
1

New Closed-form Joint Localization and
Synchronization using Sequential One-way TOAs
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Abstract—It is an essential technique for the moving user
nodes (UNs) with clock offset and clock skew to resolve the
joint localization and synchronization (JLAS) problem. Existing
iterative maximum likelihood methods using sequential one-way
time-of-arrival (TOA) measurements from the anchor nodes’
(AN) broadcast signals require a good initial guess and have
a computational complexity that grows with the number of
iterations, given the size of the problem. In this paper, we propose
a new closed-form JLAS approach, namely CFJLAS, which
achieves the asymptotically optimal solution in one shot without
initialization when the noise is small, and has a low computational
complexity. After squaring and differencing the sequential TOA
measurement equations, we devise two intermediate variables to
reparameterize the non-linear problem. In this way, we convert
the problem to a simpler one of solving two simultaneous
quadratic equations. We then solve the equations analytically
to obtain a raw closed-form JLAS estimation. Finally, we apply
a weighted least squares (WLS) step to optimize the estimation.
We derive the Cramér-Rao lower bound (CRLB), analyze the
estimation error, and show that the estimation accuracy of the
CFJLAS reaches the CRLB under the small noise condition. The
complexity of the new CFJLAS is only determined by the size
of the problem, unlike the conventional iterative method, whose
complexity is additionally multiplied by the number of iterations.
Simulations in a 2D scene verify that the estimation accuracies of
the new CFJLAS method in position, velocity, clock offset, and
clock skew all reach the CRLB under the small noise condition.
Compared with the conventional iterative method, which requires
a proper initialization to converge and has a growing complexity
with more iterations, the proposed new CFJLAS method does
not require initialization, obtains the optimal solution under the
small noise condition, and has a low computational complexity.

Index Terms—sequential one-way time-of-arrival (TOA), joint
localization and synchronization (JLAS), closed-form method.

I. INTRODUCTION

LOCALIZATION and synchronization systems are playing
a fundamental role in our daily lives. In such systems,

there are usually multiple anchor nodes (ANs) with known
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locations and user nodes (UNs) to be localized and syn-
chronized. It is widely adopted in a variety of applications
such as Internet of Things (IoT), emergency rescue, aerial
surveillance and target detection and tracking [1]–[3]. To
enable the positioning, navigation and timing for UNs in
the absence of the external spatiotemporal coordinate system,
joint localization and synchronization (JLAS) in a relative
spatiotemporal coordinate system formed by the ANs is an
important technology. To achieve JLAS for the UNs, the ANs
transmit signals from known places and the UNs capture the
signals to obtain measurements, such as time-of-arrival (TOA)
and time-of-flight (TOF). The TOF measurement requires
perfect synchronization between the AN and UN, which is
costly to implement. The TOA measurement is comprised
of the true distance along with the clock offset between the
ANs and the UN, and thus does not require synchronization
between the AN and UN. It is one of the most widely adopted
measurements for JLAS due to its simplicity and high accuracy
[4]–[9].

Code division and frequency division are among the most
widely used TOA schemes. Two well-known examples of these
two schemes are the Global Positioning System (GPS), which
adopts code division scheme, and the GLONASS, which uses
frequency division [10], [11]. However, code division scheme
suffers from the near-far effect especially in a small region
where a UN is near the AN [12], and frequency division
scheme needs to separate the signals from ANs into different
frequency bands [13] and increases the complexity of the radio
frequency front-end design, especially for a small and low-cost
UN.

Unlike code division or frequency division schemes, a
time division (TD) scheme generating sequential TOA mea-
surements is free of the near-far effect or large bandwidth
occupancy, although it would require a longer temporal dura-
tion for the ANs to finish their signal transmission. A UN
in a TD broadcast system obtains the sequential one-way
TOA measurements to achieve JLAS on its own, without any
transmission back to the ANs. Such a TD broadcast scheme
reduces the reception channels of a UN, supports an unlimited
number of UNs, and offers higher safety for UNs from being
detected. Hence, an increasing number of research works on
the TD scheme have appeared [14]–[22].

Localization based on the TD broadcast sequential TOA
has been studied in recent years. Dwivedi et al. [16] de-
velop a solution for cooperative localization by using sched-
uled wireless transmissions. They formulate two practical
estimators, namely sequential weighted least squares multi-
dimensional scaling (WLS-MDS) and maximum likelihood
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(ML), for localization and derive the Cramér-Rao lower bound
(CRLB) to evaluate the performance of these two estimators.
Zachariah et al. [18] propose a self-localization method for
a receiver node using given sequential measurements based
on an iterative maximum a posterior (MAP) estimator that
considers the uncertainty of the ANs and the turn-around
delay of the asynchronous transceivers. They also propose a
sequential approximate maximum a posterior estimator to re-
solve the localization problem based on sequential TOAs [23].
Carroll et al. [19] use a sequential transmission protocol to
resolve an on-demand asynchronous localization problem for
an underwater acoustic network, and verify through simulation
that passive nodes can achieve low-error positioning. Yan et
al. [20] investigate a localization method for passive nodes
based on sequential messages. Simulation results show that
the proposed iterative least squares (LS) method can improve
the localization accuracy compared with the synchronous lo-
calization algorithm. However, all these methods only resolve
the node’s localization problem and do not address the clock
synchronization issue.

For JLAS using the sequential one-way TOA measurements,
several iterative methods are proposed. Shi et al. [15] present a
distributed state estimation method for the UNs, which utilizes
the TD broadcast inter-node information to resolve the JLAS
problem. Their method enables accurate, high-frequency and
real-time estimation, and supports an unlimited number of
UNs. However, their iterative method has a high computational
complexity and does not apply to a moving UN. Shi et al.
[22] extend the previous work of [15], and utilize a two-
step weighted least squares (WLS) method to jointly estimate
the position, velocity and clock parameters of the UNs in the
presence of the position uncertainties of ANs. However, this
method requires to transform the localization problem into a
higher-dimensional state space, and thus needs more measure-
ments and has a high computational complexity due to the
second iterative step. Zhao et al. [21] develop an ML method
and an iterative algorithm to estimate the localization and
synchronization parameters. However, this method requires a
good initial guess and has a high computational cost due to
iteration.

Unlike the iterative methods mentioned above, the closed-
form JLAS estimators require no initial guess or iteration,
and have low computational complexity. There are extensive
studies on closed-form methods for concurrent TOA systems.
Bancroft originally introduces a closed-form approach in
solving the GPS equations [24]. Compared with the itera-
tive methods, Bancroft’s closed-form algorithm significantly
reduces the computational complexity without initialization.
A few extensions of Bancroft’s algorithm to the case with
noisy time-difference-of-arrival (TDOA) measurements are
proposed in [25]–[27]. Chan and Ho [28] propose a two-
step WLS (TSWLS) estimator that achieves the CRLB at a
small noise level. Closed-form localization methods based on
the multidimensional scaling technique that utilizes a squared
distance matrix are proposed in [29], [30]. Zhu and Ding
[31] generalize Bancroft’s algorithm to the case with more
sensors and noisy measurements. Other efficient closed-form
methods are developed in [32], [33] for joint localization

and synchronization tasks. Wang et al. [34] use a closed-
form method to resolve the JLAS problem when the known
sensor positions and clock biases are subject to random errors.
Zhao et al. [35] propose a closed-form localization method us-
ing TOA measurements from two non-synchronized systems.
However, these closed-form methods all assume that the TOA
measurements are concurrent and thus are not applicable to
the system with sequential one-way TOA messages.

In this paper, we propose a new closed-form method,
namely CFJLAS, to resolve the JLAS problem for the moving
UNs with clock offset and skew using sequential one-way
TOA measurements in a wireless broadcast JLAS system. We
first transform the nonlinear relation between the measure-
ments and the parameters to be estimated by squaring and
differencing the sequential TOA measurement equations. We
then devise two intermediate variables to reparameterize the
relation, and construct two simultaneous quadratic equations
with respect to the intermediate variables. Then, we find the
solution of the intermediate variables by solving the quadratic
equations analytically. We then apply the LS method to
roughly estimate positions and the clock parameters of the
moving UNs from the results of the intermediate variables.
Finally, we apply a WLS step using the residuals of all the
measurements to obtain the final optimal estimation. We derive
the CRLB of the estimation error for the moving UN and show
that the estimated results from the new CFJLAS reach the
CRLB when the measurement noise is small. Simulation of a
2D moving scene is conducted to verify the performance of
the new CFJLAS. Numerical results show that the accuracies
for the position, velocity, clock offset and clock skew from
the proposed CFJLAS all reach the CRLB. Compared with
the iterative ML method (LSPM-UVD) [21], which requires
accurate initialization and has an increasing complexity with
the growing number of iterations, the new method obtains
the optimal solution in one shot without requiring an initial
guess under the small noise condition. Given the number
of ANs, the new CFJLAS method has a low computational
complexity, which is at the same level as three iterations of
the conventional iterative ML method.

The rest of the paper is organized as follows. In Section
II, the sequential TOA-based JLAS problem model for the
moving UNs is formulated. A new closed-form JLAS method
is proposed in detail in Section III. Then, we derive the
CRLB, analyze the theoretical error and complexity of the new
method in Section IV. Simulations are conducted to evaluate
the performance of this new CFJLAS method in Section V.
Finally, Section VI concludes the paper.

The main notations used in this paper are summarized in
Table I.

II. PROBLEM STATEMENT

We consider a system comprised of M ANs and a number
of moving UNs, as depicted in Fig. 1. It operates in a
wireless broadcast manner using a TD scheme. All ANs are
synchronized to a system clock. They sequentially broadcast
the on-air packets according to its pre-scheduled launch time
slots, e.g., AN #1, AN #2 and so on. The ANs set up a relative
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TABLE I
NOTATION LIST

lowercase x scalar
bold lowercase x vector
bold uppercase X matrix
‖x‖ Euclidean norm of a vector
i, j indices of variables
[x]i the i-th element of a vector
[X]i,:, [X]:,j the i-th row and the j-th column of a matrix,

respectively
[X]i,j entry at the i-th row and the j-th column of a

matrix
|X| determinant of a matrix
E[·] expectation operator
diag(·) diagonal matrix with the elements inside
M number of ANs
K dimension of all the position and velocity vec-

tors, i.e., K = 2 in 2D case and K = 3 in 3D
case

pi, βi position vector and clock offset of AN #i
p, v unknown position and velocity vector of a UN
β, ω unknown clock offset and skew of a UN
θ parameter vector, θ = [pT ,vT , β, ω]T

λ1, λ2 intermediate variables
τ̂i noisy sequential TOA measurement with respect

to AN #i
τ̂ collective form of TOA measurement τ̂i
ti time interval from the beginning of the TD

broadcast round to AN #i’s transmission time
εi, σ2

i Gaussian random noise and variance for the i-th
TOA measurement

ε collective form of noise term ε
li unit line-of-sight (LOS) vector from the UN to

AN #i
F Fisher information matrix
C inverse of the covariance matrix of noise ε
W weighting matrix
J design matrix
OM×N M ×N matrix with all entries being zero
IM M ×M identity matrix

spatiotemporal coordinate system in advance. The UNs receive
the on-air packets to obtain the sequential TOA measurements
and achieve JLAS in this relative spatiotemporal coordinate
system. Therefore, we aim to resolve the moving UNs’ JLAS
problem based on the observed sequential TOA measurements
in a wireless broadcast network.

Without loss of generality, we take one moving UN as an
example to present the JLAS problem. Other moving UNs in
the system work in the same manner. We investigate the case
with line-of-sight (LOS) signal propagation between the ANs
and the moving UN. The sequential TOA measurements in one
TD broadcast round from all M ANs are used. Additionally,
since the communication rate or bandwidth is high enough,
one TD broadcast round for all ANs is short, usually at the
millisecond level. We model that the moving UN’s velocity
remains constant in the period of one TD broadcast round.

We denote the unknown position, velocity, clock offset and
clock skew of a UN at the beginning of one TD broadcast
round by p, v, β, and ω, respectively. The true position and
clock offset of AN #i, i = 1, · · · ,M , are denoted by pi and βi,
respectively. In a generic case, the position of AN #i, denoted
by p̂i is usually measured or estimated, and thus may contain
error, denoted by δpi = pi − p̂i. We assume that the error
follows a Gaussian distribution, i.e., δpi ∼ N (0,Σi). The

AN

UN

1st TOA

AN #1

AN #2

AN #i

AN #M

...
.
.
....

2nd TOA

i-th TOA

M-th TOA

Fig. 1. Joint localization and synchronization (JLAS) system using the TD
broadcast scheme. The system is comprised of ANs and UNs. ANs act as
moving beacons by broadcasting on-air packets sequentially in scheduled
time-slots. UNs only passively receive the on-air packets to obtain the
sequential one-way TOA measurements, and then achieve localization and
synchronization.

position and velocity are both of K dimensional, K = 2 or
K = 3. Given that the velocity of the UN is constant during
one TD broadcast round, the one-way TOA measurement from
AN #i is expressed by

τ̂i = ‖p+ vti − pi‖+ β + ωti − βi + εi

= ‖p+ vti − p̂i − δpi‖+ β + ωti − βi + εi,

i = 1, · · · ,M, (1)

where τ̂i, β, βi and εi have the unit of meter, ω has the
unit of meter per second, ti is the interval between the start
time of the TD broadcast round and AN #i’s launch time,
and εi is the measurement noise, following an independent
zero-mean Gaussian distribution with a variance of σ2

i , i.e.,
εi ∼ N (0, σ2

i ).
We aim to find an accurate estimation of the moving UN’s

position and clock parameters using all the sequential TOA
measurements given by (1). It is written as

Given {τ̂i, p̂i}Mi=1, estimate {p,v, β, ω}. (2)

To solve this problem, the parameters p, v, β, and ω need
to be estimated. The existing iterative ML method in [21]
requires a proper initial guess to obtain accurate estimation
and has a computational complexity, which grows with the
increasing number of iterations. We present a new closed-form
method, which does not require initialization or iteration and
has a lower complexity than the iterative method, to resolve
this problem in the next section.

III. A NEW CLOSED-FORM JLAS METHOD

In this section, we develop a new closed-form JLAS method,
namely CFJLAS. Firstly, we reparameterize the nonlinear
problem. By employing two intermediate variables, we trans-
form the problem to a simpler one of solving a pair of
quadratic equations. Then, we find the solution of the interme-
diate variables, based on which a raw estimation of the moving
UN’s position and clock parameter is obtained. Finally, we
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apply a WLS step to obtain the final optimal estimation.
The above steps are presented in detail in the following sub-
sections.

A. Step 1: Reparameterization

To obtain a closed-form solution, we first re-organize and
square the two sides of (1), and come to

(τ̂i + βi − β − ωti − εi)2 = ‖p+ vti − p̂i − δpi‖2 (3)

We define α̂i , τ̂i + βi, expand and re-organize (3), and
come to

2p̂Ti p+ 2tip̂
T
i v − 2α̂iβ − 2tiα̂iω +

(
β2 − ‖p‖2

)
=‖p̂i‖2 − α̂2

i − t2i
(
ω2 − ‖v‖2

)
− 2ti

(
βω − pTv

)
+ ηi + ε2i ,

i = 1, · · · ,M, (4)

where ηi = 2 (α̂i − β − ωti) εi − 2
(
pT + tiv

T − p̂Ti
)
δpi.

To remove the term β2−‖p‖2, we can conduct subtraction
between equation (4) with arbitrary i and equations (4) with
other i values. Without loss of generality, we substitute i = 1
into (4) and have

2p̂T1 p+ 2t1p̂
T
1 v − 2α̂1β − 2t1α̂1ω +

(
β2 − ‖p‖2

)
=

‖p̂1‖2 − α̂2
1 − t21

(
ω2 − ‖v‖2

)
− 2t1

(
βω − pTv

)
+ η1 + ε21.

(5)

By subtracting (5) from (4), we remove the term β2−‖p‖2.
We put all the linear unknown parameters on the left and have

2
(
p̂Ti − p̂T1

)
p+ 2

(
tip

T
i − t1pT1

)
v + 2 (α̂1 − α̂i)β+

2 (t1α̂1 − tiα̂i)ω
=‖p̂i‖2 − ‖p̂1‖2 −

(
α̂2
i − α̂2

1

)
+
(
t21 − t2i

) (
ω2 − ‖v‖2

)
+

2 (t1 − ti)
(
βω − pTv

)
+ ηi − η1 + ε2i − ε21,

i = 2, · · · ,M. (6)

There are still unknown terms including ω2 − ‖v‖2 and
βω − pTv in (6). It is not possible to employ only one extra
variable to transform (6) into a linear relation as was done
in [25]–[27], since we have more parameters to estimate. We
therefore devise two intermediate variables as

λ1 = ω2 − ‖v‖2,
λ2 = βω − pTv. (7)

We denote the unknown parameters by θ = [pT ,vT , β, ω]T .
By collecting terms, squaring and taking differences as given
by (6), we transform the set of equations in (1) into the
collective form as

Âθ = ŷ +G [λ1(θ), λ2(θ)]
T

+ ηd(θ) + z, (8)

where

Â =

2

 p̂
T
2 − p̂T1 t2p̂

T
2 − t1p̂T1 α̂1 − α̂2 t1α̂1 − t2α̂2

...
...

...
...

p̂TM − p̂T1 tM p̂
T
M − t1p̂T1 α̂1 − α̂M t1α̂1 − tM α̂M

 ,
(9)

G =

 t
2
1 − t22 2(t1 − t2)

...
...

t21 − t2M 2(t1 − tM )

 , (10)

ŷ =

 ‖p̂2‖
2 − ‖p̂1‖2 −

(
α̂2
2 − α̂2

1

)
...

‖p̂M‖2 − ‖p̂1‖2 −
(
α̂2
M − α̂2

1

)
 , (11)

ηd =
[
η2 − η1, · · · , ηM − η1

]T
, (12)

z =
[
ε22 − ε21, · · · , ε2M − ε21

]T
. (13)

Note that λ1, λ2, and ηd have non-linear dependence on some
of the elements of θ, and thus are written as functions of θ.

The generic estimation problem in (1) will take the form
of finding the approximate solution θ to the set of nonlinear
simultaneous equations in (8). However, solving this set of
non-linear equations is a difficult task.

We notice that in practice Â, ŷ and G are known. If we
assume that the measurement noise is small, we can remove
ηd and z, and approximate (8) by

Âθ̃ = ŷ +G
[
λ1(θ̃), λ2(θ̃)

]T
, (14)

where θ̃ indicates that we have neglected the noise terms ηd
and z. If we can find the solution of λ1 and λ2 from (14), the
position, velocity, clock offset, and clock skew of the moving
UN can be estimated.

B. Step 2: Solution for Intermediate Variables

One approach to solve (14) is to pick an initial guess for θ̃,
denoted by θ̃(0) and estimate θ̃ iteratively as

Âθ̃(i) = ŷ +G
[
λ1(θ̃(i−1)), λ2(θ̃(i−1))

]T
.

However, this kind of iterative method is also heavily depen-
dent on the initial guess. In addition, it ignores the structure of
λ1 and λ2 as given by (7). We aim to propose a direct method
to avoid iteration by exploiting the special structure.

Based on (14), we can roughly estimate θ with the interme-
diate variables λ1 and λ2 by multiplying the pseudo-inverse
of Â as

θ̃ =
(
ÂT Â

)−1

ÂT

(
ŷ +G

[
λ1(θ̃), λ2(θ̃)

]T)
, (15)

or simply

θ̃ = g +U
[
λ1(θ̃), λ2(θ̃)

]T
, (16)

where θ̃ = [p̃T , ṽT , β̃, ω̃]T ,

g =
(
ÂT Â

)−1

ÂT ŷ, (17)

U =
(
ÂT Â

)−1

ÂTG. (18)
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To find the solution of the intermediate variables λ1 and λ2,
we design the following two matrices as

H1 =


OK×K OK×K OK×2

OK×K −IK OK×2

O2×K O2×K
0 0
0 1

 , (19)

H2 =


OK×K −IK OK×2

−IK OK×K OK×2

O2×K O2×K
0 1
1 0

 . (20)

To construct equations with respect to the intermediate
variables, we use these two matrices H1 and H2 along with
(7) to convert the raw estimate parameter θ̃ to the linear
expression of λ1 and λ2 as

θ̃TH1θ̃ =(
g +U

[
λ1(θ̃), λ2(θ̃)

]T)T
H1

(
g +U

[
λ1(θ̃), λ2(θ̃)

]T)
= ω̃2 − ‖ṽ‖2 = λ1(θ̃), (21)

θ̃TH2θ̃ =(
g +U

[
λ1(θ̃), λ2(θ̃)

]T)T
H2

(
g +U

[
λ1(θ̃), λ2(θ̃)

]T)
= 2

(
β̃ω̃ − p̃T ṽ

)
= 2λ2(θ̃). (22)

After re-organizing (21) and (22), we obtain two simulta-
neous quadratic equations with respect to λ1 and λ2 as

a1λ
2
1 + b1λ1λ2 + c1λ

2
2 + d1λ1 + e1λ2 + f1 = 0, (23)

a2λ
2
1 + b2λ1λ2 + c2λ

2
2 + d2λ1 + e2λ2 + f2 = 0, (24)

where

a1 = [U ]T:,1H1[U ]:,1, b1 = 2[U ]T:,1H1[U ]:,2,

c1 = [U ]T:,2H1[U ]:,2, d1 = 2[U ]:,1H1g − 1,

e1 = 2[U ]:,2H1g, f1 = gTH1g,

a2 = [U ]T:,1H2[U ]:,1, b2 = 2[U ]T:,1H2[U ]:,2,

c2 = [U ]T:,2H2[U ]:,2, d2 = 2[U ]:,1H2g,

e2 = 2[U ]:,2H2g − 2, f2 = gTH2g,

and [·]:,j represents the j-th column of a matrix.
The simultaneous quadratic equations of (23) and (24) can

be solved analytically. The detailed approach is given in
Appendix A. Note that λ1 and λ2 are correlated as defined
in (7). However, we ignore this correlation and solve them
independently at this step, and rely on the next step to refine
the solution. We will show both theoretically and numerically
that the refinement step can obtain a final solution that
approaches the CRLB under the small noise condition.

With the solutions of λ1 and λ2, we can estimate θ based
on (15). We notice that ÂT Â must be invertible to ensure the
solution of (15). There are M−1 rows and 2K+2 columns in
Â as given by (9). Thus, we need at least 2K+3 visible ANs
or TOA measurements and a proper AN geometry to ensure
the full column-rank of Â, and the solution of θ̃. Compared

with the 2K+5 visible ANs required by [22], the new method
needs fewer visible ANs.

It is possible that there are multiple roots for λ1 and λ2,
and thus there might be multiple estimates of θ̃. We use the
weighted sum of the squared difference between the observed
TOA measurements and the TOA values computed from the
solved intermediate variables as a selection criterion for the
solution. The selection strategy is given by

min
θ̃
rTCr, (25)

where C is the inverse of the covariance matrix for the
measurement noise, and

C = diag

(
1

σ2
1

, · · · , 1

σ2
M

)
,

[r]i = α̂i − ‖p̃+ ṽti − p̂i‖ − β̃ − ω̃ti, i = 1, · · · ,M. (26)

When the sequential TOA measurement noise variance σi
is identical, the selection strategy (25) can be simplified to the
form of minθ̃ r

Tr to save computation.

C. Step 3: Bias Compensation

The raw parameter estimate θ̃ obtained from the previous
step needs further refinement to become an optimal estimation.
We apply a WLS step using the residuals of all the TOA
measurements to refine this raw estimation.

We first express (1) in the collective form as

τ̂ = h(θ,pAN) + ε, (27)

where pAN = [pT1 , · · · ,pTM ]T is the collective form of the true
AN positions, τ̂ = [τ̂1, · · · , τ̂M ]T is the collective form of the
measurements, h(θ,pAN) is a function of θ and pAN as given
by

[h(θ,pAN)]i = ‖p+ vti − pi‖+β+ωti−βi, i = 1, · · · ,M,

and ε = [ε1, · · · , εM ]T .
Note that the raw estimate θ̃ is not far from the true

parameter θ when the measurement noise and the AN position
error are small. Thus, we apply the Taylor series expansion and
retain the first order term, and thereby obtain a linear equation
as

τ̂ = h(θ̃, p̂AN) +

(
∂h(θ,pAN)

∂θ
|θ=θ̃,pAN=p̂AN

)(
θ − θ̃

)
+

(
∂h(θ,pAN)

∂pAN
|θ=θ̃,pAN=p̂AN

)
δpAN + ε. (28)

where p̂AN = [p̂T1 , · · · , p̂TM ]T and δpAN = [δpT1 , · · · , δpTM ]T

are the collective form of all the known AN positions and their
errors, respectively.

We define the design matrix

J̃ ,
∂h(θ,pAN)

∂θ
|θ=θ̃,pAN=p̂AN

,

of which the i-th row is given by

[J̃ ]i,: =

[
∂h(θ,pAN)

∂θ
|θ=θ̃,pAN=p̂AN

]
i,:

=
[
−l̃Ti ,−l̃Ti ti, 1, ti

]
,

(29)
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l̃i =
p̂i − p̃− ṽti
‖p̂i − p̃− ṽti‖

, i = 1, · · · ,M , (30)

and define another matrix

S̃ ,
∂h(θ,pAN)

∂pAN
|θ=θ̃,pAN=p̂AN

=


l̃T1 0 · · · 0

0 l̃T2 · · · 0
...

...
. . .

...
0 0 · · · l̃TM

 .
(31)

We apply the WLS method to (28) and obtain the refinement
vector, denoted by ∆θ̃, as

∆θ̃ =
(
J̃TWJ̃

)−1

J̃TW
(
τ̂ − h(θ̃, p̂AN)

)
, (32)

where the weighting matrix

W =

(
E
[(
ε+ S̃δpAN

)(
ε+ S̃δpAN

)T])−1

=
(
C−1 + S̃ΣS̃T

)−1

, (33)

and

Σ =

Σ1

. . .
ΣM

 .
Then, the final parameter estimation, denoted by θ̃est =

[p̃Test, ṽ
T
est, β̃est, ω̃est]

T , is

θ̃est = θ̃ + ∆θ̃. (34)

The procedure of the new CFJLAS method is summarized
in Algorithm 1.

Algorithm 1 Closed-form JLAS (CFJLAS)
1: Input the noisy sequential measurements τ̂i, and the known

AN positions p̂i and clock offsets βi, i = 1, · · · ,M .
2: Step 1: Reparameterization: Square and difference the

TOA measurement equations, and form matrices Â, G
and vector ŷ based on (9), (10) and (11).

3: Step 2: Solution of intermediate variables: Solve the
quadratic equations (23) and (24) and select the root based
on (25) to obtain the raw parameter estimate θ̃.

4: Step 3: Bias compensation: Compute the refined parameter
θ̃est using (32) and (34).

5: Output the parameter estimate result θ̃est.

We can see from the steps of the new CFJLAS method that
we exploit the structure of the particular pair of nonlinear
equations. By doing so, we have developed a closed-form
solution, which solves the two intermediate variables analyti-
cally and then computes the parameters using the intermediate
variables. Compared with the method in [22], which jointly
estimates the newly employed variables and the parameters,
the new CFJLAS requires fewer measurements by nature since
it does not need to estimate the intermediate variables along
with the parameters.

IV. PERFORMANCE ANALYSIS

It is of significant interest to evaluate the achievable esti-
mation performance of this new CFJLAS approach. In this
section, we first derive the CRLB, which is a lower bound
on the achievable estimation error variance to quantify the
estimation performance. After that, a theoretical error analysis
is conducted to evaluate the estimation accuracy of the pro-
posed CFJLAS compared with the CRLB. Then, we analyze
the computational complexity in comparison with the iterative
ML method (LSPM-UVD) presented by [21].

A. CRLB Derivation

CRLB is the lower bound of the estimation accuracy of
an unbiased estimator. We use the CRLB as the benchmark
for the optimal JLAS estimation [5]. We first derive the Fisher
information matrix (FIM), denoted by F , to obtain the CRLB.

We consider the general case that the known AN positions
have errors. Let ζ = [θT ,pTAN]T . Then the likelihood function,
denoted by p(τ̂ , p̂AN|ζ), is

p(τ̂ , p̂AN|ζ) =
exp

(
− 1

2 (τ̂ − h(θ))
T
C (τ̂ − h(θ))

)
(2π)

M
2 |C|− 1

2

·
exp

(
− 1

2 (p̂AN − pAN)
T

Σ−1 (p̂AN − pAN)
)

(2π)
KM
2 |Σ| 12

. (35)

The FIM for ζ is then given by

F(ζ) = −E
[
∂2 ln p(τ̂ , p̂AN|ζ)

∂ζ∂ζT

]
=

[
JTCJ JTCS
STCJ STCS + Σ−1

]
, (36)

where

[J ]i,: =

[
∂h(θ)

∂θ

]
i,:

=
[
−lTi ,−lTi ti, 1, ti

]
, (37)

li =
pi − p− vti
‖pi − p− vti‖

, i = 1, · · · ,M . (38)

S =


lT1 0 · · · 0
0 lT2 · · · 0
...

...
. . .

...
0 0 · · · lTM

 . (39)

The CRLB for θ is the top-left (2K + 2) × (2K + 2)
submatrix of F−1(ζ), i.e.,

CRLB(θ) =
[
F−1(ζ)

]
1:2K+2,1:2K+2

=(
JTCJ − JTCS(STCS + Σ−1)−1STCJ

)−1
. (40)

B. Theoretical Error Analysis

In this subsection, we investigate the theoretical error of the
new CFJLAS.

We first look into the estimation error of Step 2: Solution
for Intermediate Variables. We consider the ideal case with no
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AN position error or TOA measurement noise and have the
following relation with a similar expression to (14) as

Aθ = y +G [λ1(θ), λ2(θ)]
T
, (41)

where A and y are the error-free version of Â and ŷ,
respectively.

We denote the estimation error by ∆θ =
[∆pT ,∆vT ,∆ω,∆β]T , the errors due to the AN position
error and measurement noise in A, y, λ1 and λ2 by ∆A, ∆y,
∆λ1 and ∆λ2, respectively. Under the small noise condition,
we ignore the second order terms of the AN position error
and measurement noise, and have

(A+ ∆A) (θ + ∆θ) =

(y + ∆y) +G [λ1(θ) + ∆λ1(θ), λ2(θ) + ∆λ2(θ)]
T
, (42)

where

[∆A]i,: =

2
[
δpTi − δpT1 , tiδpTi − t1δpT1 , ε1 − εi, t1ε1 − tiεi,

]
,

[∆y]i = 2
(
pTi δpi − pT1 δp1

)
− 2 (αiεi − α1εi) ,

i = 2, · · · ,M,

∆λ1(θ) = 2θTH1∆θ + ∆θTH1∆θ,

∆λ2(θ) = θTH2∆θ + ∆θTH2∆θ/2, (43)

and αi is the error-free version of α̂i.
We subtract (41) from (42), and come to(
A+ ∆A−G [2H1θ,H2θ]

T
)

∆θ

= G
[
∆θTH1∆θ,∆θTH2∆θ/2

]T
+ ∆y −∆Aθ. (44)

We show from (44) that the estimation error ∆θ is related
to ∆A, ∆y and θ, and is difficult to be obtained analytically.
We take the expectation for both sides of (44) and have(

A−G [2H1θ,H2θ]
T
)
E[∆θ]

= GE
[
∆ω2 − ‖∆v‖2,∆β∆ω −∆pT∆v

]T
. (45)

We show from (45) that the estimation bias E[∆θ] is
generally not zero, indicating a biased estimation in this step.
This is still a complex relation and is difficult to obtain
an analytical solution. Furthermore, numerical simulations in
Section V shows that the estimation error of Step 2 deviates
from the CRLB or is biased. However, the error will reduce
significantly and become sufficiently small when the number
of ANs increases, as shown in Table II, and thus ensure the
asymptotically optimal solution of Step 3.

We now study the estimation error of Step 3: Bias Com-
pensation. Introducing (27), we re-write (32) as

∆θ̃ =
(
J̃TWJ̃

)−1

J̃TW
(
τ̂ − h(θ̃, p̂AN)

)
=
(
J̃TWJ̃

)−1

J̃TW ·(
τ̂ − h(θ,pAN) + h(θ,pAN)− h(θ̃, p̂AN)

)
=
(
J̃TWJ̃

)−1

J̃TWε+(
J̃TWJ̃

)−1

J̃TW
(
h(θ,pAN)− h(θ̃, p̂AN)

)
. (46)

According to (27) and (28), we have

h(θ,pAN) = h(θ̃, p̂AN) + J̃ ·
(
θ − θ̃

)
+ S̃ · δpAN. (47)

By substituting (47) into (46), we come to

∆θ̃ =
(
J̃TWJ̃

)−1

J̃TWε+(
J̃TWJ̃

)−1

J̃TWJ̃
(
θ − θ̃

)
+(

J̃TWJ̃
)−1

J̃TWS̃ · δpAN

=
(
J̃TWJ̃

)−1

J̃TW
(
ε+ S̃ · δpAN

)
+ θ − θ̃. (48)

Based on (34), we re-organize (48) as

θ̃est − θ =
(
J̃TWJ̃

)−1

J̃TW
(
ε+ S̃ · δpAN

)
. (49)

The error expectation or estimation bias is

E
[
θ̃est − θ

]
= E

[(
J̃TWJ̃

)−1

J̃TW
(
ε+ S̃δpAN

)]
.

(50)

Taking (33) into account, we obtain the covariance of the
estimation error as

E
[(
θ̃est − θ

)(
θ̃est − θ

)T]
=
(
J̃TWJ̃

)−1

J̃TW ·

E
[(
ε+ S̃ · δpAN

)(
ε+ S̃ · δpAN

)T]
WJ̃

(
J̃TWJ̃

)−1

=
(
J̃TWJ̃

)−1

J̃TWE
[
εεT + S̃δpANδp

T
ANS̃

T
]
·

WJ̃
(
J̃TWJ̃

)−1

=
(
J̃TWJ̃

)−1

J̃TW
(
C−1 + S̃ΣS̃T

)
WJ̃

(
J̃TWJ̃

)−1

=
(
J̃TWJ̃

)−1

. (51)

We expand the inverse in (33) as

W = C −CS̃T (S̃TCS̃ + Σ−1)−1S̃TC, (52)

plug it into (51), and come to

E
[(
θ̃est − θ

)(
θ̃est − θ

)T]
=(

J̃CJ̃T − J̃CS̃(S̃TCS̃ + Σ−1)−1S̃TCJ̃
)−1

. (53)

Note that when the noise becomes small, J̃ is asymptoti-
cally the same as the true J . Similarly, S̃ is essentially the
same as S when the AN position error is small. Therefore, the
estimation bias E

[
θ̃est − θ

]
given by (50) goes to zero, and

the error covariance given by (53) reaches the CRLB given by
(40), under the small noise and small AN error condition.
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C. Complexity Analysis

Following [36], a floating point addition, multiplication or
square root operation for real numbers can be done in one
flop. In this subsection, we estimate the complexities of the
CFJLAS and the iterative method by counting the flops of the
major operations.

We denote the total complexity of the CFJLAS by D. As
part of D, the complexity caused by the step of solving the
equations (23) and (24) is fixed, not related to the position
dimension K or the number of ANs M . Other complexities
lie in finding the proper roots in (25), raw estimate in (15) and
WLS refinement in (32). The detailed complexity analysis is
given in Appendix B. We count the total number of flops as
approximated by

D ≈32K3 + 16K2M + 104K2 + 62KM+

148K + 65M + 697, (54)

where K is the dimension of the position, and M is the number
of ANs.

For the iterative ML method (LSPM-UVD) in [21], the
total complexity is determined by the computation in each
iteration, denoted by L, and the number of iterations, denoted
by n. The major operations in each iteration are comprised
of matrix multiplication and matrix inversion. Each iteration
has the same complexity. Thus, the total complexity of the
iterative method is nL. The detailed analysis is presented in
Appendix B. The number of flops for L is approximated by

L ≈ 16K3 + 8K2M + 56K2 + 22KM + 64K + 16M + 24.
(55)

We can see that the proposed new CFJLAS method has a
complexity of D, which is the function of the problem size K
and M . For the iterative method, the complexity is nL, which
will grow as the number of iterations n increases in addition to
the problem size K and M . In other words, given the problem
size, the complexity of the new CFJLAS is fixed while that of
the iterative method will grow with an increasing number of
iterations. This indicates a more controllable and predictable
complexity of the new CFJLAS than the conventional iterative
method.

Furthermore, we substitute K = 2 and M = 8 into (54) and
(55) and obtain that D = 3689 and L = 1240. We can see
that L and D/3 are approximately the same. Therefore, we can
expect that the new CFJLAS method has lower computational
complexity when the number of iteration exceeds 3 for the
iterative method. This will be shown by simulation in Section
V.

V. NUMERICAL SIMULATION

In this section, numerical simulations are carried out to
evaluate the performance of the new CFJLAS method. The
iterative ML method (LSPM-UVD) [21] is selected for com-
parison. The computational platform running the following
simulations is Matlab R2019b on a PC with Intel Core i5-
8400 CPU @2.8GHz and 32G RAM.

A. Performance Metrics

The root mean square error (RMSE) is used to evaluate
the performance in the following numerical simulations. The
RMSEs of the position p, velocity v, clock offset β and clock
skew ω are given by

RMSEp =

√√√√ 1

N

N∑
1

‖p− p̃est‖2,

RMSEv =

√√√√ 1

N

N∑
1

‖v − ṽest‖2,

RMSEβ =

√√√√ 1

N

N∑
1

‖β − β̃est‖2,

RMSEω =

√√√√ 1

N

N∑
1

‖ω − ω̃est‖2, (56)

where N is the total number of Monte-Carlo runs, the variables
with “∼” overhead are the estimated parameters from the
proposed CFJLAS method.

CRLB is used as a benchmark to evaluate the lower bound
of the accuracy. In the simulation scene, the theoretical lower
bound of the position, the velocity, the clock offset and clock
skew are computed by

errorp =

√√√√ 1

N

N∑
1

K∑
i=1

[CRLB]i,i,

errorv =

√√√√ 1

N

N∑
1

2K∑
i=K+1

[CRLB]i,i,

errorβ =

√√√√ 1

N

N∑
1

[CRLB]2K+1,2K+1,

errorω =

√√√√ 1

N

N∑
1

[CRLB]2K+2,2K+2, (57)

where [·]i,j is the entry at the i-th row and the j-th column of
a matrix.

B. Simulation Settings

We create a 2D simulation scene with a JLAS system
comprised of 12 ANs and 1 UN as shown by Fig. 2. It
resembles the drone formation flight in the real world. The
ANs represent the drones that form the relative spatiotemporal
coordinate system and the UN represent the target to be
located. We consider four different situations with 7, 8, 10 and
12 ANs in the following subsection, as given by the figure.
The stand deviation (STD) of the x and y-axis errors of all
the known AN positions are set to 0.5 m. The UN is initially
placed near the center of this formation. The relative speed
between the UD and ANs are randomly set from U(0, 50) m/s,
which is beyond the motion of a consumer-level quadrotor. We
allocate different time slots to the ANs with an interval of 5 ms
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Fig. 2. ANs and UN in the simulation scene. The combinations of the ANs
used in the four different simulation situations are shown in the figure.

between successive message transmissions. The initial clock
offset and initial clock skew of the UN for each simulation run
are set as random variables, drawn from uniform distributions,
i.e., β ∼ U(−10−5, 10−5) s, and ω ∼ U(−20, 20) part per
million (ppm), respectively.

For the iterative method [21], the maximum number of itera-
tions is set to 10 and the convergence threshold is set to 0.01 m,
i.e., the iteration stops if the increment of the (k+ 1)-th itera-
tion ‖[p̃Test(k+1), β̃est(k+1)]T−[p̃Test(k), β̃est(k)]T ‖ < 0.01.
In each iteration, a matrix inversion is conducted to estimate
the parameter increment. Before inversion, we compute the
reciprocal condition number (rcond) to determine if the matrix
is singular or not. Specifically, we set the threshold of the
reciprocal condition number to 10−15, i.e., if rcond < 10−15,
the matrix is considered singular and the iteration stops.

C. Estimation Performance with Different Numbers of ANs

We simulate four situations, i.e., 7 ANs (black-triangle ANs
in Fig. 2), 8 ANs (7-AN plus the cyan-dot AN), 10 (8-AN plus
blue-square ANs) and 12 ANs (10-AN plus magenta-diamond
ANs). In this 2D scene, 2K + 3 = 7 is the minimum number
of measurements required by the new CFJLAS method. We
set the TOA measurement noise σ varying from 0.1 m to 10
m with a step of 1.1 m. At each step, we conduct 100,000
Monte-Carlo simulations.

Fig. 3 illustrates the estimation error results with varying
measurement noise. The theoretical CRLB is computed based
on (57), and the RMSEs are the average of 100,000 Monte-
Carlo runs based on (56). For the iterative method, to obtain
the optimal ML result, the initial guess of the UN’s parameters
is set to the ground truth. The results of the iterative method
reach the CRLB in all the situations with different numbers
of ANs and thus are not shown for the situations with more
than 7 ANs for better illustration.

We take Fig. 3 (a) as an example. It can be seen that in
the 7-AN situation, the positioning accuracy of the proposed
CFJLAS method reaches the CRLB when the measurement
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Fig. 3. Estimation RMSEs vs. measurement noise. The iterative method
is initialized with the ground truth to ensure the optimal estimation result.
The RMSEs of the new CFJLAS method reach the CRLB under the small
noise condition. With an increasing number of ANs, the new CFJLAS method
provides smaller estimation errors even when the measurement noise grows.

noise is under 1.2 m. When the measurement noise becomes
large, the positioning error will deviate from the CRLB and
the new CFJLAS method may produce worse solutions. With
an increasing number of ANs to 8, 10 and 12, the position
error of the new CFJLAS remains close to the CRLB within
a larger range of the measurement noise. In addition, with
more ANs, the position error becomes smaller given the same
measurement noise. The clock errors have the same pattern as
the position errors. We also verified that the estimation errors
for the velocity and clock skew have the same pattern, which
are not shown for better illustration. These results show that
i) with the minimal number of ANs, the new CFJLAS method
can achieve the CRLB under a very small noise condition, and
ii) increasing the number of ANs can significantly reduce the
estimation errors and keep the errors close to the CRLB when
the measurement noise increases.

In order to evaluate how the CFJLAS’ intermediate steps
work and examine the measures of the variance, we take
a close look at some error statistics for each situation. We
select the 90 percentile, 10 percentile and RMSE for the four
situations with 7, 8, 10, and 12 ANs when the measurement
noise σ = 5.6 m, and list them in Table II. In addition, we
use a threshold of 3

√
CRLB to determine if the localization

result is correct or not, i.e., if the estimated position error is
smaller than 3

√
CRLB, the estimation result is determined to

be correct.
As can be seen from Table II, the RMSEs of Step 2 are

larger than the CRLB, showing the biased estimation in Step 2.
With more ANs, the errors including the 90 percentile, 10 per-
centile and the RMSE of Step 2 and the final results decrease,
and the correctness rate increases, showing an improvement in
the estimation performance. From the 90 percentile errors, and
the correctness rate, we can see that there is a small probability
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TABLE II
POSITION ERROR STATISTICS FOR CFJLAS WITH DIFFERENT

NUMBER OF ANS

Number of ANs 7 8 10 12

Step 2
90 percentile (m) 245.59 35.93 19.08 14.49
10 percentile (m) 10.84 5.06 3.38 2.84

RMSE (m) 357.93 22.40 12.55 9.58

Final
90 percentile (m) 59.35 31.71 15.74 13.39
10 percentile (m) 7.57 4.83 2.95 2.54

RMSE (m) 344.15 19.71 10.18 8.67√
CRLB (m) 31.39 19.46 10.17 8.67

Correctness rate (%) 98.30 99.76 99.92 99.92

Note: In all four situations with different number of ANs, the measure-
ment noise is set to σ = 5.6 m. The correctness rate is the percentage
of the simulation runs in which the final position error< 3

√
CRLB.

The 90 percentile, 10 percentile errors and RMSEs of Step 2 are
larger than those of the final results and the CRLB, showing a biased
estimation in Step 2. With an increasing number of ANs, this RMSE
decreases dramatically. The 90 percentile errors of both Step 2 and the
final results as well as the correctness rate show that the new CFJLAS
has a small probability to generate large error results.

that the new CFJLAS method produces large error results, even
in the situation with the minimal 7 ANs. This demonstrates
the effectiveness of the new method in JLAS estimation.

D. Comparison with Iterative Method

Note that the results of the iterative method shown in Fig. 3
is in the ideal case with ground truth initialization. In practice,
we do not know the true values of the parameters to be
estimated and thus cannot initialize the iterative method with
the ground truth.

To compare the performance of the two methods, we
initialize the iterative method by different position errors with
STD=10, 50, 100, 150 and 200 m. We use the 8-AN case for
this simulation. We run 100,000 Monte-Carlo simulations at
each measurement noise step. Other settings remain the same.

We note from the simulation settings that there are three
cases for the iterative method to stop, i.e.,
(a) Convergence: the norm of the parameter estimation incre-
ment in the current iteration is smaller than 0.01 m,
(b) Singular Matrix: the matrix to be inverted is singular, i.e.,
rcond < 10−15,
(c) Number of Iterations Exceeded: the number of iterations
exceeds 10.
In addition, we use the same threshold 3

√
CRLB to determine

the correct result, denoted by “(0) Correct Estimate”. We first
consider the Convergence case (case (a)) only and illustrate the
estimation errors in Fig. 4. The probability of Correct Estimate
or correctness rate is shown in Fig. 5.

It can be seen from Fig. 4 that the position estimation
errors of the CFJLAS reach the CRLB when the measurement
noise is small. In comparison, the iterative method shows a
different performance depending on the initial position error.
When the iterative method is initialized with small position
errors (STD=10 and 50 m), the positioning results reach the
CRLB. When the initial position errors are large (STD=150
and 200 m), the positioning results deviate from the CRLB
even when the iterative method converges. The results of the
iterative method with STD=100 m initialization error look the

Fig. 4. Position RMSE vs. measurement noise. The position estimation error
for the iterative method is the average of the Convergence case only. The
iterative method is initialized with random position error of different STDs.
At each measurement noise step, 100,000 simulations are run. The RMSEs
of the iterative method initialized with large errors are much larger than that
of the CFJLAS. More details on the results inside the brown ellipse are listed
in Table III.

same as those with STD=10 and 50 m. This is because only
the results from the Convergence case are shown. And the
actual performance when STD=100 m is inferior compared
with when STD=10 and 50 m, as will be explained in the
next two paragraphs.

As can be seen from Fig. 5, the correctness rate of the
CFJLAS method is close to 1 and is similar to that of the
iterative method with the initial error STD=10 and 50 m. The
correctness rate of the iterative method becomes smaller when
STD=100 m and above, showing a performance degradation
with larger initial position errors.

We take a close look at the results of the iterative method
when measurement noise σ = 5.6 m, which are within the
brown ellipse in Fig. 4. In the simulation runs for every
situation with different number of ANs, we count the number
of results that fall in the (a), (b) and (c) cases, and list them
in Table III. As can be seen from the table, the numbers of
results in the Correct Estimate and the Convergence cases both
decrease when the initial position error grows. In addition,
more results for STD=100 and above fall into (b) Singular
Matrix and (c) Number of Iterations Exceeded cases. The
table shows that the iterative method depends on proper
initialization, and poor initial values will cause large errors
in the final estimation results.

E. Computational Complexity

To evaluate the computational complexity, we compare the
new CFJLAS method and the iterative method. We notice
that the iterative method requires more iterations or more
computational complexity when the initial guess deviates from
the true parameters. However, the complexity of the new
CFJLAS is stable as analyzed in Section IV-C.

We simulate the case with inaccurate initialization for the
iterative method. We fix the measurement noise at σ = 2 m,
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TABLE III
NUMBER OF RESULTS FOR ALL CASES OF THE ITERATIVE METHOD WITH DIFFERENT INITIAL ERROR

Initial position error STD (m) 10 50 100 150 200
(0) Correct Estimate (error< 3

√
CRLB) 99,811 99,801 99,558 95,958 86,887

(a) Convergence (increment norm< 0.01 m) 100,000 100,000 99,750 96,096 86,917
(b) Singular Matrix (rcond < 10−15) 0 0 81 1,329 4,432
(c) Number of Iterations Exceeded (≥ 10) 0 0 169 2,575 8,651

Note: The measurement noise σ =5.6 m. When the initial position error increases, the numbers of results in
cases (0) and (a) reduce, and the numbers of results in cases (b) and (c) increase. This shows a dependence
on the initialization error, i.e., a degradation in estimation performance with a growing initialization error.
The numbers in cases (a), (b) and (c) have a sum of 100,000, showing that they cover all the cases for
the iterative method.

Fig. 5. Correctness rate of CFJLAS and iterative method. The threshold
to determine the correctness is set to 3

√
CRLB. The iterative method is

initialized with different STDs of position error. 100,000 Monte-Carlo runs
are done for each noise step. The proposed CFJLAS method has a correctness
rate above 99.7%, similar to that of the iterative method with initial STD=10
and 50 m. The correctness rate of the iterative method decreases significantly
when the initial position error STD becomes larger than 100 m.

and vary the error STD of the initial position for the iterative
method from 10 to 200 m. The 8-AN case is used. At each
initial STD step, we run 100,000 Monte-Carlo simulations for
each of the two methods.

The computation time of both methods are depicted in Fig. 6
(a). The average number of iterations for the iterative method
from 100,000 Monte-Carlo runs is shown in Fig. 6 (b). We
can see from the figure that the number of iterations increases
when the initial guess has larger error. With inaccurate initial-
ization, the computational complexity of the iterative method
is growing and is larger than that of the CFJLAS. The result
is consistent with the complexity analysis in Section V-E, and
shows the superiority of the CFJLAS.

Nowadays, IoT devices with more functionalities and lower
power consumption are developing fast. The reduced complex-
ity and independence on initial guess make the new CFJLAS
method more appealing to the power and resource constrained
applications such as positioning for wearable devices, location-
based service on smartphones, and autonomous guidance for
miniature drones.

Fig. 6. (a) Computation time (CFJLAS & Iterative) vs. initial position
error. (b) Average number of iterations (Iterative) vs. initial position error.
The measurement noise σ is fixed at 2 m. The computation time and the
average number of iterations are the sum and average of 100,000 simulations,
respectively. The number of iterations and computation time of the iterative
method grow when the initial guess deviates from the true value. The
computation time of the CFJLAS does not change with initial position error
and is smaller than that of the iterative method.

VI. CONCLUSION

We propose a new closed-form method, namely CFJLAS, to
solve the JLAS problem for the moving UNs using sequential
one-way TOA measurements in a broadcast JLAS system. In
this method, we transform the nonlinear relationship between
the sequential TOA measurements and the UN’s position,
velocity, clock offset and clock skew parameters by squaring,
differencing and employing two intermediate variables. Then,
we reparameterize the problem with the two intermediate vari-
ables and convert it to two simultaneous quadratic equations,
which can be solved analytically. After analytically obtaining
the solution of the intermediate variables, an LS method is
applied to roughly estimate the parameters of the moving UNs.
Finally, a WLS step is applied to obtain the final optimal
estimation.

We derive the CRLB of the estimation errors, analyze the
theoretical error of the new CFJLAS method, and show that
the new method reaches the CRLB under the small noise
condition. We show that when the problem size is given, the
complexity of the new CFJLAS is fixed while the conventional
iterative method has a growing complexity with an increasing
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number of iterations. Compared with the iterative method, the
new closed-form method does not require initial guess, obtains
the solution in one shot, and thus has the advantage of low
complexity.

Simulations in the 2D scene verify that the JLAS estimation
accuracy of the new CFJLAS reaches the CRLB. Results also
show that the new method does not require initialization and
can obtain a high-accuracy estimation under the small noise
condition, compared with the iterative method, which needs
a proper initialization to obtain the correct result. Moreover,
unlike the iterative method whose complexity increases with
the number of iterations, the proposed CFJLAS is non-iterative
and has a low computational complexity.

APPENDIX A
SOLUTION TO QUADRATIC EQUATIONS (23) AND (24)
The solution to a pair of quadratic equations such as (23)

and (24) can be found in [35]. For the convenience of the
interested readers, we put the method here in this appendix.
Note that the notations used herein are only effective within
this appendix.

We replace the unknowns with x and y, respectively, and
rewrite the two quadratic equations of (23) and (24) as

a1x
2 + b1xy + c1y

2 + d1x+ e1y + f1 = 0, (58)

a2x
2 + b2xy + c2y

2 + d2x+ e2y + f2 = 0. (59)

We first remove the term y2 by multiplying c1 and c2 to
(59) and (58), respectively, and then subtracting the resulting
equations. After re-organizing, we obtain

(t1x+ t2)y = t3x
2 + t4x+ t5, (60)

where
t1 = b1c2 − b2c1, t2 = e1c2 − e2c1,

t3 = −a1c2 + a2c1, t4 = −d1c2 + d2c1,

t5 = −f1c2 + f2c1.

Here are two cases. One is t1x + t2 = 0 and the other is
t1x+ t2 6= 0.

Case 1: t1x+ t2 = 0
If t1 = 0, then t2 must equal to zero. In this sub-case, the

problem reduces to solving the equation of

t3x
2 + t4x+ t5 = 0. (61)

After substituting the root of x from (61) into (59), the root
of y can be found.

If t1 6= 0, then we need to test if −t2/t1 is the root of x by
substituting it into (61). If it satisfies (61), then the root of y
can be found by substituting x into (59). Otherwise, there is
no solution.

Case 2: t1x+ t2 6= 0
In this case, we have

y = (t3x
2 + t4x+ t5)/(t1x+ t2). (62)

By substituting (62) into (59), we come to a quartic equation
in x as

αx4 + βx3 + γx2 + λx+ µ = 0, (63)

where
α = a1t

2
1 + b1t1t3 + c1t

2
3,

β = d1t
2
1 + 2a1t1t2 + b1t1t4 + b1t2t3 + 2c1t3t4 + e1t1t3,

γ = c1(t24 + 2t3t5) + a1t
2
2 + f1t

2
1 + b1t1t5

+b1t2t4 + 2d1t1t2 + e1t1t4 + e1t2t3,

λ = d1t
2
2 + b1t2t5 + 2c1t4t5 + e1t1t5 + e1t2t4 + 2f1t1t2,

µ = f1t
2
2 + e1t2t5 + c1t

2
5.

Solution of the quartic equation (63) can be found in the
mathematical literature such as [37], [38]. We simply write
the solution as follows in this appendix without derivation for
those interested readers.

There are at most four roots for this equation, either real or
complex values. The general form of the roots is given by

x(1), x(2) = − β

4α
− s± 1

2

√
−4s2 − 2p+

q0
s

,

x(3), x(4) = − β

4α
+ s± 1

2

√
−4s2 − 2p− q0

s
,

(64)

with the variables expressed as follows,

s =
1

2

√
−2

3
p+

1

3α
(q1 +

∆0

q1
), p =

8αγ − 3β2

8α2
,

q0 =
β3 − 4αβγ + 8α2λ

8α3
, q1 =

3

√
∆1 +

√
−27∆

2
,

∆ = −∆2
1 − 4∆3

0

27
, ∆0 = γ2 − 3βλ+ 12αµ,

∆1 = 2γ3 − 9βγλ+ 27β2µ+ 27αλ2 − 72αγµ. (65)

APPENDIX B
COMPLEXITY ANALYSIS FOR CFJLAS AND ITERATIVE

METHOD

We assume that a single addition, multiplication or square
root operation for real numbers can be done in one flop,
following [36]. By counting the flops of the major operations
in the CFJLAS and the iterative method, their complexities
can be estimated.

A. CFJLAS Method

For the CFJLAS method, we first investigate the complexity
of the raw estimate (15) and the WLS compensation (32).
Following [39], we use 2k3, where k is the number of rows
(or columns) of a square matrix, to approximate the number
of flops required for the matrix inverse operation. The number
of flops required by (15) is

2(2K + 2)2(M − 1) + 2(2K + 2)3+

2(2K + 2)2 + 2(2K + 2)(M − 1) + 5M − 5

=16K3 + 8K2M + 48K2 + 20KM + 48K + 17M + 15,
(66)

where K is the dimension of the position and M is the number
of ANs.
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Considering that W is a diagonal matrix, the number of
flops required by (32) is

2(2K + 2)2M + 2(2K + 2)3 + 2(2K + 2)M+

2(2K + 2)2 + (2K + 2)M + 2M

=16K3 + 8K2M + 56K2 + 22KM + 64K + 16M + 24.
(67)

We then look into the complexity of Step 2: Solution for
Intermediate Variables given by Section III-B. The coefficients
of the equations (23) and (24) are obtained by the equations
below them. We take a1 as an example. By observing H1,
we can see that there are K + 1 entries with the value of 1.
Therefore, a1 = [U ]T:,1H1[U ]:,1 takes (K+1) multiplications
and K additions, and thus (2K + 1) flops in total. All the six
coefficients with the subscript of “1” are similar and they take
6(2K + 1) flops in total for a1 ∼ f1. We also notice that H2

has (2K + 2) entries of one and all other entries of zero in
it. Thus, the total number of flops for computing a2 ∼ f2 is
6(4K + 3). Hence, we have

6(6K + 4) (68)

flops for computing the coefficients of the two equations.
We then count the flops of computing the coefficients

in (60), and obtain 15. The number of flops required by
computing the coefficients in (63) is 81. For finding the roots
of x in (64), there may be operations of complex numbers. We
consider there are 2 flops for a complex addition and 6 flops for
a complex multiplication or square root. Therefore, solution
for the roots of x in (64) takes 4×38 = 152 flops. Computing
the variables in (65) requires 278 flops. Then, computing the
roots of y in (62) requires 4× 28 = 112 flops. Hence, finding
the roots of the quadratic equations (23) and (24) needs

15 + 81 + 152 + 278 + 112 = 638 (69)

flops.
Root selection given by (25) needs to compute the resid-

ual as given by (26). Computing p̃ + ṽti − p̂i needs K
multiplications and 2K additions. The norm operation needs
K multiplications, (K − 1) additions and 1 square root.
Thus, there are 5K flops for each measurement. We need 3
additions and 1 multiplications to compute one residual [r]i.
Considering M measurements and at most 4 roots from the
two equations, we need

4M(5K + 4) (70)

flops to compute all the residuals. The root selection in (25)
has 2M multiplications and (2M − 1) additions. For 4 roots,
there are

4(4M − 1) (71)

flops in total.
As a result, we obtain the total number of flops by summing

(66) to (71) as

D ≈32K3 + 16K2M + 104K2 + 62KM+

148K + 65M + 697 (72)

B. Iterative Method
The complexity in a single iteration, denoted by L, is mainly

comprised of matrix multiplication and matrix inversion. Fol-
lowing the iterative method that estimates position, velocity,
clock offset and skew in [21], the matrix multiplication and
matrix inverse operations are similar to that of (32). Therefore,
it has the same expression as (67), i.e.,

L ≈ 16K3 + 8K2M + 56K2 + 22KM + 64K + 16M + 24.
(73)

In most of the time, the iterative method requires more
than one iteration to obtain the correct result. If there are n
iterations, then the total complexity is nL.
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