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Structure Parameter Optimized Kernel Based Online
Prediction With a Generalized Optimization

Strategy for Nonstationary Time Series
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Abstract—In this paper, sparsification techniques aided online
prediction algorithms in a reproducing kernel Hilbert space are
studied for nonstationary time series. The online prediction algo-
rithms as usual consist of the selection of kernel structure param-
eters and the kernel weight vector updating. For structure param-
eters, the kernel dictionary is selected by sparsification techniques
with selective online modeling criteria, and the symmetric kernel
covariance matrix is intermittently optimized with the covariance
matrix adaptation evolution strategy (CMA-ES). This intermittent
optimization can not only improve the kernel structure’s flexibility
by utilizing the cross relatedness of input variables, but also partly
alleviate the prediction uncertainty arisen by the kernel dictionary
selection for nonstationary time series. In order to sufficiently
capture the underlying dynamic characteristics in prediction-error
time series, a generalized optimization strategy is designed to se-
quentially construct the kernel dictionary selection and weight vec-
tor updating procedures in multiple kernel connection modes. The
generalized optimization strategy is highly flexible and effective,
and it is capable of enhancing the ability to adaptively track the
changing dynamic characteristics due to nonstationarity. Finally,
in the perspective of top-level design, we summarize the information
interaction between the network topology in kernel regressors and
the optimization of inner model parameters. Numerical simulations
demonstrate that the proposed approach has superior prediction
performance for nonstationary time series.

Index Terms—Covariance matrix adaptation evolution strategy,
kernel adaptive filter algorithm, nonstationary time series, online
prediction, prediction-error time series, radial basis function
neural network.
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I. INTRODUCTION

ONLINE prediction of nonstationary time series is a par-
ticularly challenging and pervasive problem in diverse

fields of signal processing, machine learning, process control,
extreme climate analysis, and neuroscience. Various online
learning scenarios with inlier noise, noisy inliers, outliers, chaos,
unknown dynamics, etc. have placed challenging requirements
on the sequential decision making strategy for nonstationary
time series [1]. Conventional approaches and their parameters
updating mechanisms may be insufficient to track the changing
underlying dynamic characteristics due to nonstationarity [2].
Specifically, in order to guarantee good prediction performances,
the online prediction model must be adaptively adjusted based on
the underlying dynamic characteristics, so as to properly balance
the local characteristics and global characteristics. Moreover,
the updating procedure within the online prediction model must
be well organized, and is capable of determining the types of
prediction functions and sequentially updating specific inner
model parameters [3].

In the past several decades, kernel based online approaches
in a reproducing kernel Hilbert space have been extensively
studied, since the problem may become easier to solve with the
so-called “kernel trick” if the observed input data are mapped
onto a high-dimensional Hilbert space [4]. According to the
representer theorem [5], the optimal solution to minimize the
regularized empirical risk can be expressed as weighted kernels
that compose of all the available training samples. However,
in an online learning scenario, the dimension of the estimated
weight vector will be continuously increasing along with the
sequentially arrived data, which not only brings intractable com-
putational complexity issue but also may degrade the generaliza-
tion ability and hence decrease prediction performance [6], [7].
Therefore, in kernel based online modeling, the sparsification
procedure is essential.

The sparsification techniques for online kernel modeling can
be implemented in a supervised or unsupervised way, to properly
select kernel dictionary. The unsupervised sparsification tech-
niques construct appropriate kernel dictionary by just using the
observed input data based on some selective modeling criteria,
such as the approximate linear dependency (ALD) [7], [8], the
coherence criterion [9], the distance criterion [10], [11], and
their combinations [1], [12]. The supervised sparsification tech-
niques adopt a variety of criteria that also require the observed
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output data, such as the two-part novelty condition of novelty
criterion [13], the subjective information measure of surprise
criterion [14], the changed significance of loss function [15],
and the orthogonal forward selection (OFS) procedure for online
tunable gradient radial basis function (RBF) networks [16]. A
particular sparsification approach is based on the subset selection
of the training samples, which can also be viewed as an indirect
approach to constructing the kernel dictionary, such as the
information-theoretic learning (ITL) criterion [17], [18]. More-
over, some feature selection approaches in time series analysis
also can be easily converted to sparsification techniques [19],
including the emerging shapelet-based methods which provide
a supplement to the kernel-based approaches due to their time
series segments selection procedure [20], [21].

Within the aforementioned sparsification techniques, there are
two representative approaches for online prediction. One is the
kernel adaptive filter (KAF) approach [22], and the other one
is the online tunable RBF approach with the fixed kernel dic-
tionary size [23], [24]. We will review these two representative
approaches, which motivates us to establish the new structure
parameter optimization approach and generalized optimization
strategy that can be directly implemented on or partly combined
with the aforementioned online learning algorithms. Comparing
with other online learning approaches, the sparsification tech-
niques impose less computation complexity while improving
generalization. For the comparison of RBF approaches with
other neural networks, the reader is referred to [16], [23], [24].
For the comparison of sparsification techniques aided KAF
approaches with other KAF variants, the reader is referred to [1],
[12], [22].

In addition to the kernel dictionary, the other structure param-
eter of online kernel modeling is the kernel covariance matrix
in each kernel, which takes effect in the metric space that is
formed by the observed input data. Without loss of generality,
the Gaussian kernel is used as the default one in this paper.
To prevent from inducing intractable computational tasks, most
Gaussian kernel based online modeling approaches choose to
use restricted forms of kernel covariance matrix, including the
isotropic matrix, which is proportional to the identity matrix,
and the diagonal matrix, which can only capture axis-aligned
dynamic characteristics [7], [16], [25]. Comparing to the re-
stricted forms, the general symmetric covariance matrix con-
siders the cross relatedness of input variables, and it greatly
improves the kernel structure’s flexibility as well as the online
prediction modeling performance at the expense of increased
computational complexity in optimizing the kernel covariance
matrix. The general symmetric kernel covariance matrix can
be interpreted as a coordinate transformation of shifting and
rotating with respect to the original coordinates [26], [27].

The covariance matrix adaptation evolution strategy (CMA-
ES) [27] can be adopted to optimize the kernel covariance matrix
for online modeling in the following two ways. Firstly, the
evolving mechanism for its covariance matrix of the Gaussian
distribution in the CMA-ES can be adopted or extracted as the
optimization or evolution mechanism for the kernel covariance
matrix. However, the covariance matrix of the CMA-ES is very
different in nature to the kernel covariance matrix in online

prediction modeling [28], and therefore the control parameters of
the selection and recombination operators in the CMA-ES must
be carefully modified to match with the online prediction mod-
eling procedure. The other approach directly uses a CMA-ES al-
gorithm to optimize the kernel covariance matrix based on a pre-
diction performance related objective function, which preserves
the well-designed evolution strategy of the CMA-ES [29]. We
also use the CMA-ES directly to optimize the symmetric kernel
covariance matrix in this paper, and its effects on the prediction
performance, in terms of both the sparsification techniques and
weight vector updating approaches, are studied. The intermittent
optimization of symmetric kernel covariance matrix using the
CMA-ES not only improves the kernel structure’s flexibility by
utilizing the cross relatedness of input variables but also partly
alleviates the prediction uncertainty that arisen by the kernel
dictionary selection for nonstationary time series.

In order to sufficiently and timely capture the underlying time-
varying dynamic characteristics in nonstationary time series, a
variety of optimization strategies can be implemented to update
both the structure parameters and weight vector. One represen-
tative approach to track the nonstationarity is organically com-
bining the construction and elimination procedures of the kernel
dictionary selection, which can be achieved by properly setting
the sparsification criteria [30], [31]. Another representative ap-
proach is intermittently replacing the elements of existing kernel
dictionary with new arrived input data, and hence it brings the
beneficial property of relative-fixed kernel dictionary size [16],
[24], [32]. For the weight vector adaptation procedure, forgetting
mechanisms are typically introduced into the objective function
to enhance the tracking ability, such as the sliding-window
approach [33], the exponential state forgetting factor [34], and
the multi-innovations based approaches [35], [36].

In this paper, inspired by the prediction-error compensation
principle and the connectionist representational schemes [37],
[38], we design a generalized optimization strategy to sequen-
tially construct the kernel dictionary selection and weight vec-
tor updating procedures in multiple kernel connection modes.
Specifically, three connection modes of kernel regressors are
established to organically combine their complementary pre-
diction abilities by using the time-varying prediction-error time
series. This generalized optimization strategy is highly flexible
and effective, thus enhances the ability to adaptively track the
changing dynamic characteristics due to nonstationarity. We
further discuss the information interaction between the network
topology in kernel regressors and the optimization of inner
model parameters, in the proposed design. In summary, the main
contribution of this paper is to propose a structure parameter
optimized kernel based online prediction approach with a gener-
alized optimization strategy for nonstationary time series, which
includes the following specific aspects.

1) By analyzing the existing sparsification techniques in
sequential decision making, the uncertainty caused by
nonstationarity in both kernel dictionary selection and
weight vector updating is revealed.

2) In the light of CMA-ES, the intermittent optimization of
the real symmetric form of kernel covariance matrix is
realized, which not only improves the kernel structure’s
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flexibility by utilizing the cross relatedness of input vari-
ables but also partly alleviates the prediction uncertainty
that arisen by the kernel dictionary selection for nonsta-
tionary time series.

3) A generalized optimization strategy is designed to se-
quentially construct the kernel dictionary selection and
weight vector updating procedures in multiple kernel con-
nection modes, which is highly flexible and effective,
thus enhances the ability to adaptively track the changing
dynamic characteristics due to nonstationarity.

4) An online algorithm with the generalized optimization
strategy and the intermittent optimization of kernel co-
variance matrices is designed to improve information in-
teraction of key kernel parameters, and its effectiveness in
enhancing the prediction performances for nonstationary
time series is validated in numerical simulations.

Section II analyzes existing online kernel algorithms, which
also provides the motivation for our current work. In the context
of CMA-ES, Section III realizes the intermittent optimization
of the symmetric Gaussian kernel covariance matrix. The gen-
eralized optimization strategy with multiple kernel connection
modes is presented in Section IV. Section V summarizes the
proposed online modeling approach and discusses the potential
benefits and some unsolved issues. Section VI examines the
effectiveness of the proposed approach with numerical simula-
tions. The paper concludes in Section VII.

II. ANALYSIS OF SPARSIFICATION TECHNIQUES BASED ONLINE

KERNEL MODELING

In this section, representative online prediction algorithms of
sparsification techniques are reviewed. By analyzing these spar-
sification techniques in sequential decision making, the unified
recursive operation of kernel dictionary selection procedures
is realized, and the differences of weight vector updating pro-
cedures among the representative online prediction algorithms
are compared. Most importantly, it reveals that in order to
sufficiently capture the underlying dynamic characteristics in
highly nonstationary environments, the uncertainties arisen in
both kernel dictionary selection and recursive weight vector
updating necessitate new generalized optimization strategy for
kernel parameter optimization.

Assume that we are sequentially given a stream of input-
output data pairs {xn, yn}Nn=1, with the px-dimensional input
time series xn ∈ Rpx×1 and the corresponding output time
series yn ∈ R. The input-output data can be denoted as X =
[x1 · · ·xN ]T ∈ RN×px and y = [y1 · · · yN ]T ∈ RN×1. We de-
scribe the mapping procedure as

ϕ : X → H, x → ϕ(x) (1)

where the high- or infinite-dimensional Hilbert space H =
{ϕ(x)|x ∈ X}. A linear combination of the selected kernels
at time step n can be obtained as the prediction function

f(x) =
m∑
i=1

α̃ik (x̃i,x) (2)

where D(n) = {x̃i}mi=1 denotes the selected kernel dictionary
with the size m � N , the reproduced kernel function is defined
as k(xi,xj) = 〈ϕ(xi),ϕ(xj)〉, and the m-dimensional weight
vector is given by α̃ = [α̃1 · · · α̃m]T.

A. Procedure of Kernel Dictionary Selection

1) KAF Sparsification Criteria: The ALD criterion [7] con-
siders the linear dependency between the selected kernels in the
form of ϕ(x) and it is defined as

δ1(n) = min

∥∥∥∥∥
m∑
i=1

αi(n)ϕ (x̃i)−ϕ (xn)

∥∥∥∥∥
2

≤ ν1 (3)

where α(n) = [α1(n) · · ·αm(n)]T is the coefficient vector to
form a linear combination of the selected kernels {ϕ(x̃i)}mi=1,
and ν1 denotes the given threshold. Performing the minimization
(3), we can check whether this condition is satisfied and obtain
the optimal coefficient vector α(n)

α(n) = K̃
−1
(n− 1)k̃n−1 (xn) (4)

δ1(n) = kn,n − k̃
T

n−1 (xn)α(n) (5)

where K̃(n− 1) ∈ Rm×m whose (i, j)-th element is K̃i,j(n−
1) = k(x̃i, x̃j) for x̃i, x̃j ∈ D(n− 1), k̃n−1(xn) ∈ Rm×1

whose i-th element is k(x̃i,xn), and kn,n = k(xn,xn). Con-
sequently, for every n, we have

ϕ (xn) =

m(n)∑
i=1

αi(n)ϕ (x̃i) +ϕres(n) (6)

∥∥ϕres(n)
∥∥2 ≤ ν1 (7)

Φn = Φ̃nA
T(n) +Φres

n (8)

where ϕres(n) is the residual vector, Φn=[ϕ(x1) · · · ϕ(xn)],
Φ̃n=[ϕ(x̃1) · · ·ϕ(x̃m)], and Φres

n =[ϕres(1) · · ·ϕres(n)],
while A(n)=[AT(n− 1) α(n)]T∈Rn×m is the coefficients
matrix. Here we have explicitly indicate that m depends on n
by using m(n) in (6).

The quantized kernel recursive least squares (QKRLS) al-
gorithm [10] uses the distance criterion, which is based on
the principle that the principal neighborhoods of data-clustered
regions can be approximately represented by the selected kernel
dictionary. This criterion is defined as

δ2(n) =
∥∥xn − x̃j�

∥∥2 ≤ ν2

j� = arg min
1≤j≤m

∥∥xn − x̃j

∥∥2 (9)

where ν2 denotes the given threshold.
In [15], the changed significance of the loss function is used to

evaluate the significance of each observed input data as a kernel
dictionary member. The criterion is defined as

δ3(n) =
1

2
Δα̃TH l(n)Δα̃ ≤ ν3 (10)

where Δα̃ is the change of the weight vector, H l(n) is the
Hessian of the loss function, and ν3 is the given threshold.
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2) Tunable RBF Sparsification Approaches: With a fixed
kernel dictionary size, the online tunable RBF algorithms of [16],
[23], [24] construct the initial kernel dictionary through two
approaches. One approach depends on the distribution of the
recent observed input data, e.g., the centers based on the nearest-
neighbor. The other approach is the OFS procedure [16], which
evaluates the significance of each training input data as a kernel
dictionary member.

Given the training data {xt, yt}Nt
t=1, the full Nt-term relation-

ship between the output of the predictor and the actual output
yNt

= [y1 · · · yNt
]T can be expressed as

yNt
= KNt

αNt
+ eNt

(11)

whereKNt
∈ RNt×Nt is the full regression matrix whose (i, j)-

th element is k(xi,xj), αNt
is the full weight vector, and eNt

denotes the error vector. The orthogonal decomposition of KNt

is given by KNt
= WNt

ANt
=[w1 · · ·wNt

]ANt
, where wt,

1 ≤ t ≤ Nt, are the set of orthogonal bases and ANt
is an unit

upper triangular matrix [39], [40]. Then the expression (11) can
be rewritten as

yNt
= WNt

gNt
+ eNt

(12)

where gNt
= ANt

αNt
= [g1 · · · gNt

]T with gi =
wT

i yNt
/(wT

i wi) for 1 ≤ i ≤ Nt. From (12), the sum of
squares of the output yNt

is given by

yT
Nt

yNt
=

Nt∑
j=1

g2jw
T
j wj + eTNt

eNt
(13)

Therefore, the error reduction ratio to evaluate the significance
of each training input data is defined as

[err]j = g2jw
T
j wj/y

T
Nt

yNt
(14)

Remark 1: The kernel dictionary selections based on the
criteria (3), (9), (10) and (14) can all be performed recursively,
see [7], [10], [15], [40]. This is similar to the ALD kernel
recursive least squares (ALD-KRLS) algorithm [32]. The other
tunable RBF approaches that depend on the recent observed
input data also can be performed in a recursive way [23], [24].
Therefore, the recursive kernel dictionary selection unifies the
aforementioned online prediction algorithms.

3) Analysis of Kernel Dictionary Selection: Kernel dictio-
nary selection is an objective-oriented problem, which leads to
the diverse sparsification criteria and the organic combination
of different sparsification approaches [1], [6], [12]. The optimal
solution to minimize the regularized empirical risk can be ex-
pressed as weighted kernels that composed of all the available
training samples [5]. Then the sparsification can be viewed
as a procedure to deal with the differences between the two
prediction spaces, one is formed by all the available training
samples and the other is formed by the selected kernel dictionary.
Since the high- or infinite-dimensional Hilbert space H may
cause the excessive growth of kernel dictionary, sparsification
approaches help to properly construct the kernel dictionary in
order to obtain better generalization ability. From this perspec-
tive, sparsification in the kernel dictionary selection procedure
becomes an effective measure of parameter regularization for
superior prediction performance.

Once a sparsification approach is chosen, it is vital to properly
set the threshold of the sparsification criterion and the termina-
tion condition of the kernel dictionary selection. The size of
kernel dictionary is determined by the termination condition,
which plays a crucial role in controlling the model generalization
ability. As the sequential data arrive, the final selected kernel
dictionary depends on both the first selected member x̃1 and
the given threshold, if other parameters in the kernel dictionary
selection procedure have already been properly set. For the
methods of deciding the thresholds, the reader is referred to
the aforementioned references. It is worth recapping that the
first selected member x̃1 can make much difference to the final
selected kernel dictionary, since the selected kernel dictionary
is generated in a recursive way and all the subsequent selected
members should fulfill the criteria that established by the al-
ready existed kernel dictionary. This is especially true for the
nonstationary time series.

Remark 2: Given a nonstationary time series segment, the
uncertainty caused by the first selected member x̃1 is reflected on
both the size of kernel dictionary and the actual selected kernel
dictionary members. Although the issue of kernel dictionary size
has been well-studied [1], [16], [24], the prediction uncertainty
due to the actual selected kernel dictionary members has not
been properly focused. How to handle this uncertainty in kernel
dictionary selection caused by nonstationarity will be discussed
in Sections III and IV.

B. Procedure of Weight Vector Updating

We now discuss the weight updating procedures in the repre-
sentative online prediction algorithms, and further analyze the
uncertainty arisen in the weight updating procedures.

1) Weight Vector Updating in KAFs: Considering for exam-
ple the ALD-KRLS algorithm [7], the sparsification procedure
at time step n can be denoted as

f(x)=
n∑

i=1

αi(n)k (xi,x)→
m∑
i=1

α̃i(n)k (x̃i,x) (15)

With the selected kernel dictionary in (8), the loss function
L(ωn) can be defined as

L(ωn) =
∥∥∥yn −Φnωn

∥∥∥2 (16)

where yn = [y1 · · · yn]T. The optimal solution of ωn that min-
imizes L(ωn) can be expressed as

ωn =

n∑
i=1

αi(n)ϕ (xi) = Φnα(n) (17)

By omitting the residual component vector ϕres(n) in (8), we
have the approximation ωn = Φnα(n) ≈ Φ̃nA

T(n)α(n) =

Φ̃nα̃(n), where α̃(n) = AT(n)α(n). Then the loss function
L(α̃(n)) can be defined as

L (α̃(n)) =
∥∥∥yn −ΦT

n Φ̃nα̃(n)
∥∥∥2

=
∥∥∥yn −A(n)K̃(n)α̃(n)

∥∥∥2 (18)
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The optimal weight vector α̃(n) can be directly obtained by the
least squares algorithm as

α̃(n) =
(
A(n)K̃(n)

)†
yn

= K̃(n)−1
(
AT(n)A(n)

)−1
AT(n)yn (19)

2) Weight Vector Updating in Tunable RBF Algorithms:
In [16], [24], the weight vector α̃ in (2) is updated with the
multi-innovation recursive least squares (RLS) algorithm, which
uses the latest p innovations to form the regression matrix. The
cumulative loss function L(α̃(n)) in this case is defined as

L (α̃(n)) =
1

2

n∑
i=n−p+1

βn−i
(
yi − k̃

T

n (xi)α̃(n)
)2

(20)

where β is the forgetting factor. The associated information
matrix is K̃p = [k̃n(xn−p+1) · · · k̃n(xn)]

T, and the optimal
weight vector α̃(n) is obtained by the RLS algorithm:⎧⎪⎪⎨⎪⎪⎩

Ψn = P n−1K̃
T

p

(
βIp + K̃pP n−1K̃

T

p

)−1

P n =
(
P n−1 −ΨnK̃pP n−1

)
β−1

α̃(n) = α̃(n− 1) +Ψnep

(21)

where Ψn ∈ Rm×p is the Kalman gain matrix, P n ∈ Rm×m is
the inverse of the covariance matrix updated by the information
matrix K̃p, Ip denotes the p× p identity matrix, and ep is the
error vector of the latest p predictors.

3) Weight Vector Updating in Robust Online Kernel Learn-
ing: Instead of using the cumulative loss function L(α̃(n))
(20), the robust recurrent kernel online learning (RRKOL) [41]
utilizes the instantaneous prediction error e2n, together with the
extra information provided by the past recurrent feedback signals
yn−1, . . . , yn−d that are included in the input variable xn. The
derivative of the instantaneous prediction error e2n with respect
to α̃T(n):

de2n

dα̃T(n)

∣∣∣∣∣
Λn

=
∂
(
e2n
)

∂α̃T(n)
+

∂
(
e2n
)

∂k̃n

∂k̃n

∂α̃T(n)
Λn (22)

is used to update the weight vector α̃(n), where Λn is the
hyperparameter matrix to weight the second term. The distinct
attribute of the RRKOL algorithm is this second term in (22)
which considers the past feedback signals within xn. It provides
a distinct insight into the role played by the past recurrent
feedback signals in the weight vector updating.

4) Analysis of Weight Vector Updating: The weight vector
updating approaches of online kernel modeling can be classi-
fied into two categories, based on whether or not to explicitly
consider the property of the mapping function ϕ(x) in (2).
Most KAF algorithms [7], [10], [15] consider the property of
ϕ(x) in the weight vector updating procedure and the solution
of α̃ can be acquired by minimizing the corresponding loss
functions, such as (17) and (19). For the online tunable RBF
algorithms [16], [24] and the robust online kernel learning
algorithm [41], the solution of α̃ is acquired with the information
matrix of the kernel vector, and they do not explicitly consider

the property of the mapping function ϕ(x), such as (21) and
(22).

Remark 3: The weight vector updating is also an objective-
oriented problem. Whether or not to consider the property of the
mapping function ϕ(x) may bring the differences in handling
weight vector updating and further leads some uncertainty about
prediction performance. It is not advisable trying to use the
property of the mapping function ϕ(x) if how the property
impacts on the prediction performance is insufficiently under-
stood. Other weight vector updating techniques, such as the
forgetting mechanisms, the regularized L(α̃) and the sliding
window/multi-innovation, can also be properly chosen to im-
plement specific online modeling targets. In order to sufficiently
capture the underlying dynamic characteristics in nonstationary
time series, therefore, it is necessary to carefully design an opti-
mization strategy to achieve the effective combination of these
weight vector updating techniques, which will be addressed in
Section IV and realized in Section V.

III. INTERMITTENT OPTIMIZATION OF KERNEL COVARIANCE

MATRIX IN THE LIGHT OF CMA-ES

Assume that the type of kernel is chosen a priori. Without
loss of generality we use the Gaussian kernel. With the aid of
the well-studied Gaussian kernel distribution, the important role
of the kernel covariance matrix is clearly understood, in terms
of shaping the prediction model [26], [27]. The Gaussian kernel
based prediction function (2) can be described as

f(x) =
∑m

i=1
α̃ik (x̃i,x)

=
m∑
i=1

α̃i exp
(
(x− x̃i)

T Σ−1
i (x− x̃i) /h0

)
(23)

where Σi ∈ Rpx×px is the kernel covariance matrix of the i-th
Gaussian kernel member and h0 is an order of magnitude factor.
The quadratic term Δ2

i can be expressed as

Δ2
i = (x− x̃i)

T Σ−1
i (x− x̃i)

=
(
(x− x̃i)

T U i

) (
UT

i (x− x̃i)
)

(24)

where U i=[di,1/
√

λi,1 · · ·di,px
/
√
λi,px

], with λi,j and di,j ,
1 ≤ j ≤ px, denoting the eigenvalues and the corresponding
eigenvectors ofΣi, respectively. The eigenvectors can be chosen
to form an orthonormal set, and the matrixU i can be interpreted
as a coordinate transformation of shifting and rotating with
respect to the original coordinates [26]. This coordinate trans-
formation directly shapes the surface of the prediction function
(23) and further influences the prediction performance.

The following weighted selection mechanism estimates the
empirical kernel covariance matrix Σemp using selected ob-
served sequential data set {x̂j}Ne

j=1

Σemp
i = h0

Ne∑
j=1

ω̂j (x̂j − x̃i) (x̂j − x̃i)
T (25)

where ω̂ = [ω̂1 · · · ω̂Ne
]T denotes the weight vector. The se-

quential data sets can be selected based on the distribution of the
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observed samples, such as the widely-adopted nearest neighbor
method for RBF kernels [16], [24], [42]. This class of estimation
approaches use the selected sequential data sets to approximately
represent the intended population of each Gaussian kernel re-
gressor in (23), which contributes limited predictive attributes
due to its unsupervised nature.

To realize the intermittent optimization of the kernel co-
variance matrix in the context of CMA-ES, the correlations
of the kernel covariance matrix with other parameters need to
be considered, in terms of both the kernel dictionary selection
and weight vector updating. For the kernel dictionary selection
procedures discussed in Section II, the actual selected kernel
dictionary can be very different from the suboptimal or optimal
kernel dictionary, due to the uncertainty caused by the non-
stationarity. Given the optimal or suboptimal sparsified kernel
dictionary {x̃�

i }mi=1, with the corresponding estimated kernel
covariance matrices Σ�

i and updated weights α̃�
i , the prediction

function (23) becomes

f�(x) =
m∑
i=1

α̃�
i exp

(
(x− x̃�

i )
T
Σ�

i
−1 (x− x̃�

i ) /h0

)

=

m∑
i=1

α̃�
i exp

(
(x− x̃i)

T CΣ�
i
−1CT (x− x̃i) /h0

)

=

m∑
i=1

α̃�
i exp

(
(x− x̃i)

T Σ̃
−1

i (x− x̃i) /h0

)
(26)

where CT is the transformation matrix from (x− x̃i) to
(x− x̃�

i ). Comparing the prediction functions in (23) and (26),
it can be seen that the variable to be optimized should be

Σ̃
−1

i = CΣ�
i
−1CT, not (Σemp

i )−1 of (25), if the kernel dic-
tionary selection procedure and the weight vector updating
procedure are taken into consideration. The optimization of the

real symmetric matrix Σ̃
−1

i greatly improves the kernel struc-
ture’s flexibility than the restricted form of Σ−1

i . Similar to the
principal components in principal component analysis method
or the orthogonal search paths in evolutionary algorithms [43],
the enhanced kernel structure flexibility enhances the ability of
each kernel regressor in (26) to capture the underlying dynamic
characteristics in the neighborhood.

For notational simplification, we drop the subindex i in the

sequel. The real symmetric matrix Σ̃
−1

can be optimized in the
following “rank-one updating” form

Σ̃
−1
(n) = (1− c0)Σ̃

−1
(n− 1)± pσ(n)p

T
σ (n) (27)

where c0 is the learning rate which can be calculated as c0 =
2/p2x [27], and pσ is the target vector to optimize the kernel
covariance matrix. In order to give more predictive attributes to

the intermittent optimization of Σ̃
−1

, the objective function to
be minimized is set to

Lσ =
∑

xj∈Dσ

ωσj
(yj − f�(xj))

2 (28)

where Dσ is the set of the selected samples, and ωσj
are the

weights of the loss to tradeoff the local and global characteristics.

To better prevent the occurrence of some irregularities, such
as outliers, during the online prediction procedure, the selected
samples Dσ in (28) and the order of magnitude factor h0 in (26)
can be used to deal with these irregularities. The appropriate
sample set Dσ actually provides an alternative interface for
eliminating the irregular samples through corresponding mod-
eling approaches, such as the outliers which can be identified
via the robust signal decomposition [36], [44], and the unused
training samples which can be determined by the subset selection
approaches [17], [18]. An appropriate h0 in (26) can help con-

trol the learning path of Σ̃
−1

, especially when the intermittent

optimization of Σ̃
−1

outputs specific numeric attributes, such as
the positive integers.

According to the above analysis, we focus on directly using
the CMA-ES to optimize the target vector pσ in (27) based on
the objective function Lσ of (28). We introduce the so-called
“pure CMA-ES” algorithm to better describe the intermittent
optimization of pσ . This pure CMA-ES algorithm is the fun-
damental and simplest version among many variants of the
CMA-ES algorithms. As an evolutionary algorithm, it consists
of three steps, the initialization step, the repeating evolution
step with four operators of mutation, evaluation, selection and
recombination, and the termination step [45].

Let the population size beλc. A population of new individuals
x
(g+1)
k at the (g + 1)-th generation are generated by the muta-

tion operator, which samples a multivariate normal distribution
N (0,C(g)) with the zero mean vector 0 and the covariance
matrix C(g). The sampling operation, from the g-th generation
to the next generation, can be described as

x
(g+1)
k ∼ m(g) + σ(g)

c N
(
0,C(g)

)
(29)

where m(g) denotes the mean vector of the g-th population
individuals, and σ

(g)
c is the mutation step-size. Then, evalu-

ation of these mutated individuals on the objective function
Lσ (28) is implemented, and the top μc ranked individuals,
x
(g+1)
k(1) ,x

(g+1)
k(2) , . . . ,x

(g+1)
k(μc)

, are selected, where μc < λc. Fi-
nally, the weighted recombination of the best μc ranked indi-
viduals is reflected in the following updating equations for the
parameters of the mutation operator (29)

m(g+1) = m(g) + cm

μc∑
i=1

ωm(i)
(
x
(g+1)
k(i) −m(g)

)
(30)

C(g+1) =

(
1− c1 − cμ

λc∑
i=1

ωc(i)

)
C(g)+ c1 p

(g+1)
c1

(
p
(g+1)
c1

)T︸ ︷︷ ︸
rank-one update

+ cμ

λc∑
i=1

ωc(i)p
(g+1)
cμ(i)

(
p
(g+1)
cμ(i)

)T
︸ ︷︷ ︸

rank-μcupdate

(31)

σ(g+1)
c = σ(g)

c exp

(
cσc

dσc

(‖pσc
(g+1)‖
χ̂px

− 1

))
(32)
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Algorithm 1: Intermittent Optimization of Kernel Covari-
ance Matrix Using CMA-ES for ALD-KRLS.

Input: {xn, yn}, xn ∈ Dσ .
Initialization

Initialize strategy parameters of CMA-ES [27].

Initialize Σ̃
−1
(0) and c0 in (27).

Repeat
Mutation as in (29).
Evaluation

For each mutation individual
Set each mutation individual as pσ .

Calculate Σ̃
−1

as (27).
Initialize h0 in (26).
Initialize the parameters as in ALD-KRLS [7].
For each selected sample in Dσ

Operate kernel dictionary selection procedure.
Operate weight vector updating procedure.
Calculate prediction performance.

End for
Return value of objective function Lσ .

End for
Selection

Return best ranked individuals x(g+1)
k(1) , . . . ,x

(g+1)
k(μc)

.
Recombination as (30) to (32).

Until termination criterion is fulfilled
Calculate Σ̃

−1
as (27) with pσ = x

(g+1)
k(1) .

Return: final Σ̃
−1

.
End

where pc1 and {pcμ(1), . . . ,pcμ(λc)
} are respectively the well

designed evolution paths of the “rank-one update” and “rank-
μc update,” pσc

is the cumulative step-size control evolution
path for the mutation step-size, ωc = [ωc(1) · · ·ωc(λc)]

T and
ωm = [ωm(1) · · ·ωm(λc)]

T are the respective coefficient vec-
tors, while cm, c1, cμ and cσc

dσc
are the learning rates of the

respective evolution paths, and χ̂px
is the expected length of a

random variable distributed according toN (0, Ipx
)which helps

to normalize the length of pσc
. The detailed parameter settings

can be found in [27].
As a randomized search algorithm, the fundamental design

principles of the CMA-ES are the invariance, which enables
an identical behavior on a class of objective functions, and the
unbiasedness, which partly prevents the risk of divergence or
premature convergence [27]. These properties provide algorith-
mic setting options to be chosen for online modeling in practical
applications. The termination criterion in the CMA-ES should
be carefully set according to specific online prediction problems.
Our algorithm implementations of using the CMA-ES to opti-

mize the kernel covariance matrix Σ̃
−1

(27) can be classified
into two cases, based on whether the kernel dictionary selective
criterion is independent of the calculation of the updated kernel

covariance matrix Σ̃
−1

in (26). As summarized in Algorithm 1,
the ALD criterion of (3) represents the case that the kernel
dictionary selective criteria in the online prediction algorithms

Algorithm 2: Intermittent Optimization of Kernel Covari-
ance Matrix Using CMA-ES for QKRLS.

Input: {xn, yn}, xn ∈ Dσ .
Initialization

Initialize the parameters as in QKRLS [10].

Initialize Σ̃
−1
(0) and c0 in (27).

Initialize h0 in (26).
Operate kernel dictionary selection procedure.
Initialize strategy parameters as in CMA-ES [27].

Repeat
Mutation as in (29).
Evaluation

For each mutation individual
Set each mutation individual as pσ .

Calculate Σ̃
−1

as (27).
For each selected sample in Dσ

Operate weight vector updating procedure.
Calculate prediction performance.

End for
Return value of objective function Lσ .

End for
Selection

Return best ranked individuals x(g+1)
k(1) , . . . ,x

(g+1)
k(μc)

.
Recombination as (30) to (32).

Until termination criterion is fulfilled
Calculate Σ̃

−1
as in (27) with pσ = x

(g+1)
k(1) .

Return: final Σ̃
−1

.
End

are dependent on the updated kernel covariance matrix. For
Algorithm 2, the distance criterion of (9) represents the case
that the kernel dictionary selective criteria are independent of the
updated kernel covariance matrix. Algorithm 1 or 2 can be used
to optimize the symmetric kernel covariances matrices for the
training procedure and online prediction procedure of the pro-
posed algorithmic framework, namely, Algorithm 3 presented
in Section V.

IV. GENERALIZED OPTIMIZATION STRATEGY IN KERNEL

CONNECTION MODE

In this section, we propose a generalized optimization strategy
to sequentially construct the kernel dictionary selection and
weight vector updating procedures in multiple kernel connection
modes. Generally, the prediction-error time series is a good
metric, providing a very useful clue to improve the prediction
performance of online sequential data [37], [46]. In the kernel
dictionary selection procedure, it is well known that the kernel
dictionary size m is of vital importance to the generalization
ability of the prediction function (2), and there usually exists
a proper kernel dictionary size for specific observed sequential
data. It implies that any part of the whole kernel regressors can
be viewed as an error compensator for the other part of the kernel
regressors, i.e., the compensator can help to further capture the
underlying dynamics in the prediction-error time series that
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Fig. 1. Illustration of the generalized connection modes.

generated by the already existing part. We simply call this
the principle of prediction-error compensation. Essentially, the
prediction-error compensation principle is a product of the rela-
tionship between the whole and the parts of the kernel regressors.

In order to better realize the prediction-error compensation
principle in the kernel dictionary selection procedure, a gener-
alized optimization strategy is designed to construct the kernel
connections in multiple kernel connection modes. Inspired by
the connectionist representational schemes [38], three basic
connection modes of kernel regressors are established to or-
ganically combine their complementary prediction abilities by
using the time-varying prediction-error time series. Similar to
the connections in the circuit topology [47], two or more kernel
regressors are in series connections if their kernel dictionary
elements are selected from the same time series (input time series
or prediction-error time series) and the weights of these kernel
regressors form a weight vector to be updated synchronously.
Two or more groups of series-connected kernel regressors are
in parallel connections if their kernel dictionary members are
selected from the same time series, and in an order, the weight
vector of the next parallel-connected group is to be updated
according to the prediction-error time series that generated by the
previous parallel-connected group. A cascade-connected group
is a head-to-tail arrangement of two or more parallel-connected
groups. In cascade connections, the kernel dictionary members
of the next cascade-connected group are selected from another
constructed time series, and the prediction-error time series that
generated by the previous cascade-connected group is used to
update the weight vectors of the next cascade-connected group.
As illustrated in the connection diagram of Fig. 1, the kernel
dictionaries of the cascade-connected groups Ra and Rb are
selected from two diverse time series, and the time series TSa0

and TSb0 are used to update the weight vectors in Ra and
Rb, respectively. The three basic connection modes can be
distinguished in terms of how to realize the prediction-error
compensation principle in the kernel dictionary selection and
weight vector updating procedures.

After the initial construction of the three basic connection
modes, specific relationships between different time series can
be set, and some of the selected kernel dictionary members

also can be transferred into other groups based on the adopted
information criteria. In the three basic connection modes, some
connections can be left out if not needed. All the adopted
optimization strategies in the aforementioned kernel online al-
gorithms can reconstruct their corresponding models, in terms
of the three basic connection modes, which motivates us to call
the framework of three basic connection modes a generalized
optimization strategy. A specific algorithmic implementation of
these basic connection modes is integrated within the training
procedure and online prediction procedure of Algorithm 3 pre-
sented in Section V.

The generalized optimization strategy is particularly useful
for online prediction of nonstationary time series. This is because
it provides a more self-contained way to construct the entire
kernel connections and thus better explores the complementary
prediction abilities in the time-varying prediction-error time
series, which enhances the ability to track the changing dynamic
characteristics. The three basic connection modes divide the
whole kernel regressors into different groups, which actually
provides a perspective to handle with the relationship of the
whole and the parts of kernel regressors. In the procedure of
the generalized optimization strategy, the modeling of the next
specific connection group can make a change accordingly if the
previously determined connection groups have already provided
useful information. More useful information can be acquired by
monitoring the prediction performance of all the divided groups
than by just monitoring the whole kernel regressors.

V. SUMMARY OF PROPOSED APPROACH

This section summarizes the top-level design of our proposed
online algorithm, which integrates the information interaction
between the network topology in kernel regressors to sequen-
tially construct the kernel dictionary selection and weight vector
updating procedures (of Section IV) and the optimization of
inner model parameters (of Section III). Both the intermittent
optimization of the kernel covariance matrix and the generalized
optimization strategy in three basic kernel connection modes can
improve the information interaction in both the kernel dictionary
selection procedure and the weight vector updating procedure.
The improved information interaction not only enhances the
ability to deal with various online modeling problems but also
provides a more flexible kernel structure and a more compatible
way of kernel connections. It can be further combined with
other existing online modeling techniques. An implementation
or realization of this improved information interaction relies on
gradually growing the additive kernel regressors to continuously
produce the new prediction-error time series for the newly-added
specific connection group, and then sequentially constructing
their respective kernel dictionary. Given a nonstationary time
series TSa0 of Fig. 1 to be predicted, the operations of this
implementation or realization are as follows.

First the kernel dictionary selection procedure in the first
cascade-connected group Ra can be naturally carried out by any
online prediction algorithm of Section II. Specifically, the se-
lected kernel dictionary members within Ra are divided into the
different parallel-connected groups (Ra0, Ra1, · · · ) in an orderly
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fashion. The online predictor within the first parallel-connected
group Ra0 operates its weight vector updating procedure, and
its prediction-error time series TSa1 is continuously recorded.
For the second parallel-connected group Ra1, the online pre-
dictor within Ra1 tracks the dynamic characteristics underlying
the prediction-error time series TSa1, and it makes prediction
for the forthcoming prediction errors in the prediction-error
times series TSa1. The next online predictor Ra2 operates on
the prediction-error time series TSa2 that are recorded by the
previous online predictor within Ra1, and so on. In particular,
the online predictor within Ra1 is acquired by analyzing the
effectiveness of different online algorithm candidates in the
training procedure, and some of its parameters can be adjusted
online with the sequentially arrived data. If the user decides to
intermittently optimize the kernel covariance matrices, Algo-
rithm 1 or 2 is applied depending on the type of online kernel
modeling technique used. The aforementioned design principle
for the online predictor within Ra1 is repeated sequentially for
the online predictors of the following parallel-connected groups
within Ra.

For the second cascade-connected group Rb, the online pre-
dictors within Rb track the dynamic characteristics underlying
the prediction-error time series TSb0 recorded by its previous
cascade-connected group Ra, and they make prediction for the
forthcoming prediction errors in the prediction-error times series
TSb0. For the online predictors within Rb, the elements of the
input vector may come from the recorded prediction-error time
series TSb0 or other variables provided by the previous cascade-
connected groups, which leads to different kernel dictionary
selections, compared with Ra. Also, the online predictors and
parallel connections within Rb are acquired by analyzing the
effectiveness of different online algorithm candidates in the
training procedure. In practice, the online predictors should be
carefully constructed to achieve good prediction performance
according to the effectiveness tests in the training procedure.
The aforementioned design principle for the online predictor
within Rb is repeated on the online predictors in the following
cascade-connected groups (Rc, · · · ). As shown in Fig. 1, the sum
of all the generated online predictors, from the first to a certain
following number of cascade-connected groups, constitutes the
additive kernel model for the certain cascade-connected group.
Most importantly, the adopted prediction function at a given
time sample can be chosen from all the generated additive kernel
models by monitoring their prediction performances online.

As the organic combination of the ALD and distance criteria
has been well demonstrated to be effective [1], [12], we use
these two selective criteria to illustrate how to perform the above
mentioned information interaction specifically. The illustrated
algorithm consists of both the training and online prediction
procedures, and its generated online predictor is composed of
two cascade groups Ra and Rb. To be specific, Ra adopts the
ALD-KRLS algorithm [7] as the basic approach to operate the
kernel dictionary selection and weight vector updating, and uses
the distance criterion to determine the parallel connections inRa.
By contrast, Rb adopts the QKRLS algorithm [10] as the basic
approach, and uses the ALD criterion to determine its parallel
connections. The operations of this illustrative implementation

Algorithm 3: Illustrative Online Algorithm for Improved In-
formation Interaction with Generalized Optimization Strat-
egy and Intermittent Optimization of Kernel Covariance
Matrices.

Input: Xa, Xb; y = [y1 y2 · · · yN ]T, i.e., TSa0 of
Fig. 1.
Training Procedure

Initialization
Initialize thresholds νa2 in (9), νb1 in (3) to determine
parallel connections in Ra and Rb, respectively.
Initialize thresholds la, lb for loss functions La, Lb.

Initialize (Σ̃
−1

a0 , Σ̃
−1

a1 , · · · ) and (Σ̃
−1

b0 , Σ̃
−1

b1 , · · · ).
Initialize i = −1, j = −1.

Initialize algorithmic parameters of ALD-KRLS [7] for
Ra.

Select the kernel dictionary Da via (3) with Xa.
Determine (Da0, Da1, . . . , DaNa

) via (9).
Repeat i = i+ 1

Calculate α̃ai via (19) with TSai.

Optimize Σ̃
−1

ai using Algorithm 1.
Compute La and form TSa(i+1).

Until i ≥ Na or La ≤ la
Send TSa(i+1) to TSb0.
Initialize algorithmic parameters of QKRLS [10] for Rb.
Select the kernel dictionary Db via (9) with Xb.
Determine (Db0, Db1, . . . , DbNb

) via (3).
Repeat j = j + 1

Calculate α̃bj as in QKRLS with TSbj .

Optimize Σ̃
−1

bj using Algorithm 2.
Compute Lb and form TSb(j+1).

Until j ≥ Nb or Lb ≤ lb
Return: f(x) and (Da0, . . . , DaNa

), (Db0, . . . , DbNb
).

Online Prediction Procedure
For each new arriving sample (xn, yn)

Compute MAE/MSE metrics of (Ra0, Ra1, · · · ) and
(Rb0, Rb1, · · · ), respectively.
Update (TSa0, TSa1, · · · ) and (TSb0, TSb1, · · · ).
Calculate (α̃a0, α̃a1, · · · ) and (α̃b1, α̃b2, · · · ),
sequentially.
Adjust (Da0, . . . , DaNa

), (Db0, . . . , DbNb
) via (3), (9).

Optimize (Σ̃
−1

a0 , Σ̃
−1

a1 , · · · ) using Algorithm 1, and

(Σ̃
−1

b0 , Σ̃
−1

b1 , · · · ) using Algorithm 2, if necessary.
Return: updated f(x) and its updated connections.

End for

are summarized in Algorithm 3, where the group indexes a and
b are added to distinguish the corresponding variables and quan-
tities in the two groups, e.g., the threshold ν2 for the group Ra

becomes νa2 and the threshold ν1 for the group Rb becomes νb1,
Da is the kernel dictionary forRa andDb is the kernel dictionary
for Rb, etc. Compared with the existing algorithms proposed
in [1] and [12], this new algorithm integrates the kernel modeling
techniques more naturally, and reveals a deeper hierarchical
network topology in kernel regressors. The beneficial properties
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of our approach and how specific modeling techniques used in
Algorithm 3 affects its online prediction performance will be
further studied in the next section.

In the online kernel modeling of nonstationary time series, in-
tuitively the nonstationarity may be classified into two categories
according to the prediction performance of the currently-adopted
kernel model. One is the nonstationary trend, which can be
captured by just optimizing the modeling parameters in the
selected kernel model, and the other category is higher-order
nonstationarity, which may need to be learned by changing the
type of kernel function or even changing to other online pre-
diction algorithms. How to change the Gaussian kernel function
(23) to other type of kernel function during online operation is
beyond the scope of this paper. However, the improved infor-
mation interactions can enhance the currently-adopted kernel
model’s tracking ability as much as possible before the under-
lying nonstationarity is assigned to the second case, which may
be beneficial to the selection procedure of online kernel models.
Sometimes, if the unpredictable part of the nonstationarity has a
great influence, the prediction performance can be a misleading
indicator to determine whether the selected online kernel model
should be changed. In this case, analyzing all the generated
prediction-error time series can provide some useful clues to
identify whether unpredictable nonstationarity accounts for a
large part.

VI. NUMERICAL SIMULATIONS

Three nonstationary time series, a chaotic time series, the
capacitor-current time series in the second-order circuit with
the unstable equilibrium point, and the real-world sunspot time
series, are chosen in the experiments to investigate the effec-
tiveness of the proposed approach. For the KAF algorithms, the
ALD-KRLS algorithm [7], the improved KRLS (IKRLS) algo-
rithm [12] 1 and the RRKOL algorithm [41] are adopted as the
representative algorithms to be studied. For the online tunable
RBF algorithms, the fast tunable RBF (FT-RBF) algorithm [24]
and the fast tunable gradient RBF (FT-GRBF) algorithm [16]
are adopted as the representative algorithms.

A. Chaotic Time Series Online Prediction

Derived from a finite mode truncation of the partial differential
equations, the Lorenz time series [1], [48] is given by three
Lorenz differential equations

dz1(t)

dt
= σ1

(
z2(t)− z1(t)

)
,

dz2(t)

dt
= −z1(t)z3(t) + rz1(t)− z2(t),

dz3(t)

dt
= z1(t)z2(t)− bz3(t), (33)

1The correct weight-vector updating formula (11) in the reference [12] is

α̃(n) = α̃(n− 1) +Q(n− 1)k̃n−1(y(n)− k̃
T

n−1α̃(n− 1))/(λ+ k̃
T

n−1

Q(n− 1)k̃n−1).

TABLE I
OVERVIEW OF REPRESENTATIVE ALGORITHMS FROM GENERALIZED

OPTIMIZATION VIEWPOINT

where σ1, r and b are the parameters that control the be-
havior of the Lorenz system. The Lorenz time series sam-
ples are generated with the step size 0.01 and the starting
point (0,1,0). The first 3000 samples are set as the training
dataset to obtain the optimal or appropriate parameters, and the
3000∼8000 samples are set as the testing dataset to examine
the effectiveness of the studied algorithms. During the training
procedure, the optimal or near-optimal parameter settings are
acquired by validating the sequential prediction performance
on the 2500∼3000 samples. For the online prediction of the
dynamic input-output relationship in (33), we set the input vector
as xn = [z1(n) z2(n) z3(n)]

T to predict yn = z2(n+ 5), with
the time-varying control parameters σ1 = 10, b = 1

3 (4 + 3(1 +
sin(0.1t))), r = 25 + 3

(
1 + cos

(
20.001t

))
[16], [23]. Since the

input vector xn here does not explicitly contain the past output
yn, the differencing operation for the input of the FT-GRBF
algorithm and the second recurrent term of (22) in the RRKOL
algorithm are not applied in this simulation [16], [41].

An overview of the five representative algorithms from the
enhanced information interaction viewpoint is summarized in
Table I. Owing to the tunable structures of the online tunable
RBF/GRBF algorithms and the lack of kernel dictionary se-
lection procedure in the RRKOL algorithm, only the ALD-
KRLS and IKRLS algorithms are adopted to fully examine
the effectiveness of the improved information interactions in
this simulation. However, all the five algorithms with cascade
connections are compared to reveal the importance of the clues
in underlying prediction-error time series. We start the selection
procedure for the isotropic form of kernel covariance matrix in
(26), namely, in the form of kernel bandwidth, and the following
experiments are with the acquired isotropic matrices as the initial
kernel covariance matrices.

For the IKRLS algorithm, the prediction performance indica-
tors for the test dataset of 3000 ∼ 8000 samples are shown in
Table II. In the first cascade-connected group Ra, the selected
kernel dictionary Dm consists of m = 6 members. The Dm can
be divided into different groups in parallel connections, such
as (3,3) which denotes that the first parallel-connected group
includes 3 kernel regressors and the second parallel-connected
group also includes 3 kernel regressors, and (1× 6) which
denotes that there are a total of 6 parallel-connected groups and
each parallel-connected group includes one kernel regressor.
The optimized V1 is the acquired isotropic kernel covariance
matrix, V2 is the optimized symmetric kernel covariance matrix
with no parallel connections, while V p1 is the set of optimized
symmetric kernel covariance matrices that come from their
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TABLE II
PREDICTION PERFORMANCE OF THE LORENZ TIME SERIES WITH OPTIMIZED Σ̃

−1
AND GENERALIZED CONNECTIONS FOR IKRLS ALGORITHM

The bold values of the testing metrics (MAE/MSE) respectively denote the optimal prediction performances, given the parameter
settings in the front of each row.

respective parallel-connected groups, and so is V p2. The kernel
dictionary selection criteria in the IKRLS algorithm include
both the ALD criterion and the distance criterion [12], and thus

Algorithm 1 is adopted to optimize Σ̃
−1

.Ra, Rb, . . . , Rg denote
the cascade-connected groups as illustrated in Fig. 1.

As described in the training procedure of Algorithm 3, the
kernel dictionary selection and parallel connections for the
first cascade-connected group Ra has already been constructed.
The respective key parameters are described in the left side of
the vertical line in Table II, and the corresponding mean absolute
error (MAE) and mean square error (MSE) metrics for the online
prediction procedure are listed under Ra.

For the second cascade-connected group Rb, if the input vec-
tor is explicitly composed of the past signals in the prediction-
error time series recorded byRa, then the simplest online predic-
tor is using the last datum in the recorded prediction-error time
series to predict the current forthcoming prediction error, i.e.,
for the previous cascade-connected group Ra, setting the latest
prediction error as the current error compensation for its online
predictor. If the simplest online predictors are applied to Rb and
all the following cascade-connected groups, then to a certain
extent, these online predictors actually capture the high-order
gradients in the prediction-error time series recorded by Ra. For
more information about the high-order gradients, the reader is
referred to a typical RBF model in [49]. In this simulation, after
analyzing the prediction-error time series that is recorded by Ra

in the training procedure, we find that capturing the high-order
gradients in the prediction-error time series is more efficient than
continuously using the Gaussian kernel function modeling. Thus
in the following cascade-connected groups, we use the simplest
online predictors to show the effectiveness of the proposed
information interactions, where the kernel dictionary selection
procedures are not performed. Note that some improved online
predictors can be applied to obtain better prediction performance
in practice, such as the linear RLS algorithm and online kernel
algorithms. As shown in Table II, the corresponding MAE/MSE
metrics for each cascade-connected group in the online predic-
tion procedure are listed under Rb, . . . , Rg , respectively.

How the connection modes and key parameters in the first
cascade-connected group affect the prediction performances in
the following cascade-connected groups can be revealed. For
example, it can be seen that the best prediction performance is

TABLE III
OPTIMIZATION OF Σ̃

−1
WITH DIFFERENT FORMS FOR IKRLS

attained at the Rd/Re cascade-connected group with the (3,3)
parallel-connected first cascade-connected group. The results of
Table II also indicate that the cascade connections can help to
capture the underlying dynamic characteristics in the prediction-
error time series. By comparing the MAE/MSE metrics of the
first two IKRLS predictors with those of the last three IKRLS
predictors in Table II, we can clearly observe the important role
of the improved information interactions in the key-parameters
selection for the IKRLS algorithm. From Table II, it can be seen
that the test MSE and test MAE attend their minimum values
either at the same cascade-connected group or at the neighboring
cascade-connected groups. Note that the MSE and MAE are
two different prediction performance metrics. For example, the
MSE indicator is more sensitive than the MAE indicator to
these prediction errors of large absolute values. Therefore, it
is not necessary that the test MSE and test MAE should both
attend their minimum values at the same cascade-connected
group.

In Table III, the isotropic kernel covariance matrix V1 is itera-
tively optimized to the diagonal form V d2 and to the symmetric
form V2, using Algorithm 1. As expected, the online prediction
performance is enhanced with the symmetric general kernel
covariance matrix. More specifically, the respective evolution
paths are V1 → V21 → V22 → V2 and V1 → V d21 → V d22 →
V d23 → V d2, and the progressively enhanced prediction per-
formances in each evolution path are validated in the training
procedure. Comparing the MAE/MSE metrics of each evolution
path in the online prediction procedure given in Table III, we can
observe that optimizing the isotropic kernel covariance matrix
with (27) behaves stably and robustly, which implies that the
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TABLE IV
PREDICTION PERFORMANCE OF THE LORENZ TIME SERIES WITH OPTIMIZED Σ̃

−1
AND GENERALIZED CONNECTIONS FOR ALD-KRLS ALGORITHM

TABLE V
PREDICTION PERFORMANCE OF THE LORENZ TIME SERIES WITH CASCADE CONNECTIONS FOR VARIOUS ALGORITHMS

improved flexibility in kernel structure helps to enhance the
generalization ability.

In Table IV, the ALD-KRLS algorithm is operated with the
kernel dictionaryDm, the ALD criterion based kernel dictionary
Dald with 13 members, and the ALD criterion based kernel
dictionary D′

ald with 6 members, respectively. It can be ob-
served that the last ALD-KRLS with the optimized symmet-

ric Σ̃
−1

achieves the same prediction performance with much
smaller kernel dictionary size than the first ALD-KRLS with
the isotropic kernel matrices. The last ALD-KRLS also obtains
a better prediction performance than the second and third ALD-
KRLS algorithms. This implies that the optimized symmetric

form of Σ̃
−1

can alleviate the prediction uncertainty caused by
the selected kernel dictionaries.

Table V and Fig. 2 compare the prediction performances
of all the five algorithms with cascade connections. Observe
that except for the IKRLS and FT-RBF, the optimal prediction
performances (marked in bold) are significantly better than the
performances of the first cascade-connected groups Ra, which
indicates that the improved information interaction helps to
select superior online kernel models.

B. Online Prediction of the Capacitor-Current Time Series

For this second-order RLC circuit, the relationship between
the capacitor-current xc1(t) and the capacitor-voltage xc2(t) is
nonstationary with the unstable equilibrium point [47], which
can be described as,

dxc1(t)

dt
= xc2(t),

Fig. 2. Prediction performance comparison of the Lorenz time series with
cascade connections for various algorithms.

dxc2(t)

dt
= −ω2

c (t)xc1(t)− 2δtxc2(t), (34)

where the control parameters are set asωc(t) = 5 cos(0.05t) and
δt = − 1

2 to enhance the nonstationarity. The simulated samples
are generated with the step size of 0.008 and the starting point
(0,0.30). The first 500 samples are used as the training dataset,
and the 500 ∼ 2500 samples are set as the testing dataset. In the
training procedure, the optimal or appropriate parameter settings
can be acquired by validating the sequential prediction perfor-
mance on the first 300 ∼ 500 samples. We set the input vector as
xn = [xc1(n) xc2(n)]

T to predict yn = xc2(n+ 1), i.e., this is
a one-step-ahead prediction. Again, the differencing operation
for the input of the FT-GRBF algorithm is not applied, but the
second recurrent term of (22) in the RRKOL algorithm is applied
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TABLE VI
PREDICTION PERFORMANCE OF THE CAPACITOR-CURRENT TIME SERIES WITH GENERALIZED CONNECTIONS FOR VARIOUS ALGORITHMS

Fig. 3. Prediction performance comparison of the capacitor-current time series
with generalized connections for various algorithms.

since the input xn contains the past output yn−1 = xc2(n). The
adopted optimization strategy in this simulation is the same as
in Section VI-A.

Table VI and Fig. 3 compare the prediction performances of
the representative algorithms with both parallel connections and
cascade connections. The cascade connections in each algorithm
(except for the FT-GRBF algorithm) obtain better prediction
performances in the following cascade-connected groups, which
indicates that the cascade connections can help to capture the
underlying dynamic characteristics in the prediction-error time
series. For the ALD-KRLS and RROKL algorithms, their re-
spective parallel-connected cases obtain better prediction per-
formances, which indicates that the parallel connections also
can help to capture the underlying dynamic characteristics in
the prediction-error time series. Therefore, the effectiveness
of the generalized kernel connections is demonstrated in this
simulation. The online tunable RBF algorithms can obtain better
prediction performances than the KAF algorithms in the first
cascade-connected group, but this is not the case for the optimal
prediction performances among cascade-connected groups.

C. Sunspot Time Series Online Prediction

The sunspot time series is composed of annual averaged num-
bers of observed sunspots, which is a widely used benchmark

Fig. 4. Prediction performance of the sunspot time series with cascade con-
nections for various algorithms.

that contains nonstationarity [16]. The one-step ahead prediction
of the monthly recorded sunspot time series {xs(n)} from 1830
to 2019 is considered. The input vector of the predictor is set
to xn=[xs(n− 1) xs(n− 2) xs(n− 3) xs(n− 4)]T and the
desired output is yn=xs(n) in this simulation. The first 500
samples are used as the training dataset, and the 500 ∼ 2280
samples are set as the testing dataset to examine the effectiveness
of the studied algorithms. In the training procedure, the optimal
or appropriate parameter settings can be acquired by validating
the sequential prediction performance on the first 300 ∼ 500
samples. Since the input vector is composed of the past output
signals of yn, both the differencing procedure in the FT-GRBF
algorithm and the second recurrent term of (22) in the RRKOL
algorithm are applied in this simulation. As the sunspot time
series is monthly recorded and annually averaged, there exists
strong linearity among the neighboring time series samples.
The cascade connections can provide a structure to combine
the kernel based online modeling approaches with linear RLS
algorithm in this simulation, i.e., the first cascade-connected
group adopts the five representative algorithms, and the second
cascade-connected group adopts the linear RLS algorithm.
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TABLE VII
PREDICTION PERFORMANCE OF THE SUNSPOT TIME SERIES WITH CASCADE

CONNECTIONS FOR VARIOUS ALGORITHMS

Table VII and Fig. 4 compare the prediction performances of
the representative algorithms with cascade connections, where
pr and β2 respectively denote the dimension of the input vector
and the exponential forgetting factor, in the linear RLS algo-
rithm. Each representative algorithm obtains better prediction
performance in the second cascade-connected group, especially
for the ALD-KRLS and RRKOL algorithms. This demonstrates
the effectiveness of the cascade connections in terms of provid-
ing a structure to combine complementary algorithms.

VII. CONCLUSION

In this paper, we have proposed a structure parameter op-
timized kernel based online prediction approach with a gen-
eralized optimization strategy for nonstationary time series.
The intermittent optimization of the real symmetric kernel
covariance matrix has been realized to improve the kernel struc-
ture’s flexibility and alleviate the prediction uncertainty caused
by the kernel dictionary selection procedure for nonstationary
data. A generalized optimization strategy with multiple kernel
connection modes has been designed to provide a self-contained
way for constructing the entire connections of kernel regres-
sors, with the enhanced ability to track the changing dynamic
characteristics. The improved information interaction not only
enhances the ability to deal with various online modeling prob-
lems but also provides a more flexible kernel structure and a more
compatible way of kernel connections that can be combined with
other existing online modeling techniques.
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