarg = 0.1 bps/Hz.
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Fig. 7: Comparison of the maximum outage probability as a
function of the number of users K for N = 16, ppiock = 0.6,
and Riarg = 0.1 bps/Hz.

we have introduced robust beamforming schemes at the RIS
that depend on the large-scale CSI and the blockage probabil-
ity. The proposed schemes are obtained by solving complex
stochastic optimization problems, for which we have proposed
closed-form solutions at each iteration by leveraging the SMM
and SSCA optimization methods. The proposed stochastic
methods are proved to converge to the set of stationary points
of the original stochastic problems. Selected numerical results
have demonstrated the performance gains, in terms of outage
probability and effective rate, that the proposed schemes can
offer when applied to RIS-aided mmWave systems in the
presence of random blockages.

APPENDIX A
THE PROOF OF LEMMA 1

In this appendix, G is omitted for simplicity, i.e., f (£|G?)
is replaced by f (f). Since f (f) is twice differentiable, we
propose a second-order approximation to upper bound f (f)
at any fixed point fi—!

FE) <f(£,£77)
= (£71) + 2Re {m}* (£ - £}

+ (F— £ HIMG(F - 71, (43)

where mZJ} and M} are to be designed to satisfy Assumption
A.

Assumptions (A1) and (A2) are readily satisfied. Assump-
tion (A4) is a consistency condition for the first-order direc-
tional derivative. Given f € § » the directional derivative of
f (f, fifl) at £ with direction f— i~ is (from Eq. (3.4.17)
in [46])

a1

f (fi—l; f‘ _ fi—l)

R T R
_(9f F i of
- ( of f_fi1> e <8f*

=2Re {m}H(f' — fifl)} .

T
V' -e
(44)

The corresponding directional derivative of f (f) is (from Eq.
(3.4.17) in [46])

FEhE-

_(of e i, (Of T
<6ff—f?‘1> (-t )Jr(af* f*—f*~7?—1> (E=F7)
:( —96—:#)22Re {fi—l,HGi,Hei—lei—l,HG (f _ fi—l)} 7

1+ e 02

(45)

where z? is given in (15c¢).

Assumption (A4) is satisfied only when (44) and (45) are
equal, yielding

Ge 0"

N2

(1+e0")

In Qrder for Assumption (A3) to hold, it is sufficient to show
that f(f,f*~!) is an upper bound for each linear cut in any

m} _ i Hgi-lgi-1LHqgipi—1 (46)



direction. In particular, defining f = fi=1 + £(f — f1),V¢ e
[0, 1], we need to show

F(E7 g = £7Y) < f (871 + 26Re {m}"(E - £}
L - P - ),

(47
Let us introduce the functions L(€) = f(£~ ' +&(f—f1))
and [(¢) = ~o? — |e"VHGH(fI=1 + ¢(f — £171))|2. The

inequality in (47) is fulfilled if Assumption (A4) holds, which
is ensured by using (46), and if the second-order derivative of
L(¢) is no greater than the second-order derivative in the right
hand side of (47) for any value of &.

The corresponding sufficient condition can be formulated as

0’L(¢)
o€

The next step is to compute 9*L(£)/9€2. To this end, we
first calculate the first-order derivative of L(), as follows

< 2f —

FLEMG(F — £171). (48)

L) _ . 0l)
D¢ =9(&) ¢ (49)
where g(£) = %, 3(19(E —2Re{q!! (f £=1)}, and
q:Gi,Heifleifl,HGi(fz 1+£( 7f1 1))

Then, the second-order derivative can be formulated as

9L 92 aE)\?
)=o) 000 (%)
2
+2(1+¢7019) (g(&)%?) . (50)
where 622(25) = —2Re{(f — F"HHO(f — fi~1)} and © =

(GiHei-lgi-LHGI,
_ Equation (50) can be rewritten as a quadratic form of t =
f — fi-1 as follows

PL) P rq) o] 51)
where
o) (2(1+ a0 -0) [ 2 ][ 4]
9§l ® O©. 2

Furthermore, (48) can be reformulated in a form similar to
(51), as follows
t
t* |

t |"[IeM; 0
t* 0

i, T
IoM 7
Combining (51) and (53), the sufficient condition in (48) is

equivalent to
J<[ I

] ]

which is satisfied when M; is chosen so as to fulfill the
condition

(33)
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A convenient choice that fulfills this condition is le = alj}I =

Amax (@) I. Then, f(f,fi’l) in (43) can be formulated as
follows

e
= F(£77) + 2Re

= 2Re {d’fo} + a?HfH%—l—constjc,

mi(F — £ b+ aflIf - £ 3

where djéH, a} and const} are defined in Lemma 1. The
deterministic expression of Apyax (®) is difficult to obtain,

therefore we derive the upper bound as follows

Amax (@)
(pl) o) 2 q q 1%
< 2 (14e79) () A {q Hq*}
H
— 9()Amin (T2 ® ©) = 09(&) Amin ({ (‘11 ] [ ; } >
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where the inequalities are obtained by departing from (52) and
by invoking the following properties.

(p1): If A and B are Hermitian matrices, then Apax(A) +
)\max(B) 2 )\max(A + B) [4’7]

mam‘el lHG GlH i— 1|2

(p2): If A is rank one, then A\yax(A) = Tr[A], Anin(A) =
0 [47].

(P3): (1+e7%19)) g2(&) < 62/8, where the equality holds
when [(§) = 0.

(p4): If A is positive semidefinite with maximum eigenvalue
Amax(A) and B is positive semidefinite, then Tr[AB] <
Amax(A)Tr [B] [47]. N

(p5): The power constraint ||[f*=! + ~(f —
needs to be fulfilled.

Hence, the proof is completed.
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APPENDIX B
THE PROOF OF THEOREM 1

Define the random functions

;if(xiG%
5 Zf

To prove the convergence of Algorithm 1, we use the
following lemmas.

(54)

1, 1|GZ (55)



Lemma 3 Assume that Assumptions A and B are satisfied and
define a limit point x of the subsequence {x"}2° . Then,
there exists uniformly continuous functions g(x) and §(x) such
that

9(x) = lim ¢"(x) =E[f (x|G)],Vx €8,,  (56)
g(%) = lim g™ (x™), (57)
9(x) = _lggog (%), Vx € 8y, (58)
§(x) = lim g™ (x"7). (59)

J—00

Proof: First, f(x,G) is bounded for Vx € 8, and for all
channel realizations due to the Assumption (B2). Therefore,
(56) holds by using the strong law of large numbers [48]. Also,
the families of functions {¢"i(x)} are equicontinuous and
bounded over the compact set 8, due to the Assumption (B2)
and the use of the mean value theorem. Thus, by restricting
to a subsequence, we have (57). Furthermore, the families of
functions {§"(x)} are also equicontinuous and bounded over
the compact set S, due to the Assumption (B2) and because
| Vi f(x,xi"1, G)|| is bounded. Hence, the Arzela-Ascoli
theorem [49] implies that, by restricting to a subsequence,
there exists a uniformly continuous function §(x) such that
(58) and (59) hold. |

In addition, the update rule of Algorithm 1 leads the
following lemma.

Lemma 4 lim,_,|§"(x") — ¢"(x")|= 0, almost surely.

Proof: The proof of Lemma 4 is the same as the proof of
(Lemma 1 in [40]) and is hence omitted for conciseness. WM

Assumption (A3) implies that §™i (x) > ¢"i (x),Vx € 8,
which combined with (56) and (58) leads to

g(x) > g(x),Vx € 8. (60)
Moreover, combining Lemma 4 with (57) and (59) we have
9(x) = g(x). (61)

Then, (60) and (61) imply that X is a minimizer of the func-
tion §(x) — g(x). Hence the first-order optimality condition is
satisfied

V§(x) — Vg(x) = 0. (62)

Due to the fact that X is the limit point of the problem in

(12) or the problem in (13), we have §(x) < §(x),Vx € S,
which implies
(Vj(x),x —x) > 0,Vx € 8. (63)
Combining (63) with (62), we obtain
(Vg(x),x — %) > 0,Vx € 8§, (64)

which means that the directional derivative of the objective
function g(x) is non-negative for every feasible direction at
X. Recalling that x € {f,e} and defining the limit points
{f, e}, (64) is equivalent to

(Vg(f),f —f)>0,Vf € 8,
(Vg(e),e —e) > 0,Ve € §..

Therefore, according to [43], {f, &} is a stationary point of
the problem in (11) due to the regularity of g(-).

APPENDIX C
PROOF OF THEOREM 1

Define the random functions

1 & ;
:E;F(X|G), (65)
1 . n i—1 [
:ﬁZF(xx IGY). (66)
=1

To analyze the convergence, we need the following lemmas.

Lemma 5 Assume that Assumptions B and C are satisfied and
define a limit point X for the subsequence {x"i}52,. Then,
there exists uniformly continuous functions G(x) and G(x)
such that

G(x) = lim G"(x) =E[F (x|G)],¥x€8,,  (67)
G(x) = ]lggo G (x™), (68)
G(x) = Jim G (x),Vx € 8, (69)
G(x) = lim G™(x™). (70)

]—)OO

Proof: The proof of Lemma 5 is the same as the proof of
Lemma 3 and is omitted for brevity. |
Furthermore, x™7 is the minimizer of G™ (x), which implies

GMi(x") < (M (x),Vx € 8, (71)

. AssuminAg j — 00, and combining (69) and (70), we obtain
G(x) < G(x),Vx € 8,, which implies that its first-order
optimality condition is satisfied

<vé(5<),x _ 5<> > 0,Vx € 8,. (72)

By combining (72) and Assumption (C3), we finally obtain
(VG(x),x — %) > 0,Vx € 8. (73)

Since x € {F,e}, we define the limit points {F,&} and
(73) is then equivalent to

(VG(F),F —F) > 0,VF € 8y,
(VG(e),e — &) > 0,Ve € 8,.

Therefore, according to [43], {F,&} is a stationary point of
the problem in (28) due to the regularity of G(-).
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