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Abstract—We address the problem of tensor decomposition
in application to direction-of-arrival (DOA) estimation for two-
dimensional transmit beamspace (TB) multiple-input multiple-
output (MIMO) radar. A general higher-order tensor model that
enables computationally efficient DOA estimation is designed.
Whereas other tensor decomposition-based methods treat all factor
matrices as arbitrary, the essence of the proposed DOA estimation
method is to fully exploit the Vandermonde structure of the factor
matrices to take advantage of the shift-invariance between and
within different transmit subarrays. Specifically, the received signal
of TB MIMO radar is expressed as a higher-order tensor. A com-
putationally efficient tensor decomposition method is proposed to
decompose the Vandermonde factor matrices. The generators of the
Vandermonde factor matrices are computed to estimate the phase
rotations between subarrays, which can be utilized as a look-up
table for finding target DOAs. The proposed tensor model and the
DOA estimation algorithm are also straightforwardly applicable
for the one-dimensional TB MIMO radar case. It is further shown
that our proposed approach can be used in a more general scenario
where the transmit subarrays with arbitrary but identical configu-
ration can be non-uniformly displaced. We also show that both the
tensor rank of the signal tensor and the matrix rank of a particular
matrix derived from the signal tensor are identical to the number
of targets. Thus, the number of targets can be estimated via matrix
rank determination. Simulation results illustrate the performance
improvement of the proposed DOA estimation method as compared
to other tensor decomposition-based techniques for TB MIMO
radar.

Index Terms—DOA estimation, shift-invariance, TB MIMO
radar, tensor decomposition, vandermonde factor matrix.

I. INTRODUCTION

THE development of multiple-input multiple-output
(MIMO) radar has been the focus of intensive research
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[1]–[5] over the last decade, and has opened new opportunities
in target detection and parameter estimation. Many works have
been reported in the literature showing the applications of MIMO
radar with widely separated antennas [1] or collocated anten-
nas [2]. Among these applications, direction-of-arrival (DOA)
estimation [3], [6]–[16] is one of the most fundamental research
topics. In this paper, we mainly focus on the DOA estimation
problem for MIMO radar with collocated antennas.

By ensuring that the transmitted waveforms are orthogo-
nal [17], MIMO radar enables increasing the system’s degrees of
freedom (DoF), improving the spatial resolution and enhancing
the parameter identifiability. The essence behinds these advan-
tages is the construction of a virtual array (VA), which can
be regarded as a new array with larger aperture and more ele-
ments [4], [5]. However, the omnidirectional transmit beampat-
tern in MIMO radar, resulting from the orthogonal waveforms,
deteriorates the parameter estimation performance since most
of the emitted energy is wasted as compared to its phased-array
counterpart. To tackle this problem, the transmit beamspace
(TB) technique has been introduced [3], [6], [18]. In TB MIMO
radar, the transmitted energy can be focused on a fixed spatial
region [3], [6] by using a number of linear combinations of the
transmitted waveforms via a TB matrix. This benefit becomes
more evident when the number of elements in MIMO radar is
large [18]. Specifically, at some number of waveforms, the gain
from using more waveforms begins to degrade the estimation
performance. The trade-off between waveform diversity and
spatial diversity implies that the performance of DOA estimation
in TB MIMO radar can be further improved with a carefully
designed TB matrix.

Meanwhile, many algorithms for DOA estimation in MIMO
radar have been proposed. These algorithms can be classi-
fied into two categories, signal covariance matrix-based al-
gorithms [3], [6]–[10] and signal tensor decomposition-based
algorithms [11]–[16], [19]–[24]. For example, the estimation of
target spatial angles can be conducted by multiple signal classifi-
cation (MUSIC). The generalization of MUSIC to a planar array
requires a two-dimensional (2-D) spectrum searching [7], and
thus suffers from high computational complexity. By exploiting
the rotational invariance property (RIP) of the signal subspace,
estimation of signal parameters via rotational invariance tech-
nique (ESPRIT) [3], [6], [8] can be applied to estimate the
target angles without a spectrum searching. The RIP can be
enforced in many ways, e.g., uniformly spaced antennas [8]
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and the design of TB matrix [3], [6]. To further reduce the
computational complexity and increase the number of snapshots,
unitary-ESPRIT (U-ESPRIT) has been proposed [10]. Some
algorithms, like propagator method (PM), have been studied [9]
to avoid the singular value decomposition (SVD) of the signal
covariance matrix. The aforementioned DOA estimation algo-
rithms are mostly conducted on a per-pulse basis to update the
result from pulse to pulse. They ignore the multi-linear structure
of the received signal in MIMO radar and, therefore, lead to poor
performance in low signal-to-noise ratio (SNR) region.

Algorithms that belong to the second category, signal tensor
decomposition-based algorithms, have been proposed to address
the problem of poor performance in low SNR. In particular, a
3-order tensor is introduced to store the whole received signal
for MIMO radar in a single coherent processing interval (CPI).
Methods like high-order SVD (HOSVD) [14]–[16] and canoni-
cal decomposition/ parallel factor (CANDECOMP/PARAFAC,
CP) analysis [11]–[13] can be applied to decompose the factor
matrices. The DOA estimation can be conducted by exploiting
the factor matrix with the target angular information. For exam-
ple, the widely used alternating least squares (ALS) algorithm is
a common way of computing the approximate low-rank factors
of a tensor. These factor matrices can be used to locate multiple
targets simultaneously [11], [19]. Although the application of
the conventional ALS algorithm improves the DOA estimation
performance for MIMO radar, it usually requires the tensor rank
in order to be initialized, and the computational complexity can
be extremely high as the convergence is unstable.

Nevertheless, conventional tensor decomposition methods
are developed for tensors with arbitrary factor matrices. In
array signal processing, special matrix structure like Toeplitz,
Hankel, Vandermonde and columnwise orthonormal [20], [25]
may exist in factor matrix when a tensor model is applied to
collect the received signal. The most common special structure,
Vandermonde, can be generated from the application of carrier
frequency offset, e.g., frequency diversity array (FDA) [26]
and orthogonal frequency-division multiplexing (OFDM) wave-
form [27], or uniformly spaced antennas, e.g., uniform linear
array (ULA) and uniform rectangular array (URA). While con-
ventional tensor decomposition methods are usually designed
for tensors with arbitrary factor matrices, the decomposition
of a tensor with structured factor matrices deserves further
study as the structured factor matrix may point to a novel
decomposition method and better uniqueness conditions. This is
called constrained tensor decomposition [20], [25], [28]–[30].
Moreover, transmit array interpolation is introduced for MIMO
radar with arbitrary array structure [14]. By solving the minimax
optimization problem for interpolation matrix design, the orig-
inal transmit array is mapped to a virtual array with desired
structure. The DOA estimation bias caused by interpolation
errors has also been analyzed in [14]. However, the interpolation
technique deteriorates the parameter identifiability, which makes
it inappropriate for TB MIMO radar with arbitrary but identical
subarrays wherein the additional structures can be used for
improving performance.

In this paper, we consider the problem of tensor decompo-
sition in application to DOA estimation for TB MIMO radar

with multiple transmit subarrays.1 A general higher-order tensor
model that enables computationally efficient DOA estimation
is designed. Whereas other tensor decomposition-based meth-
ods treat all factor matrices as arbitrary, the proposed DOA
estimation method fully exploits the Vandermonde structure
of the factor matrix to take advantage of the shift-invariance
between and within different transmit subarrays. In particular,
the received signal of TB MIMO radar is expressed as a higher-
order tensor. A computationally efficient tensor decomposition
method, which can be conducted via linear algebra with no
iterations, is proposed to decompose the factor matrices. Then,
the Vandermonde structure of the factor matrices is utilized to
estimate the phase rotations between transmit subarrays, which
can be applied as a look-up table for finding targets DOA. It
is further shown that our proposed method can be used in a
more general scenario where the subarray configurations are
arbitrary but identical. By exploiting the shift-invariance, the
proposed method improves the DOA estimation performance
over conventional tensor decomposition-based methods for TB
MIMO radar. Since both the tensor rank and the matrix rank
of the designed signal model are identical to the number of
targets, the number of targets can be estimated if it is unknown
via matrix rank determination instead of solving the NP-hard
tensor rank estimation problem. The tensor model as well as
the algorithms are developed for the general case of 2-D TB
MIMO radar, while they are straightforwardly applicable (with
some further simplifications) for the case of one-dimensional
(1-D) TB MIMO radar as well. Simulation results verify that
the proposed DOA estimation method has better accuracy and
higher resolution than the existing methods that can be used in
the context.

The rest of this paper is organized as follows. Some multi-
algebra preliminaries about tensors and matrices are introduced.
A higher-order tensor model for TB MIMO radar with uniformly
spaced transmit subarrays is designed in Section II. In Sec-
tion III, the proposed tensor model is properly reshaped in order
to tackle the problem of rank deficiency caused by identical
target Doppler shifts. The DOA estimation is conducted by
exploiting the shift-invariance between and within different sub-
arrays. Parameter identifiability is analyzed while the number
of targets estimation is discussed. Section IV generalizes the
proposed DOA estimation approach to TB MIMO radar with
non-uniformly spaced transmit subarrays. Section V performs
the simulation examples while the conclusions are drawn in
Section VI.

Notation: Scalars, vectors, matrices and tensors are de-
noted by lowercase, boldface lowercase, boldface uppercase,
and calligraphic letters, e.g., y, y, Y, and Y , respectively.
The transposition, Hermitian transposition, inversion, pseudo-
inversion, Hadamard product, outer product, Kronecker prod-
uct and Khatri-Rao (KR) product operations are denoted by
(·)T , (·)H , (·)−1, (·)†, ∗, ◦,⊗, and �, respectively, while vec(·)
stands for the operator which stacks the elements of a ma-
trix/tensor one by one to a column vector. The notation diag(y)

1Some preliminary ideas that have been extended and developed to this paper
were published in [28], [31].
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represents a diagonal matrix with its elements being the el-
ements of y, while ‖Y‖F and ‖Y‖ are the Frobenius norm
and Euclidean norm of Y, respectively. Moreover, 1M×N and
0M×N denote an all-one matrix of dimension M ×N and an
all-zero matrix of size M ×N , respectively, and IM stands for
the identity matrix of size M ×M . For a matrix B ∈ C

M×N ,
the n-th column vector and (m,n)-th element are denoted by
bn and Bmn, respectively, while the m-th element of a vector
b ∈ C

M is given by b(m). The estimates of B and b are given
by B̂ and b̂, while the rank and Kruskal-rank of B are denoted
by r(B) and k(B), respectively. To express two submatrices
of B, one without the first and the other without the last row
vector, the notations B and B, respectively, are applied. If
B can be written as B � [b1,b2, . . . ,bN ] ∈ C

M×N , where
bn � [bn, b

2
n, . . . , b

M
n ]T ∈ C

M , it is a Vandermonde matrix, and
β � [b1, b2, . . . , bN ]T ∈ C

N is the vector of generators. When
each element is unique, β is considered to be distinct.

The following equalities hold true:

A� bT = bT �A

A� bT �C = bT �A�C = A�C� bT

(A�B)�C = A� (B�C)

vec (Adiag(b)D) =
(
DT �A

)
b

(A⊗C) (D⊗E) = (AD)⊗ (CE) , (1)

where A ∈ C
M×N , C ∈ C

Q×N , D ∈ C
N×P , E ∈ C

N×L and
B = diag(b) ∈ C

N×N .

A. Algebra Preliminaries for Tensors

For an N -th order tensor Y ∈ C
I1×I2×···×IN , the following

facts are introduced [19], [32], [33].
Fact 1 (PARAFAC decomposition): The PARAFAC decom-

position of an N -th order tensor is a linear combination of the
minimum number of rank-one tensors, given by

Y =
L∑

l=1

a
(1)
l ◦ a(2)l ◦ · · · ◦ a(N)

l �
[[
A(1),A(2), . . . ,A(N)

]]
,

(2)
where a(n)l is the l-th column of A(n) with A(n) being the n-th
factor matrix of size In × L, and L is the tensor rank.

Fact 2 (Uniqueness of PARAFAC decomposition): The
PARAFAC decomposition is unique if all potential factor matri-
ces satisfying (1) also match with

Ã(n) = A(n)ΠΔ(n), (3)

where Π is a permutation matrix and Δ(n) is a diagonal matrix.
The product of Δ(n), n = 1, 2, . . . , N is an L× L identity ma-
trix. Usually, the generic uniqueness condition is given by [32],
[33]:

N∑
n=1

k(A(n)) ≥ 2L+ (N − 1). (4)

Fact 3 (Mode-n tall matrix unfolding): The mode-n tall
matrix unfolding (as known as n-th multi-mode/mixed-mode

Fig. 1. Transmit array configuration for TB MIMO radar with planar array.

unfolding) of a tensor Y ∈ C
I1×I2×···×IN gives a matrix Y(n) of

size I1 · · · In−1In+1 · · · IN × In

Y(n) =
(
A(1) · · · �A(n−1) �A(n+1) · · · �A(N)

)(
A(n)

)T
.

(5)
Fact 4 (Tensor reshape): The reshape operator for an N -th

order tensor Y ∈ C
I1×I2×···×IN returns a new M -th order tensor

X ∈ C
J1×J2×···×JM with

∏N
n=1 In =

∏M
m=1 Jm and vec(Y) =

vec(X ).2

Lemma 1: Consider a 3-order tensor Y �[[
A(1),A(2),A(3)

]]
, where A(1) is the KR product of two

Vandermonde matricesB ∈ C
p×L andC ∈ C

q×L, pq = I1, and
A(3) is a tall matrix that has column full rank. Assuming that
matrices B and C have distinct generators, the decomposition
of Y is generically unique if

min((p− 1)q, (q − 1)p) ≥ L

I2
. (6)

Proof: See Appendix A.

II. TB MIMO RADAR TENSOR MODEL

Consider a collocated MIMO radar with M = MxMy trans-
mit antenna elements and N receive antenna elements. The
transmit array is a URA with its elements spaced at half the
working wavelength away from each other in both directions,
as shown in Fig. 1. The receive elements are randomly placed
within a fixed planar array. The M × 1 transmit steering vector
can be given by

a(θ, ϕ) = u(θ, ϕ)⊗ v(θ, ϕ), (7)

where u(θ, ϕ) �
[
1, e−jπu, . . . , e−j(My−1)πu

]T ∈ C
My ,

v(θ, ϕ) �
[
1, e−jπv, . . . , e−j(Mx−1)πv

]T ∈ C
Mx , u �

sinϕ sin θ and v � sinϕ cos θ are the spatial frequencies in dif-
ferent directions, and (θ, ϕ) is the pair of azimuth and elevation
of a target. The steering vector of the receive array can be written

as b(θ, ϕ) �
[
1, e−j 2π

λ (x2v+y2u), . . . , e−j 2π
λ (xNv+yNu)

]T
∈

C
N , where {(xn, yn)|0 < xn ≤ Dx, 0 < yn ≤ Dy} are the

2The equity depends on the way the modes are combined in each tensor. More
discussions can be found in Appendix B in the supplemental material.
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coordinates of the receive elements,λ is the working wavelength,
and Dx, Dy denote the receive array apertures in two directions,
respectively.

Assume S = IJ transmit subarrays are uniformly spaced
at the transmit side, which can be overlapped or not. Each
of them contains M0 = Mx0

My0
elements. For (i, j)-th trans-

mit subarray (or equivalently, for s-th transmit subarray where
s = (j − 1)I + i), the index of the first element is denoted by
(mi,mj), i = 1, 2, . . . , I, j = 1, 2, . . . , J . Both mi and mj

rise uniformly. The first transmit subarray is selected as the
reference transmit subarray. The M0 × 1 steering vector of the
reference transmit subarray at direction (θ, ϕ) can be written as
a0(θ, ϕ) = u0(θ, ϕ)⊗ v0(θ, ϕ), where u0(θ, ϕ) ∈ C

My0 and
v0(θ, ϕ) ∈ C

Mx0 contain the first My0
and Mx0

elements in
u(θ, ϕ) and v(θ, ϕ), respectively.

For L targets in {(θl, ϕl)}Ll=1, the transmit and
receive steering matrices can be generalized as A �
[a(θ1, ϕ1),a(θ2, ϕ2), . . . ,a(θL, ϕL)] ∈ C

M×L and B �
[b(θ1, ϕ1),b(θ2, ϕ2), . . . ,b(θL, ϕL)] ∈ C

N×L, respectively.
Note that the transmit array is a URA, thus, we have

A = U�V, (8)

where U � [u(θ1, ϕ1),u(θ2, ϕ2), . . . ,u(θL, ϕL)] ∈ C
My×L

and V � [v(θ1, ϕ1),v(θ2, ϕ2), . . . ,v(θL, ϕL)] ∈ C
Mx×L.

Similarly, the M0 × L steering matrix for the reference transmit
subarray can be denoted by

A0 = U0 �V0, (9)

whereU0 ∈ C
My0

×L andV0 ∈ C
Mx0

×L are the submatrices of
U andV that consist of the firstMy0

andMx0
rows, respectively.

Then, let us consider theM0 × L steering matrix for the (i, j)-th
transmit subarray, which can be given by

Aij = Uj �Vi, (10)

where Uj = U0Γj , Vi = V0Δi, Γj = diag(γj),Δi =

diag(δi), vectors γj �
[
e−jπ(mj−1)u1 , . . . , e−jπ(mj−1)uL

]T ∈
C

L and δi �
[
e−jπ(mi−1)v1 , . . . , e−jπ(mi−1)vL

]T ∈ C
L

indicate the phase rotations for L targets in two directions,
respectively. It can be further shown that

Aij = A0ΔiΓj . (11)

In conventional MIMO radar, the received signal at the output
of the receive antenna array after matched-filtering in matrix
form can be modelled as [11]:

Yconv = BΣAT +Nconv, (12)

where Σ = diag(σ), σ �
[
σ2
1 , σ

2
2 , . . . , σ

2
L

]T
represents the

vector of target radar cross section (RCS) fading coefficients
obeying Swerling I model, and Nconv ∈ C

N×M is the noise
matrix. When the TB technique is used [3], [6], [24], the re-
ceived signal model after matched-filtering of K orthogonal
waveforms3 can be generalized as

YTB = BΣ
(
WHA

)T
+NTB, (13)

3For finding optimal K see [3], [6]. Usually, optimal K ≤ M .

where W ∈ C
M×K denotes the TB matrix and NTB ∈ C

N×K

is the noise matrix.
Hence, the received signal for the (i, j)-th transmit subarray

and the whole receive array can be written as

Yij = BΣ
(
WH

ijAij

)T
+Nij , (14)

where Wij ∈ C
M0×K represents the TB matrix and Nij ∈

C
N×K is the noise component between the (i, j)-th transmit

subarray and the whole receive array. Assuming that the TB
matrices for all subarrays are identical and denoted by W0 �
[w1,w2, . . . ,wK ] ∈ C

M0×K , after substituting (11) into (14)
and vectorizing it, we have

yij =
[(
WH

0 A0

)
�B

]
ΔiΓjσ + nij , (15)

where nij ∈ C
KN is the vectorized noise residue.

Considering the Doppler effect [11], the received signal for
the (i, j)-th transmit subarray and the whole receive array during
the q-th pulse in a single CPI, q = 1, 2, . . . , Q, can be written as

y
(q)
ij =

[(
WH

0 A0

)
�B

]
ΔiΓjξq + n

(q)
ij , (16)

where ξq �
[
σ2
1e

j2πf1qT , σ2
2e

j2πf2qT , . . . , σ2
Le

j2πfLqT
]T ∈

C
L, fl denotes the Doppler shift, T is the radar pulse duration,

and n
(q)
ij ∈ C

KN is the vectorized noise residue in the q-th
pulse.

Let us concatenate the received signal of
S subarrays in the q-th pulse, i.e., Y(q) �[
y
(q)
11 , . . . ,y

(q)
I1 ,y

(q)
12 , . . . ,y

(q)
I2 , . . . ,y

(q)
1J , . . . ,y

(q)
IJ

]
∈ C

KN×S .

To derive the compact form, we first concatenate all I vectors
together to form totally J matrices of identical dimension
KN × I . These matrices are denoted by Y

(q)
j , and are given as

Y
(q)
j =

[(
WH

0 A0

)
�B

] (
ξTq � γT

j �D
)T

+N
(q)
j , (17)

where D � [δ1, δ2, . . . , δI ]
T ∈ C

I×L and N
(q)
j �[

n
(q)
1j ,n

(q)
2j , . . . ,n

(q)
Ij

]
∈ C

KN×I .4 Using (1), we have

Y
(q)
j =

[(
WH

0 A0

)
�B

]
Ξq

(
γT
j �D

)T
+N

(q)
j , (18)

where Ξq = diag(ξq). Since [(WH
0 A0)�B]Ξq is fixed, the

concatenation of these J matrices merely depends on the
concatenation of (γT

j �D)T . From the definition of the KR

product, the concatenation of γT
j �D is G�D, where G �

[γ1,γ2, . . . ,γJ ]
T ∈ C

J×L. Therefore, the concatenation of the
received signal y(q)

ij for all S subarrays in the q-th pulse can be
expressed as

Y(q) =
[(
WH

0 A0

)
�B

]
Ξq(G�D)T +N(q), (19)

where N(q) �
[
N

(q)
1 ,N

(q)
2 , . . . ,N

(q)
J

]
∈ C

KN×S . Then zq =

vec
(
Y(q)

)
can be formulated as

zq =
[
G�D�

(
WH

0 A0

)
�B

]
ξq + nq, (20)

4The derivations of (16) and (17) are straightforward. The details can be found
in Appendix C in the supplemental material.
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where nq ∈ C
KNS is the vectorized noise residue of N(q).

Then, concatenating the received signal for Q pulses, i.e., Z �
[z1, z2, . . . , zQ] ∈ C

KNS×Q, the compact form can be written
as

Z =
[
G�D�

(
WH

0 A0

)
�B

]
XT +N, (21)

where X � [ξ1, ξ2, . . . , ξQ]
T ∈ C

Q×L and N �
[n1,n2, . . . ,nQ] ∈ C

KNS×Q. Similarly, we refer to X as
the Doppler steering matrix since each of its columns denote
the Doppler steering vector for one target (with additional
RCS information). The matrix G�D can be regarded as the
transmit subarray steering matrix.

According to Fact 3, a 5-order tensor Z ∈ C
J×I×K×N×Q

whose matricized version is Z in (21) can be constructed as

Z =
L∑

l=1

gl ◦ dl ◦ cl ◦ bl ◦ xl +N � [[G,D,C,B,X]] +N ,

(22)
where C � WH

0 A0 ∈ C
K×L, gl, dl, cl, bl and xl are the l-th

columns of G, D, C, B and X, respectively, L is the tensor
rank, and N is the noise tensor of the same size.

Note that since all transmit subarrays are uniformly spaced,G
andD are Vandermonde matrices and their vectors of generators
can be, respectively, denoted by

ωx �
[
e−jπΔxv1 , . . . , e−jπΔxvL

]T ∈ C
L

ωy �
[
e−jπΔyu1 , . . . , e−jπΔyuL

]T ∈ C
L, (23)

where Δx = mi+1 −mi and Δy = mj+1 −mj are the step
sizes. We assume that ωx and ωy are distinct, which means that
multiple targets are spatially distinct.

Although the tensor model (22) is derived using a URA, it can
be reduced to the case of ULA by letting I = 1 (or equivalently,
J = 1). Then D (or equivalently, G) is reduced to an all-one
row vector and can be removed from (21). Assuming the ULA
is placed on the x-axis, the tensor model in this case is

Z = [[D,C,B,X]] +N , (24)

which is a 4-order tensor. Alternatively, the signal tensor model
for ULA case can be derived from the array design point of
view. The generation of a URA in Fig. 1 consists of two steps.
First, consider a single subarray composed of M0 elements
as the reference subarray. Let I replica subarrays be placed
uniformly across the x-axis, which form a larger subarray at
a higher level. Second, J copies of this higher level subarray are
organized uniformly across the y-axis. Note that in this specific
case, I subarrays at level-1 are non-overlapped, while their J
counterparts at level-2 are partly overlapped. It is clear that the
transmit subarray steering matrices for subarrays at level-1 and
level-2 are D and G, respectively. The ULA can be regarded as
a URA with only one level of subarrays. Hence, the derivation
of the tensor model for the ULA case is straightforward.

In TB MIMO radar, the DOA estimation problem then boils
down to solving the following fitting problem

min
{(θ̂l,ϕ̂l)}L

l=1

∥∥∥Z − [[Ĝ, D̂, Ĉ, B̂, X̂]]
∥∥∥2
F
. (25)

III. TB MIMO RADAR DOA ESTIMATION VIA TENSOR

DECOMPOSITION WITH VANDERMONDE FACTOR MATRIX

We have shown that the received signal for TB MIMO radar
with transmit subarrays can be expressed as a higher-order
tensor. As compared to conventional 3-order tensor model for TB
MIMO radar, the extra dimensions are extended to express the
phase rotations among transmit subarrays. The designed tensor
model enables us to conduct the DOA estimation via tensor
decomposition.

Generally, the ALS algorithm can be applied to decompose
such a tensor. However, the convergence of the ALS algorithm
heavily relies on the determination of tensor rank, which is an
NP-hard problem. The number of iterations in ALS algorithm
is uncertain, which may lead to high computational complexity.
Note that the tensor decomposition of Z can be regarded as
the constrained tensor decomposition, since one of the factor
matrices is structured by the regular array configuration. In the
literature [20], [21], [25], [34], [35], the uniqueness condition
of the tensor decomposition with special-structured factor ma-
trices, e.g., Toeplitz, Hankel, Vandermonde and column-wise
orthonormal, has been investigated. The structured factor matrix
may change the uniqueness condition and, therefore, point to
some new tensor decomposition methods.

In this section, we mainly focus on the tensor decomposi-
tion with Vandermonde factor matrix in application to DOA
estimation for TB MIMO radar with uniformly spaced transmit
subarrays. A computationally efficient DOA estimation method
is proposed. The parameter identifiability of the designed tensor
model is analyzed, while the number of targets estimation is
discussed.

A. Tensor Reshape Operator for the Designed Tensor Model

To begin with, the estimation of target azimuth and elevation
angles is equivalent to the estimation of two spatial frequencies.
The pair of (θl, ϕl) can be computed by

θl = arctan

(
ul

vl

)
, ϕl = arcsin

(√
u2
l + v2l

)
. (26)

For the conventional signal covariance matrix-based DOA
estimation methods like MUSIC and ESPRIT, the signal
covariance matrix R = Q−1ZZH is used. For the tensor
decomposition-based DOA estimation methods, we need to
reshape the constructed tensor model (22) properly to utilize
Lemma 1. Note that the matrices G and D together contain
the information on the spatial frequency parameters ul and vl,
while the matrix C contains the estimation of ul and vl within
a single transmit subarray. Both of them can be used to conduct
DOA estimation. Therefore, by using Fact 4, the designed tensor
T ∈ C

S×K×NQ can be reformulated as

T � [[(G�D) ,C, (B�X)]]. (27)

It is worth noting that the desired tensor reshape operator can
be regarded as a particular unfolding of the original tensor Z ,
which enables the use of the following advantages.

First, it can be found that the estimation of (ul, vl) using
the shift-invariance property among different transmit subarrays
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may have spatial ambiguity problem (Δx ≥ 2 or Δy ≥ 2). The
distance of phase centers between two adjacent subarrays should
be no more than half the working wavelength. The array aperture
is limited, which restricts the placement of transmit antennas.
By using Lemma 1 to decompose T , the two factor matrices
independently provide the estimates of (ul, vl). The unambigu-
ous spatial frequency information in the factor matrix C can be
utilized to mitigate the potential grating lobes and, therefore,
enables the transmit array to obtain a larger aperture. The array
design is more flexible and the spatial resolution is improved.

Second, the usage of Lemma 1 requires one of the factor
matrices to be column full rank. If we reshape the tensorZ so that
the factor matrices are G�D, C�B and X, respectively, the
rank deficiency problem may happen. When there are two targets
that share similar Doppler shifts, two column vectors in X are
considered to be linear dependent. The rank deficiency problem
limits the application of Lemma 1 for DOA estimation in TB
MIMO radar. However, the tensor T is reshaped by squeezing
B and X into one dimension. The factor matrix B�X, as the
KR product of a Vandermonde matrix and an arbitrary matrix,
in general, has rank min{QN,L}.5 Thus, the problem of rank
deficiency is solved. Consequently, two targets with identical
Doppler shifts can be resolved, while the grating lobes can be
eliminated by comparing the estimation result originated from
G�D to the distinct target angular information obtained by C
[24], [28].

B. Proposed Computationally Efficient DOA Estimation
Method for TB MIMO Radar With Uniformly Spaced
Transmit Subarrays

Consider the noise-free version of the TB MIMO signal of
(22). A particular unfolding of Z is utilized to obtain the two
advantages mentioned in the previous subsection. The matri-
cized version of (27) is given by

T = [(G�D)�C] (B�X)T , (28)

where G�D, C, and B�X are the three factor matrices,
respectively. The receive steering matrix and Doppler steering
matrix are squeezed into one dimension so that Lemma 1 holds
true for tensor T . The decomposition of T is unique and can
be utilized to obtain the factor matrices with targets DOA
information.

Denote the SVD of (28) asT = UΛVH , whereU ∈ C
SK×L,

Λ ∈ C
L×L, and V ∈ C

NQ×L.6 According to Lemma 1, there is
a nonsingular matrix E ∈ C

L×L such that

UE = G�D�C. (29)

5Although there exists no deterministic formula for the rank of the KR product
of a Vandermonde matrix and an arbitrary matrix, it is generally full rank.
See [20], [21], [36], [37].

6Here we assume that the number of targets L is given. If L is unknown,
the number of dominant singular values can be regarded as the estimation of the
number of targets. A method based on information theoretic criteria is introduced
in Section III-D to tackle this problem.

Considering the operator of KR product, the Vandermonde
structure of both G and D is exploited via

U2E = G�D�C =
(
G�D�C

)
Ωy = U1EΩy

U4E = G�D�C =
(
G�D�C

)
Ωx = U3EΩx, (30)

where G = GΩy , D = DΩx, Ωy = diag(ωy), Ωx =
diag(ωx), U1, U2, U3 and U4 are the submatrices truncated
from rows of U, i.e.,

U1 =
[
IIK(J−1),0IK(J−1)×IK

]
U

U2 =
[
0IK(J−1)×IK , IIK(J−1)

]
U

U3 =
(
IJ ⊗

[
IK(I−1),0K(I−1)×K

])
U

U4 =
(
IJ ⊗

[
0K(I−1)×K , IK(I−1)

])
U. (31)

Noting that E and Ωx are both full rank, we have U†
1U2 =

EΩxE
−1. SinceΩx is a diagonal matrix, the vector of generators

ωx can be estimated as the collection of eigenvalues of the
matrix U†

1U2 via eigenvalue decomposition (EVD), and E is
the matrix of the corresponding eigenvectors. Similarly, the
generator vectorωy can be estimated from the EVD of the matrix
U†

3U4. Note that the pair of eigenvalues in ωx and ωy can be
conducted via the matrix E. Then, the pair of spatial frequencies
(ul, vl) can also be recovered. Let us first assume that there is
no spatial ambiguity, i.e., Δx = 1 and Δy = 1. Given that

ω̂y(l) = e−jπΔyûl , ω̂x(l) = e−jπΔxv̂l , (32)

the pair of spatial frequencies (ul, vl) can be computed by ûl =
[j ln ω̂y(l)]/π and v̂l = [j ln ω̂x(l)]/π. Then, the target elevation
and azimuth angles can be estimated using (26).

If Δx ≥ 2 or Δy ≥ 2, the existence of grating lobes means
that there is no one-to-one relationship between the spatial
frequency ul (or equivalently, vl) and the eigenvalue ωy(l) (or
equivalently,ωx(l)). Thus, there is an ambiguity about the targets
DOA. To eliminate the grating lobes, the unambiguous targets
DOA in the second factor matrix C can be utilized [28]. Specifi-
cally, the l-th column of the Vandermonde matricesG andD can
be restored using eigenvalues ωx(l) and ωy(l). This process is
unique with or without the existence of grating lobes. Denoting
the l-th column of the first factor matrix as κl = gl � dl, we
have κH

l κl = S. Then, the following relationship holds(
κH
l

κH
l κl

⊗ IK

)
(κl ⊗ cl) = cl. (33)

Note that κl ⊗ cl = gl � dl � cl, which is the l-th column
of the matrix G�D�C. From (29), we have gl � dl � cl =
Uel, where el is the l-th column of the nonsingular matrix E.
Hence, κl ⊗ cl = Uel. Substituting it into (33), the l-th column
of the second factor matrix C can be computed by

cl =
1

S

[
(gl � dl)

H ⊗ IK
]
Uel. (34)

Meanwhile, since the TB matrix W0 is given as a prior
information, cl = WH

0 a0(θl, ϕl) can be rewritten in the form
of K different linear equations

cl(k) = wH
k a0(θl, ϕl), k = 1, 2, . . . ,K, (35)
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or equivalently,

pH
k a0(θl, ϕl) = 0, k = 1, 2, . . . ,K, (36)

where pk � wk − [cl(k),01×(M−1)]. It can be seen that the
linear equations in (36) are all satisfied as equality if and
only if ||PHa0(θ̂l, φ̂l)||2 = 0, where P � [p1,p2, . . . ,pK ] ∈
C

M0×K . Therefore, the estimation of a pair (θl, ϕl) can be found
by solving the following convex optimization problem [28]

min
(θ̂l,φ̂l)

∣∣∣∣∣∣PHa0

(
θ̂l, ϕ̂l

)∣∣∣∣∣∣2. (37)

Note that the cost function can be rewritten as
aH0 (θ̂l, ϕ̂l)PPHa0(θ̂l, ϕ̂l), which represents the transmit
power distribution at direction (θ̂l, ϕ̂l). The minimization thus
leads to the lowest transmit power, which is a deep null in the
transmit beampattern generated by P. This implies that there
exists an interesting relationship between the TB MIMO radar
transmit beampattern and the generalized sidelobe canceller
(GSC). Since the computation is conducted column by column,
the independent estimates of targets DOA from the first factor
matrix and the second factor matrix are paired automatically.
By comparing the estimation results to each other, the grating
lobes can be mitigated. The limitation on the distance between
phase centers of two adjacent subarrays is therefore eliminated.

The aforementioned DOA estimation procedure is also ap-
plicable, with some further simplifications, to TB MIMO radar
in the 1-D case. In this case, consider that the ULA transmit
array is placed on the x-axis and we have J = 1. Then G can
be removed from the tensor model Z . In this circumstance, only
two submatrices of the left singular matrix, e.g., U3 and U4 will
remain, which can be obtained from (31). The spatial frequencies
can be then estimated as the eigenvalues of the matrixU†

3U4, and
the targets DOA can be recovered from the spatial frequencies
in the same way as before for the 2-D case. Particularly, the
minimization of (37) can be regarded as a polynomial rooting
problem after rewriting the transmit subarray steering vector
into a linear form [24], which can be solved efficiently. The
DOA estimates obtained by (32) and (37) are independent, and
the unambiguous DOA estimates can be obtained via (37) even
if grating lobes exist in the case of using (32).

The primary steps for the DOA estimation in TB MIMO radar
with uniformly spaced transmit subarrays are then summarized
as Algorithm 1.

C. Parameter Identifiability and Computational Complexity

As mentioned in Fact 2, the generic uniqueness condition for
tensor decomposition for a higher-order tensor is determined by
the sum of the Kruskal ranks of the factor matrices. However,
if all or some factor matrices have some special properties, the
uniqueness condition can be changed. In [34], [35] (see also the
reference therein), a more relaxed uniqueness condition has been
proved for the tensor decomposition with one column full rank
factor matrix. The well-known Kruskal condition is extended
in [36] for the tensor with a Vandermonde factor matrix. The case
of tensor decomposition with a Vandermonde factor matrix and

a column full rank factor matrix has been investigated in [20],
[38].

Note that the reshaped version T of the designed tensor model
(22) has one column full rank factor matrix7 and one factor
matrix that is the KR product of two Vandermonde matrices
(for URA case) or a Vandermonde matrix (for ULA case). If we
ignore this special structure and consider only the assumption
that the third factor matrix is column full rank, the uniqueness
condition of tensor decomposition is given by [34], [35]

S(S − 1)K(K − 1) ≥ 2L(L− 1) and NQ ≥ L. (38)

For the ULA case, the uniqueness condition of tensor decom-
position when the Vandermonde structure is additionally utilized
is the same as that in [20], i.e.,

min{(S − 1)K,NQ} ≥ L. (39)

If the transmit array is a URA, the uniqueness condition is
slightly different. The upper bound of the tensor rank requires
that (see also Appendix A)

min{(I − 1)JK, (J − 1)IK,NQ} ≥ L. (40)

Given thatQ is large enough, the maximum number of targets
that can be resolved is in general determined by the number of
transmit subarrays and the number of orthogonal waveforms.
Thus, it is worth considering increasing the number of transmit

7The rank of B�X is min{QN,L} and the number of pulses Q during a
single CPI is generally very large in MIMO radar.
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TABLE I
THE MAXIMUM NUMBER OF TARGETS THAT CAN BE RESOLVED BY THE

TENSOR T FOR DIFFERENT UNIQUENESS CONDITIONS WHERE

I2 = J2 = S = K AND Q IS LARGE ENOUGH

subarrays or transmit waveforms to improve parameter identifi-
ability.

Table I discusses the upper bound of the tensor rank for
the Kruskal condition and (38)–(40). It can be seen that (39)
and (40) yield the best uniqueness conditions. For the URA
case, this uniqueness condition is degraded due to the in-
crease of the number of parameters. See [39] for more dis-
cussions about the partial identifiability of the tensor decom-
position, where specific conditions for coherent sources are
investigated.

Theorem 1: Under the conditions that the targets are spatially
distinct and the distance between two adjacent antenna elements
within a single transmit subarray is less thanλ/2, the signal mod-
els (24) for 1-D case and (22) for 2-D case hold true. Moreover,
if the uniqueness condition (40) is satisfied and Q > SK/N ,
Algorithm 1 is guaranteed to recover the targets’ true spatial
directions in the noiseless case.

Proof: See Appendix D in the supplemental material.
Computational Complexity: The most expensive steps of Al-

gorithm 1 are the SVD of T, the EVD of U†
1U2 and U†

3U4, and
the estimation of (θl, ϕl) via P. Under the conditions of Theo-
rem 1, the SVD of T has the highest complexity. Thus, the com-
plexity of Algorithm 1 isO(S2K2NQ), while the complexity of
the ALS algorithm in one iteration isO(SKNQL). If (40) holds,
i.e., L is comparable to SK, the computational complexity of
Algorithm 1 is comparable to that of one iteration of the ALS al-
gorithm. See Appendix E in the supplemental material for more
details.

D. Number of Targets Estimation

Although the signal tensor rank estimation problem is NP-
hard in general, which makes it difficult to estimate L di-
rectly, under the assumptions that have been introduced in
Theorem 1, this problem can be reduced to estimating the
matrix rank of T in (28). This is because both the ten-
sor rank of T and the matrix rank of T are identical to
L. In other word, we have identified a subclass of tensor
rank estimation problems which can be solved in polynomial
time.

Use SVD of T and denote the singular values as λ1 ≥ λ2 ≥
· · · ≥ λSK . Then the following information theoretic criteria
can be utilized to estimate L [40]

E(l) = Q ln

⎡
⎢⎣
(

1
SK−l

∑SK
i=l+1 λi

)SK−l

∏SK
i=l+1 λi

⎤
⎥⎦+ P (l), (41)

where l = 1, 2, . . . , SK − 1 and P (l) = 0.5[l(2SK −
l)] ln lnQ. The optimal L is given by L = argminE(l),
i.e., the L largest singular values and the corresponding singular
vectors should be selected. Consequently, the knowledge of the
tensor rank is not needed as a prior to initialize Algorithm 1 in
contradistinction to the ALS-based DOA estimation method.
The required modification is only that L is first estimated as
described above.

IV. TB MIMO RADAR DOA ESTIMATION VIA TENSOR

DECOMPOSITION WITH GENERALIZED VANDERMONDE

FACTOR MATRIX

In previous section, we have assumed that the transmit subar-
rays are uniformly spaced to obtain a Vandermonde structure
in the factor matrix of the designed tensor. However, such
constraint on subarray structure can be relaxed. The placement
of all subarrays needs not be uniform, while the configuration
within a single subarray can be arbitrary. The tensor model in
(22) is applicable for TB MIMO radar with any arbitrary but
identical transmit subarrays, since the extended factor matrix
that represents the phase rotations among transmit subarrays is
merely determined by the coordinates of the transmit subarray
phase centers. The difference is that the array configuration
varies the structure of the factor matrix, which may cause extra
steps to recover the targets DOA. A typical example has been
given earlier where the unambiguous spatial frequencies inC are
exploited to eliminate the cyclic ambiguity of spatial frequencies
in G�D.

In the following, we discuss a more general case when the
transmit subarrays are non-uniformly spaced and propose a
new approach for TB MIMO radar DOA estimation via tensor
decomposition with generalized Vandermonde factor matrix.

A. Tensor Model for TB MIMO Radar With Non-Uniformly
Spaced Transmit Subarrays

Note that the signal modelling with respect to the spatial
frequencies u and v is equivalent, that is, we can fix one of
them and focus on the other one to demonstrate the design of
tensor model for TB MIMO radar with non-uniformly spaced
transmit subarrays. Moreover, it can be further assumed that the
reference subarray is a linear array, i.e., we mainly study the
problem of 1-D DOA estimation in this case.

As mentioned previously, the tensor model for 1-D TB MIMO
radar with uniformly spaced transmit subarrays can be writ-
ten as in (24) with D � [δ1, δ2, . . . , δS ]

T ∈ C
S×L and δs �[

e−jπ(ms−1) sin θ1 , . . . , e−jπ(ms−1) sin θL
]T ∈ C

L. Here ms is
the index of the first element in the s-th transmit subarray, θ
denotes the target direction in linear array, and we assume as
before that there are S transmit subarrays, i.e., s = 1, 2, . . . , S.
The steering matrix for the reference subarray inC = WH

0 A0 ∈
C

K×L is replaced by A0 � [a0(θ1),a0(θ2), . . . ,a0(θL)] ∈
C

M0×L, where a0(θ) �
[
1, e−jπ sin θ, . . . , e−j(M0−1)π sin θ

]T ∈
C

M0 and M0 is the number of elements in a single transmit
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subarray. The other factor matrices can be expressed analogously
to their counterparts in (22).

Since the transmit array geometry varies only the structure of
D andC, (24) is a general tensor model that can be used to collect
the received signal of TB MIMO radar whose transmit array is a
linear array with its elements placed on a lattice. All lattice cells
are enumerated sequentially. The indices of the elements form
a counted set of increasing positive integers. It can be verified
that ms must be a subset of this set, since the first element of
each subarray corresponds to a unique lattice cell. Hence, ms

may increase uniformly or non-uniformly.
Whenms increases uniformly, the transmit subarrays are uni-

formly spaced and D is a Vandermonde matrix. Determined by
the step size of ms, i.e., Δs = ms+1 −ms, the configuration of
adjacent transmit subarrays can be partly overlapped (Δs < M0)
or non-overlapped (Δs ≥ M0). The DOA estimation can be
conducted in both scenarios by using Algorithm 1.

When ms increases non-uniformly, D is a generalized Van-
dermonde matrix [41]. The computationally efficient tensor
decomposition method described in Algorithm 1 cannot be
used directly. We can update the tensor model (24) via matrix
reconstruction.

Consider as an example S = 7 transmit subarrays with ms ∈
{1, 2, 3, 5, 6, 7, 9}. Each subarray contains three elements, there-
fore, the original transmit array is a ULA with M = 11 el-
ements. In this case, D � [d1, . . . ,dL] ∈ C

7×L, where dl �[
1, dl, d

2
l , d

4
l , d

5
l , d

6
l , d

8
l

]T ∈ C
7 and dl � e−jπ sin θl . Substitut-

ing this into (24), the tensor model for TB MIMO radar with
non-uniformly spaced transmit subarray is constructed.

Next, a matrix reconstruction approach is proposed to update
this constructed tensor model.

From the structure of the set of ms, it can be shown that D
can be interpreted as the combination of a set of submatrices
D(sub) ∈ C

11×L denoting different sub-ULAs associated with
various shift-invariances, i.e.,

D(sub) �
[(

D(1,1)
)T

,
(
D(2,1)

)T
,
(
D(1,2)

)T]T

D(1,1) �
[
d
(1,1)
1 , . . . ,d

(1,1)
L

]
∈ C

3×L

D(2,1) �
[
d
(2,1)
1 , . . . ,d

(2,1)
L

]
∈ C

3×L

D(1,2) �
[
d
(1,2)
1 , . . . ,d

(1,2)
L

]
∈ C

5×L, (42)

where d
(1,1)
l ∈ C

3 is selected from dl with ms ∈ {1, 2, 3},

d
(2,1)
l ∈ C

3 is selected from dl with ms ∈ {5, 6, 7}, and

d
(1,2)
l ∈ C

5 is selected from dl with ms ∈ {1, 3, 5, 7, 9}. In
other words, D(1,1) is a submatrix of D that consists of
the first three rows with shift-invariance Δs = 1. The other
two submatrices are formed analogously. Consequently, a
generalized Vandermonde matrix can be rewritten as several
Vandermonde matrices by matrix reconstruction. Note that (42)
is not the only matrix reconstruction method, but it contains all
transmit subarrays with a minimal distinct shift-invariance set
{Δs|Δs = 1, 2}. The matrix reconstruction is in fact identical to

the transmit subarrays selection and combination, which exploits
the idea of multiple invariance ESPRIT [42].

Substituting (42) into (24), the tensor model for 1-D TB
MIMO radar with non-uniformly spaced transmit subarrays is
given by

Z(sub) =
[[
D(sub),C,B,X

]]
+N (sub), (43)

whereN (sub) ∈ C
11×K×N×Q is the corresponding noise tensor.

B. Proposed DOA Estimation Approach for TB MIMO Radar
With Non-Uniformly Spaced Transmit Subarrays

We can use (43) to conduct DOA estimation via Algorithm 1.
Like in (28), the matrix unfolding of the updated tensor model
(43) can be written as

T(sub) =
(
D(sub) �C

)
(B�X)T . (44)

Its SVD is given by T(sub) = U(sub)Λ(sub)
(
V(sub)

)H
. Note

that the generators of the Vandermonde submatrices in D(sub)

provide the targets DOA information at different exponential
levels, i.e., dΔs

l . To exploit the Vandermonde structure in each
submatrix of D(sub), an extra row selection must be applied.
Taking D(1,1), for example, and using the fact that Lemma 1
holds for (43), we can generalize (29) to obtain

D(1,1) �C = U(1,1)E, (45)

where U(1,1) ∈ C
3K×L is truncated from U(sub) by a proper

row selection. Knowing that D(1,1) is a Vandermonde matrix,
the submatrix U(1,1) is further divided into two submatrices
to exploit the shift-invariance dΔs

l . The further steps are then
similar to that of (30)–(32), and they have been summarized
previously. Thus, each column of D(1,1) can be estimated. The
estimates of D(1,2) and D(2,1) can be obtained analogously.

However, note that if Δs > 1, the problem of grating lobes
may still occur when recovering θl fromU(NΔs ,Δs), whereNΔs

represents the number of subarrays whose shift-invariance is
determined by Δs. The use of Algorithm 1 for grating lobes
mitigation requires each subarray to be a dense ULA, which
restricts the aperture of the transmit subarray, and therefore,
the spatial resolution. Meanwhile, the array manifolds of all
transmit subarrays can be different if some antenna elements
are disabled. The robustness of Algorithm 1 is poor under
this circumstance. To tackle these problems, it is necessary to
develop a new approach that can independently estimate the
unambiguous targets DOA from D(sub).

For every possible shift-invariance Δs, denote

m
(Δs)
l �

[
d
(1,Δs)T
l , . . . ,d

(NΔs ,Δs)T
l

]T

n
(Δs)
l �

[
d
(1,Δs)T
l , . . . ,d

(NΔs ,Δs)T
l

]T
.

(46)

To illustrate (46), consider again the array structure
used in (42). The shift-invariance set contains Δs = 1, 2.
When Δs = 1, there are two different submatrices, or in
other words, sub-ULAs corresponding to the submatrices
D(1,1) and D(2,1), respectively. Thus, we have N1 = 2,
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m
(1)
l =

[
d
(1,1)T
l ,d

(2,1)T
l

]T
=
[
1, dl, d

4
l , d

5
l

]T
, and n

(1)
l =[

d
(1,1)T
l ,d

(2,1)T
l

]T
=
[
dl, d

2
l , d

5
l , d

6
l

]T
. When Δs = 2, only

one submatrix, or equivalently, sub-ULA corresponding to

D(1,2) exists, i.e., N2 = 1, m
(2)
l = d

(1,2)
l =

[
1, d2l , d

4
l , d

6
l

]T
and n

(2)
l = d

(1,2)
l =

[
d2l , d

4
l , d

6
l , d

8
l

]T
. Consequently, the fol-

lowing constraint should be satisfied

m
(Δs)
l dΔs

l = n
(Δs)
l . (47)

The optimal solution dl is unique as long as two coprime
numbers can be found in the shift-invariance set {Δs} [41],
which means that the grating lobes can be eliminated. The
optimization of (47) can be conducted by rooting the polynomial
function

f(dl) �
∑

Δs∈{Δs}

∣∣∣∣∣∣m(Δs)
l dΔs

l − n
(Δs)
l

∣∣∣∣∣∣2
F
. (48)

By definition of dl, the root nearest to the unit circle should
be chosen as d̂l, which finally estimates the targets DOA as
θ̂l = arcsin(j ln(d̂l)/π). The tenor model Z(sub) enables us to
conduct the unambiguous DOA estimation in a more general
scenario for TB MIMO radar. The transmit subarrays can be
organized in a non-uniform way. If the shift-invariance set {Δs}
contains a pair of coprime integers, the problem of spatial ambi-
guity can be solved with no limitation on the transmit subarray
structure. Hence, the structures of the transmit subarrays can be
arbitrary but identical.

An outline of the proposed DOA estimation approach for TB
MIMO radar with non-uniformly spaced transmit subarrays is
summarized in Algorithm 2.

Remarks: For TB MIMO radar with uniformly spaced trans-
mit subarrays, a simple way to build D(sub) is to concatenate
three submatrices of D, which, respectively, consist of the odd

rows, even rows and all rows. Hence, Algorithm 2 can be re-
garded as the generalization of Algorithm 1, which is applicable
for TB MIMO radar with any arbitrary but identical transmit
subarrays. It can be found that Algorithm 2 does not require the
transmit subarrays to be dense ULA, the transmit array can be
placed on a larger lattice to obtain a higher spatial resolution.
The robustness of Algorithm 2 is better in the sense that if some
elements in a transmit subarray are broken, a useful solution is
to disable the elements in other subarrays accordingly to keep
the manifolds identical. Moreover, we can select subsets of the
elements in all subarrays to fulfill other purposes like commu-
nication in joint radar-communication system for example [43].
The extension of these remarks to the case of planar array is
straightforward.

V. SIMULATION RESULTS

In this section, we investigate the DOA estimation perfor-
mance of the proposed method in terms of the root mean
square error (RMSE) and probability of resolution of closely
spaced targets for TB MIMO radar with transmit subarrays.
Throughout the simulations, there are Q = 50 pulses in a single
CPI. We assume that there are L = 3 targets with {θl}Ll=1 in
linear array case and {(θl, ϕl)}Ll=1 in planar array case. The nor-
malized Doppler shifts are f1 = −0.1, f2 = 0.2 and f3 = 0.2.
The number of Monte Carlo trials is P = 200. The RCS of
every target is drawn from a standard Gaussian distribution,
and obeys the Swerling I model. Note that the last two targets
share identical Doppler shifts, which causes the matrixX to drop
rank. The noise signals are assumed to be Gaussian, zero-mean
and white both temporally and spatially. The K orthogonal

waveforms are Sk(t) =
√

1
T e

j2π k
T t, k = 1, . . . ,K. The ten-

sor model in (22) is used and the TB matrix is pre-designed
[6], [31].

For the case of linear array, we assume a transmit ULA
with S = 8 subarrays. Each transmit subarray has M0 = 10
elements spaced at half the wavelength. The placement of
transmit subarrays can vary from totally overlapped case to
non-overlapped case. The number of transmit elements is com-
puted byM = M0 +Δs(S − 1). The receive array hasN = 12
elements, which are randomly selected from the elements of the
transmit array.

For the case of planar array, the reference transmit subarray is
a 7× 7 URA. The number of subarrays is S = 6, where J = 2
and I = 3. The distances between subarrays in both directions
are fixed as the working wavelength, which means that Δx =
2 and Δy = 2. As for the planar array case, the receive array
has N = 12 elements, which are randomly selected from the
elements of the transmit array.

Signal covariance matrix-based DOA estimation methods as
well as other signal tensor decomposition-based DOA estima-
tion methods are introduced for comparison. The signal covari-
ance matrix-based DOA estimation methods contain ESPRIT
algorithm [8] and U-ESPRIT algorithm [10], while the signal
tensor decomposition-based DOA estimation methods include
CP-ESPRIT [11], [19] and HOSVD-ESPRIT [14], [16]. The
Cramer-Rao bound (CRB) for MIMO radar is also provided.
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Fig. 2. RMSE versus SNR for 1-D TB MIMO radar.

Note that the HOSVD-ESPRIT method can only exploit the RIP
among different transmit subarrays to conduct DOA estimation,
while the CP-ESPRIT approach and our proposed algorithm
can estimate targets DOA from both the first and second fac-
tor matrices. For targets DOA estimated by the second factor
matrix C, if applicable, we use a postfix to distinguish it, e.g.,
CP-ESPRIT(sub) refers to the estimation result computed by C,
while CP-ESPRIT denotes the estimation result originated from
the first factor matrix after tensor decomposition.

A. Example 1: RMSE and Probability of Resolution for ULA
With Partly Overlapped Subarrays (Δs = 6)

Three targets are placed at θl ∈ {−15◦, 5◦, 15◦}. Consider
the matricized form of Z in (24). The goal is to estimate
θl from Z = T+ τR. The SNR is measured as: SNR[dB] =
10 log(‖T(3)‖2F /‖τR‖2F ). The RMSE is computed by

RMSE =

√√√√ 1

2PL

L∑
l=1

P∑
p=1

(
θ̂l(p)− θl(p)

)2
. (49)

As shown in Fig. 2, the RMSEs decline gradually with the rise
of SNR for all methods. The ESPRIT-based algorithm merely
exploits the phase rotations between transmit subarrays and the
performance is quite poor. U-ESPRIT algorithm performs better
since the number of snapshots is doubled. The designed tensor
model enables us to take advantage of the multi-dimensional
structure of the received signal. The HOSVD-ESPRIT method,
which utilizes the orthogonality between signal subspace and
noise subspace in tensor form, improves the estimation accuracy.
However, it suffers from the rank deficiency problem in X and
requires extra preprocessing like spatial smoothing [41]. For the
CP-ESPRIT approach and the proposed method, targets angular
information can be obtained from both factor matrices D and
C, which are used to compare to each other in order to eliminate
the potential grating lobes. The rank deficiency is also solved.
The proposed method approaches the CRB with a lower thresh-
old as compared to other tensor decomposition-based methods.
It is because the Vandermonde structure of the factor matrix
is exploited. Note that the computational complexity of our

Fig. 3. Resolution versus SNR for 1-D TB MIMO radar.

proposed method is reduced significantly. Indeed, it requires
approximately the same number of flops as it is required in a
single iteration of the CP-ESPRIT method. Also, the comparison
of the estimation results between the first factor and second
factor matrices shows a reasonable difference. This is mainly
caused by the difference between the apertures of the transmit
subarray and the whole transmit array.

For the probability of resolution, we assume only two closely
spaced targets located at θl ∈ {−5◦,−6◦}. These two targets are
considered to be resolved when ‖θ̂l − θl‖ ≤ ‖θ1 − θ2‖/2, l =
1, 2. The Doppler shifts are both f = 0.2 and the other param-
eters are the same as before.

In Fig. 3, the probability of resolution results for all meth-
ods tested are shown and they are consistent with those in
Fig. 2. All methods achieve absolute resolution in high SNR
region, and the resolution declines with the decrease of SNR.
The ESPRIT method presents the worst performance while
performance of the U-ESPRIT improves slightly. The results
of the CP-ESPRIT(sub) method and the Proposed(sub) method
are almost the same. The HOSVD-ESPRIT approach and the
CP-ESPRIT method perform better, while the proposed method
performs the best. Indeed, a gap of approximately 3 dB SNR
can be observed between the proposed method and other tensor
decomposition-based methods, which means that our proposed
method enables the lowest SNR threshold. The performance of
the proposed method in terms of both accuracy and resolution
surpasses that of the other methods because the shift-invariances
between and within different transmit subarrays are fully
exploited.

B. Example 2: RMSE and Probability of Resolution for URA
With Partly Overlapped Subarrays (Δx = Δy = 2)

In this example, three targets are placed at (θl, ϕl) ∈
{(−40◦, 25◦), (−30◦, 35◦), (−20◦, 45◦)}. The signal model
Z = T+ τR is applied, where T is given by (28). The SNR
is measured in the same way as that in the previous example for
linear array. The RMSE for the case of planar array is computed
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Fig. 4. RMSE versus SNR for two-dimensional TB MIMO radar.

as

RMSE =√√√√ 1

2PL

L∑
l=1

P∑
p=1

[(
θ̂l(p)− θl(p)

)2
+ (ϕ̂l(p)− ϕl(p))

2

]
.

(50)

In Fig. 4, the RMSEs of ESPRIT, U-ESPRIT, HOSVD-
ESPRIT, CP-ESPRIT and the proposed method are given. The
CRB is also provided. The ESPRIT and U-ESPRIT meth-
ods perform relatively poor. It is because the received signal
shift-invariance within a single transmit subarray is ignored
by these methods. Then we use the designed tensor model
to conduct DOA estimation via tensor decomposition. The
HOSVD-ESPRIT method exploits the RIP among different
transmit subarrays via HOSVD and achieves a better DOA
estimation accuracy as compared to the two aforementioned
signal covariance matrix-based methods. It can be observed that
the Proposed(sub) and CP-ESPRIT(sub) successfully estimate
the targets DOA via C in the case of planar array, which proves
the validity of (37). The results can be used to mitigate the spatial
ambiguity in the following estimations. Like their counterparts
in linear array case, the RMSEs of the proposed method and
the CP-ESPRIT method are almost the same for above 0 dB
SNR and they surpass that of the HOSVD-ESPRIT method. The
performance of the HOSVD-ESPRIT is degraded slightly due
to the spatial smoothing introduced for solving rank deficiency
problem in X. The CP-ESPRIT method ignores the Vander-
monde structure of factor matrix during tensor decomposition,
while the proposed approach fully exploits the Vandermonde
factor matrix to improve the DOA estimation performance.

To evaluate the resolution performance, only two targets
are reserved and the spatial directions are (θl, ϕl) ∈
{(−10◦, 15◦), (−11◦, 16◦)}. The resolution is considered
successful if ‖θ̂l − θl‖ ≤ ‖θ1 − θ2‖/2, ‖ϕ̂l − ϕl‖ ≤
‖ϕ1 − ϕ2‖/2, l = 1, 2. The target Doppler shifts are the
same, given as f = 0.2. The other parameters are unchanged.

Fig. 5 shows the results for all methods tested with respect
to the probability of resolution. The proposed method achieves

Fig. 5. Resolution versus SNR for two-dimensional TB MIMO radar.

the lowest SNR threshold. This is the result of exploiting
fully the shift-invariances between and within different trans-
mit subarrays and the Vandermonde structure during tensor
decomposition. Since the two targets have identical Doppler
shifts, the HOSVD-ESPRIT requires extra preprocessing and
leads to performance loss. The convergence of the CP-ESPRIT
method is unstable and can be affected by the tensor size. It
can be observed that the resolution performance of the CP-
ESPRIT method is deteriorated as compared to its counterpart in
Fig. 3. This implies that the robustness of our proposed method
is better for 2-D DOA estimation because no iterations are
required.

C. Example 3: RMSE Performance for ULA With Different Δs

In this example, we are concerned with the RMSE perfor-
mance when Δs changes from one to at most M0 for TB
MIMO radar with ULA transmit subarrays. The aperture is
increased gradually. The SNR is assumed to be 10 dB. All
other parameters are the same as those in Example 1. Given
the number of subarrays and the structure of a single subarray,
the aperture of the overall transmit ULA rises with the increase
of Δs while the number of elements shared by two adjacent
subarrays declines. When Δs = 0, this model is identical to
that for the conventional ESPRIT method [6], [31], and there
is no transmit subarray. When Δs rises, the distance between
phase centers for two adjacent subarrays becomes larger than
half the working wavelength and grating lobes are generated.
These grating lobes can be eliminated. Meanwhile, the transmit
array aperture is increased and the DOA estimation performance
should be improved. To evaluate the performance, the RMSEs
of DOA estimations obtained by different methods tested are
computed versus Δs.

It can be seen in Fig. 6 that the RMSEs for all methods tested
decrease steadily with the increase of Δs. The ESPRIT and
U-ESPRIT methods suffer from grating lobes and the received
signal within a single subarray is not fully exploited, hence,
they perform poorly. The HOSVD-ESPRIT method improves
the performance significantly, since tensor model is utilized.
Meanwhile, the estimation performance of the HOSVD-ESPRIT
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Fig. 6. RMSE versus Δs for 1-D TB MIMO radar.

method is worse than that of the CP-ESPRIT approach and
the proposed method. The spatial smoothing is used to tackle
the rank deficiency problem in signal subspace. The RMSEs
of the Proposed(sub) and the CP-ESPRIT(sub) are almost un-
changed as the estimation is only based on a single transmit
subarray, which is fixed during the simulation. It can be noted
in Fig. 2 that the CRB is nearly achieved by the CP-ESPRIT
method and our proposed method. Consequently, the RMSEs
of the proposed method and the CP-ESPRIT method are nearly
Coincide.

To evaluate the RMSE performance versus Δx or Δy for TB
MIMO radar with URA transmit subarrays, it is necessary to
separately add a new subarray in one direction while keeping
the array structure in the other direction unchanged. This can be
fulfilled by constructing an L-shaped transmit array, where each
element is replaced by a URA subarray. However, this analysis
would be beyond the scope of this paper. In general, it can be
concluded that the proposed method can estimate the targets
DOA via the phase rotations between transmit subarrays. If the
placement of two adjacent transmit subarrays satisfies some
conditions, e.g., Δs > 3 for the linear array case, the RMSE
performance is better than that computed by a single transmit
subarray.

D. Example 4: RMSE Performance for Non-Uniformly Spaced
Transmit Subarrays With ms ∈ {1, 2, 3, 5, 7, 9}

In this example, we evaluate the RMSE performance of the
proposed DOA estimation method for TB MIMO radar with
non-uniformly spaced transmit subarrays. Consider a TB MIMO
radar with linear array. The transmit linear array has S = 7
subarrays withms ∈ {1, 2, 3, 5, 6, 7, 9}. Each subarray contains
M0 = 10 elements. The receive array is formed by randomly
selectingN = 12 elements from the transmit array. Three targets
are placed at θ1 = −5◦, θ2 = 10◦ and θ3 = 18◦ with normalized
Doppler shifts f1 = 0.3, f2 = −0.15 and f3 = −0.15. To sim-
plify the signal model, we assume that each subarray is a ULA,
which is not used during the DOA estimation in this example.
Then Algorithm 2 can be applied, since the subarray structure
stays identical. Two different transmit arrays are introduced for
comparison to illustrate the improved performance provided by

Fig. 7. RMSE versus SNR for 1-D TB MIMO radar with non-uniformly spaced
transmit subarrays.

constructing D(sub). Both of them can be regarded as a linear
array with uniformly spaced transmit subarrays (Δs = 1). The
first one has S = 7 subarrays, while the second one has S = 9
subarrays to achieve the same aperture. The DOA estimation
for these two transmit arrays can be conducted via Algorithm 1.
The generalized-ESPRIT (G-ESPRIT) method of [44] and the
HOSVD-ESPRIT approach that uses the same tensor model (43)
as the proposed method are used for comparison. The CRBs for
models corresponding to three different transmit arrays are also
shown.

From Fig 7, it can be observed that by constructing D(sub)

we are able to exploit the multiple scales of shift-invariances in
the generalized Vandermonde factor matrix. By solving (48), the
grating lobes are eliminated efficiently. Hence, the structure of
transmit subarrays can be arbitrary but identical, which provides
more flexibility for array design. The RMSE of the proposed
approach surpasses those of the G-ESPRIT, HOSVD-ESPRIT
and CP-ESPRIT methods. Also, the performance of the non-
uniformly spaced transmit subarrays is better than that of the
uniformly spaced transmit subarrays (S = 7). This is expected
since the aperture is increased due to sparsity. Compared to the
fully spaced transmit subarrays case (S = 9), the performance of
the proposed method is deteriorated slightly. However, the fully
spaced array can be extremely high-cost if the array aperture
is further increased. By using the generalized Vandermonde
matrix, the proposed method enables the sparsity in the transmit
array, and it helps to achieve higher resolution with less elements.

E. Example 5: RMSE Performance for Arbitrary but Identical
Transmit Subarrays

In this example, we illustrate the performance of the proposed
DOA estimation method for TB MIMO radar with arbitrary but
identical subarrays. Specifically, a planar array with S = 4× 4
subarrays is considered, whose phase centers form a uniform
rectangular grid with a distance of half the working wave-
length. For each subarray,M0 = 4 elements are randomly placed
in a circle centered on the phase center with a radius of a
quarter of wavelength. All subarrays have identical structure,
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Fig. 8. RMSE versus SNR for 2-D TB MIMO radar with arbitrary but identical
transmit subarrays.

hence, the targets DOA can be estimated using Algorithm 2.
The receive array is formed by randomly selecting N = 12
elements from the transmit array. Three targets are placed at
(θl, ϕl) ∈ {(−26◦, 11◦), (−19◦, 21◦), (−12◦, 31◦)}. The other
parameters are the same as those in Example 2.

Note that the subarray is arbitrary, and the DOA parameters
can only be estimated by the phase rotations between the transmit
subarrays. The ESPRIT and U-ESPRIT methods are used as
representatives of the signal covariance matrix-based methods
while the HOSVD-ESPRIT is utilized as a representative of the
signal tensor decomposition-based methods. As another existing
alternative approach, the transmit array interpolation technique
of [14] has been introduced to map the original transmit array
into a URA (in our example here, 4× 4 URA) to enable the
Tensor-ESPRIT-based DOA estimation. We refer to this method
as Inter-TEV method in Fig. 8. It can be observed from the figures
that by carefully designing the mapping matrix, the RMSEs of
the Inter-TEV method are better than those of the ESPRIT, U-
ESPRIT and HOSVD-ESPRIT methods for both elevation and
azimuth angles estimation. The proposed method surpasses the

Fig. 9. RMSE versus SNR; the transmit subarrays are uniformly spaced.

other methods, including the Inter-TEV method, and shows the
lowest RMSE. This is because of the full usage of the shift-
invariance between and within different transmit subarrays.

F. Example 6: RMSE Performance With Estimated Number of
Targets for 1-D and 2-D Cases

In the final example, we evaluate the RMSE performance
of the estimated number of targets described in Section III-D.
The RMSEs of the aforementioned DOA estimation methods,
if applicable, are also shown for comparison. Note that only
the CP-ESPRIT method is not compared because it requires the
targets number as an input to initialize the ALS algorithm. The
signal models in Example 1 for 1-D case and Example 2 for 2-D
case are utilized, respectively. The results are given in Fig. 9.
The dotted lines are used for the case of estimated number of
targets, while the solid lines correspond to the case when L is
precisely known. It can be seen that an inaccurate estimation of
L leads to increasing the RMSEs for all methods, and it happens
only in low SNR region. If SNR is large enough (e.g., larger than
-15 dB for the 1-D case and -9 dB for the 2-D case), the number
of targets is estimated correctly. Then, the RMSE performance
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Fig. 10. RMSE versus SNR for 1-D TB MIMO radar; non-uniformly spaced
transmit subarrays, the number of targets is estimated.

with estimated L is nearly the same as that with the precise L.
It is worth stressing that the proposed approach achieves the
lowest RMSE in both scenarios.

The non-uniform case is also considered in Fig. 10 as an ex-
tension to Example 4 (here the G-ESPRIT and HOSVD-ESPRIT
methods are used for comparison). A similar conclusion as for
the uniform case can be made. The influence of inaccurate
estimation of L on DOA estimation performance is secondary
as compared to the influence of low SNR itself, since the DOA
estimation accuracy is limited in low SNR region even when the
correct number of targets is known.

VI. CONCLUSION

The problem of tensor decomposition with Vandermonde fac-
tor matrix in application to DOA estimation for TB MIMO radar
with transmit subarrays has been considered. A general higher-
order tensor that can be used to express the TB MIMO radar
received signal in a variety of scenarios, e.g., linear and planar
arrays, uniformly and non-uniformly spaced subarrays, regular
and irregular subarrays, has been designed. The shift-invariance
of the received signal between and within different transmit sub-
arrays have been used to conduct DOA estimation. Specifically,
a computationally efficient tensor decomposition method has
been proposed to estimate the generators of the Vandermonde
factor matrices, which can be used in the form of a look-up table
for finding targets DOA. The proposed method fully exploits
the shift-invariance of the received signal between and within
different transmit subarrays, and it can be regarded as a general-
ized tensor decomposition-based ESPRIT method. Comparing
with conventional signal tensor decomposition-based techniques
like CP-ESPRIT and HOSVD-ESPRIT methods, our proposed
method takes advantage of the Vandermonde structure of factor
matrices, and it requires no iterations. The parameter identifiabil-
ity of our tensor model has also been studied via the discussion
of the uniqueness condition for the signal tensor decomposi-
tion. Simulation results have verified that the proposed DOA
estimation method has better accuracy and higher resolution

as compared to existing techniques for TB MIMO radar DOA
estimation.

APPENDIX A
PROOF OF LEMMA 1

First, note that r(A(3)) = L since A(3) is a tall matrix
with column full rank. Then note that A(1) �A(2) =
B�C�A(2) = Π(B�A(2) �C) where Π is an exchange
matrix. Here the KR productB�A(2) of a Vandermonde matrix
and an arbitrary matrix has the rankmin{pI2, L} (see [20], [21]),
and r(B�A(2) �C) = min{I1I2, L}. Since Π is nonsingu-
lar, r(B�C�A(2)) = r(B�A(2) �C) = min{I1I2, L}.
Using this property, we have r(B�C�A(2)) = r(B�
C�A(2)) = r(B�A(2) �C) = min{(p− 1)qI2, L} = L
and r(B�C�A(2)) = r(B�C�A(2)) = min{(q −
1)pI2, L} = L.

Next, consider the 3-th multi-mode unfolding of Y , which
is given by Y(3) = (A(1) �A(2))(A(3))T . The SVD of this
matrix is Y(3) = UΛVH , where U ∈ C

I1I2×L, Λ ∈ C
L×L,

and V ∈ C
I3×L. Since r(A(3)) = L, it can be derived that a

nonsingular matrix E ∈ C
L×L satisfies UE = B�C�A(2),

i.e.,

U2E = B�C�A(2), U1E = B�C�A(2)

U4E = B�C�A(2), U3E = B�C�A(2), (51)

where the submatrices U1, U2, U3 and U4 are truncated from
rows of U according to the operator of the KR product, i.e.,

U1 =
[
IqI2(p−1),0qI2(p−1)×qI2

]
U

U2 =
[
0qI2(p−1)×qI2 , IqI2(p−1)

]
U

U3 =
(
Ip ⊗

[
II2(q−1),0I2(q−1)×I2

])
U

U4 =
(
Ip ⊗

[
0I2(q−1)×I2 , II2(q−1)

])
U. (52)

By exploiting the Vandermonde structure ofB andC, we have
U2E = U1EΩb and U4E = U3EΩc, where Ωb = diag(ωb),
Ωc = diag(ωc) with ωb and ωc denoting the vectors of gen-
erators of B and C, respectively. Note that E, Ωb and Ωc are
full rank. We have U†

1U2 = EΩbE
−1 and U†

3U4 = EΩcE
−1.

Hence, the vectorsωb andωc can be computed as the collections
of eigenvalues of U†

1U2 and U†
3U4, respectively, while E is the

collection in the matrix form of the corresponding eigenvectors.
From the generators of B and C, the first factor matrix A(1)

can be reconstructed column by column, i.e., a(1)l = bl � cl,

where a
(1)
l , bl and cl are the l-th column of A(1), B and C,

respectively.
Using the fifth relationship in (1), we have

a
(2)
l =

⎛
⎜⎝

(
a
(1)
l

)H
(
a
(1)
l

)H
a
(1)
l

⊗ II2

⎞
⎟⎠(a(1)l ⊗ a

(2)
l

)
, (53)

where a
(2)
l is the l-th column of A(2). It can also be observed

that a(1)l ⊗ a
(2)
l = bl � cl � a

(2)
l , which is the l-th column of

the matrixA(1) �A(2). From (51), we havea(1)l ⊗ a
(2)
l = Uel,
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where el is the l-th column of the nonsingular matrix E. Substi-
tuting it into (53) and assuming that the column vectors of A(1)

have unit norm, a(2)l can be computed by

a
(2)
l =

((
a
(1)
l

)H
⊗ II2

)
Uel, l = 1, 2, . . . , L. (54)

Using A(1) and A(2), the third factor matrix is given as

(
A(3)

)T
=

(((
A(1)

)H
A(1)

)
∗
((

A(2)
)H

A(2)

))−1

×
(
A(1) �A(2)

)H
Y(3).

(55)
Therefore, the tensor decomposition of Y is generally unique.

This completes the proof.
In the particular case of A(1) ∈ C

I1×L being reduced to a
Vandermonde matrix with distinct generators, the decomposi-
tion of Y is unique if (I1 − 1)I2 ≥ L. This can be also verified
by Proposition III.2 in [20] or Theorem 1.13 in [35].

REFERENCES

[1] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with
widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1,
pp. 116–129, Jan. 2008.

[2] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.

[3] A. Hassanien and S. A. Vorobyov, “Transmit energy focusing for DOA
estimation in MIMO radar with colocated antennas,” IEEE Trans. Signal
Process., vol. 59, no. 6, pp. 2669–2682, Jun. 2011.

[4] A. Hassanien and S. A. Vorobyov, “Phased-MIMO radar: A tradeoff
between phased-array and MIMO radars,” IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3137–3151, Jun. 2010.

[5] D. R. Fuhrmann, J. P. Browning, and M. Rangaswamy, “Signaling strate-
gies for the hybrid MIMO phased-array radar,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 1, pp. 66–78, Feb. 2010.

[6] A. Khabbazibasmenj, A. Hassanien, S. A. Vorobyov, and M. W. Morency,
“Efficient transmit beamspace design for search-free based DOA esti-
mation in MIMO radar,” IEEE Trans. Signal Process., vol. 62, no. 6,
pp. 1490–1500, Mar. 2014.

[7] Z. Guo, X. Wang, and W. Heng, “Millimeter-wave channel estimation
based on 2-D beamspace MUSIC method,” IEEE Trans. Wireless Com-
mun., vol. 16, no. 8, pp. 5384–5394, Aug. 2017.

[8] A. Hu, T. Lv, H. Gao, Z. Zhang, and S. Yang, “An ESPRIT-based approach
for 2-D localization of incoherently distributed sources in massive MIMO
systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 996–1011,
Oct. 2014.

[9] N. Tayem and H. M. Kwon, “L-shape 2-dimensional arrival angle esti-
mation with propagator method,” IEEE Trans. Antennas Propag., vol. 53,
no. 5, pp. 1622–1630, May 2005.

[10] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle
estimation with rectangular arrays in element space or beamspace via
unitary ESPRIT,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 316–328,
Feb. 1996.

[11] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidimensional
harmonic retrieval in signal processing for MIMO radar,” IEEE Trans.
Signal Process., vol. 58, no. 11, pp. 5693–5705, Nov. 2010.

[12] B. Xu, Y. Zhao, Z. Cheng, and H. Li, “A novel unitary PARAFAC method
for DOD and DOA estimation in bistatic MIMO radar,” Signal Process.,
vol. 138, pp. 273–279, Sep. 2017.

[13] N. Sidiropoulos, R. Bro, and G. Giannakis, “Parallel factor analysis in
sensor array processing,” IEEE Trans. Signal Process., vol. 48, no. 8,
pp. 2377–2388, Aug. 2000.

[14] M. Cao, S. A. Vorobyov, and A. Hassanien, “Transmit array inter-
polation for DOA estimation via tensor decomposition in 2-D MIMO
radar,” IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5225–5239,
Oct. 2017.

[15] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear sin-
gular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253–1278, 2000.

[16] M. Haardt, F. Roemer, and G. D. Galdo, “Higher-order SVD-based sub-
space estimation to improve the parameter estimation accuracy in multi-
dimensional harmonic retrieval problems,” IEEE Trans. Signal Process.,
vol. 56, no. 7, pp. 3198–3213, Jul. 2008.

[17] S. D. Blunt and E. L. Mokole, “Overview of radar waveform diver-
sity,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 11, pp. 2–42,
Nov. 2016.

[18] A. Hassanien, M. W. Morency, A. Khabbazibasmenj, S. A. Vorobyov, J.
Park, and S. Kim, “Two-dimensional transmit beamforming for MIMO
radar with sparse symmetric arrays,” in Proc. IEEE Radar Conf., Ottawa,
ON, Canada, 2013, pp. 1–6.

[19] N. D. Sidiropoulos et al., “Tensor decomposition for signal processing
and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13,
pp. 3551–3582, Jul. 2017.

[20] M. Sørensen and L. D. Lathauwer, “Blind signal separation via tensor
decomposition with vandermonde factor: Canonical polyadic decompo-
sition,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5507–5519,
Nov. 2013.

[21] T. Jiang, N. D. Sidiropoulos, and J. M. F. ten Berge, “Almost-sure iden-
tifiability of multidimensional harmonic retrieval,” IEEE Trans. Signal
Process., vol. 49, no. 9, pp. 1849–1859, Sep. 2001.

[22] F. Xu, S. A. Vorobyov, and X. Yang, “Joint DOD and DOA estimation
in slow-time MIMO radar via PARAFAC decomposition,” IEEE Signal
Process. Lett., vol. 27, pp. 1495–1499, Aug. 2020.

[23] A. Cichocki et al., “Tensor decompositions for signal process-
ing applications: From two-way to multiway component analysis,”
IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar.
2015.

[24] F. Xu, X. Yang, and T. Lan, “Search-free direction-of-arrival estimation
for transmit beamspace multiple-input multiple-output radar via tensor
modelling and polynomial rooting,” IET Radar, Sonar Navigation, vol. 15,
no. 6, pp. 574–580, Apr. 2021.

[25] J. H. M. de Goulart, M. Boizard, R. Boyer, G. Favier, and P. Comon,
“Tensor CP decomposition with structured factor matrices: Algorithms
and performance,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 4,
pp. 757–769, Jun. 2016.

[26] W. Wang, H. C. So, and A. Farina, “An overview on time/frequency
modulated array processing,” IEEE J. Sel. Topics Signal Process., vol. 11,
no. 2, pp. 228–246, Mar. 2017.

[27] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[28] F. Xu and S. A. Vorobyov, “Constrained tensor decomposition for 2D DOA
estimation in transmit beamspace MIMO radar with subarrays,” in Proc.
46th Int. Conf. Acoust., Speech, Signal Process., Toronto, Canada, 2021,
pp. 4380–4384.

[29] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “Con-
strained tensor modeling approach to blind multiple-antenna CDMA
schemes,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2417–2428,
Jun. 2008.

[30] H. Lin, C. Yuan, J. Du, and Z. Hu, “Estimation of DOA for noncircu-
lar signals via vandermonde constrained parallel factor analysis,” Int. J.
Antennas Propag., vol. 2018, pp. 1–10, Jan. 2018.

[31] M. W. Morency and S. A. Vorobyov, “Partially adaptive transmit beam-
forming for search free 2D DOA estimation in MIMO radar,” in Proc. 23rd
Eur. Signal Process. Conf., Nice, France, 2015, pp. 2631–2635.

[32] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[33] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear decom-
position of N-way arrays,” J. Chemometrics, vol. 14, no. 3, pp. 229–239,
2000.

[34] I. Domanov and L. D. Lathauwer, “On the uniqueness of the canonical
polyadic decomposition of third-order tensors–Part II: Uniqueness of
the overall decomposition,” SIAM J. Matrix Anal. Appl., vol. 34, no. 3,
pp. 876–903, 2013.

[35] I. Domanov and L. De Lathauwer, “On the uniqueness of the canonical
polyadic decomposition of third-order tensors–Part I: Basic results and
uniqueness of one factor matrix,” SIAM J. Matrix Anal. Appl., vol. 34,
no. 3, pp. 855–875, 2013.

[36] N. Sidiropoulos and X. Liu, “Identifiability results for blind beamforming
in incoherent multipath with small delay spread,” IEEE Trans. Signal
Process., vol. 49, no. 1, pp. 228–236, Jan. 2001.



XU et al.: DOA ESTIMATION FOR TRANSMIT BEAMSPACE MIMO RADAR VIA TENSOR DECOMPOSITION 2917

[37] Z. Yang, P. Stoica, and J. Tang, “Source resolvability of spatial-smoothing-
based subspace methods: A hadamard product perspective,” IEEE Trans.
Signal Process., vol. 67, no. 10, pp. 2543–2553, May 2019.

[38] X. Guo, S. Miron, D. Brie, S. Zhu, and X. Liao, “A CANDE-
COMP/PARAFAC perspective on uniqueness of DOA estimation using
a vector sensor array,” IEEE Trans. Signal Process., vol. 59, no. 7,
pp. 3475–3481, Jul. 2011.

[39] X. Guo, S. Miron, D. Brie, and A. Stegeman, “Uni-mode and partial
uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays
with linearly dependent loadings,” SIAM J. Matrix Anal. Appl., vol. 33,
no. 1, pp. 111–129, 2012.

[40] Q.-T. Zhang, K. Wong, P. Yip, and J. Reilly, “Statistical analysis of
the performance of information theoretic criteria in the detection of the
number of signals in array processing,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 37, no. 10, pp. 1557–1567, Oct. 1989.

[41] M. Sørensen and L. De Lathauwer, “Multiple invariance ESPRIT for
nonuniform linear arrays: A coupled canonical polyadic decomposition
approach,” IEEE Trans. Signal Process., vol. 64, no. 14, pp. 3693–3704,
Jul. 2016.

[42] A. L. Swindlehurst, B. Ottersten, R. Roy, and T. Kailath, “Multiple in-
variance esprit,” IEEE Trans. Signal Process., vol. 40, no. 4, pp. 867–881,
Apr. 1992.

[43] K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, and S.
A. Vorobyov, “Toward millimeter-wave joint radar communications: A
signal processing perspective,” IEEE Signal Process. Mag., vol. 36, no. 5,
pp. 100–114, Sep. 2019.

[44] B. Liao and S. Chan, “Direction-of-arrival estimation in subarrays-based
linear sparse arrays with gain/phase uncertainties,” IEEE Trans. Aerosp.
Electron. Syst., vol. 49, no. 4, pp. 2268–2280, Oct. 2013.

Feng Xu (Member, IEEE) received the Ph.D. degree
in information and communication engineering from
the School of Information and Electronics, Beijing In-
stitute of Technology, Beijing, China, in 2021. From
2019 to 2021, he was a Visiting Doctoral Candi-
date with the Department of Signal Processing and
Acoustics, Aalto University, Espoo, Finland, where
he is currently a Research Assistant. His research
interests include array signal processing, radar, and
tensor decomposition.

Matthew W. Morency (Member, IEEE) received
the B.Sc. degree in electrical engineering from the
University of Alberta, Edmonton, AB, Canada, and
the M.Sc. degree (with distinction) in electrical engi-
neering from Aalto University, Espoo, Finland. From
2016 to 2020, he conducted Ph.D. studies with TU
Delft. In late 2020, he began his career as an Engineer
with Nokia Networks, Espoo, Finland. His research
interests include signal processing, with specific fo-
cus on array processing, graph signal processing, and
sparse sensing. He was the recipient of the 2015 IEEE

CAMSAP Best Student Paper Award, and the NSERC Postgraduate Scholarship.

Sergiy A. Vorobyov (Fellow, IEEE) received the
M.Sc. and Ph.D. degrees in systems and control from
the Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine, in 1994 and 1997, respectively.
He is currently a Professor with the Department of
Signal Processing and Acoustics, Aalto University,
Espoo, Finland. He was with the University of Al-
berta, Alberta, Canada, as an Assistant, an Associate,
and then a Full Professor. Since his graduation, he
also held various research and Faculty positions with
the Kharkiv National University of Radio Electronics,

the Institute of Physical and Chemical Research, Japan, McMaster Univer-
sity, Hamilton, Canada, Duisburg-Essen University, Duisburg, Germany and
the Darmstadt University of Technology, Darmstadt, Germany, and the Joint
Research Institute between Heriot-Watt University, Edinburgh EH, U.K. and
Edinburgh University, Edinburgh, EH, U.K. His research interests include opti-
mization and multiliner algebra methods in signal processing and data analysis;
statistical and array signal processing; sparse signal processing; estimation,
detection and learning theory and methods; and multi-antenna, very large,
cooperative, and cognitive systems.

Dr. Vorobyov was the recipient of the 2004 IEEE Signal Processing Society
Best Paper Award, 2007 Alberta Ingenuity New Faculty Award, the 2011 Carl
Zeiss Award (Germany), 2012 NSERC Discovery Accelerator Award, and other
awards. Since 2016, he has been the Senior Area Editor of the IEEE SIGNAL

PROCESSING LETTERS. He was an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING during 2006–2010 and the IEEE SIGNAL PROCESS-
ING LETTERS during 2007–2009. He was a member of the Sensor Array and
MultiChannel Signal Processing and Signal Processing for Communications
and Networking Technical Committees of the IEEE Signal Processing Society
during 2007–2012 and during 2010–2016, respectively. He was the Track Chair
of Asilomar 2011, Pacific Grove, CA, USA, the Technical Co-Chair of the IEEE
CAMSAP 2011, Puerto Rico, the Tutorial Chair of the ISWCS 2013, Ilmenau,
Germany, the Technical Co-Chair of the IEEE SAM 2018, Sheffield, U.K. He
is also the Technical Co-Chair of IEEE CAMSAP 2023, Costa-Rica and the
General Co-Chair of EUSIPCO 2023, Helsinki, Finland.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


