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Abstract— It is well accepted that acquiring downlink channel
state information in frequency division duplexing (FDD) massive
multiple-input multiple-output (MIMO) systems is challenging
because of the large overhead in training and feedback. In this
paper, we propose a deep generative model (DGM)-based tech-
nique to address this challenge. Exploiting the partial reciprocity
of uplink and downlink channels, we first estimate the frequency-
independent underlying channel parameters, i.e., the magnitudes
of path gains, delays, angles-of-arrivals (AoAs) and angles-of-
departures (AoDs), via uplink training, since these parameters
are common in both uplink and downlink. Then, the frequency-
specific underlying channel parameters, specifically, the phase
of each propagation path, are estimated via downlink training
using a very short training signal. In the first step, we incorporate
the underlying distribution of the channel parameters as a prior
into our channel estimation algorithm. We use DGMs to learn
this distribution. Simulation results indicate that our proposed
DGM-based channel estimation technique outperforms, by a
large gap, the conventional channel estimation techniques in
practical ranges of signal-to-noise ratio (SNR). In addition, a
near-optimal performance is achieved using only few downlink
pilot measurements.

I. INTRODUCTION

A. Motivation

Massive multiple-input multiple-output (MIMO) is a key

technology in helping to meet the demands to be made of

the next (fifth) generation of wireless technologies [1], [2].

This technology can be deployed in time-division duplex

(TDD) mode, where the uplink and downlink communication

occur in the same frequency band but at different time slots,

and frequency-division duplex (FDD), where the uplink and

downlink operate simultaneously on different frequency bands.

To unlock the full potential of massive MIMO in both FDD

and TDD, we require an accurate channel state information

(CSI) between the base station (BS) and the user equipment

(UE).

In TDD massive MIMO systems, CSI acquisition relies

on the assumption of channel reciprocity between the uplink

and downlink. However, due to calibration errors between

the uplink and downlink radio frequency (RF) chains, such a

channel reciprocity may not hold [3]. Additionally, pilot con-

tamination, caused by the use of non-orthogonal pilot signals

in neighboring cells, is another performance-limiting factor in

TDD-based systems [4]. Importantly, realizing the backward

compatibility of FDD massive MIMO communication (e.g.,

with Long-Term Evolution (LTE)) has drawn considerable

attention toward FDD from both academia and industry [5].

In FDD, due to different band of frequencies in the uplink

and downlink, the downlink channel is neither the same, nor

can it be inferred from the uplink channel without any down-

link training. Traditionally, a UE estimates its own downlink

channel from the received pilot symbols transmitted from the

BS and feeds the estimated downlink channel information back

to the BS for the subsequent signal transmission and resource

allocation. This approach is practical in current (prior to 5G)

generation of networks, where only a few antennas are used

at the BS, allowing for orthogonal pilots and a small feedback

overhead. However, in massive MIMO systems, due to the

large overhead with the use of orthogonal pilots in massive

arrays, as well as the huge required feedback, this approach

may not be applicable. Therefore, it is an urgent requirement

in FDD massive MIMO systems to reduce the amount of pilot

symbols needed for downlink channel estimation.

B. Related Work

The previous attempts in FDD channel estimating mainly

focused on adapting the downlink arrays using the second-

order statistics of the uplink measurements [6], [7]. In recent

years and in the context of massive MIMO, there are attempts

aiming at reducing the feedback overhead by exploiting the

sparsity in the underlying channel parameters. In particular,

considering a parametric channel model, where the channel

is characterized by the parameters of only a few dominant

paths, such as gains, direction-of-arrival (DoA), and direction-

of-departure (DoD) [8]. Given such a model, one may consider

array processing techniques (such as SAGE [9]) in estimating

the channel parameters. However, these techniques are mainly

based on the EM algorithm which requires the user to know

the likelihood function of pilot observations and the channel

parameters, which may not be available. Also, none of the

array processing techniques [10], [11] has been adopted in the

context of FDD downlink channel estimation. The reason is

that these methods usually work under certain assumptions,

(for example the number of multipaths to be smaller than

the number of transmit and the number of receive antennas)

which may not be satisfied in FDD systems [12]. Even

employing DoA estimation techniques is challenging. Most

DoA estimation techniques rely on the covariance matrix of

the received signal. Constructing (and then inverting) such

covariance matrices takes a lot of computation effort which

limits the applicability of these techniques in fast fading

scenarios. These techniques also usually require the number

of paths be lower than the number of antennas.

Considering millimeter wave (mmWave) frequencies, the

channel tends to exhibit sparsity in the angular domain [13],

[14]. Leveraging this sparsity, the channel can be reformulated
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using the channel gains, DoAs, and DoDs. One can recover

these underlying channel parameters using compressive sens-

ing (CS) techniques.

In a CS framework, it is assumed that the UE compresses

and feeds back the received pilot signal to the BS, where

different CS-based techniques can be employed to recover

the sparse channel parameters [13], [15]–[20]. In a multi-

user massive MIMO setting, the authors of [17] develop a

joint orthogonal matching pursuit (OMP) algorithm to recover

the channel parameters at the BS. To further reduce the pilot

overhead, block OMP is developed in [21] based on a user

grouping technique, which relies on the assumption that the

users in each group have the same channel correlation matrix.

The authors of [22] proposed a sparse Bayesian learning

technique for sparse channel recovery followed by an off-grid

refinement. Note that in a practical setting, and due to the

limited scattering in propagation environment, different user

links tend to share some common scatterers. While each UE

channel matrix is sparse in angular domain, they may exhibit

a common sparsity pattern. This observation motivated the au-

thors of [23] to propose a variational Bayesian inference based

approach for channel estimation, where Gaussian mixture

model is exploited to capture the individual sparsity in each

channel matrix. There are works that attempt to improve the

performance of CS-based techniques by incorporating a priori

information into the recovery algorithm [24]–[26]. It is worth

mentioning that the CS-based techniques still suffer from some

limitations. In particular, they require strong channel sparsity

in DFT-basis which is not strictly held in some cases. In fact,

we do not even know the basis that yields the most sparse

representation. While they also require a large number of

pilots, they are often iterative and computationally intensive

during decoding, which may lead to long delays.

As an alternative to CS-based techniques, there are tech-

niques relying on the spatial reciprocity between the uplink

and downlink channels [19], [20], [27], operating on close-by

carrier frequencies have been proposed. Given the fact that

the uplink and downlink communication occur in the same

propagation environment, the uplink channel estimates can

be used in the estimation of downlink channel. In this way,

difficulties in downlink channel estimation is shifted to the

BS.

Uplink-downlink reciprocity can be considered in two ways.

In one way, one can assume full-reciprocity where the multi-

path components of channel (including phase, amplitude,

delay, angle of arrival, departure, etc.) are the same in both

uplink and downlink [28]–[30]. Based on this assumption, the

authors of [30], proposed to completely eliminate downlink

training and feedback in LTE systems. However, there is not

enough evidence to confirm such a full-reciprocity assumption

in real world data. Indeed, it is shown via measurements

and theoretical investigations that not all channel parameters

are reciprocal in uplink and downlink. In particular, there

is no reciprocity between the phases of different multi-path

components for FDD uplink and downlink channels [31].

Intuitively, this is expected given the sensitivity of the phase

to operating frequency. Alternatively, uplink and downlink

channels are only partially reciprocal. This implies that down-

link training and feedback is inevitable. Partial reciprocity

has been leveraged differently in the literature. In [32], the

authors consider a spatial domain representation of channel1,

and exploit the uplink-downlink angle reciprocity [33], where

the AoA/AoD in the uplink and downlink are assumed to be

the same. Then, the downlink channel estimation boils down to

path gain estimation which can be done within a much lower

pilot overhead.

As an alternative approach, deep learning (DL)-based tech-

niques have been considered in recent studies published on

channel estimation for FDD-based massive MIMO. Deep

learning is a powerful tool to explore the underlying complex

structure of data. This type of learning has been widely applied

in various wireless communication problems, such as data

detection [34], [35], channel estimation [36], beamforming

[37], and hybrid precoding [38], [39], and have shown promis-

ing performance compared to conventional techniques. In the

context of downlink channel estimation in FDD systems, in

[40], the whole downlink CSI is estimated using only the CSI

obtained over a small set of BS antennas via linear regression

and support vector machines (SVM). This is based on the

assumption that the channel among different BS antennas is

correlated. In the same line of the work, the authors of [41],

proposed a deep neural network (DNN)-based technique to

map the channel both in space and frequency. This allows for

the prediction of the channel of a set of BS antennas and a

frequency band from the observation of different set of an-

tennas and different frequency band. Inspired by the position-

to-channel mapping investigated in [41], the authors of [42]

proposed a complex-valued neural network (named SCNet) to

directly map the uplink channel to its downlink counterpart,

without requiring any downlink pilot transmission. A similar

technique with reduced complexity has been proposed in [43].

C. Contribution and Methodology

In this paper, we consider a single cell where a BS with

massive number of antennas communicates with a UE in FDD

mode. Using the fact that the channel matrix over each sub-

carrier is a function of a smaller set of parameters, namely, the

number of propagation paths, the path gains, phases, delays,

as well as AoAs and AoDs [8], we estimate these parameters

instead of the channel matrix directly. These parameters de-

pend on the physical properties of the propagation environment

and on the operating frequencies, and importantly, they are

independent of the number of antennas at the BS as well as

the number of subcarriers [44]–[47]. Unlike the conventional

techniques, where a long training sequence is transmitted

over all antennas and over all subcarriers, we estimate these

underlying channel parameters using a short training signal

over a much smaller set of antennas and subcarriers.

Motivated by the partial reciprocity of uplink and downlink

channels [31], [32], [48], we use the following steps to

estimate the downlink channel: I) we estimate the frequency-

independent underlying channel parameters, namely, the mag-

nitudes of path gains, delays, AoAs and AoDs during the

1The channel is expressed by a small number of multi-path component such
as AoA/AoDs and path gains
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uplink training; and II) the frequency-specific underlying chan-

nel parameters, i.e., the phase of each propagation path, are

estimated via downlink training. Using this strategy, we shift

the burden in FDD downlink channel estimation to the BS,

which is, anyway, responsible for uplink channel estimation.

In the first step, we use the least squares (LS) estimation

approach to estimate the frequency-independent parameters.

The optimization problem in this step is difficult to solve

analytically, mainly due to non-linear and non-convex structure

of its objective function. To address this problem, we use

deep generative models (DGMs)2, to capture the distribution

of the underlying parameters, and then use it as a prior to

simplify the optimization problem. In the second step, we

use the frequency-independent parameters, estimated in the

first step, to estimate the frequency-specific parameters via

an LS technique. In both steps, the optimization problem is

carried out numerically using the gradient descent algorithm.

The contributions of this paper are itemized below:

• Learning the distribution of channel parameters: The

unknown underlying distribution of the channel parame-

ters is some function of the propagation environment, and

therefore, it is complex and difficult to obtain analytically.

We explain how to use DGMs to learn this distribution. In

particular, we use the GAN structure to find a determin-

istic mapping function (i.e., a generator) that is capable

of drawing samples from the underlying distribution of

channel parameters, by feeding it with samples from a

low-dimensional standard Gaussian distribution.

• FDD downlink channel estimation: We present a tech-

nique to show how to exploit the uplink-downlink par-

tial reciprocity, thereby reducing the pilot and feedback

overhead in downlink. In addition, the sparsity assump-

tion in channel parameters is relaxed. Instead, using a

generator, obtained from a GAN, we incorporate the

learned structure of channel parameters as a prior into our

channel estimation procedure. By doing so, the optimiza-

tion problem operates in a low-dimensional subspace,

whose dimensionality is defined by the generator and,

importantly, it is independent of number of received

pilots. Therefore, we achieve a significant reduction in

computational complexity as well as CSI feedback over-

head.

• Convergence analysis: We analytically prove the conver-

gence of our estimation by showing that the gradient of

the estimation objective function is Lipschitz-continuous,

and therefore, the convergence of steepest descent algo-

rithm is guaranteed.

The simulation results indicate that our proposed DGM-

based channel estimation outperforms the conventional chan-

nel estimation technique in practical ranges of signal-to-noise

ratio (SNR). This is mainly due to the capabilities of the

generator in representing the underlying distribution of the

channel parameters. Incorporating this prior knowledge into

our channel estimation significantly improves the performance

even at low SNR. This indicates how the proposed technique

is resilient to the noise level. Additionally, for fixed SNR,

2In particular, we use the generative adversarial network (GAN)

we show that the proposed technique yields a near-optimal

performance using only few pilot measurements. This can

significantly reduce the pilot overhead in FDD massive MIMO

systems.

Our work in this paper differs from the CS-based tech-

niques in the sense that we do not assume any sparsity in

the underlying channel parameters. Instead, we relax this

constraint and consider that the channel parameters have a

particular structure which is not necessarily sparse. We capture

this structure using a generator, and then, incorporate it as

a prior into our channel estimation process to improve the

accuracy and reduce the pilot overhead. The DNN-based

techniques in [41]–[43], [49] mainly rely on direct channel

mapping between the uplink and downlink, without requiring

any downlink training. The performance of these techniques is

highly affected by the uplink-downlink frequency separation,

hardware impairments, shadow fading, and SNR. While we

have not shown numerically, in theory, our proposed technique

can address such deficiencies by incorporating a DGM-learned

prior into channel estimation process. Unlike the work in [50],

in this paper, we study the channel estimation problem in FDD

massive MIMO systems. Furthermore, instead of the channel

distribution, we learn the underlying distribution of channel

parameters.

Organization: We introduce the system model, including

the received signal model, channel model, and FDD partial

reciprocity in Section II. Section III introduces the channel

estimation problem, where we formulate the problem followed

by our estimation technique. For the sake of the paper being

self-contained, DGMs are briefly introduced in Section IV.

In Section V, we analytically study the convergence, com-

plexity and identifiability of our estimation algorithm. Section

VI presents implementation details and simulation results to

illustrate the efficacy of the proposed technique. Section VII

provides conclusions. Finally, Appendix A provides some

preliminary definitions and lemmas used to prove Lemma 1

in Appendix B.

Notation: We use bold upper and lower-case letters to denote

matrices and vectors, respectively. Ex [·] denotes statistical

expectation over the random variable x. z ∽ Pz(z) denotes

that the random vector z follows the probability distribution

(pdf) of Pz(z) . The transpose operation is represented as

(·)T ; IN denotes an N × N identity matrix; R+ denotes the

set of non-negative real numbers; ‖ · ‖ denotes the norm-2

operation; |x| represents the absolute value of x; X 4 Y

means ‖X‖ ≤ ‖Y‖; |I| represents the cardinality of set I;

and Ic the compliment set of I; Ī represents a sorted array

whose entries are in the set I. We use
[

xi

]

i∈I
to denote a

vector whose j-th block entry, for j = 1, 2, · · · , |I|, is given

by xj , for j ∈ Ī . In a similar way,
[

Xi

]

i∈I
denotes a matrix

whose j-th block entry, for j = 1, 2, · · · , |I|, is given by Xj ,

for j ∈ Ī.

II. SYSTEM MODEL

We consider a single-cell single-user communication sys-

tem. The BS is equipped with a uniform linear array (ULA)

with M ≫ 1 antenna elements, while the UE is single-antenna.
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The communication between the BS and UE is performed

in FDD mode. In the uplink, the UE communicates with

the BS at frequency fup, while in the downlink, the BS

communicates with the UE at frequency fdl. The frequency

difference between fup and fdl is assumed to be relatively

small. Both uplink and downlink frequency bands are of

bandwidth B.

A. Received Signal Model

We assume that orthogonal frequency division duplex

(OFDM) technology is used in both uplink and downlink

commutation with K subcarriers. Let Kup denote the set

of subcarrier indices used for uplink training. During the

uplink training at the k-th subcarrier, the UE transmits training

symbol sk, k ∈ Kup, where |sk|2 = PT , and PT is the transmit

power. The received signal at BS over the k-th subcarrier is

given by

y
up
k , h

up
k sk + n

up
k , k ∈ Kup, (1)

where h
up
k is an M × 1 uplink channel vector between the

BS and the UE and n
up
k is an M × 1 noise vector at the k-th

subcarrier that is drawn independently and identically from a

complex Gaussian distribution with zero mean and variance

σ2
n.

In the downlink, let Kdl and Mdl denote, respectively,

the set of subcarrier indices and the set of antenna elements

dedicated for training. We assume that p training symbols are

transmitted over the m-th antenna (m ∈ Mdl) over the k-th

subcarrier (k ∈ Kdl). The received signal at the UE over the

k-th subcarrier at the i-th time slot is given by

y
(i),dl
k , s

(i),dl
k hdl

k + n
(i),dl
k , k ∈ Kdl, i = 1, 2, · · · , p, (2)

where hdl
k is an |Mdl| × 1 downlink channel vector at

the k-th subcarrier between the BS and the UE, s
(i),dl
k ,

[

s
(i),dl
k,1 s

(i),dl
k,2 · · · s

(i),dl
k,|Mdl|

]

is the 1×|Mdl| vector of down-

link training symbols transmitted at the i-th time slot over the

k-th subcarrier across all antenna elements in the set Mdl. We

assume that ‖s(i),dlk ‖2 = PT . n
(i),dl
k denotes the noise term at

the i-th time slot over the k-th subcarrier, drawn independently

and identically from a complex Gaussian distribution with zero

mean and variance σ2
n. Note that, in general |Mdl| ≤ M .

For the case when |Mdl| < M , we assume that the antenna

elements in the set Mc
dl do not transmit during the downlink

training.

Collecting the received signal across all p training time slots

over the k-th subcarrier, we can write

ydl
k , Sdl

k h
dl
k + ndl

k , k ∈ Kdl, (3)

where Sdl
k is a p × |Mdl| matrix of downlink

training symbols with s
(i),dl
k on its i-th row,

i = 1, 2, · · · , p, ydl
k ,

[

y
(1),dl
k y

(2),dl
k · · · y

(p),dl
k

]T

,

and ndl
k ,

[

n
(1),dl
k n

(2),dl
k · · · n

(p),dl
k

]T

. Next, we present

our channel model.

B. Channel Model

To characterize the wireless channel between the BS antenna

array and the UE, we consider the following geometric channel

model. We assume that the propagation channel between the

BS and the UE in the uplink consists of Lup paths. Through

the l-th path, the signal travels the distance dl between the UE

and the BS. Also, let αup
l ∈ R+, φup

l ∈ [0, 2π], θupl ∈ [0, 2π],
and τupl ∈ R+, for l = 1, 2, . . . , Lup, denote the random path

gain, the random phase change, the random azimuth angle of

the signal received, and the random delay corresponding to

the l-th path in the uplink, respectively. Using this notation,

the channel response between the UE and the BS at the k-th

subcarrier is given by [19], [51]

h
up
k =

Lup
∑

l=1

αup
l ej(φ

up
l

+ 2πk
K

τup
l

B)a(θupl , λup
k ), k ∈ Kup, (4)

where λup
k , c

fup
c +kB/K

is the wavelength of the k-th

subcarrier in the uplink, and c is the speed of light 3. Since

kB/K is very small compared to fup
c , we ignore the subcarrier

index in the array response a(θl, λ). Denoting d̄ as the antenna

spacing in the ULA, the array response in (4) is given by

a(θl, λ) ,
[

1 ej
2π
λ

d̄ sin θl · · · ej
2π
λ

d̄(M−1) sin θl
]T

. (5)

Similarly, the downlink communication channel at the k-th

subcarrier is given by

hdl
k =

Ldl
∑

l=1

αdl
l ej(φ

dl
l + 2πk

K
τdl
l B)b(θdll , λdl), k ∈ Kdl, (6)

where Ldl is number of path in the downlink, λdl , ν
fdl
c

is the wavelength of the downlink carrier frequency, αdl
l ∈

R+, φdl
l ∈ [0, 2π], θdll ∈ [0, 2π], and τdll ∈ R+, for

l = 1, 2, . . . , Ldl, respectively denote the random path gain,

the random phase change, the random azimuth angle of the

received signal and the random delay corresponding to the

lth path in the downlink. b(θl, λ) is a subvector of a(θl, λ)
where its ith entry is ej

2π
λ

d̄(Mi
dl−1) sin θl , with Mi

dl being the

ith smallest member of set Mdl.

C. FDD Partial Reciprocity

In FDD communication, since uplink and downlink com-

munication between the BS and UE occurs over different

frequency bands, reciprocity between h
up
k and hdl

k does not

hold in general. However, since uplink and downlink channels

share the same propagation environment, it has been shown

that partial reciprocity exists between uplink and downlink

channels [19].

It is observed via measurements, and verified using theo-

retical analysis that a portion of uplink and downlink channel

parameters are frequency-independent [31]. Specifically, since

the signal of each propagation path travels the same distance

at the same speed in both uplink and downlink communication

3Note that the carrier phase shift 2πfup
c τl is absorbed in the random phase

φ
up

l
.
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link, the delay of each propagation path is the same in both up-

link and downlink, i.e., τdll = τupl , τl [31]. Furthermore, it is

shown, via both the measurement and ray tracing simulations,

that the directional angle of each communication path are the

same in both uplink and downlink, i.e., Ldl = Lup , L,

θdll = θupl = θl [31], [48]. It is also shown that, while the gain

of each communication path is not exactly the same in both

uplink and downlink in general, the downlink path gains are

very close to that of uplink. According to Figs. 5 and 6 of [31],

the average power delay profile of the uplink and downlink

is shown to be approximately the same. Our analysis on the

DeepMIMO dataset [51] also indicates that the relative error

between αdl
l and αup

l is only 0.8%. That is why, in this paper,

we use the following approximation αdl
l ≈ αup

l = αl. On the

other hand, the existing measurements and analysis does not

provide enough evidence that φdl
l and φup

l to be the same. This

implies that the channel translation requires downlink training.

III. CHANNEL ESTIMATION

Leveraging the partial reciprocity of channel parameters in

FDD, we develop a strategy for downlink channel estimation

as explained in the sequel. We aim to estimate the frequency-

independent parameters during the uplink training, while the

frequency-specific channel parameters are being estimated via

downlink training. To better characterize the channel esti-

mation process, let us define α , [α1 α2 . . . αL]
T ,

φ
up , [φup

1 φup
2 . . . φup

L ]T , φ
dl , [φdl

1 φdl
2 . . . φdl

L ]T ,

τ , [τ1 τ2 . . . τL]
T , and θ = [θ1 θ2 . . . θL]

T , while the

tuples

xup , (x,φup) , (α, τ , θ,φup) ,

xdl ,
(

x,φdl
)

,
(

α, τ , θ,φdl
)

, (7)

capture the uplink and downlink channel parameters, respec-

tively. In order to estimate hdl
k , for k = 1, 2, · · · ,K , we es-

timate frequency-independent channel parameters, namely α,

τ , and θ using uplink training as these parameters are common

in both uplink and downlink channels, while φdl is estimated

during downlink training with a much less training overhead.

The details are presented in the next two subsections.

A. Uplink Training

Here, we aim to estimate xup using the uplink training.

To do so, we stack the observations across all subcarriers as

yup ,
[

y
up
k

]

k∈Kup

, and defining A(xup) ,
[

h
up
k sk

]

k∈Kup

as

well as nup ,
[

n
up
k

]

k∈Kup

, the collected received signal in

the uplink is expressed as

yup = A(xup) + nup, (8)

where A(xup) is a non-linear function of xup. Using the LS

estimation approach, we obtain the estimate of xup by solving

the following minimization problem:

min
α,τ ,θ,φup

Jup (α, τ , θ,φup)

s.t. α < 0, τ < 0

0 4 θ 4 2π, 0 4 φup 4 2π, (9)

where Jup (α, τ , θ,φup) , ‖yup − A (α, τ , θ,φup) ‖22. The

optimization problem (9) is difficult to solve analytically due to

non-linear structure of the objective function. Even solving (9)

numerically (using for example coordinate descent or gradient

projection [52]) is challenging mainly because of the high-

dimensionality of the search space as well as the fact that

the objective function is not convex. Therefore, any numerical

approach will suffer from the convergence issues. To alleviate

such difficulties, instead of solving (9) directly, we use an

approach which is based on DGMs. Variational auto-encoders

(VAEs) and GANs are well-known examples of DGMs. In this

technique, we replace the tuple (α, τ , θ) by G(z), which is a

mapping from z (a latent variable) to the domain of (α, τ , θ).
In doing so, we implicitly assume that the tuple (α, τ , θ) is

described in terms of a low-dimensional z through G(·) - a

vector valued function of a vector valued variable. That is,

the tuple (α, τ , θ) has a structure dictated by G(z). Here, we

assume that the entries of vector z are random variables from

a Gaussian distribution (i.e., z ∼ N (0, Id), where d is the

length of vector z). We will elaborate later on how to find

G(z) using a GAN architecture.

Given G(z), we rewrite our LS problem as

min
z,φup

Jup (G(z),φup)

s.t. 0 4 φup 4 2π. (10)

Note that (9) and (10) are not equivalent, since solving (10)

results in tuples (α, τ , θ) which belong to the range of G(z),
whereas in (9) there is no such restriction. However, given

the above assumption, theoretically from (9) to (10), there

is no optimality loss, as the optimal (α, τ , θ) in (9) is on

the manifold that G(z) generates samples on. Therefore, the

optimal solution to (9) is in the range of G(z). Note that the

objective function in (10) is a periodic function with respect

to φup, i.e., Jup (G(z),φup) = Jup (G(z),φup + 2iπ) for

integer i. This implies that if φup∗ is an optimal solution

out of the interval [0, 2π], without loss of optimality, we can

project it back to [0, 2π] by removing multiple integers of 2π.

Therefore, we can ignore the constraint in (10) and solve the

following unconstrained optimization problem:

min
z,φup

Jup (G(z),φup) . (11)

To efficiently solve (11), we jointly and iteratively update

z and φup using the gradient descent algorithm. To do so,

we need to know the mapping G(·). Later we show how this

mapping can be determined using the GAN architecture.

Remark 1: Despite the non-linearity and possibly the non-

convex structure of the optimization problem in (9), solving

(11) is easier. This can be explained as follows: 1) The tuple

(α, τ , θ) is described in terms of a low-dimensional z via a

vector valued function G(·), and therefore, the search space

in (11) is in z and φup which has a much smaller dimension

than the optimization variables in (9). 2) We will show in

Lemma 1 in Section V-A that the objective function of (11)

is a Lipschitz-continuous function of its variables. Therefore,

the convergence of steepest descent algorithm in solving (11)

is guaranteed. This fact does not necessarily hold true for the

objective function in (9) due to a larger search space as well
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as the box constraint over each dimension. 3) Unlike (9), in

(11), we incorporate the underlying distribution of channel

parameters to act as a prior. This not only eliminates the

box constraints in (9), but also provides a better estimation

of channel parameters even with highly noisy observations.

In our simulations, and for the sake of comparison, we solve

(9) based on the R2F2 algorithm [53]. We will show how

incorporating G(z) improves the performance.

Remark 2: The distribution of channel parameters (α, τ , θ)
depends on physical properties of the propagation environ-

ment (such as geometry and material of surrounding objects),

operating frequencies, user densities as well as data traffic.

Importantly, they are independent of the number of antennas

at the BS as well as the number of subcarriers [44]–[47]. Here,

we use G(z) to model the statistical distribution of (α, τ , θ).
Note that each BS uses only one G(z). For a BS in a different

propagation environment, G(z) needs to be retrained.

B. Downlink Training

Relying on the partial reciprocity of channel parameters in

FDD, we use the frequency-independent channel parameters

(i.e., (α, τ , θ) that is estimated during the uplink training),

and estimate φdl using a fewer training symbols in downlink.

To estimate φ
dl

, we use the LS technique, similar to what

presented in Subsection III-A. Given (α, τ , θ), we define

g(φdl) ,
[

ejφ
dl
1 ejφ

dl
2 · · · ejφ

dl
L

]T

. We also define γk
l ,

αle
j 2πk

K
τlB and the following p× L matrix

Bk (α, τ , θ) , Sdl
k

[
γk
1b(θ1, λ) γk

2b(θ2, λ) · · · γk
Lb(θL, λ)

]
.

(12)

Then, we can express (3) in terms of φdl as

ydl
k , Bk (α, τ , θ)g(φdl) + ndl

k , k ∈ Kdl. (13)

Now, stacking the observations across all subcarriers in

the set Kdl, and defining ydl ,
[

ydl
k

]

k∈Kdl

, B ,
[

Bk (α, τ , θ)
]

k∈Kdl

, and ndl ,
[

ndl
k

]

k∈Kdl

, the collected

received signal in the downlink is given by

ydl = Bg(φdl) + ndl. (14)

Defining Jdl

(

φ
dl
)

, ‖ydl − Bg(φdl)‖22, we now solve the

following LS problem

min
φdl

Jdl

(

φ
dl
)

, (15)

to find the optimal φdl. Note that in the optimization problem

(15), as in (11), we have ignored the constraint 0 4 φdl 4 2π
due to the fact that the objective function is a periodic function

of φdl, i.e., Jdl

(

φdl
)

= Jdl

(

φdl + 2iπ
)

, for integer i. As in

(11), the optimization problem (15) is an unconstrained least

squares problem and can be solved using the gradient descent

algorithm. Once φ
dl

is estimated it is fed back to BS for the

subsequent data transmission4.

4In this paper, we do not consider the quantization of φdl obtained in (15).

IV. DEEP GENERATIVE MODEL

In the previous section, we described an LS-based procedure

to obtain the parameters that defines the downlink channel.

the crucial step is the mapping G(z) that leads to xup. In this

section, we explain how to find G(z) using DGMs. Before

we get into G(z), and for the sake of the paper being self-

contained, we briefly introduce DGMs and explain how we

can use them to find G(z).
The core idea of DGMs is to represent a high-dimensional

and complex distribution of data x (in this case x = (α, τ , θ))
using a deterministic mapping over a low-dimensional random

vector z which has a well behaved pdf (e.g., uniform or

Gaussian). Specifically, a DGM is a function G(z) that maps

a low-dimensional random vector z ∈ R
d, typically drawn

independently from Gaussian or uniform distribution, to a

high-dimensional vector xg , G(z) ∈ R
n where n ≥ d (in

practice, due to the structure of x we can have n ≫ d). The

mapping G(·) is determined such that the distribution of xg ,

generated by G(·), matches the distribution of the real world

data vector x. In other words, using the transformation G(·)
from a simple and low-dimensional distribution, we generate

samples that belong to the same manifold as x does. This

implies that any generated sample from G(·) already satisfies

the constraints in (9)5. The function G(·) is parameterized by a

deep neural network, which is trained in an unsupervised way

as explained below. One well-known example of DGM is the

family of GANs. In this paper, we use the GAN architecture

to find G(·). Next, we briefly introduce GANs and explain

how we use GANs to obtain G(·).

A. GANs

GANs are among the most powerful DGMs that are used

to capture the distribution of data [54]. As shown in Fig. 1,

a GAN consists of two fully-connected feed-forward neural

networks, namely a generator network GWg
(z) : Rd → R

n,

and a discriminator network DWd
(x) : Rn → [0, 1], where

Wg and Wd represent, respectively, the sets of weights of the

generator and discriminator networks. The generator network

GWg
(z) maps the input random vector z ∽ Pz(z), into

the data space xg ∽ Pg(x). Here, Pz(z) represents the

pdf of the input random vector z and is usually chosen

to be Pz(z) = N (0, Id), and Pg(x) represents the pdf of

the generated samples. The discriminator network, DWd
(·),

receives the two sets of inputs: one set consists of the samples

xg generated by GWg
(z) and the other set consists of the

true samples x. The discriminator network DWd
(·) is meant

to correctly distinguish between the fake samples xg and

the true samples x. Effectively, the goal of the generator

network GWg
(·) is to generate fake samples such that the

discriminator network DWd
(x) cannot distinguish them from

5To show this, let us define C , {x = (α, τ ,θ)|α < 0, τ < 0, 0 4
θ 4 2π, } the feasible set for the objective function (9). Let Rx denote the
domain of the true sample x, and Rg denote the range of G(z). We know
that Rx ⊂ C. Theoretically, G(z) is trained such that it generates realistic
samples xg such that D(x) cannot distinguish xg among the true samples
x. This implies that any xg ∈ Rg belongs to the same manifold as x does.
This further implies that xg ∈ Rx. Therefore, we conclude that xg ∈ C, i.e.,
any sample generated from G(z) satisfies the constraints in (9).
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Fig. 1. The GAN structure.

the true samples. Meanwhile, the goal of the discriminator

network DWd
(·) is to correctly distinguish between xg and x.

To do so, DWd
(x) provides the probability that x to be a real

sample. If Pr(x) represents the distribution of true samples,

the goal is to have Pg(x) = Pr(x), by optimally adjusting Wg

and Wd. Below, we explain how to adjust the weights.

1) Training of GANs: GWg
(·) and DWd

(·) are trained

simultaneously and iteratively via the following two-player

min-max game [54]:

min
Wg

max
Wd

L̃(GWg
(·), DWd

(·)), (16)

where L̃(GWg
(·), DWd

(·)), is the loss function and defined as

L̃(GWg
(·), DWd

(·)) , Ex [logDWd
(x)]

+ Ez

[
log

(
1−DWd

(GWg
(z))

)]
. (17)

Note that the objective of training GWg
(·) is to fool DWd

(·)
by generating the realistic samples xg such that DWd

(·)
assigns a high probability to xg being true samples. This can

be done by maximizing DWd
(xg) (or equivalently, minimizing

log
(
1−DWd

(GWg
(z))

)
over Wg , as given in the second

term in (17)). In the meantime, DWd
(·) aims to correctly

distinguish xg , generated by GWg
(·), from the true samples x.

In other words, DWd
(xg) is meant to be close to zero while

DWd
(x) has to be close to one. Therefore, Wd is chosen such

that logDWd
(x) + log

(
1−DWd

(GWg
(z))

)
is maximized. It

has been shown that such a competitive interplay between

GWg
(z) and DWd

(x) converges to an equilibrium where

Pg(x) = Pr(x) [54] . At this point, the generator produces

realistic xg such that the discriminator is unable to differentiate

between x and xg , i.e., DWd
(x) = DWd

(xg) =
1
2 .

2) Mode collapse issue and its solution: Despite the suc-

cess of GANs in learning the underlying distribution of data,

training of GANs is challenging due to the instability in the

training and sensitivity to the hyper-parameters. In [55], the

authors propose different solutions to improve the training

stability and robustness. On the other hand, mode collapse, an

issue that can hinder the training of GANs, refers to collapsing

of large volumes of probability mass into a few modes.

This means that although the generator produces meaningful

samples, these samples belong to only few modes of the data

distribution; therefore, the samples produced by the generator

do not fully represent the underlying distribution of real data.

Different solutions has been proposed to address the mode

collapse issue; in this paper, we use a regularized GAN (Reg-

GAN) proposed in [56]. Compared to the original form of

GANs, a Reg-GAN uses a regularizer term that meant to pe-

nalize the missing modes. To do so, together with the generator

and discriminator, an encoder network EWe
(x) : x → z is

trained to help the generator to avoid the missing modes, where

We is the set of weights of the encoder network.

To perform this training, two regularizing terms are con-

sidered in training of the EWe
(·) and GWg

(·) networks. One

regularizer is based on the fact that if GWg
(EWe

(·)) is a

good auto-encoder, then, for any xo ∈ Mo, where Mo is

the set of missing modes, we obtain xo ≈ GWg
(EWe

(xo)).
Therefore, Ex

[
‖x−GWg

(EWe
(x)) ‖2

]
is the loss function

considered in the training of EWe
(·) and GWg

(·) networks,

as a regularizer to penalize the generator for any missing

samples including the samples of minor modes. A second

regularizer, Ex

[
logDWd

(
GWg

(EWe
(x))

)]
is used to en-

courage GWg
(EWe

(·)) to generate realistic samples such

that DWd
(·) assigns, to these samples, a high probability

of being a true sample. Therefore, we can achieve a fair

probability distribution across different modes. The regularized

loss functions for the generator, the encoder and discriminator

are respectively given in (18), (19), and (20), where λ1 and

λ2 are the regularizer’s coefficients.

Training procedure: During the training, we aim to find

Wd, Wg and We. This can be done by jointly and iteratively

maximizing TD, and minimizing TG and TE . Before we start

the training process, Wd, Wg and We are randomly initialized.

In each of the subsequent iterations, we sample a mini-batch

of size m from both the training set
({

x(i)
}m

i=1

)

and noise

samples
({

z(i)
}m

i=1

)

. For fixed Wg and We, we first update

Wd by ascending in the direction of the gradient of TD. Then,

while fixing Wd and We, we update Wg by descending in

the opposite direction of the gradient of TG. Similarly, We is

updated by descending in the opposite direction of the gradient

of TE for fixed Wg and Wd.

The Reg-GAN training procedure is summarized in Al-

gorithm 1. Note that, in Algorithm 1, the gradient-based

update can be implemented using any standard gradient-based

algorithm. In this paper, to speed up the convergence, we use

a momentum-based gradient update.

V. CONVERGENCE, COMPLEXITY, AND IDENTIFIABILITY

A. Convergence

In this subsection, we analytically study the convergence of

our estimation algorithm provided in Subsection III-A. Here,

we aim to show that the objective function decreases from one

iteration to the next. The following lemma provides an insight

into the convergence.

Lemma 1. The gradient of Jup
(
GWg

(z),φup
)

is a Lipschitz-

continuous function.

Proof : See Appendix B.
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TG (Wg,Wd,We) = −Ez

[
logDWd

(
GWg

(z)
)]

+ Ex

[
λ1‖x−GWg

(EWe
(x)) ‖2 + λ2 logDWd

(
GWg

(EWe
(x))

)]
(18)

TE (Wg,Wd,We) = Ex

[
λ1‖x−GWg

(EWe
(x)) ‖2 + λ2 logDWd

(
GWg

(EWe
(x))

)]
(19)

TD (Wg,Wd,We) = Ex [logDWd
(x)] + Ez

[
log

(
1−DWd

(
GWg

(z)
))]

. (20)

Algorithm 1 Reg-GAN Training Algorithm

Inputs: Data set, number of epochs, mini-batch size m, λ1, and λ2.

Outputs: Trained G(z) .

1: for each epoch do:

2: Sample mini-batches of m noise samples {z(1), z(2), · · · , z(m)} and m data samples {x(1),x(2), · · · ,x(m)} from Pz(z)
and Pr(x), respectively.

3: Update discriminator DWd
(·) by ascending in the direction of its stochastic gradient:

∇Wd

1

m

m∑

i=1

[

logDWd
(x(i)) + log

(

1−DWd

(

GWg
(z(i))

)) ]

.

4: Sample mini-batches of m noise samples {z(1), z(2), · · · , z(m)} and m data samples {x(1),x(2), · · · ,x(m)} from Pz(z)
and Pr(x), respectively.

5: Update generator GWg
(·) by descending in the opposite direction of its stochastic gradient:

∇Wg

1

m

m∑

i=1

[

− logDWd

(

GWg
(z(i))

)

+ λ1‖x(i) −GWg

(

EWe
(x(i))

)

‖2 + λ2 logDWd

(

GWg

(

EWe
(x(i))

)) ]

6: Sample mini-batches of m noise samples {z(1), z(2), · · · , z(m)} and m data samples {x(1),x(2), · · · ,x(m)} from Pz(z)
and Pr(x), respectively.

7: Update encoder EWe
(·) by descending in the opposite direction of its stochastic gradient:

∇We

1

m

m∑

i=1

[

λ1‖x(i) −GWg

(

EWe
(x(i))

)

‖2 + λ2 logDWd

(

GWg

(

EWe
(x(i))

)) ]

8: end

Let us define z̃ , (z,φ) and ℓ(z̃) , Jup
(
GWg

(z),φ
)
.

According to Lemma 1, we can write ‖∇ℓ(z̃(i))−∇ℓ(z̃(j))‖ ≤
Cℓ‖z̃(i) − z̃(j)‖, where Cℓ is the Lipschitz constant. This now

means that ∇2ℓ(z̃) 4 CℓI, which further implies that

vT∇2ℓ(z̃)v ≤ Cℓ‖v‖2 (21)

holds true for any vector v. On the other hand, if we consider

the gradient descent step η = 1/Cℓ, then the update from the

ith to the (i + 1)th iteration is written as

z̃(i+1) = z̃(i) − 1

Cℓ
▽ ℓ(z̃(i)). (22)

Let us use the Taylor expansion and expand ℓ(z̃(i+1)) as

ℓ(z̃(i+1))

= ℓ(z̃(i)) +▽ℓ(z̃(i))
(

z̃(i+1) − z̃(i)
)

+
1

2

(

z̃(i+1) − z̃(i)
)T

▽2 ℓ(z̃(i))
(

z̃(i+1) − z̃(i)
)

(a)

≤ ℓ(z̃(i))− 1

Cℓ
▽ ℓ(z̃(i))T ▽ ℓ(z̃(i)) +

Cℓ

2
‖z̃(i+1) − z̃(i)‖2

= ℓ(z̃(i))− 1

Cℓ
‖ ▽ ℓ(z̃(i))‖2 + 1

2Cℓ
‖ ▽2 ℓ(z̃(i))‖2

= ℓ(z̃(i))− 1

2Cℓ
‖ ▽2 ℓ(z̃(i))‖2, (23)

where (a) follows directly from (21) and (22). From the last

equality in (23), we observe that in the ith step ℓ(z̃(i+1)) ≤
ℓ(z̃(i)), or equivalently,

Jup

(

GWg
(z(i+1)),φup,(i+1)

)

≤ Jup

(

GWg
(z(i)),φup,(i)

)

.

(24)

The inequality in (24) holds true for any η ≤ 1/Cℓ. The

inequality of (24) shows that the LS cost function decreases

from one iteration to the next. Since the cost function has a

lower bound (of zero), the algorithm converges.

B. Computational complexity

To solve (10) (or equivalently (11)), we use a gradient

descent algorithm to jointly and iteratively update z and φ
up

.

The gradient descent requires O (log(1/ε)) iterations, where

ε is the chosen error tolerance. Each iteration of gradient

descent has the following two steps: we first fix φup and

update z, then for a fixed z, we update φup. In the first step,

for a fixed φup, the computational complexity of updating z is

dominated by the complexity of calculating ∂
∂zJup =

∂Jup

∂x
∂x
∂z .

The complexity of the first term is given by O(M |Kup|L3).
The second term, however, is related to the gradient of the

G(z) with respect to z, which is characterized by a neural

network. The computational complexity of this term is given
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by O (dnq), where n is the number of network layers and

q is the maximum number of nodes in each layer. In the

second step, the computational complexity of updating φup

is given by O(M |Kup|L3). Therefore, the overall complexity

of solving (10) is O(dnqM |Kup|L3 log(1/ε)). Similarly,

we use a gradient descent algorithm to solve (15), which

incurs O (log(1/ε)) iterations. The complexity of updating

φdl in each iteration is given by O(p|Kdl|L3). Therefore, the

overall complexity of optimization problem (15) is given by

O
(
p|Kdl|L3 log(1/ε)

)
.

C. Identifiability

During the downlink training, we assume that p training

symbols are transmitted over the k-th subcarrier (k ∈ Kdl) and

the mth antenna (m ∈ Mdl). The value of p depends on the

|Mdl|. The reason is that the p|Kdl|×L matrix B in (14) is of

rank min (|Mdl|, L). If |Mdl| < L, then rank(B) = |Mdl|,
leading to an identifiability issue in recovering {φdl

l }Ll=1 in

(14). If |Mdl| > L, the matrix B becomes full column-rank,

and therefore estimating {φdl
l }Ll=1 requires p|Kdl| ≥ L, or

equivalently, p ≥ L/|Kdl|.

VI. IMPLEMENTATION AND SIMULATION RESULTS

In this section, we explain a detailed implementation of our

estimation technique. Simulation results are also provided to

evaluate the performance of the proposed technique.

A. Experiment setup and dataset

1) Dataset Generation: Throughout the simulations, we

consider an indoor massive MIMO scenario. An example of

such scenario is the ”l1” scenario provided by DeepMIMO

dataset [51] which is generated by the 3D ray-tracing sim-

ulator Wireless InSite [57]. The ”l1” scenario comprises a

10 × 10 × 2.5 meters room with 2 tables inside the room.

There are M = 64 antennas mounted on the ceiling. The users

are spread inside the room across the x-y plane with each

of them being 1 meter above the floor. The communication

between the BS antennas and each UE is in FDD mode

and uses K OFDM subcarriers 6. The uplink and downlink

operating frequencies are respectively 2.4 GHz and 2.5 GHz.

The DeepMIMO dataset parameters are given in Table I.

Using the above ray-tracing scenario as well as the pa-

rameters given in Table I, DeepMIMO generates the dataset.

The generated dataset comprising the channel vectors between

each UE and the BS across all K subcarriers at both uplink

and downlink frequencies, i.e., 2.4 GHz and 2.5 GHz, and

the underlying channel parameters for each propagation path,

namely α, τ , θ, φup, and φdl, and the UE x-y coordinates.

6According to the DeepMIMO dataset [51], the maximum channel delay
spread is τmax = 94.5 ns. Given the bandwidth B = 20 (MHz), the

sample time is Ts ≃ 1
B

= 50 (ns). Since τmax > Ts, the channels in
this experiment suffers from frequency selectivity.

TABLE I
DEEPMIMO DATASET PARAMETERS

Scenario l1-2.4 GHz and 11-2.5 GHz

Number of BS 1

Active BS [32]

Number of BS antenna in (x,y,z) (64,1,1)

Antenna Spacing 0.5λ

Active users row [first, last] [1,500]

Number of propagation path 5

K 16

OFDM sampling factor 1

OFDM limit 16

B 20 MHz

Noise Power −174 dBm/Hz

2) Preprocessing: To avoid any permutation ambiguity, the

paths are sorted from the lowest delay to the highest delay. To

prepare the data to train our GAN, we note that the ranges

of α, τ , θ, φup, and φdl are all in different scales. We use

the following transformations to have them in a reasonable

range: vector α is transformed by taking log10 of each of

its entries, i.e., α̃ , log10 α; τ is scaled by Ts , 1/B as

τ̃ , τ/Ts; θ, φup, and φdl are all expressed in terms of

radians. After scaling/transforming these feature vectors, we

concatenate them to form the overall feature vectors as

x̃up , [α̃, τ̃ , θ,φup] (25)

x̃dl ,
[

α̃, τ̃ , θ,φdl
]

. (26)

Before we start training, we divide x̃up and x̃dl by their

maximum value, thereby normalizing their entries into the

range of [−1, 1]. The maximum value here refers to the global

maximum value across all entries of sample vectors. To form

the training and testing dataset, after scaling and normalizing

the data, we first shuffle and then we split the data such that

80% is dedicated for training and 20% for testing.

B. Network architectures and training

1) Network architecture: We use the Reg-GAN structure

given in Section IV-A2, implemented in Pytorch7. The gen-

erator GWg
(·) : z → x takes an input sample z ∼ N (0, Id),

of size d = 8, and passes it through a fully-connected neural

network which has 3 layers with [10, 12, 14] neurons in the

respective layers. It then generates samples x ∈ R
n, with

n = 15. As for the encoder network EWe
(·) : x → z, the input

and output size are 15 and 8, respectively. There are also 3
hidden layers with [14, 12, 10] neurons in the corresponding

layers. Likewise, the discriminator is implemented using a

fully-connected neural network with the input size 15, output

size 1, and 4 hidden layers with [12, 8, 4, 2] neurons in the

corresponding layers.

To improve the stability and convergence during the train-

ing, in all the networks, we use Leaky ReLU activation

function with slope 0.2. Additionally, the generator uses the

hyperbolic tangent (tanh) activation function in the output

layer. We employ 20% dropout in each hidden layer to further

improve the generalization capability of the generator.

7Simulations are based on Pytorch v1.3.1 available at
https://pytorch.org/docs/1.3.1/.



10

2) Training: The outcome of the training process is the

generator GWg
(·) that finds the optimal z, denoted by z∗, for

each realization in the test set. The training process follows

directly from Algorithm 1. We randomly initialize Wd, Wg,

and We. In each epoch, we sample a mini-batch of size m

from both the training set
({

x(i)
}m

i=1

)

and the set of noise

samples
({

z(i)
}m

i=1

)

. We first update Wd by ascending in

the direction of the gradient of TD given in (20) assuming

Wg and We are fixed. Then, we update Wg by descending

in the opposite direction of the gradient of TG given in (18)

assuming Wd and We are fixed. Similarly, We is updated by

descending in the opposite direction of the gradient of TE

given in (19). Note that, in these steps, the sample mean is

used instead of mathematical expectation. Furthermore, thanks

to autograd, the gradient descent/ascend in each epoch is

carried out by the differentiation capability implemented in

Pytorch. The training parameters are specified in the Table II.

3) Hyper-parameter selection: During the GAN training,

hyper-parameters are the mini-batch size, learning rate, num-

ber of epochs, generator and discriminator optimizer, activa-

tion function, number of layers and the number of nodes in

each layer. These hyper-parameters are chosen based on a grid

search. Since the size of the grid is huge, we choose only 20
randomly-selected grid points. For each grid point, we train the

network and assess the the generated samples. The assessment

is based on the following two criteria. 1) Generalizablity: The

capability of G(z) to generate realistic-like samples. This is

measured by the rate at which discriminator can correctly

distinguish the true samples among the fake samples. Ideally,

the rate has to be as close as to 0.5. 2) Mode collapse:

this criterion is used to make sure that the generator is

capable of generating different samples. This can be measured

by calculating the distance (norm-2) between the generated

samples for many different random vectors z as input.

C. Simulation Scenarios

We consider the following simulation scenarios. Note that

in all simulation scenarios, we assume that L is known (or at

least a maximum value of L is chosen).

1) UP-LMMSE: In this scenario, LMMSE-based channel

estimation is used for uplink training only. We assume that all

64 antennas as well as all 16 subcarriers are used for training.

2) UP-GAN: This is our DGM-based channel estimation

technique in the uplink. Similar to the LMMSE-based tech-

nique we use all 64 antennas as well as all 16 subcarriers in the

uplink. In this scenario, we solve (11) to find z (or (α, τ , θ))
and φ

up
followed by channel reconstruction using (4).

3) DL-GAN: In this scenario, we aim to obtain hdl
k using

the estimates of (α, τ , θ), obtained using UP-GAN, and φdl.

Given (α, τ , θ), we find φdl using (15).

4) DL-Full-Reciprocity: In this scenario, similar to DL-

GAN (explained in VI-C3), we aim to obtain hdl
k . Here, there

is no downlink training and it only serves as a benchmark in

our simulations. There are two cases in this scenario. In the

first case, we assume that full reciprocity exists between the

uplink and downlink. Specifically, we assume φdl = φup. In

TABLE II
GAN TRAINING PARAMETERS

Training dataset size 120000
Test dataset size 30000
Mini batch size 512

Epochs 20000
Optimizer Adam

Learning rate, β 10−3, (0.9, 0.999)
λ1, λ2 10−2, 10−2

the second case, we assume φdl = 2πfdlτ . In both cases, we

reconstruct hdl
k using

(

α, τ , θ,φdl
)

.

5) DL-LS: In this scenario, we ignore that αup ≈ αdl. We

first estimate (αup, τ , θ) during the uplink training. Then, we

reuse (τ , θ) in order to estimate αdl and φ
dl

using the same

pilots budget used in DL-GAN. Defining ρ , [ρ1 ρ2 · · · ρL]T
ρl , αdl

l ejφ
dl
l , we can rewrite (14) as ydl = B̃ρ + ndl, for

some matrix B̃. We then use least squares to find ρ.

6) DL-Modified-R2F2: In this scenario, we ignore the map-

ping function GWg
(·) and directly solve (9). The constrained

optimization problem in (9) is solved numerically using an

approach based on the R2F2 algorithm proposed in [30]. Note

that the R2F2 algorithm, in its original form, is based on

the assumption that the downlink channel parameters are the

same as its uplink counterparts. As explained in Section II-C,

this assumption is found to be invalid due to the frequency

dependency of φdl
l and φup

l . To account for the disparity in

phases, we first solve (9) using a similar technique provided

in [30]. Then, using the so-obtained (α, τ , θ), we use (15)

to find φdl
l . Throughout the simulations, we refer to this

technique as DL-Modified-R2F2. In this scenario, we assume

that |Mdl| = 64.

To implement DL-Modified-R2F2, the optimization prob-

lem (9) is solved using coordinate descent. This approach

involves the division of the parameters of the optimization

problem into smaller sets for which the constraints are sepa-

rable. The optimization is then carried out over each of these

sets iteratively while treating the variables in the other sets to

be constants, thereby reducing the computation complexity.

Conceptually, in the feasible set, the algorithm iteratively

converges to a minimum by taking strides along directions

parallel to the parameter-set axes. In this case, the separability

of constraints is obtained by taking α, τ , θ, and φup as

four parameter sets all of which have box constraints. Since

the objective function is non-convex, the global optimality

of this technique is not guaranteed. To avoid local minima,

we initiate the optimization from 10 randomly-chosen initial

points and choose the solution with the least value of the

objective function.

Note that the above R2F2-based technique is highly sensi-

tive to gradient descent step that we choose for each parameter.

This technique is also very slow since it requires multiple

random initializations as well as a large number of iterations

to converge.

D. Simulation Results

1) Normalized MSE: We first use the normalized mean

squared error (NMSE) averaged across all subcarriers and is
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given by

NMSE =
1

K

K∑

k=1

E

[

‖hk − ĥk‖2
‖hk‖2

]

, (27)

where hk and ĥk are, respectively, the true and the estimated

channel vector at the k-th subcarrier. We later expand our

simulations to calculate the corresponding rate and symbol

error rate (SER). Throughout the simulations, we assume that

p = |Kdl|, and ε = 0.01.

Fig. 2 depicts NMSE vs. SNR. In the uplink, we compare

the performance of our DGM-based technique (i.e., UP-GAN)

with the UP-LMMSE assuming that all 64 antennas as well

as all 16 subcarriers are utilized for training. As shown in

this figure, our DGM-based technique outperforms, by a large

gap, the UP-LMMSE approach in all practical ranges of SNR.

Such a performance gap stems from the fact that UP-LMMSE

cannot perform well in this range of SNR, since the pilot

measurements received are of poor quality. In contrast, by

exploiting the prior knowledge of the underlying distribution

of channel parameters, captured using DGMs, UP-GAN out-

performs the LMMSE-based technique by a large margin. In

other words, since GWg
(·) is trained to generate a realistic

channel parameters from the low-dimensional z, the UP-GAN

obtains an estimate of (α, τ , θ) leading to an accurate estimate

of the channels even at very low SNR.

As we increase the SNR, beyond 15 dB, we observe

that there is no further improvement in the performance of

DGM-based technique. Such an error floor is mainly due

to the limitations in representation capability of GWg
(·).

The generator GWg
(·) cannot generate the exact channel

parameters (α, τ , θ); it can only generate realistic samples.

That is, the DGM-based technique cannot always outperform

the LMMSE-based technique, but it can do much better in

practical ranges of SNR.

In the downlink, we plotted the performance of DL-GAN for

different values of |Mdl|. As shown, DL-GAN behaves similar

to UP-GAN. This is expected because, in both scenarios, we

use the same GWg
(·), and their performance is mainly related

to the representation capability of GWg
(·). Compared to the

DL-Full-Reciprocity scenario, DL-GAN performs significantly

better. This indicates that the full-reciprocity assumption be-

tween the uplink and downlink does not hold. Indeed, in DL-

GAN, we used a short training sequence over fewer antennas

to estimate φdl (the frequency-specific component of the

channel), which yields a large performance gain in downlink

channel estimation.

Additionally, DL-LS marginally outperforms the GAN tech-

nique at very high ranges of SNR. In particular, for this range

of SNR, DL-LS provides a better estimate for (αdl,φdl)
compared to what DL-GAN does. For low to medium ranges

of SNR, the proposed DL-GAN technique provides a signif-

icantly better estimate of the downlink channel. This perfor-

mance gap stems from the fact that DL-LS cannot perform

well in this range of SNR, since the pilot measurements are

of poor quality. In contrast, by exploiting the prior knowledge

of the underlying distribution of channel parameters, captured

using DGMs, DL-GAN provides a better estimate of channel

parameters (αdl,φdl) at a low-to-medium range of SNR.

Note that, if we ignore the mapping function GWg
(·) (i.e.,

directly solving (9), which is exactly what DL-Modified-R2F2

does), the steepest descent would suffer from convergence

issues due to a larger search space as well as the box constraint

over each dimension. Furthermore, the solution in this case is

noise-sensitive, meaning that, at low SNRs, although we might

be able to minimize the objective function to some extent,

the solution is far from its true value. Instead, in our DGM-

based technique, we address these issues by incorporating

GWg
(·) as a sort of prior. The search space is limited to the

domain of z, which has a much lower dimension compared to

x = (α, τ , θ).

In addition, the weights Wg of the generator GWg
(·) encode

a probability distribution over the space of (α, τ , θ), such

that we can draw samples from that distribution from a low-

dimensional standard Gaussian distribution. This implies that

any sample generated by GWg
(·) satisfies the constraints
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in (9)(as shown in footnote 5). Therefore, our DGM-based

technique performs well even with low-dimensional noisy pilot

measurements. This explains the robustness of our proposed

technique to the noise level.

It is worth mentioning that, if we have enough pilot

measurements, the performance of the proposed DL-GAN is

independent of |Mdl| as long as |Mdl| ≥ L. The reason is that

the training power PT in each time slot is distributed among

the pilot symbols transmitted across the |Mdl| antennas in the

downlink. Indeed, adding more antennas for downlink training

does not affect the received SNR at the UE. However, when

|Mdl| < L, the p|Kdl|×L matrix B in (14) is of rank |Mdl|,
leading to an identifiability issue in recovering {φdl

l }Ll=1 from

(14). This becomes more evident in Fig. 4, where we plot

NMSE vs. |Mdl|. Note that the requirement that |Mdl| ≥ L
can be relaxed if train the channel in the time domain [58],

[59]. However, the time domain approach is beyond the scope

of this paper.

Fig. 3 plots NMSE vs. p, where we compare the perfor-

mance of DL-GAN (for different |Mdl|) with DL-Modified-

R2F2 at SNR = 20 (dB). The performance gap between the

DL-Modified-R2F2 and our DGM-based technique still exists

even by increasing p (adding more observations). This indi-

cates the lack of convergence in DL-Modified-R2F2 scenario.

In the DL-GAN scenario, adding more pilot measurements,

either by increasing p or |Kdl|, will improve the channel

estimation performance. The reason is that the number of

underlying channel parameters is independent of the number

subcarriers or the length of pilots. Therefore, by increasing

either of these quantities, we collect more observation that in

turn, yields a better estimate of the same number of channel

parameters. However, as shown, such an improvement is not

consistent, i.e., DL-GAN does not always gain by increasing

the amount of pilot measurements. This is mainly limited by

the accuracy of the estimation of (α, τ , θ) in the uplink, which

is dominated by the representation capability of GWg
(·).

Similar to what we observed in Fig. 2, when |Mdl| ≥ L,

adding more antennas for downlink training does not improve

the performance. For very small p (i.e., p = 1 and 2), the DL-

GAN yields poor performance even with large |Mdl|. This

limited performance is due to the fact that the matrix B in

(14) is not full-column rank in this range of p, and imposes

an identifiability issue in recovery of {φdl
l }Ll=1 from (14).

To further assess the performance of our DGM-based tech-

nique, Fig. 4 plots the NMSE vs. |Mdl|, the number of

antennas used for downlink training. It is shown that, for

fixed p (or |Kdl|), more pilot measurements does not always

benefit the proposed DGM-based technique. Similar to what

we observed in Fig. 3, this observation can be attributed to

the accuracy of the estimate of (α, τ , θ) obtained via the

uplink training, which, as mentioned, is dominated by the

representation capability of GWg
(·) .

2) Rate: In this subsection, we explore the impact of our

proposed technique on the achievable rate. The plots in Figs.

5, 6, and 7 correspond to the NMSE curves we studied in

the previous subsection. Fig. 5 plots the rate vs. SNR. In the

uplink, the UP-GAN outperforms the UP-LMMSE technique

in practical ranges of SNR as it does in Fig. 2. This is due

to a better estimate of channel matrix in this range of SNR.

This, by itself, is attributed to the rich prior stored in the

weights of GWg
(·) network. For the same reason, the DL-

GAN yields a much better rate performance compared to

what DL-Full-Reciprocity and DL-Modified-R2F2 do. Note

that the saturation in rate at high SNR is related to the error

floor in channel estimation, which comes from the limits in

representation capability of GWg
(z).

In Figs. 6 and 7, assuming SNR= 20 (dB), we assess the rate

performance of our DGM-based technique vs. p and |Mdl|,
respectively. Here, we assume that the frequency-independent

features (α, τ , θ) are estimated in the uplink as in the UP-

GAN scenario. The goal here is to show how the number of

downlink pilot observations will affect the rate performance

of the proposed technique. As shown in these figures, the rate

quickly saturates by increasing p or |Mdl|. In other words,

adding more training observations does not always improve

the rate performance. This can be explained as follows. Due
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to the partial reciprocity between the uplink and downlink

channels, the proposed DGM-based technique will use the

estimate of (α, τ , θ) obtained via the uplink training. Since,

these features are not perfectly estimated, mainly because of

the representation capability of GWg
(·), they will affect the

estimation of φ
dl

in downlink in a way that adding more

training observation does not improve the estimation of φdl,

and therefore, the estimate of channel. The same argument

holds true when we increase the training power as shown in

Fig. 5.

3) Symbol Error Rate: The SER vs. SNR plot is given

in Fig. 8, where we use QPSK modulation. As can be seen

from this figure, in practical ranges of SNR, the UP-GAN

yields a better SER performance compared to our benchmark

UP-LMMSE. This observation is expected since the UP-GAN

provides a better estimate of the channel for this range of

SNR. As stated before, due to the limits in representation

capability of GWg
(·), which leads to an error floor in channel
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estimation (see Fig. 2), the SER does not always improve by

increasing the SNR. On the contrary, the SER performance of

UP-LMMSE improves as we increase SNR.

In the downlink, the SER of DL-GAN hits a floor limit as

we increase SNR. This is due to the fact that the increase in

SNR does not always improve the channel estimate in DL-

GAN (see Fig. 2). This observation is mainly derived by the

limits imposed by GWg
(·). Ignoring the role of GWg

(z), as

to what DL-Modified-R2F2 does, yields a huge SER loss.

Overall, our DGM-based technique yields a performance gain

at low to mid range of SNR.

4) Feedback error: So far we assumed that there is no

error when the estimates of φdl are fed back to the BS.

However, to show the effect of feedback error, we assume

that the BS receives φ̃
dl

, a noisy version of the φdl, i.e.,

φ̃
dl
= φdl+ εφ, where εφ is a Gaussian random variable with

zero mean and standard deviation σφ. In Fig. 9, we plot the

downlink channel NMSE versus σφ, for SNR = 10, 20 (dB).
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As expected, considering the feedback error will degrade the

downlink channel NMSE. However, this degradation is not

the same for different SNRs. As we increase σφ, the NMSE

is considerably less affected at SNR = 20 dB compared to that

in SNR = 10 dB. This is mainly because, at high SNR, the

estimates of channel parameters have a better quality compared

to low SNR regimes.

Remark 3: The proposed channel estimation technique in

this paper is not limited to ULAs, and it can be extended to

2D arrays. As long as the model relating the angles to received

signals is known (i.e., the “steering vector”) our approach will

remain valid. We would have to estimate more parameters such

as the elevation and azimuth angles.

VII. CONCLUSIONS

In this paper, we proposed a deep generative model (DGM)-

based technique for FDD massive MIMO downlink channel

estimation. The proposed technique relies on the partial reci-

procity between the uplink and downlink channels, mean-

ing that a portion of the underlying channel parameters are

frequency-independent, and they are shared in both uplink and

downlink channels. These parameters are estimated via the up-

link training. Then, the frequency-specific channel parameters

are estimated via downlink training using a very short training

signal. To do so, we assume that the frequency-independent

channel parameters can be modeled using some probability

distribution, which is learned using DGMs. We showed that

our proposed DGM-based channel estimation outperforms

the conventional channel estimation techniques in practical

ranges of SNR. Our technique also yields a near-optimal

performance using only few pilot measurements, indicating a

significant reduction in training and feedback overhead in FDD

massive MIMO systems. The work in this paper can be further

extended to incorporate the already-existing DoA estimation

techniques in estimating the channel parameters as well as

considering more practical scenarios such as RF calibration

errors.
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APPENDIX A

PRELIMINARY DEFINITIONS AND LEMMAS

Definition 1. A function f : X → Y is said to be Lipschitz-continuous if it satisfies

DY

(

f(x(1)), f(x(2))
)

≤ LfDX

(

x(1),x(2)
)

, (28)

for some real-valued Lf ≥ 0 and distant metrics DX and DY . The value of Lf is known as the Lipschitz constant, and the

function can be referred to as being Lf -Lipschitz.

Lemma 2. If f1(x) is an L1-Lipschitz function, and f2(x) is an L2-Lipschitz function, then f1(f2(x)) is an L1L2-Lipschitz

function.

Proof : We can write
∣
∣
∣f1(f2(x

(i)))− f1(f2(x
(j)))

∣
∣
∣ ≤ L1

∣
∣
∣f2(x

(i))− f2(x
(j))

∣
∣
∣ ≤ L1L2

∣
∣
∣x

(i) − x(j)
∣
∣
∣ .

Lemma 3. If fn(x) is be an Ln-Lipschitz function, then f(x) =
∑N

n=1 fn(x) is an Lf -Lipschitz function, where Lf ,
max {L1, L2, · · · , LN}

Proof : We can write

∣
∣
∣f(x(i))− f(x(j))

∣
∣
∣ =

∣
∣
∣
∣
∣

N∑

n=1

fn(x
(i))−

N∑

n=1

fn(x
(j))

∣
∣
∣
∣
∣
≤

N∑

n=1

∣
∣
∣fn(x

(i))− fn(x
(j))

∣
∣
∣

≤
N∑

n=1

Ln

∣
∣
∣x

(i) − x(j)
∣
∣
∣ ≤ Lf

∣
∣
∣x

(i) − x(j)
∣
∣
∣ .

Lemma 4. (Quadratic and Arithmetic mean inequality): Let a1, a2, · · · , aN be positive real numbers, then
√

a21 + a22 + · · ·+ a2N
n

≥ a1 + a2 + · · ·+ aN
n

. (29)

The equality occurs when a1 = a2 = · · · = aN .

Proof : See [60].

Lemma 5. Given x =
[
xT
1 xT

2

]T
and y =

[
yT
1 yT

2

]T
, we have the following inequality

‖x− y‖ ≤ ‖x1 − y1‖+ ‖x2 − y2‖,
where the equality holds when x = y.

Proof. We can write

‖x− y‖ =

√

‖x1 − y1‖2 + ‖x2 − y2‖2

≤
√

(‖x1 − y1‖+ ‖x2 − y2‖)2

= ‖x1 − y1‖+ ‖x2 − y2‖.

APPENDIX B

PROOF OF LIPSCHITZ CONTINUITY OF GRADIENT OF Jup
(
GWg

(z),φup
)

Proof. We prove for |Kup| = 1. The Lipschitz continuity for |Kup| > 1 can be straightforwardly extended. Let us define

z̃ , (z,φ) and P (z̃) , ▽z̃Jup
(
GWg

(z),φ
)
. We aim to show that there exists λp such that

‖P (z̃(1))− P (z̃(2))‖ ≤ λp‖z̃(1) − z̃(2)‖. (30)

Using the triangle inequality that

‖f(a1, a2)− f(b1, b2)‖ = ‖f(a1, a2)− f(a1, b2) + f(a1, b2)− f(b1, b2)‖
≤ ‖f(a1, a2)− f(a1, b2)‖+ ‖f(a1, b2)− f(b1, b2)‖, (31)

we can write

‖P (z(1),φ(1))− P (z(2),φ(2))‖ ≤ ‖P (z(1),φ(1))− P (z(2),φ(1))‖
︸ ︷︷ ︸

Iz

+ ‖P (z(2),φ(1))− P (z(2),φ(2))‖
︸ ︷︷ ︸

Iφ

. (32)

In the next subsection, we show that Iz and Iφ are bounded from above.
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A. Bounds on Iz

For fixed φ, we denote f(GWg
(z)) , ▽z̃Jup

(
GWg

(z),φ
)

a vector-valued composition function. To prove the Lipschitz-

continuity of f(GWg
(·)), we show that f(·) and GWg

(·) are both Lipschitz-continuous, and therefore, according to Lemma 2,

their composition is also a Lipschitz-continuous function.

Given x = GWg
(z) and defining x̃ , (x,φ), for fixed φ, we first show the Lipschitz-continuity of f(x) , ▽x̃Jup (x,φ).

We can write f(x) =
∑M

m=1 fm(x), where fm(x), for m = 1, 1, · · · ,M , is given as

fm(x) , −2 (yupm − hm(x̃)sk)▽x̃hm(x̃), (33)

where yupm is the received signal at the mth antenna in the uplink, hm(x̃) ,
∑L

l=1 αle
j(φl+βτl+γm sin θl), β , 2πk

K B, γm ,
2π
λ md, for m = 0, 1, · · · ,M − 1. Also,

▽x̃hm(x̃) =







∂hm(x̃)

∂α1
, · · · , ∂hm(x̃)

∂αL
︸ ︷︷ ︸

=▽αhm(x̃)

,
∂hm(x̃)

∂τ1
, · · · , ∂hm(x̃)

∂τL
︸ ︷︷ ︸

=▽τhm(x̃)

,
∂hm(x̃)

∂θ1
, · · · , ∂hm(x̃)

∂θL
︸ ︷︷ ︸

=▽θhm(x̃)

,
∂hm(x̃)

∂φ1
, · · · , ∂hm(x̃)

∂φL
︸ ︷︷ ︸

=▽φhm(x̃)








T

, (34)

where, for l = 1, 2, · · · , L, and defining ωl , φl + βτl + γm sin θl, the individual partial derivatives are given by

∂hm(x̃)

∂αl
= ejωl (35)

∂hm(x̃)

∂τl
= jβαle

jωl (36)

∂hm(x̃)

∂θl
= jγmαl cos θle

jωl (37)

∂hm(x̃)

∂φl
= jαle

jωl . (38)

To prove the the Lipschitz-continuity of fm(x), according to Definition 1, and using the 2-norm as the metric, we show

that there exists a finite λm ≥ 0, such that

‖fm(x(1))− fm(x(2))‖ ≤ λm‖x(1) − x(2)‖, (39)

where x(i) ,
(

α(i), τ (i), θ(i)
)

for i = 1, 2. Using (31), we express the left hand side in (39) as

‖fm(x(1))− fm(x(2))‖ ≤ ‖fm(α(1), τ (1), θ(1))− fm(α(2), τ (1), θ(1))‖
︸ ︷︷ ︸

,Tα

+ ‖fm(α(2), τ (1), θ(1))− fm(α(2), τ (2), θ(1))‖
︸ ︷︷ ︸

,Tτ

+ ‖fm(α(2), τ (2), θ(1))− fm(α(2), τ (2), θ(2))‖
︸ ︷︷ ︸

,Tθ

. (40)

Next, we show that, each term on the right hand side of (40) is bounded.

1) Bounds on Tα: Here, we assume that τ (1) and θ(1) are fixed. Using the Triangle inequality of (31), we can write

Tα ≤ ‖fm(α
(1)
1 , ᾱ1, τ

(1), θ(1))− fm(α
(2)
1 , ᾱ1, τ

(1), θ(1))‖
+ ‖fm(α

(1)
2 , ᾱ2, τ

(1), θ(1))− fm(α
(2)
2 , ᾱ2, τ

(1), θ(1))‖
...

+ ‖fm(α
(1)
L , ᾱL, τ

(1), θ(1))− fm(α
(2)
L , ᾱL, τ

(1), θ(1))‖, (41)
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where ᾱl ,
(

α
(2)
1 , · · · , α(2)

l−1, α
(1)
l+1, · · · , α

(1)
L

)

. Let us define Tαl
, ‖fm(α

(1)
l , ᾱl, τ

(1), θ(1)) − fm(α
(2)
l , ᾱl, τ

(1), θ(1))‖. We

now aim to show that there exists a bounded Mαl
≥ 0, such that Tαl

≤ Mαl
‖α(1)

l − α
(2)
l ‖. To do so, we note that

Tαl
= 2‖

(

yupm − hm(α
(1)
l , ᾱl, τ

(1), θ(1))sk

)

▽hm(α
(1)
l , ᾱl, τ

(1), θ(1))

−
(

yupm − hm(α
(2)
l , ᾱl, τ

(1), θ(1))sk

)

▽hm(α
(2)
l , ᾱl, τ

(1), θ(1))‖
(a)

≤ 2‖
(

yupm − hm(α
(1)
l , ᾱl, τ

(1), θ(1))sk

)

v̄αl
−
(

yupm − hm(α
(2)
l , ᾱl, τ

(1), θ(1))sk

)

v̄αl
‖

+2‖
(

yupm − hm(α
(1)
l , ᾱl, τ

(1), θ(1))sk

)

v(1)
αl

−
(

yupm − hm(α
(2)
l , ᾱl, τ

(1), θ(1))sk

)

v(2)
αl

‖
(b)
= 2‖v̄αl

sk‖
∣
∣
∣hm(α

(1)
l , ᾱl, τ

(1), θ(1))− hm(α
(2)
l , ᾱl, τ

(1), θ(1))
∣
∣
∣

+2‖
(

yupm − hm(α
(1)
l , ᾱl, τ

(1), θ(1))sk

)

αl
(1)v̌αl

−
(

yupm − hm(α
(2)
l , ᾱl, τ

(1), θ(1))sk

)

αl
(2)v̌αl

‖
(c)

≤ 2‖v̄αl
sk‖

∣
∣
∣hm(α

(1)
l , ᾱl, τ

(1), θ(1))− hm(α
(2)
l , ᾱl, τ

(1), θ(1))
∣
∣
∣

+2‖yupm v̌αl
‖
∣
∣
∣αl

(1) − αl
(2)

∣
∣
∣+ 2‖v̌αl

sk‖
∣
∣
∣hm(α

(1)
l , ᾱl, τ

(1), θ(1))αl
(1) − hm(α

(2)
l , ᾱl, τ

(1), θ(1))αl
(2)

∣
∣
∣

(d)
= 2‖v̄αl

sk‖
∣
∣
∣αl

(1) − αl
(2)

∣
∣
∣

+2‖yupm v̌αl
‖
∣
∣
∣αl

(1) − αl
(2)

∣
∣
∣+ 2‖v̌αl

sk‖
∣
∣
∣αl

(1) + αl
(2)

∣
∣
∣

∣
∣
∣αl

(1) − αl
(2)

∣
∣
∣

= 2(‖v̄αl
sk‖+ ‖yupm v̌αl

‖+ ‖v̌αl
sk‖

∣
∣
∣αl

(1) + αl
(2)

∣
∣
∣)
∣
∣
∣αl

(1) − αl
(2)

∣
∣
∣

(e)

, Mαl

∣
∣
∣α

(1)
l − α

(2)
l

∣
∣
∣ , (42)

where the inequality in (a) follows from Lemma 5, v
(i)
αl , i = 1, 2, is a vector that captures those entries of

▽hm(α
(i)
l , ᾱl, τ

(1), θ(1)) which are function of α
(i)
l , and v̄αl

is a vector that captures those entries of ▽hm(α
(1)
l , ᾱl, τ

(1), θ(1))

which are independent of αl. The second term in (b) follows from v
(i)
αl

= αl
(i)v̌αl

, αl
(i)ejωl [j, jβ, jγm cos θl]

T
.

The inequality in (c) follows from the fact that ‖a − b‖ ≤ ‖a‖ + ‖b‖ for a and b to be arbitrary vec-

tors. In (d), we use the facts that

∣
∣
∣hm(α

(1)
l , ᾱl, τ

(1), θ(1))− hm(α
(2)
l , ᾱl, τ

(1), θ(1))
∣
∣
∣ =

∣
∣αl

(1) − αl
(2)

∣
∣ as well as

∣
∣
∣hm(α

(1)
l , ᾱl, τ

(1), θ(1))αl
(1) − hm(α

(2)
l , ᾱl, τ

(1), θ(1))αl
(2)

∣
∣
∣ =

∣
∣
(
αl

(1) + αl
(2)

) (
αl

(1) − αl
(2)

)∣
∣. Note that Mαl

in (e) is

bounded. This is mainly due to the fact that {αl}Ll=1 are being generated from G(z) which are bounded. Therefore, Mαl
≥ 0

is bounded. Now, from (44),we obtain that,

Tα ≤Mα1

∣
∣
∣α

(1)
1 − α

(2)
1

∣
∣
∣+Mα2

∣
∣
∣α

(1)
2 − α

(2)
2

∣
∣
∣+ · · ·+MαL

∣
∣
∣α

(1)
L − α

(2)
L

∣
∣
∣

(a)

≤Mα

(∣
∣
∣α

(1)
1 − α

(2)
1

∣
∣
∣+

∣
∣
∣α

(1)
2 − α

(2)
2

∣
∣
∣+ · · ·+

∣
∣
∣α

(1)
L − α

(2)
L

∣
∣
∣

)

(b)

≤Mα

√
L

√
(

α
(1)
1 − α

(2)
1

)2

+
(

α
(1)
2 − α

(2)
2

)2

+ · · ·+
(

α
(1)
L − α

(2)
L

)2

=λα‖α(1) −α(2)‖, (43)

where in (a), Mα , max {Mα1 ,Mα2 , · · · ,MαL
}, (b) follows from the inequality between quadratic and arithmetic mean

given in Lemma 4, and λα , Mα

√
L.

2) Bounds on Tτ : Similar to what we did in previous subsection, we assume that α(2) and θ(1) are fixed. Using the triangle

inequality of (31), we can write

Tτ ≤ ‖fm(α(2), τ
(1)
1 , τ̄ 1, θ

(1))− fm(α(2), τ
(2)
1 , τ̄ 1, θ

(1))‖
+ ‖fm(α(2), τ

(1)
2 , τ̄ 2, θ

(1))− fm(α(2), τ
(2)
2 , τ̄ 2, θ

(1))‖
...

+ ‖fm(α(2), τ
(1)
L , τ̄L, θ

(1))− fm(α(2), τ
(2)
L , τ̄L, θ

(1))‖, (44)
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where τ̄ l ,
(

τ
(2)
1 , · · · , τ (2)l−1, τ

(1)
l+1, · · · , τ

(1)
L

)

. Let us define Tτl , ‖fm(α(2), τ
(1)
l , τ̄ l, θ

(1))−fm(α(2), τ
(2)
l , τ̄ l, θ

(1))‖. We now

aim to show that there exist Mτl ≥ 0 and bounded, such that Tτl ≤ Mτl

∣
∣
∣τ

(1)
l − τ

(2)
l

∣
∣
∣. To do so, we can write

Tτl = 2‖
(

yupm − hm(α(2), τ
(1)
l , τ̄ l, θ

(1))sk

)

▽hm(α(2), τ
(1)
l , τ̄ l, θ

(1))

−
(

yupm − hm(α(2), τ
(2)
l , τ̄ l, θ

(1))sk

)

▽hm(α(2), τ
(2)
l , τ̄ l, θ

(1))‖
(a)

≤ 2‖
(

yupm − hm(α(2), τ
(1)
l , τ̄ l, θ

(1))sk

)

v̄τl −
(

yupm − hm(α(2), τ
(2)
l , τ̄ l, θ

(1))sk

)

v̄τl‖

+2‖
(

yupm − hm(α(2), τ
(1)
l , τ̄ l, θ

(1))sk

)

v(1)
τl −

(

yupm − hm(α(2), τ
(2)
l , τ̄ l, θ

(1))sk

)

v(2)
τl ‖

(b)
= 2‖v̄τlsk‖

∣
∣
∣hm(α(2), τ

(1)
l , τ̄ l, θ

(1))− hm(α(2), τ
(2)
l , τ̄ l, θ

(1))
∣
∣
∣

+2‖
(

yupm − hm(α(2), τ
(1)
l , τ̄ l, θ

(1))sk

)

ejβτ
(1)
l v̌τl −

(

yupm − hm(α(2), τ
(2)
l , τ̄ l, θ

(1))sk

)

ejβτ
(2)
l v̌τl‖

(c)

≤ 2‖v̄τlsk‖
∣
∣
∣hm(α(2), τ

(1)
l , τ̄ l, θ

(1))− hm(α(2), τ
(2)
l , τ̄ l, θ

(1))
∣
∣
∣

+2‖yupm v̌τl‖|ejβτ
(1)
l − ejβτ

(2)
l |+ 2‖v̌τlsk‖

∣
∣
∣hm(α(2), τ

(1)
l , τ̄ l, θ

(1))ejβτ
(1)
l − hm(α(2), τ

(2)
l , τ̄ l, θ

(1))ejβτ
(2)
l

∣
∣
∣

(d)

≤ 2‖v̄τlsk‖|αl
(2)||ejβτ

(1)
l − ejβτ

(2)
l |

+2‖yupm v̌τl‖|ejβτ
(1)
l − ejβτ

(2)
l |+ 2‖v̌τlsk‖

(∣
∣
∣α

(2)
l

∣
∣
∣

∣
∣
∣ej2βτ

(1)
l − ej2βτ

(2)
l

∣
∣
∣+

∣
∣
∣α̃

(2)
l

∣
∣
∣

∣
∣
∣ejβτ

(1)
l − ejβτ

(2)
l

∣
∣
∣

)

= 2
(

‖v̄τlsk‖|αl
(2)|+ ‖yupm v̌τl‖+ ‖v̌τlsk‖

∣
∣
∣α̃

(2)
l

∣
∣
∣

) ∣
∣
∣ejβτ

(1)
l − ejβτ

(2)
l

∣
∣
∣

+2‖v̌τlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣

∣
∣
∣ej2βτ

(1)
l − ej2βτ

(2)
l

∣
∣
∣

(e)

≤ 2 |β|
(

‖v̄τlsk‖|αl
(2)|+ ‖yupm v̌τl‖+ ‖v̌τlsk‖

∣
∣
∣α̃

(2)
l

∣
∣
∣

) ∣
∣
∣τ

(1)
l − τ

(2)
l

∣
∣
∣

+4 |β|‖v̌τlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣

∣
∣
∣τ

(1)
l − τ

(2)
l

∣
∣
∣

, Mτl

∣
∣
∣τ

(1)
l − τ

(2)
l

∣
∣
∣ , (45)

where the inequality in (a) follows from Lemma 5, v
(i)
τl , i = 1, 2, is a vector that captures those en-

tries of ▽hm(α(2), τ
(i)
l , τ̄ l, θ

(1)) which are functions of τ
(i)
l , and v̄τl is a vector that captures those entries of

▽hm(α(2), τ
(i)
l , τ̄ l, θ

(1)) which are independent of τl. The second term in (b) follows from v
(i)
τl = ejβτ

(i)
l v̌τl ,

ejβτ
(i)
l ej(φl+γm sin θ

(1)
l

)
[

1, jβα(2), jγm cos θ
(1)
l , jα(2)

]T

. The inequality in (c) follows from the fact that ‖a−b‖ ≤ ‖a‖+‖b‖
for a and b to be arbitrary vectors. In (d), we use the following inequalities:

∣
∣
∣hm(α(2), τ

(1)
l , τ̄ l, θ

(1))− hm(α(2), τ
(2)
l , τ̄ l, θ

(1))
∣
∣
∣ =

∣
∣
∣αl

(2)ej(φl+γm sin θ
(1)
l

)
(

ejβτ
(1)
l − ejβτ

(2)
l

)∣
∣
∣

≤ |αl
(2)||ejβτ

(1)
l − ejβτ

(2)
l |, (46)

as well as

∣
∣
∣hm(α(2), τ

(1)
l , τ̄ l, θ

(1))ejβτ
(1)
l − hm(α(2), τ

(2)
l , τ̄ l, θ

(1))ejβτ
(2)
l

∣
∣
∣ ≤

∣
∣
∣α

(2)
l

∣
∣
∣

∣
∣
∣ej2βτ

(1)
l − ej2βτ

(2)
l

∣
∣
∣

+
∣
∣
∣α̃

(2)
l

∣
∣
∣

∣
∣
∣ejβτ

(1)
l − ejβτ

(2)
l

∣
∣
∣ , (47)

where α̃
(2)
l ,

∑

i6=l α
(2)
i e

j
(

φi+γm sin θ
(1)
i

)

. The inequality (e), assuming τ
(1)
l ≤ τ

(2)
l , follows from the following inequality:

∣
∣
∣ejβτ

(1)
l − ejβτ

(2)
l

∣
∣
∣ =

∣
∣
∣
∣
∣

∫ τ
(2)
l

τ
(1)
l

jβejβtdt

∣
∣
∣
∣
∣
≤

∫ τ
(2)
l

τ
(1)
l

∣
∣jβejβt

∣
∣ dt = |β|

∣
∣
∣τ

(1)
l − τ

(2)
l

∣
∣
∣ . (48)
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As stated before, since {αl}Ll=1 are generated by G(z) and the range of G(z) is bounded, we conclude that Mτl ≥ 0 and it

is bounded. Now, defining, Mτ , max {Mτ1 ,Mτ2 , · · · ,MτL}, we obtain the upperbound for Tτ as

Tτ ≤Mτ1

∣
∣
∣τ

(1)
1 − τ

(2)
1

∣
∣
∣+Mτ2

∣
∣
∣τ

(1)
2 − τ

(2)
2

∣
∣
∣+ · · ·+MτL

∣
∣
∣τ

(1)
L − τ

(2)
L

∣
∣
∣

≤Mτ

(∣
∣
∣τ

(1)
1 − τ

(2)
1

∣
∣
∣+

∣
∣
∣τ

(1)
2 − τ

(2)
2

∣
∣
∣+ · · ·+

∣
∣
∣τ

(1)
L − τ

(2)
L

∣
∣
∣

)

(a)

≤Mτ

√
L

√
(

τ
(1)
1 − τ

(2)
1

)2

+
(

τ
(1)
2 − τ

(2)
2

)2

+ · · ·+
(

τ
(1)
L − τ

(2)
L

)2

=λτ‖τ (1) − τ (2)‖, (49)

where (a) follows from the inequality provided in Lemma 4, and λτ , Mτ

√
L.

3) Bounds on Tθ: Assuming α(2) and τ (2) are fixed, and using the triangle inequality of (31), we can write

Tθ ≤ ‖fm(α(2), τ (2), θ
(1)
1 , θ̄1)− fm(α(2), τ (2), θ

(2)
1 , θ̄1)‖

+ ‖fm(α(2), τ (2), θ
(1)
2 , θ̄2)− fm(α(2), τ (2), θ

(2)
2 , θ̄2)‖

...

+ ‖fm(α(2), τ (2), θ
(1)
L , θ̄L)− fm(α(2), τ (2), θ

(2)
L , θ̄L)‖, (50)

where we define θ̄l ,
(

θ
(2)
1 , · · · , θ(2)l−1, θ

(1)
l+1, · · · , θ

(1)
L

)

. Let us define Tθl , ‖fm(α(2), τ (2), θ
(1)
l , θ̄l)−fm(α(2), τ (2), θ

(2)
l , θ̄l)‖.

We show that there exists a bounded Mθl ≥ 0 such that Tθl ≤ Mθl

∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣. To do so, let us write

Tθl = 2‖
(

yupm − hm(α(2), τ (2), θ
(1)
l , θ̄l)sk

)

▽hm(α(2), τ (2), θ
(1)
l , θ̄l)

−
(

yupm − hm(α(2), τ (2), θ
(2)
l , θ̄l)sk

)

▽hm(α(2), τ (2), θ
(2)
l , θ̄l)‖

(a)

≤ 2‖
(

yupm − hm(α(2), τ (2), θ
(1)
l , θ̄l)sk

)

v̄θl −
(

yupm − hm(α(2), τ (2), θ
(2)
l , θ̄l)sk

)

v̄θl‖

+2‖
(

yupm − hm(α(2), τ (2), θ
(1)
l , θ̄l)sk

)

v
(1)
θl

−
(

yupm − hm(α(2), τ (2), θ
(2)
l , θ̄l)sk

)

v
(2)
θl

‖
(b)

≤ 2‖v̄θlsk‖
∣
∣
∣hm(α(2), τ (2), θ

(1)
l , θ̄l)− hm(α(2), τ (2), θ

(2)
l , θ̄l)

∣
∣
∣

+2‖yupm
(

v
(1)
θl

− v
(2)
θl

)

‖+ 2|sk|‖hm(α(2), τ (2), θ
(1)
l , θ̄l)v

(1)
θl

− hm(α(2), τ (2), θ
(2)
l , θ̄l)v

(2)
θl

‖
(c)

≤ 2‖v̄θlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣

∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣+ 2|yupm |‖v(1)

θl
− v

(2)
θl

‖

+2‖v̌θlsk‖
( ∣
∣
∣ᾰ

(2)
l

∣
∣
∣ ‖v(1)

θl
− v

(2)
θl

‖+ ‖v̌θl‖
∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+
∣
∣
∣γmα

(2)
l

2
∣
∣
∣

∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣

)

=2
(

‖v̄θlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣+ ‖v̌θlsk‖‖v̌θl‖

) ∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+2
(

|yupm |+ ‖v̌θlsk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

)

‖v(1)
θl

− v
(2)
θl

‖

+2
(

‖v̌θlsk‖
∣
∣
∣γmα

(2)
l

2∣∣
∣

) ∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣

(d)

≤ 2
(

‖v̄θlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣+ ‖v̌θlsk‖‖v̌θl‖+

(

|yupm |+ ‖v̌θlsk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) (

1 +
∣
∣
∣βα

(2)
l

∣
∣
∣

) ) ∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+2
(

‖v̌θlsk‖
∣
∣
∣γmα

(2)
l

2∣∣
∣+

(

|yupm |+ ‖v̌θlsk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) ∣
∣
∣γmα

(2)
l

∣
∣
∣

) ∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣

(e)

≤ 2
(

‖v̄θlsk‖
∣
∣
∣α

(2)
l

∣
∣
∣+ ‖v̌θlsk‖‖v̌θl‖+

(

|yupm |+ ‖v̌θlsk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) (

1 +
∣
∣
∣βα

(2)
l

∣
∣
∣

) )

|γm|
∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣

+2
(

‖v̌θlsk‖
∣
∣
∣γmα

(2)
l

2∣∣
∣+

(

|yupm |+ ‖v̌θlsk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) ∣
∣
∣γmα

(2)
l

∣
∣
∣

)

ρ
∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣

, Mθl

∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣ , (51)

where the inequality in (a) follows from Lemma 5, v
(i)
θl

, i = 1, 2, is a vector that captures those en-

tries of ▽hm(α(2), τ (2), θ
(i)
l , θ̄l) which are function of θ

(i)
l , and v̄θl is a vector that captures those en-

tries of ▽hm(α(2), τ (2), θ
(1)
l , θ̄l) which are independent of θl. In the second term in (b), we define v

(i)
θl

,
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ej(φl+βτ
(2)
l

+γm sin θ
(i)
l

)
[

1 jβα
(2)
l jα

(2)
l γm cos θ

(i)
l jα

(2)
l

]T

, and the inequality follows from the fact that ‖a−b‖ ≤ ‖a‖+‖b‖
for a and b to be arbitrary vectors. In (c), we use the following inequalities:

∣
∣
∣hm(α(2), τ (2), θ

(1)
l , θ̄l)− hm(α(2), τ (2), θ

(2)
l , θ̄l)

∣
∣
∣ =

∣
∣
∣αl

(2)ej(φl+βτ
(2)
l

)
(

ejγm sin θ
(1)
l − ejγm sin θ

(2)
l

)∣
∣
∣

≤
∣
∣
∣αl

(2)
∣
∣
∣

∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣ , (52)

as well as

‖hm(α(2), τ (2), θ
(1)
l , θ̄l)v

(1)
θl

− hm(α(2), τ (2), θ
(2)
l , θ̄l)v

(2)
θl

‖
≤

∣
∣
∣ᾰ

(2)
l

∣
∣
∣ ‖v(1)

θl
− v

(2)
θl

‖+ ‖v̌θl‖
∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+
∣
∣
∣γmα

(2)
l

2
∣
∣
∣

∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣ , (53)

where ᾰ
(2)
l ,

∑

i6=l α
(2)
i ej(φi+βτ

(2)
i

+γm sin θ
(t)
i

), t = 2 for i < l and t = 1, for i > l, and v̌θl ,
[

α
(2)
l ej(2φl+2βτ

(2)
l

), jβα
(2)
l

2
ej(2φl+2βτ

(2)
l

)
]T

. In (d), following from Lemma 5, we use the the following inequality:

‖v(1)
θl

− v
(2)
θl

‖ ≤
∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣+

∣
∣
∣βα

(2)
l

∣
∣
∣

∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+
∣
∣
∣γmα

(2)
l

∣
∣
∣

∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣

=
(

1 +
∣
∣
∣βα

(2)
l

∣
∣
∣

) ∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣

+
∣
∣
∣γmα

(2)
l

∣
∣
∣

∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣ . (54)

The inequality (e) follows from

∣
∣
∣ejγm sin θ

(1)
l − ejγm sin θ

(2)
l

∣
∣
∣ =

∣
∣
∣
∣
∣

∫ θ
(2)
l

θ
(1)
l

jγm cos θejγm sin θdθ

∣
∣
∣
∣
∣
≤

∫ θ
(2)
l

θ
(1)
l

∣
∣jγm cos θejγm sin θ

∣
∣ dθ

= |γm|
∫ θ

(2)
l

θ
(1)
l

|cos θ| dθ ≤ |γm|
∫ θ

(2)
l

θ
(1)
l

1dθ = |γm|
∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣ , (55)

and

∣
∣
∣cos θ

(1)
l ejγm sin θ

(1)
l − cos θ

(2)
l ejγm sin θ

(2)
l

∣
∣
∣ =

∣
∣
∣
∣
∣

∫ θ
(2)
l

θ
(1)
l

(
jγm cos2 θ − sin θ

)
ejγm sin θdθ

∣
∣
∣
∣
∣

≤
∫ θ

(2)
l

θ
(1)
l

∣
∣
(
jγm cos2 θ − sin θ

)
ejγm sin θ

∣
∣ dθ

=

∫ θ
(2)
l

θ
(1)
l

∣
∣jγm cos2 θ − sin θ

∣
∣ dθ

≤
∫ θ

(2)
l

θ
(1)
l

ρdθ = ρ
∣
∣
∣θ

(1)
l − θ

(2)
l

∣
∣
∣ , (56)

where ρ , maxθ
∣
∣jγm cos2 θ − sin θ

∣
∣. Note that since {αl}Ll=1 are bounded, Mθl ≥ 0 is bounded. Now, defining Mθ ,

max {Mθ1 ,Mθ2, · · · ,MθL}, we obtain the upper bound for Tθ as

Tθ ≤Mθ1

∣
∣
∣θ

(1)
1 − θ

(2)
1

∣
∣
∣+Mθ2

∣
∣
∣θ

(1)
2 − θ

(2)
2

∣
∣
∣+ · · ·+MθL

∣
∣
∣θ

(1)
L − θ

(2)
L

∣
∣
∣

≤Mθ

(∣
∣
∣θ

(1)
1 − θ

(2)
1

∣
∣
∣+

∣
∣
∣τ

(1)
2 − τ

(2)
2

∣
∣
∣+ · · ·+

∣
∣
∣θ

(1)
L − θ

(2)
L

∣
∣
∣

)

(a)

≤Mθ

√
L

√
(

θ
(1)
1 − θ

(2)
1

)2

+
(

θ
(1)
2 − θ

(2)
2

)2

+ · · ·+
(

θ
(1)
L − θ

(2)
L

)2

=λθ‖θ(1) − θ(2)‖, (57)

where (a) follows from the inequality provided in Lemma 4, and λθ , Mθ

√
L.
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Returning back to (40), we can write

‖fm(x(1))− fm(x(2))‖ ≤ λα‖α(1) −α(2)‖+ λτ‖τ (1) − τ (2)‖+ λθ‖θ(1) − θ(2)‖
≤ λα‖x(1) − x(2)‖+ λτ‖x(1) − x(2)‖+ λθ‖x(1) − x(2)‖
= (λα + λτ + λθ) ‖x(1) − x(2)‖ , λm‖x(1) − x(2)‖. (58)

This implies that fm(x) is a Lipschitz-continuous function with respect to x. Now, according to Lemma 3, and defining

λf , max {λ1, λ2, · · · , λM}, we conclude that f(x) =
∑M

m=1 fm(x) is a Lipschitz-continuous function, i.e.,

‖f(x(1))− f(x(2))‖ ≤ λf‖x(1) − x(2)‖. (59)

Note that the generator function GWg
(·) is approximated by a multi-layer neural network. It is shown that GWg

(z) is a

Lipschitz function [61], [62]. Let λg denote the corresponding the Lipschitz constant. Exact estimation of λg is beyond the

scope of this paper. We now use Lemma 2, and conclude that f(GWg
(z)) is a λfλg-Lipschitz function. Therefore, we can

write

Iz ≤ λfλg‖z(1) − z(2)‖. (60)

B. Bounds on Iφ

Assuming z(2) is fixed, let q(φ) , P (z(2),φ), we aim to show that there exists λq such that

Iφ = ‖q(φ(1))− q(φ(2))‖ ≤ λq‖φ(1) − φ(2)‖. (61)

Note that, for fixed z(2), or equivalently x(2) = GWg

(
z(2)

)
, we can express q(φ) = ▽x̃Jup

(
x(2),φ

)
. We further express

q(φ) =
∑M

m=1 qm(φ), where qm(φ), for x(2), is given as

qm(φ) , −2
(

yupm − hm(x(2),φ)sk

)

▽x̃hm(x(2),φ). (62)

We now show the Lipschitz-continuity of qm(φ). Using the triangle inequality of (31), we can write

‖qm(φ(1))− qm(φ(2))‖ ≤ ‖qm(φ
(1)
1 , φ̄1)− qm(φ

(2)
1 , φ̄1)‖

+ ‖qm(φ
(1)
2 , φ̄2)− qm(φ

(2)
2 , φ̄2)‖

...

+ ‖qm(φ
(1)
L , φ̄L)− qm(φ

(2)
L , φ̄L)‖, (63)

where φ̄l ,
(

φ
(2)
1 , · · · , φ(2)

l−1, φ
(1)
l+1, · · · , φ

(1)
L

)

. Let Tφl
, ‖qm(φ

(1)
l , φ̄l)− qm(φ

(2)
l , φ̄l)‖. We show that there exists a bounded
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Mφl
≥ 0 such that Tφl

≤ Mφl

∣
∣
∣φ

(1)
l − φ

(2)
l

∣
∣
∣. To do so, let us write

Tφl
= 2‖

(

yupm − hm(x(2), φ
(1)
l , φ̄l)sk

)

▽hm(x(2), φ
(1)
l , φ̄l)

−
(

yupm − hm(x(2), φ
(2)
l , φ̄l)sk

)

▽hm(x(2), φ
(2)
l , φ̄l)‖

(a)

≤ 2‖
(

yupm − hm(x(2), φ
(1)
l , φ̄l)sk

)

v̄φl
−
(

yupm − hm(x(2), φ
(2)
l , φ̄l)sk

)

v̄φl
‖

+2‖
(

yupm − hm(x(2), φ
(1)
l , φ̄l)sk

)

v
(1)
φl

−
(

yupm − hm(x(2), φ
(2)
l , φ̄l)sk

)

v
(2)
φl

‖
(b)
= 2‖v̄φl

sk‖
∣
∣
∣hm(x(2), φ

(1)
l , φ̄l)− hm(x(2), φ

(2)
l , φ̄l)

∣
∣
∣

+2‖
(

yupm − hm(x(2), φ
(1)
l , φ̄l)sk

)

ejφ
(1)
l v̌φl

−
(

yupm − hm(x(2), φ
(2)
l , φ̄l)sk

)

ejφ
(2)
l v̌φl

‖
(c)

≤ 2‖v̄φl
sk‖

∣
∣
∣hm(x(2), φ

(1)
l , φ̄l)− hm(x(2), φ

(2)
l , φ̄l)

∣
∣
∣

+2‖yupm v̌φl
‖|ejφ

(1)
l − ejφ

(2)
l |+ 2‖v̌φl

sk‖
∣
∣
∣hm(x(2), φ

(1)
l , φ̄l)e

jφ
(1)
l − hm(x(2), φ

(2)
l , φ̄l)e

jφ
(2)
l

∣
∣
∣

(d)

≤ 2‖v̄φl
sk‖|αl

(2)||ejφ
(1)
l − ejφ

(2)
l |

+2‖yupm v̌φl
‖|ejφ

(1)
l − ejφ

(2)
l |+ 2‖v̌φl

sk‖
(∣
∣
∣ᾰ

(2)
l

∣
∣
∣

∣
∣
∣ejφ

(1)
l − ejφ

(2)
l

∣
∣
∣+

∣
∣
∣α̌

(2)
l

∣
∣
∣

∣
∣
∣ej2φ

(1)
l − ej2φ

(2)
l

∣
∣
∣

)

= 2
(

‖v̄φl
sk‖|αl

(2)|+ ‖yupm v̌φl
‖+ ‖v̌φl

sk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) ∣
∣
∣ejφ

(1)
l − ejφ

(2)
l

∣
∣
∣

+2‖v̌φl
sk‖

∣
∣
∣ᾰ

(2)
l

∣
∣
∣

∣
∣
∣ej2φ

(1)
l − ej2φ

(2)
l

∣
∣
∣

(e)

≤ 2
(

‖v̄φl
sk‖|αl

(2)|+ ‖yupm v̌φl
‖+ ‖v̌φl

sk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

) ∣
∣
∣φ

(1)
l − φ

(2)
l

∣
∣
∣ + 4‖v̌φl

sk‖
∣
∣
∣ᾰ

(2)
l

∣
∣
∣

∣
∣
∣φ

(1)
l − φ

(2)
l

∣
∣
∣

, Mφl

∣
∣
∣φ

(1)
l − φ

(2)
l

∣
∣
∣ , (64)

where the inequality in (a) follows from Lemma 5, v
(i)
φl

, i = 1, 2, is a vector that captures those entries of ▽hm(x(2), φ
(i)
l , φ̄l)

which are function of φ
(i)
l , and v̄φl

is a vector that captures those entries of ▽hm(x(2), φ
(i)
l , φ̄l) which are independent of

φl. The second term in (b) follows from v
(i)
φl

= ejφ
(i)
l v̌φl

, ejφ
(i)
l ej(βτ

(2)
l

+γm sin θ
(2)
l

)
[

1 jβα(2) jγm cos θ
(2)
l jα(2)

]T

. The

inequality in (c) follows from the fact that ‖a − b‖ ≤ ‖a‖ + ‖b‖ for a and b to be arbitrary vectors. In (d), we use the

following inequalities:
∣
∣
∣hm(x(2), φ

(1)
l , φ̄l)− hm(x(2), φ

(2)
l , φ̄l)

∣
∣
∣ =

∣
∣
∣αl

(2)ej(βτ
(2)
l

+γm sin θ
(2)
l

)
(

ejφ
(1)
l − ejφ

(2)
l

)∣
∣
∣

≤
∣
∣
∣αl

(2)
∣
∣
∣

∣
∣
∣ejφ

(1)
l − ejφ

(2)
l

∣
∣
∣ , (65)

∣
∣
∣hm(x(2), φ

(1)
l , φ̄l)e

jφ
(1)
l − hm(x(2), φ

(2)
l , φ̄l)e

jφ
(2)
l

∣
∣
∣ ≤

∣
∣
∣ᾰ

(2)
l

∣
∣
∣

∣
∣
∣ejφ

(1)
l − ejφ

(2)
l

∣
∣
∣+

∣
∣
∣α̌

(2)
l

∣
∣
∣

∣
∣
∣ej2φ

(1)
l − ej2φ

(2)
l

∣
∣
∣ , (66)

where ᾰ
(2)
l ,

∑

i6=l α
(2)
i ej(φ

(t)
i

+βτ
(2)
i

+γm sin θ
(2)
i

), t = 2 for i < l and t = 1, for i > l, and α̌
(2)
l , α

(2)
l ej(βτ

(2)
l

+γm sin θ
(2)
l

). The

inequality (e) follows from (48).

Since {αl}Ll=1 are bounded, we conclude that Mφl
≥ 0 and it is bounded. Now, defining, Mφ , max {Mφ1 ,Mφ2 , · · · ,MφL

},

we can write

‖qm(φ(1))− qm(φ(2))‖ ≤Mφ1

∣
∣
∣φ

(1)
1 − φ

(2)
1

∣
∣
∣+Mφ2

∣
∣
∣φ

(1)
2 − φ

(2)
2

∣
∣
∣+ · · ·+MφL

∣
∣
∣φ

(1)
L − φ

(2)
L

∣
∣
∣

≤Mφ

(∣
∣
∣φ

(1)
1 − φ

(2)
1

∣
∣
∣+

∣
∣
∣φ

(1)
2 − φ

(2)
2

∣
∣
∣+ · · ·+

∣
∣
∣θ

(1)
L − θ

(2)
L

∣
∣
∣

)

(a)

≤Mφ

√
L

√
(

φ
(1)
1 − φ

(2)
1

)2

+
(

φ
(1)
2 − φ

(2)
2

)2

+ · · ·+
(

φ
(1)
L − φ

(2)
L

)2

=κm‖φ(1) − φ(2)‖, (67)

where (a) follows from the inequality provided in Lemma 4, and κm , Mφ

√
L. Now, according to Lemma 3, and defining

λq , max {κ1, κ2 · · · , κM}, we conclude that q(φ) =
∑M

m=1 qm(φ) is a Lipschitz-continuous function, i.e.,

Iφ = ‖q(φ(1))− q(φ(2))‖ ≤ λq‖φ(1) − φ(2)‖. (68)
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Now, using (32), along with (60) and (68), we obtain

‖P (z(1),φ(1))− P (z(2),φ(2))‖ ≤ Iz + Iφ ≤ λfλg‖z(1) − z(2)‖+ λq‖φ(1) − φ(2)‖
≤ λ̃p

(

‖z(1) − z(2)‖+ ‖φ(1) − φ(2)‖
)

≤ λ̃p

(

‖z̃(1) − z̃(2)‖+ ‖z̃(1) − z̃(2)‖
)

= λp

(

‖z̃(1) − z̃(2)‖
)

, (69)

where λ̃p , max {λfλg, λq}, and λp , 2λ̃p. This now completes the proof.
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