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Memory-Efficient Convex Optimization for

Self-Dictionary Separable Nonnegative Matrix

Factorization: A Frank-Wolfe Approach
Tri Nguyen, Xiao Fu, and Ruiyuan Wu

Abstract—Nonnegative matrix factorization (NMF) often relies
on the separability condition for tractable algorithm design.
Separability-based NMF is mainly handled by two types of
approaches, namely, greedy pursuit and convex programming.
A notable convex NMF formulation is the so-called self-
dictionary multiple measurement vectors (SD-MMV), which can
work without knowing the matrix rank a priori, and is arguably
more resilient to error propagation relative to greedy pursuit.
However, convex SD-MMV renders a large memory cost that
scales quadratically with the problem size. This memory challenge
has been around for a decade, and a major obstacle for applying
convex SD-MMV to big data analytics. This work proposes a
memory-efficient algorithm for convex SD-MMV. Our algorithm
capitalizes on the special update rules of a classic algorithm
from the 1950s, namely, the Frank-Wolfe (FW) algorithm. It is
shown that, under reasonable conditions, the FW algorithm solves
the noisy SD-MMV problem with a memory cost that grows
linearly with the amount of data. To handle noisier scenarios,
a smoothed group sparsity regularizer is proposed to improve
robustness while maintaining the low memory footprint with
guarantees. The proposed approach presents the first linear
memory complexity algorithmic framework for convex SD-MMV
based NMF. The method is tested over a couple of unsupervised
learning tasks, i.e., text mining and community detection, to
showcase its effectiveness and memory efficiency.

Index Terms—Unsupervised multimodal analysis, sample com-
plexity, identifiability

I. INTRODUCTION

Nonnegative matrix factorization (NMF) aims at factoring

a data matrix X ∈ R
M×N into a product of two latent

nonnegative factor matrices, i.e.,

X ≈WH , W ∈ R
M×K
+ , H ∈ R

K×N
+ , (1)

where K ≤ min{M,N}. The NMF technique has been a

workhorse for dimensionality reduction, representation learn-

ing, and blind source separation. It finds a plethora of appli-

cations in machine learning and signal processing; see, e.g.,

[1], [2]. In particular, NMF plays an essential role in many
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statistical model learning problems, e.g., topic modeling [3]–

[5], community detection [6]–[9], crowdsourced data labeling

[10], [11], and joint probability estimation [12].

One major challenge of NMF lies in computation. It was

shown in [13] that NMF is an NP-hard problem in the worst

case, even without noise. In the last two decades, many ap-

proximate algorithms were proposed to tackle the NMF prob-

lem; see [1], [2], [14]. Notably, a line of work exploiting phys-

ically reasonable assumptions to come up with polynomial-

time NMF algorithms has drawn considerable attention. To

be specific, the so-called separable NMF approaches leverage

the separability condition to design efficient and tractable

algorithms. More importantly, separable NMF algorithms are

often provably robust to noise [3], [15]–[18].

The separability condition is a special sparsity-related con-

dition. Interestingly, it is nonetheless well-justified in many

applications. For example, in topic modeling, the separability

condition holds if every topic has an “anchor word” that

does not appear in other topics [19]. In community detection,

separability translates to the existence of a set of “pure nodes”

whose membership is only associated with a specific commu-

nity [7]. The “pure pixel assumption” in hyperspectral imaging

is also identical to separability, which means that there exist

pixels that only capture one material spectral signature [20],

[21]. In crowdsourced data labeling, separability is equivalent

to the existence of expert annotators who are specialized for

one class [10].

Two major categories of algorithms exist for separable

NMF. The first category is greedy algorithms. The represen-

tative algorithm is the successive projection algorithm (SPA),

which was first proposed in the hyperspectral imaging com-

munity [21], and was re-discovered a number of times from

different perspectives; see [3], [17], [22]–[26]. Many of these

greedy algorithms have a Gram-Schmidt structure, and thus are

very scalable. However, they also share the same challenge of

Gram-Schmidt, i.e., error propagation. The second category

formulates the separable NMF problem as all-at-once convex

optimization criteria (see, e.g., [15], [16], [19], [27]–[31]),

which are arguably more robust to noise and less prone to

error propagation.

Among the all-at-once convex formulations of separable

NMF, the self-dictionary multiple measurement vectors (SD-

MMV) based framework in [15], [16], [27]–[30] has a series

of appealing features, e.g., identifiability of the latent factors

without knowing the model rank, computational tractability,

and noise robustness. Nonetheless, this line of work has seri-
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ous challenges in terms of memory. These algorithms induce

a variable that has a size of N ×N , which is not possible to

instantiate if N reaches the level of N = 100, 000—which

leads to a 74.5GB matrix if the double precision is used.

Consequently, these algorithms are often used together with

a data selection pre-processing stage to reduce problem size

(see, e.g., [30]). This may again create an error propagation

issue—if the data selection stage missed some important data

samples (e.g., those related to anchor words or pure nodes

in topic modeling and community detection, respectively), the

algorithms are bound to fail.

Contributions. In this work, we revisit convex optimization-

based SD-MMV for separable NMF. Our goal is to offer an

NMF identifiability-guaranteed algorithm that is also provably

memory-efficient. Our contributions are as follows:

• A Memory-Efficient Algorithmic Framework. We first

show that applying with the standard FW algorithm onto

a special SD-MMV formulation for separable NMF admits

identifiability of the ground-truth latent factors, if the noise is

absent. More importantly, the memory cost of this algorithm

is O(KN) other than O(N2), where K ≪ N often holds.

Based on this simple observation, we further show that similar

conclusions can be drawn even if noise is present—under more

conditions.

• Regularization-Based Performance Enhancement. To cir-

cumvent stringent conditions and to improve noise robustness,

we propose a smoothed group-sparsity regularization that is

reminiscent of the mixed norm regularization often used in

SD-MMV formulations (see [15], [27], [29], [32], [33]). We

show that the optimal solution of such regularized formulation

corresponds to the desired ground-truth NMF factors in the

noisy case—i.e., identifiability of the NMF holds. We further

show that this regularization can better safeguard the memory

consumption within the range of O(KN) compared to the

unregularized version, if the FW algorithm is initialized rea-

sonably. To our best knowledge, the proposed FW algorithmic

framework is the first convex SD-MMV method whose mem-

ory cost scales linearly in N , while existing methods such as

those in [15], [16], [27], [28], [30] all need O(N2) memory.

• Synthetic and Real data Evaluation. We test the proposed

approach on various synthetic and real datasets. In particular,

we evaluate our algorithm using a couple of text corpora,

i.e., NIST Topic Detection and Tracking (TDT2) [34] and the

Reuters-21578 data1 on topic mining tasks. We also use social

network data from [35], [36] to evaluate the performance on

mixed membership community detection tasks. The proposed

approach is benchmarked by competitive state-of-the-art base-

lines for solving separable NMF.

Notation. We follow the established conventions in signal

processing. In particular, x ∈ R
N denotes a real-valued N -

dimensional vector; xn and [x]n both denote the nth element

of x; X ∈ R
N×M denotes a real-valued matrix; rank(·)

denotes matrix rank; superscript ⊤ is used for transpose; ‖ · ‖p
where p ≥ 1 denotes the vector ℓp norm; ‖ · ‖F denotes the

Frobenius norm; X(n, :) and xℓ denote the nth row and ℓth

1http://www.daviddlewis.com/resources/testcollections/reuters21578

column of X , respectively; xn,ℓ, [X]n,ℓ and X(n, ℓ) all de-

note the (n, ℓ)th element of X; X(−n, :) and X(:,−ℓ) denote

the submatrices constructing from X by removing the nth row

and ℓth column, respectively; |K| and Kc denote the cardi-

nality and complement of the set K, respectively; ‖X‖row−0

counts the number of nonzero rows of X; ‖X‖∞,1 =∑M
i=1 ‖X(i, :)‖∞ is the mixed ℓ∞/ℓ1 norm; supp(x) denotes

a set of all indices of non-zero elements of vector x, i.e.,

supp(x) := {i | [x]i 6= 0}; conv{x1,x2, . . . ,xk} denotes

convex hull of set {x1,x2, . . . ,xk}; 1 and 0 denote an all-

one matrix/vector and an all-zero matrix/vector, respectively,

with proper sizes; ei denotes the ith unit vector; IN denotes

an identity matrix with a size of N × N ; both notations

x ≥ 0 and X ≥ 0 mean that the nonnegativity is applied

element-wise; i ∈ [N ] means i ∈ {1, . . . , N}; σmax(X) and

σmin(X) denote the largest and smallest singular value of X ,

respectively; λmax(X) denotes the largest eigenvalue of X;

N denotes the set of natural numbers.

II. PROBLEM STATEMENT

Consider a noisy NMF model, i.e.,

X = WH + V , W ≥ 0, H ≥ 0, (2)

where W ∈ R
M×K and H ∈ R

K×N are nonnegative latent

factors as defined before, and V is a noise term. We further

assume that

1
⊤H = 1

⊤, (3)

i.e., the columns of H reside in the probability simplex. This

assumption naturally holds in many applications, e.g., topic

modeling, community detection, and hyperspectral unmixing

[6], [19], [20], [37]. When H does not have sum-to-one

columns, this assumption can be “enforced” through column

normalization of X , under the condition that W is nonnega-

tive, and there is no noise; see [1], [18]. We should mention

that although our interest lies in NMF, the proposed method

can also be applied to the so-called simplex-structured matrix

factorization, where W is not required to be nonnegative; see,

e.g., [8], [9], [25], [37].

Estimating the ground-truth W and H from X is in

general an NP-hard problem [13]. However, if the so-called

separability condition holds, the separable NMF algorithms

are often tractable, even under noise.

A. Separable NMF

The separable NMF problem uses the following premise:

Assumption 1 (Separability) There exists a set

K = {ℓ1, . . . , ℓK}

such that H(:,K) = IK . Equivalently, we have X(:,K) = W

under (3), if noise is absent.

The condition was first seen in [38] in the NMF literature.

The remote sensing community discovered it even earlier [21],

where the same condition is called the “pure pixel condition”

[20]. The condition has many names in applications, e.g.,
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Fig. 1: Visualization of the idea of the row-sparsity-based SD-

MMV in [17], [27].

the “anchor word assumption” in topic modeling [3]–[5], the

“pure node condition” in community detection [6]–[8], and the

“specialized annotator condition” in crowdsourcing [11]; also

see its usage in speech processing [25], image analysis [39]

and wireless communications [32].

Under separability, the NMF task boils down to finding K,

since W ≈X(:,K) if the noise level is not high. Then, H can

be estimated by (constrained) least squares if rank(W ) = K .

B. Convex Separable NMF

A way to look at the K-finding problem is to cast it as

a sparse atom selection problem. To be specific, when noise

is absent, consider the following row-sparsity minimization

formulation:

minimize
C∈RN×N

‖C‖row−0 (4a)

subject to X = XC, C ≥ 0, 1
⊤C = 1

⊤, (4b)

where ‖C‖row−0 counts the nonzero rows of C . For example,

if K = {1, . . . ,K}, then an optimal solution of (4) is

C⋆ =

[
H

0

]
(5)

under mild conditions (e.g., rank(W ) = K). More formally,

we have:

C⋆(K, :) = H , C⋆(Kc, :) = 0; (6)

see a proof for the general case in [17] and an illustration

in Fig. 1. Hence, K can be identified by inspecting the

nonzero rows of C⋆. The formulation in (4) is reminiscent

of the multiple measurement vectors (MMV) problem from

compressive sensing [40], [41], but using the data itself as

the dictionary—which is the reason why (4) is called self-

dictionary multiple measurement vectors (SD-MMV) [17]. We

should mention that SD-MMV can be regarded as a way of

picking up the vertices of the convex hull of {x1, . . . ,xN},
which is a popular perspective that many separable NMF

algorithms take; see, e.g., [3], [23], [24], [42]. Unlike the

classic vertex picking methods that often need the knowledge

of K , SD-MMV can work without knowing the number of

vertices.

The formulation in (4) is not easy to tackle, due to the

combinatorial nature of ‖C‖row−0. One popular way is to

use greedy pursuit, which selects the basis that represents

X using its convex combinations from the self-dictionary X

one by one. This leads to the successive projection algorithm

(SPA) [17], [18], [21], [23]. The greedy pursuit methods

are often effective, efficient, and robust to a certain extent.

However, they also share the same challenge—the error could

be accumulated and propagated through the greedy steps.

Another line of work employs the convex relaxation idea

and use a convex surrogate for ‖C‖row−0—see [15], [27]–

[30], [32], [33], [43] for different options. For example, the

work in [15], [27] uses

‖C‖∞,1 =

N∑

n=1

‖C(n, :)‖∞ (7)

as their convex surrogate. When the noise is present, the work

in [15], [27] also advocated the following formulation

minimize
C∈RN×N

1

2
‖X −XC‖2F + λ‖C‖∞,1 (8a)

subject to C ≥ 0, 1
⊤C = 1

⊤, (8b)

where λ ≥ 0 is a regularization parameter. The formulation is

convex and thus is conceptually easy to handle. After using any

convex optimization algorithm to obtain an optimal solution

Ĉ, the K set can be identified via inspecting ‖Ĉ(n, :)‖∞
for all n and picking the K indices that are associated with

K largest row ℓ∞-norms. This method was shown to have

identifiability of K under noise [15]—also see similar results

for close relatives of (8) in [16], [28], [30], [43].

In terms of noise robustness, the convex optimization-based

SD-MMV methods are arguably more preferable over greedy

methods, since they identify all elements of K simultaneously,

instead of in a one by one manner that is prone to error

propagation.

C. The Memory Challenge

Using convex programming to handle separable NMF is

appealing, since many off-the-shelf algorithms are readily

available. The convergence properties of convex optimization

algorithms are also well understood. However, general-purpose

convex optimization algorithms, e.g., the interior-point meth-

ods and gradient descent, may encounter serious challenges

when handling Problem (8). The reason is that the C variable

induces O(N2) memory if a general-purpose solver is used.

This often makes running such algorithms costly and slow,

even when N is only moderate.

Many attempts were made towards accelerating convex

SD-MMV. The early work in [28] uses a fast projection to

expedite the algorithm for a variant of (8). The recent work

in [30] employed the fast gradient paradigm for accelerated

convergence. However, the O(N2) memory issue could not

be circumvented in both approaches. In this work, our ob-

jective is a convex optimization algorithm that share similar

identification properties of those in [15] but has provable

memory-efficiency—i.e., only O(NK) memory is needed for

instantiating the optimization variable C .

III. A FRANK-WOLFE APPROACH

A. Preliminaries on Frank-Wolfe Algorithm

Our development is based on the idea of the Frank-Wolfe

(FW) algorithm that was developed in the 1950s [44]. The FW
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algorithm deals with problems of the following form:

minimize
θ∈Rd

f(θ) (9a)

subject to θ ∈ C, (9b)

where C is compact and convex and f(·) : R
d → R is

differentiable and convex.

The FW algorithm uses the following updates:

u← argmin
u∈C

∇f(θt)⊤u, (10a)

θt+1 ← (1− αt)θt + αtu. (10b)

Here, αt is a pre-defined sequence, i.e.,

αt =
2

t+ 2
, t = 0, 1, 2, . . . . (11)

The above two steps constitute a standard procedure of the

FW algorithm [45], [44]. The idea of FW is intuitive: In each

iteration, FW linearizes the cost function and solve it locally

over the compact constraint set. For convex problems, the

plain-vanilla FW algorithm converges to an ε-optimal solution

using O(1/ε) iterations (which is also known as a sublinear

convergence rate). Recent works showed that FW (and its

variants) converges even faster (with a linear rate) under some

more conditions; see, e.g., [45], [46].

When dealing with large-scale optimization, especially

memory-wise costly optimization problems, FW may help

circumvent memory explosion due to its special update rule—

which has already facilitated economical nuclear norm opti-

mization paradigms that are important in recommender sys-

tems [45]. FW also features simple updates if the constraint

set is

C = {θ ∈ R
N | 1⊤θ = 1, θ ≥ 0}.

In this case, u in (10) is always a unit vector. This is because

(10a) is a linear program over the probability simplex C, and

the minimum is always attained at a vertex of C [47]. The

vertices of C are {en}Nn=1. Hence, the solution of (10a) is ej
where

j = arg min
n∈[N ]

[∇f(θt)]n. (12)

In our algorithm design, we will take advantage of this fact to

reduce the memory cost of solving SD-MMV.

Note that one needs not always start the FW algorithm from

t = 0. In [46], a warm-start based Frank-Wolfe (WS-FW)

algorithm was proposed for accelerated convergence. There,

one can use θtinit = θinit with tinit ≥ 1 and start the FW

algorithm from the tinitth iteration using the corresponding

αtinit as defined in (11). By carefully choosing tinit according

to the quality of θinit and the problem structure (e.g., the

curvature of the cost function), WS-FW is shown to converge

to the global optimum more efficiently.

B. Warm-up: The Noiseless SD-MMV

Our algorithm design starts with the simple formulation as

follows:

minimize
C

1

2
‖X −XC‖2F (13a)

subject to 1
⊤C = 1

⊤, C ≥ 0. (13b)

Note that in general, (13) does not admit identifiability of K—

the optimal solution of (13) needs not to have the form in (6).

A simple counter example is C = IN—which gives zero

objective value, but is not the desired solution. That is, one

cannot infer K from the nonzero rows of C = IN .

C. Noiseless Case and Simple Self-Dictionary Fitting

The first observation is that although the criterion in (13)

does not admit identifiability of K, the FW algorithm guaran-

tees finding a C as in (6), thereby pining down K.

To see this, note that the updates of cℓ’s do not affect each

other. Consider the following update rule for ℓ = 1, . . . , N :

j ← arg min
n∈[N ]

[X⊤(Xctℓ − xℓ)]n, (14a)

ct+1
ℓ ← (1 − αt)ctℓ + αtej , (14b)

Since the formulation is convex, the above updates are guar-

anteed to solve the problem in (13). Before we examine what

solution the updates will lead to, let us discuss its memory

complexity, i.e., the reason why such updates are potentially

memory-economical.

To see how much memory that the algorithm needs beyond

storing X (which is inevitable), let us analyze the steps in

(14). First, evaluating gradient in (14a) is not memory-costing.

One can always evaluate ctℓ − xℓ, followed by multiplying

with X , followed by another left multiplying X⊤. These three

operations produce vectors as their results and hence require

O(N) memory complexity in total. Note that one can evaluate

the gradient w.r.t. C column by column, and no previously

evaluated columns need to be stored. Hence, the total memory

cost is O(N). Second, the remaining memory requirement lies

in storing the iterates ct+1
ℓ for ℓ = 1, . . . , N . Consider an ideal

case where the j found in (14b) satisfies j ∈ K for all ℓ and

all t. Then, if the initialization C0 = 0, the updating rule in

(14b) always maintains supp(ctℓ) ⊆ K for all ℓ = 1, . . . , N .

This leads to an O(KN) memory for storing Ct.

Based on our discussion, the key to attain the above de-

scribed memory efficiency is to ensure that j ∈ K for all ℓ
and all t in (14b). We show that this is indeed the case under

some conditions:

Theorem 1 (Noiseless Case, Memory Efficiency) Suppose

that Assumption 1 holds, that rank(W ) = K , that no

repeated unit vectors exist in H2, and that the noise is absent

(i.e., V = 0). Furthermore, define qtℓ = W⊤W (Hctℓ − hℓ).
Assume that the following holds:

qti,ℓ −min
j
qtj,ℓ 6= 0, ∀i 6= argmin

j
qtj,ℓ, (15)

before ctℓ reaches an optimal solution. Then, the FW algorithm

in (10) with initialization C0 = 0 always outputs the desired

solution in (6) using O(KN) memory beyond storing X .

The proof is relegated to Appendix A. Note that Theorem 1

requires that Eq. (15) holds—i.e., no repeated minimum-value

2In applications where there are many identical/similar columns in H (e.g.,
hyperspectral unmixing), the assumption can be “enforced” by clustering-
based pre-processing [27], [30].
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elements of qℓ exist for any ctℓ. This is not hard to meet under

some mild conditions:

Fact 1 Assume that the columns of W follow any joint

continuous distribution. Then, we have

Pr(qi,ℓ = qj,ℓ) = 0, ∀i, j ∈ [K], ℓ ∈ [N ].

Proof: Under the assumption, suppose that there exists

any b such that we have Pr(w⊤
iz = b,w⊤

jz = b) > 0 for

any vector z. That is, there is a positive probability that

qℓ could have two identical elements. However, this cannot

happen. Indeed, note that yi = w⊤
iz and yj = w⊤

jz are also

continuous random variables. Hence, Pr(yi = b, yj = b) = 0
for any b. This means that Pr(w⊤

iz = w⊤
jz) = 0. Letting

z = W (Hctℓ − hℓ) and applying the above result complete

the proof.

Although Theorem 1 is concerned with the ideal noiseless

case, which is hardly practical, the observation in Theorem 1

opens another door for self-dictionary convex optimization-

based NMF. That is, it shows that using FW to solve the self-

dictionary problem may successfully circumvent the memory

explosion issue.

D. The Noisy Case

A natural question lies in if the same procedure works in

the presence of noise. The answer is affirmative. To understand

this, we first notice that in the noiseless case, we have

Hcℓ = hℓ, supp(cℓ) ⊆ K ∀ℓ∈ [N ] =⇒ cℓ = c⋆ℓ , ∀ℓ ∈ [N ].

where c⋆ℓ is the ℓth column in C⋆ defined in (6). This further

leads to

‖C(n, :)‖∞ = 1, ∀n ∈ K, ‖C(n, :)‖∞ = 0, ∀n ∈ Kc,

which is the reason why one can easily infer K from the

solution C = C⋆. When noise is present, FW may not be

able to find the exact C⋆. However, an approximate C ≈ C⋆

often suffices to identify K. In the following, Lemma 1 shows

that instead of finding cℓ such that Hcℓ = hℓ, seeking a cℓ
such that Hcℓ ≈ hℓ using FW does not hurt recovering K,

under reasonable conditions:

Lemma 1 Assume that the separability condition holds, and

that rank(W ) = K , and that no repeated unit vectors appear

in H . Suppose that a feasible solution C satisfies supp(cℓ) ⊆
K and ‖Hcℓ − hℓ‖2 ≤ ω for all ℓ ∈ [N ]. Then, we have

‖C(n, :)‖∞ ≥ 1− ω
√
K/2, n ∈ K,

‖C(n, :)‖∞ = 0, n /∈ K;

i.e., K can still be identified by inspecting ‖C(n, :)‖∞, if ω <
2/
√
K .

Proof: Let ℓ ∈ K , we have

ω ≥ ‖Hcℓ − hℓ‖2 =

∥∥∥∥∥
∑

i∈K

ci,ℓei − ek

∥∥∥∥∥
2

for some k ∈ K

≥ 1√
K

∥∥∥∥∥
∑

i∈K

ci,ℓei − ek

∥∥∥∥∥
1

=
1√
K

∥∥∥∥∥∥
(ck,ℓ − 1)ek +

∑

i6=k

ci,ℓei

∥∥∥∥∥∥
1

=
1√
K


(1 − ck,ℓ) +

∑

i6=k

ci,ℓ




=
2√
K

(1− ck,ℓ) (since 1
⊤cℓ = 1).

=⇒ ‖C(k, :)‖∞ ≥ ck,ℓ ≥ 1− ω
√
K

2
for k ∈ K.

On the other hands, since supp(cℓ) ⊆ K and C is initialized

at 0, we have

‖C(n, :)‖∞ = 0 for n ∈ Kc.

This completes the proof.

Next, we show in the following theorem that even in the

noisy case, applying FW onto (13) produces a solution that is

a reasonable approximation of C⋆. To proceed, let us define

the following quantities:

Definition 1 Define the following terms:

γ := max
1≤k≤K

‖wk‖2 , d(H) := max
n∈K,ℓ∈Kc

hn,ℓ,

δ := max
1≤i≤N

‖vi‖2 .

In particular, a small d(H) means that all hℓ’s for ℓ ∈ Kc are

sufficiently different from the unit vectors. This is a desirable

case, since small perturbation would not confuse such hℓ’s

and the unit vectors.

Theorem 2 (Noisy Case, Memory Efficiency) Suppose that

Assumption 1 holds, that there is no repeated unit vector

in H , and that rank(W ) = K . Furthermore, let q̃t =
W⊤W (Hctℓ−hℓ)/ ‖Hcℓ − hℓ‖2. During FW’s updates, as-

sume a positive gap between the smallest and second smallest

elements of q̃t exists, i.e.,

min
ℓ∈[N ],t

(
q̃ti,ℓ −min

j
q̃tj,ℓ

)
≥ ν, ∀i 6= argmin

j
q̃tj,ℓ, (16)

before the FW algorithm terminates. Also assume that

δ ≤
√
γ2 +

νη(1− d(H))

4σmax(W )
− γ, (17)

for some η > 0. Then, if one terminates FW when ‖xℓ −
Xctℓ‖2 ≤ η + 2δ, the algorithm produces a solution Ĉ that

satisfies

‖Hĉℓ − hℓ‖2 ≤ (η + 4δ)/σmin(W ).
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In addition, during the process, supp(ctℓ) ⊆ K always holds

for all t and ℓ, and thus only O(KN) memory is taken for

instantiating Ct for all t.

The proof can be found in Appendix B. Theorem 2 shows

that under certain conditions, the FW algorithm for solving

(13) indeed gives a reasonable solution Ĉ using only O(NK)
memory. Combining with Lemma 1, one can see that K can

be correctly selected if the noise level is not high. Both

Theorems 1 and 2 reveal an unconventional identifiability

result. Note that the formulation in (13) per se does not have

identifiability of C⋆. That is, the optimal solutions of (13) do

not necessarily reveal K—as mentioned, IN is also an optimal

solution. However, when one uses a particular algorithm (i.e.,

FW) to solve (13), the produced solution sequence converges

to a K-revealing Ĉ , even if noise is present.

On the other hand, the identifiability and memory efficiency

come with caveats. First, the condition in (16) is hard to check

or guarantee. As seen in Fact 1, ν > 0 does exist under mild

conditions—but the quantity of this parameter may change

from instance to instance and is hard to acquire. Using the

formulation in (13) is also not the most “natural”, since we

know that the desired C⋆ should be very row-sparse—why

not using this information for performance enhancement. Can

we get rid of the condition in (16) and effectively use the prior

knowledge on C⋆? The answer is affirmative, with a re-design

of the objective function. In the next section, we will discuss

these aspects.

IV. PERFORMANCE ENHANCEMENT VIA REGULARIZATION

Under the formulation in (13), the gap specified in (16)

was essential for the FW to pick j ∈ K in every step. In this

section, our idea is to use a regularization term to help the

FW algorithm to achieve the same goal while not relying on

the condition in (16). In addition, since the desired C⋆ in (6)

has a row-sparse structure, it is natural to add a regularization

to exploit this prior information.

Using row-sparsity-promoting regularization terms is a com-

mon practice for self-dictionary convex optimization-based

NMF; see, e.g., [15], [16], [27]–[30], [32], [33]. In particular,

[15], [27], [29], [32], [33] all used the popular convex mixed

norms such as ‖C‖∞,1 or ‖C‖q,1 (where q ≥ 1) for row-

sparsity encouraging—which are reminiscent of compressive

sensing [40], [41]. However, such convex norms may not

be the best to combine with our FW framework—since FW

arguably works the best with differentiable objectives due to

the use of gradient. There are subgradient versions of FW for

nonsmooth cost functions (see, e.g., [48]), but the algorithmic

structure is less succinct.

We still hope to use a regularization term like ‖C‖∞,1,

which was shown to have nice identifiability properties in SD-

MMV [15], [27]. To make this mixed-norm based nonsmooth

row-sparsity regularization “FW-friendly”, we use the follow-

ing lemma:

Lemma 2 [49] For µ > 0 and x ∈ R
N
+ , define

ϕµ(x) = µ log
(
1/N

∑N
i=1 exp(xi/µ)

)
. Then function ϕµ(x)

is a smooth approximation of ‖x‖∞, i.e.,

lim
µ→0

ϕµ(x) = ‖x‖∞
‖x‖∞ − µ log(N) ≤ ϕµ(x) ≤ ‖x‖∞ .

The above smoothing technique is from [49]. A proof is

presented in Appendix K in the supplementary material for

completeness. Building upon Lemma 2, a smooth approxima-

tion of ‖C‖∞,1 is readily obtained as

Φµ(C) =

N∑

n=1

ϕµ(C(n, :)) ≈ ‖C‖∞,1 .

Using Φµ(C), our working formulation is as follows:

minimize
C∈RN×N

1

2
‖X −XC‖2F + λΦµ(C) (18a)

subject to C ≥ 0, 1⊤C = 1
⊤. (18b)

The formulation can be understood as a smoothed version of

those in [15], [27], [29], [32]. Note that the problem in (18) is

still convex, but easier to handle by gradient-based algorithms

relative to the nonsmooth version.

A. Identifiability of K
Our first step is to understand the optimal solution of (18)—

i.e., if one optimally solves Problem (18), is the solution still

K-revealing as in the nonsmooth version? To this end, we will

use the following definition [15], [16]:

Definition 2 The quantity κ(W ) is defined as follows:

κ(W ) := min
k∈[K],

1
⊤
θ=1,θ≥0

‖wk −W (:,−k)θ‖2 . (19)

The term κ(W ) in a way reflects the “conditioning” of W .

If κ(W ) is large, it means that every wk is far away from

the convex hull spanned by the remaining columns of W ,

which implies that conv{w1, . . . ,wK} is well-stretched over

all directions. This is a desired case, since such convex hulls

are more resilient to small perturbations when estimating the

vertices (i.e., wk for k = 1, . . . ,K).

With this definition, we show that the optimal solution of

(18) can reveal K under some conditions:

Theorem 3 (Identifiability) Assume that Assumption 1

holds, that there is no repeated unit vector in H , and that

rank(W ) = K . Also assume that ‖vi‖2 ≤ (ρ/N) ‖V ‖2F for

some ρ and ‖vi‖2 ≤ δ. Then, any optimal solution Copt of

Problem (18) satisfies:

‖Copt(n, :)‖∞ > 1− β, ∀n ∈ K, (20a)

‖Copt(n, :)‖∞ ≤ 2ρ
N −K
λN

‖V ‖2F (20b)

+ µN log(N) + βK, ∀n ∈ Kc

where β =
√

4ρ(1−K/N)‖V ‖2
F+2λK+2δ/κ(W )(1−d(H)).

The proof is relegated to Appendix C.
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Theorem 3 reveals the “interplay” between the noise level

and the hyperparameters λ, µ. In other words, it states that

given a certain noise level, there may exist a pair of λ, µ such

that K will be identified using the proposed FW algorithm. For

example, when the noise level is not high, a natural choice

is to concentrate more on the fitting error rather than the

regularization term. This is reflected in conditions (20a) and

(20b). Since ‖V ‖2F is small, δ would be also small. Then,

with a small λ to suppress the term 2λK in the expression

of β, a small β can be expected. Similarly, with a small µ
to suppress the term µN logN in (20b), the right hand side

(RHS) of (20b) would be close to 0. In addition, when the

noise level is relatively high, one would want to increase λ
to counter the effect of increasing ‖V ‖2F in (20b), but not to

increase it to an overly large extent (in order to keep β close

to 0, due to the presence of 2λK in the expression of β).

Theorem 3 asserts that with the proposed regularization,

finding an optimal solution of (18) is useful for identifying

K. Such optimal solutions can be attained by any convex op-

timization algorithm. Nonetheless, theorem 3 only safeguards

the final solution of our formulation in (18), which is a similar

result as in [15] for the nonsmooth regularization version (8).

However, Theorem 3 does not speak for the memory efficiency.

B. Memory Efficiency of Frank-Wolfe for (18)

In this subsection, we show that running FW to optimize

the new objective in (18) costs only O(KN) memory under

some conditions—which are arguably milder compared to the

conditions for the unregularized case as shown in Theorem 2.

In the regularized case, the FW updates become the following:

j = argmin
n∈[N ]

[gℓ]n,

ct+1
ℓ = (1− α)ctℓ + αej ,

(21)

where gℓ is the ℓth column of ∇f̂(Ct) in which f̂(C) :=
1

2
‖X −XC‖2F + λΦµ(C). Similar as before, the key to

establish memory efficiency is to show that j picked in

(21) always belongs to K. The next theorem shows that the

regularization helps achieve this goal:

Theorem 4 (Regularized Case, Memory Efficiency)

Consider the regularized case and the FW algorithm in (21).

Assume that Assumption 1 holds and that rank(W ) = K .

Also assume that (i) in iteration t, Ct satisfies supp(ctℓ) ⊆ K
for all ℓ ∈ [N ] and (ii) there exists at least an n⋆ ∈ K such

that Ct(n⋆, :) is not a constant row vector. If the noise bound

satisfies

δ ≤
√
γ2 + υ − γ, (22)

where

υ =
1

4
(λ/N − λexp(−ψ/µ)

− (d′(H)2 + 2d′(H) + 5)λmax(W
⊤W )/2)

Algorithm 1: MERIT

Input: X ∈ R
M×N , λ, tinit,C

init(if Warm Start)
1 if ‘Warm Start’= True then

2 C = C init;

3 else

4 C = 0;

5 tinit = 0;

6 end

7 for t← tinit, tinit + 1, tinit + 2, . . . do

8 α← 2/(t+ 2);
9 r ← 0;

10 for n← 1, . . . , N do

11 rn ←
∑N

i=1 exp(C(n, i)/µ);
12 end

13 for ℓ← 1, . . . , N do

14 pℓ ← X⊤(Xcℓ − xℓ);
15 yℓ ← exp(cℓ/µ) ·/ r ; // ‘·/’ denotes

an element-wise division

between 2 vectors

16 gℓ ← pℓ + λyℓ;
17 uℓ ← ei such that i = argminj [gℓ]j ;
18 cℓ ← (1− α)cℓ + αuℓ;
19 end

20 end

Output: C .

in which we have

ψ := min
1≤i,j≤N,

n∈K,ctn,i 6=c
t
n,j

∣∣ctn,i − ctn,j
∣∣ ,

d′(H) =
√
max(2(d(H)− 1/2)2 + 1/2, 2(1/2− 1/K)2 + 1/2),

then, to attain ct+1
ℓ from ctℓ, FW will update the jℓth element

of ctℓ such that jℓ ∈ K for all ℓ ∈ [N ].

The proof can be found in Appendix D. The noise bound

in Theorem 4 is arguably more favorable relative to the

unregularized case in Theorem 2. The reason is that λ can be

tuned to compensate noise. This is also intuitive since a larger

λ means that one has lower confidence in the data quality due

to higher noise.

The key condition in Theorem 4 is the existence of Ct(n⋆, :)
that is not a constant—which is reflected in ψ. At first glance,

this is hard to guarantee since it is a characterization of

Ct. Nonetheless, we show that if one can properly initialize

the FW algorithm with an initial solution C init that satisfies

a certain regularity condition, the non-constant condition is

automatically satisfied—due to the “predictable” update rule

of FW:

Proposition 1 (Initialization Condition) Let C init be a fea-

sible initial solution. Define

Dn
ij(C) =

tinit(tinit + 1)

2
|cn,i − cn,j |
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for some tinit ∈ N, tinit ≥ 1. Suppose that for some n⋆ ∈ K,

there exists a pair of i⋆, j⋆ such that the following regularity

condition is satisfied:

Dn⋆

i⋆j⋆(C
init) /∈ N. (23)

Running WS-FW with Ct = C init starting with t = tinit
for T iterations, the produced solution sequence {C}t for

t ≥ tinit + 1 satisfies Ct(n⋆, :) is not a constant row vector

and

min
n∈K,i,j
ctn,i 6=c

t
n,j

∣∣ctn,i − ctn,j
∣∣ ≥ 2ξ

T (T + 1)

where ξ := min n∈K,i,j,z∈N

Dn
i,j(C

init)/∈N

∣∣Dn
i,j(C

init)− z
∣∣ .

The proof is in Appendix J. Theorem 4 and Proposition 1

together mean that for a given problem instance and under

a certain noise level, there exist proper parameters λ, µ that

guarantee the recovery of K using O(KN) memory to instan-

tiate Ct.

Simply speaking, Proposition 1 asserts that, if there exists

a row in C init(n⋆, :) where n⋆ ∈ K and this row has two

elements whose difference is not a natural number, then

Theorem 4 holds with in finite iterations. Under Theorem 4

and Proposition 1, it is natural to run the WS-FW with a

t = tinit > 0 as in [46]. Many lightweight algorithms (e.g., the

greedy methods) can be employed to provide the initialization.

The condition in Proposition 1 is fairly mild, since it

boils down to the existence of two distinctive elements in

any row of the initial C . The Proposition also suggests that

using some existing algorithms to initialize the proposed FW

algorithm may be appropriate, since one needs at least one

n⋆ ∈ supp(C init) ∩ K such that the specified conditions

are met. Any greedy algorithm, e.g., [17], [18], could help

offer this n⋆ using a couple of iterations. Although checking

the initialization condition is easy, we should also mention

that it may not be necessary to really check it in practice.

The reason is that the regularity condition in Proposition 1 is

only sufficient—which means that in practice one often needs

not to enforce C init to satisfy it. In fact, the FW algorithm

works well and maintains a low memory footprint even using

C init = 0.

To summarize, we present the memory-efficient Frank-Wolfe

based nonnegative matrix factorization (MERIT) algorithm in

Algorithm 1. An implementation of MERIT can be down-

loaded from the authors’ website3.

V. NUMERICAL RESULTS

In this section, we use synthetic and real data experiments

to showcase the effectiveness of the proposed FW-based

approach.

A. Synthetic Data Simulations

We create synthetic data matrices with different M,N and

K , under the noisy signal model X = WH + V . The

3https://github.com/XiaoFuLab/Frank-Wolfe-based-method-for-SD-MMV

matrix W is drawn from the uniform distribution U(0, 1), the

first K columns of H are assigned to be an identity matrix

(which means that K = {1, . . . ,K}), the N − K remaining

columns of H are generated so that every column resides in

the probability simplex (see details later). After adding zero-

mean σ2-variance Gaussian noise V to WH , the columns of

the data matrix are then permuted randomly to obtain the final

X—this means that K for each random trial is different. The

signal-to-noise ratio (SNR) used in this section is defined as

SNR= 10 log10(
∑N

ℓ=1 ‖Whℓ‖22)/(MNσ2)dB.

Baselines and Metric. We use the SPA algorithm [17],

[18], [21] that is the prominent greedy algorithm for K-

identification in separable NMF as our baseline. We also

employ the FastGradient algorithm [30] that is designed

to solve a convex self-dictionary formulation of SD-MMV. The

algorithm uses accelerated gradient for fast convergence, and

is considered state-of-the-art.

We apply the algorithms to the problem instances and select

K from their outputs as follows. For SPA, we use the first

K indices output by the greedy steps to serve as K. For

FastGradient, we use the authors’ implementation and its

default methods to pick up K. Following Theorem 3, we select

indices of K rows that have K largest ‖C(n, :)‖∞ values as

an estimation of K.

To select the hyperparameter λ of MERIT, we use an idea

similar to that in [30], which is a heuristic that selects λ to

balance the data fitting residue and the regularization term. In

our case, the suggestion is to set λ =
∥∥X −XC0

∥∥
F
/Φµ(C

0)

(or simply λ =
∥∥X −XC0

∥∥
F
/K when K is known), where

C0 is an initial solution that can be constructed by some

fast separable NMF algorithms, e.g., SPA. The parameter µ
is set to be 10−5 throughout this section unless otherwise

specified, as it is fairly inconsequential. The hyperparameter

of FastGradient is chosen by its default heuristic.

We use a number of metrics to evaluate the performance.

In particular, we primarily use the success rate of K identifi-

cation, which is defined as

success rate = Pr(K = K̂).

In our simulations, the success rate is estimated using 50
random trials. We also adopt two complementary metrics from

[30], namely, the mean-removed spectral angle (MRSA) and

the relative approximation error (RAE). In a nutshell, the

MRSA measures how well W is estimated via Ŵ = X(:, K̂)
and the RAE measures how well the estimated Ŵ (together

with an estimated Ĥ) can reconstruct the data X; see details

in [30]. Following [30], the MRSA values are normalized to an

interval of [0, 100]. In addition, the RAE values are in between

0 and 1. Lower MRSAs and higher RAEs correspond to better

performance of separable NMF.

Results. We first evaluate the algorithms under a setting from

[30, Sec. 4.1], where H(:,Kc)’s columns are middle points

between the extreme points of the unit simplex. This way,

noise could easily confuse the xℓ’s associated with the middle

points with the true extreme points of conv{x1, . . . ,xN}—
thereby presenting a challenging case for separable NMF

algorithms.
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SNR

Fig. 2: Success rates of the algorithms under various SNRs;

(M,N,K) = (50, 55, 10).

SNR

(a) MRSA

SNR

(b) RAE

Fig. 3: The MRSAs and RAEs of the algorithms under various

SNRs. (M,N,K) = (50, 55, 10).

Fig. 2 shows the success rates of different methods under the

generative model and setting from [30], where (M,N,K) =
(50, 55, 10). One can see that FastGradient and MERIT

both exhibit more satisfactory performance relative to SPA,

which echos our comment that the all-at-once convex ap-

proaches often have better noise robustness relative to greedy

pursuit. In particular, FastGradient and MERIT reach

100% success rates at SNR= 16dB and SNR= 10dB, respec-

tively, while SPA does not reach this accuracy even when

SNR= 20dB. Fig. 3 shows the MRSAs and RAEs of the

algorithms under the same setting, where similar observations

are made.

Fig. 4 (a) shows the success rates of the algorithms un-

der different SNRs using (M,K,N) = (50, 40, 200) and

H(:,Kc)’s that are less special than that in the previous case;

i.e., H(:,Kc)’s columns are generated following the uniform

Dirichlet distribution with its parameter being 1 ∈ R
K . One

can see that the algorithms perform similarly as in the case of

Fig. 2, except that the gap between SPA and the convex ap-

proaches MERIT (with regularization) and FastGradient

is larger than that in the previous case.

Fig. 4 (b) shows the memory costs of the two convex

optimization-based algorithms under different N ’s. Here, we

set (M,K) = (50, 40) and SNR= 10dB. The memory is

measured in terms of maximum resident set size (RSS), which

is the amount of allocated memory in RAM for a running pro-
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(a) Success rate under various
SNRs; N = 200.
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(b) Memory consumption un-
der various Ns; SNR=10dB.

Fig. 4: Success rate performance and memory costs of the

algorithms; M = 50,K = 40.

TABLE I: Performance of the algorithms under various K’s;

N = 200,M = 80, SNR=10dB.

K
success rate MRSA RAE

SPA FastGradient MERIT SPA FastGradient MERIT SPA FastGradient MERIT

40 0.98 0.98 1.00 54.7824 54.7724 54.7292 0.7686 0.7686 0.7686

50 0.84 1.00 1.00 55.4776 55.1517 55.1517 0.7827 0.7830 0.7830

60 0.42 1.00 1.00 56.4556 55.2206 55.2206 0.7941 0.7955 0.7955

70 0.00 1.00 1.00 58.9853 55.6658 55.6658 0.8022 0.8069 0.8069
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(a) Varying λ; µ = 1e−5.
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(b) Varying µ; λ = 0.1.

Fig. 5: Performance varies on different λ and µ; results are

averaged over 30 trials; (M,K,N) = (50, 40, 200).

gram. The RSS is measured using a Linux built-in command

named time4. One can see that MERIT’s memory growth

along with N is very graceful, but FastGradient quickly

reaches the level that is close to 5GB when N = 10, 000—

while MERIT uses less than 0.1GB memory under the same

problem size.

Table I shows the performance of the algorithms under var-

ious K’s. As expected, SPA works better when K is relatively

small. The performance deteriorates when K increases, show-

ing the effect of error accumulation. The convex approaches

work similarly and exhibit consistently good performance

across all the K’s under test.

Fig. 5 shows the impact of the hyperparameters λ and µ
on the MERIT algorithm. One can see that for lower SNRs,

a larger λ often works better—which is consistent with our

analysis and intuition. The parameter µ is less consequential.

That is, the wide range of µ’s tested in our simulations give

almost the same success rate curves.

B. Real Data Experiment: Topic Modeling

Data. We use two popular datasets, namely, the NIST Topic

Detection and Tracking (TDT2) and the Reuters-21578 cor-

4https://man7.org/linux/man-pages/man1/time.1.html
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pora, for the evaluation. Following the settings in topic mod-

eling papers, e.g., [4], [50], we use single-topic documents so

that classic evaluation metrics (e.g., clustering accuracy [50],

[51]) can be easily used. TDT2 contains D = 8, 384 single-

topic documents with N = 36, 771 words as its vocabulary,

while Reuters-21578 contains D = 8, 293 single-topic docu-

ment with N = 18, 933 words in its vocabulary. All stop words

are removed before running each trial.

Note that we follow the formulation in [3]–[5] that ap-

plies NMF in the correlation domain. That is, the word-

word correlation (or co-occurrence) data matrix X has a size

of N × N . The matrix X is estimated by the Gram ma-

trix of the word-document term-frequency-inverse-document-

frequency (TF-IDF) representation of the data; see more

details in [4], [5]. Following the work in [17], a pre-processing

step for noise reduction is used in this subsection. Specifically,

before running the separable NMF algorithms, the principal

component analysis (PCA)-based dimensionality reduction

(DR) is used to reduce the row dimension of the co-occurrence

matrix to M ′ = 2K , which serves as an over estimate for K .

In practice, such DR method can be easily implemented with

any M ′ > K if K is roughly known. After the DR process,

one factor of the dimension-reduced factorization model may

not be nonnegative. Thus, technically, the model is not “NMF”.

Nonetheless, all the SD-MMV methods can still be applied

since the nonnegativity of the left factor (W ) is never used in

attaining K.

Baseline and Algorithm Settings. We use a number of sepa-

rable NMF based topic modeling algorithms as our baselines

in this experiment. In addition to SPA and FastGradient,

we also use XRAY [52] and FastAnchor [3] that are both

greedy algorithms and variants of SPA developed under the

context of topic modeling. The LDA [53] method using Gibbs

sampling [54] is also employed, as a standard baseline.

We use warm start for both MERIT and FastGradient.

Particularly, we use SPA to extract an estimate of K, denoted

as K̂SPA. Then, we compute C init by

C init(KSPA, :) = argmin
1⊤H=1⊤,H≥0

‖X −X(:, K̂)H‖2F,

and let C init(K̂cSPA, :) = 0. For MERIT, we set λ =
10−6 and µ = 10−5 in all cases. We try multiple λ’s

for FastGradient and present the best performance it

attains. For MERIT, since we use WS-FW (cf. Sec. III-A),

the tinit needs to be determined. In the WS-FW paper [46],

tinit in theory is computed using the curvature constant as-

sociated with optimization problem and initial duality gap.

However, as admitted in [46], estimating the curvature con-

stant is still an open challenge. Hence, we use a heuris-

tic that tinit = round(1/RMSEinit), where RMSEinit =√
1/N‖X −XC init‖2F. This reflects the idea that a better

initialization should use a larger tinit.
Metrics. We use the three metrics from [4], [5], namely,

coherence (Coh), word similarity count (SimCount), and

clustering accuracy (ClustAcc). The Coh metric evaluates

if a single topic’s quality by measuring the coherence of the

high-frequency words contained in this topic. The SimCount

metric measures how diverse are the mined topics. The
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(b) Reuters-21578

Fig. 6: Memory consumption of FastGradient and

MERIT, under different sample sizes.

ClustAcc compares the estimated Ĥ with the ground-truth

labels after automatic permutation removal using the Kuhn-

Munkres algorithm; see more details of the evaluation process

in [1], [4] and the definition of ClustAcc in [51, Sec. 5.2]..

A good topic mining algorithm is expected to attain high

Coh values, low SimCount and high ClustAcc values.

Among the three, ClustAcc is arguably the most indicative

for the quality of the mined topics if the objective is to use

the topics for downstream tasks. For each trial, we randomly

draw documents associated with K topics from the datasets

and apply the algorithms. The results for each K are averaged

from 50 trials.

Results. Tables II shows the performance of the algorithms on

TDT2 and Reuters-21578, respectively. One can see that both

the regularized and unregularized versions of the proposed

method, i.e., MERIT and MERIT(0) (i.e., the version of

MERIT with λ = 0), exhibit competitive performance. The

proposed methods outperform all the baselines on TDT2 in

terms of Coh and ClustAcc. The SimCount performance

of the proposed algorithms is also reasonable. In particular,

when K = 10, the ClustAcc of MERIT exhibits a 5%

improvement compared to the best baseline, which is a re-

markable margin. On Reuters-21578, the MERIT method also

consistently offers the best and second best performance in

terms of ClustAcc in most cases.

From these results, one can see that the convex optimiza-

tion based separable NMF algorithms, i.e., FastGradient,

MERIT and MERIT(0), in general work better than the

greedy methods, namely, SPA, XRAY, and FastAnchor.

This is consistent with our observation in the synthetic data

experiments. This advocates using such all-at-once algorithms

for real applications. Another observation is that MERIT

slightly outperforms MERIT(0), which shows that the de-

signed regularization is still effective on topic modeling prob-

lems.

Fig. 6 shows the memory consumption of the algorithms on

TDT2 and Reuters-21578, respectively. Since the data matrix’s

size changes in each trial due to the varying stop words, we

only plot the first trial for each K . One can see that when

N reaches 20, 000, FastGradient uses more than 20GB

memory, while MERIT and MERIT(0) use less than 2GB.

We observe that MERIT(0) works well in the topic modeling

experiment, perhaps because the data model is reasonably well

aligned with that in (2) without much modeling error.
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TABLE II: Performance of the algorithms on: (Left) TDT2; vocabulary size= 36, 771, and (Right) Reuters-21578; vocabulary

size = 18, 933

TDT2

Method / K 3 4 5 6 7 8 9 10

Coherence

SPA -346.6 -388.4 -404.9 -432.0 -418.6 -438.2 -443.5 -456.7

FastAnchor -468.6 -483.4 -483.3 -495.9 -525.8 -536.2 -546.5 -543.2

XRAY -347.4 -389.2 -405.4 -432.0 -419.0 -439.4 -443.2 -459.2

LDA -521.6 -526.2 -530.4 -546.0 -550.0 -538.8 -543.1 -553.1

FastGradient -553.8 -517.1 -537.2 -534.6 -561.9 -562.7 -571.9 -585.5

MERIT -351.5 -375.7 -385.8 -394.4 -399.3 -417.2 -417.5 -429.1

MERIT(0) -345.0 -388.4 -404.8 -433.4 -420.1 -439.4 -444.3 -458.3

Similarity

Count

SPA 1.06 3.64 5.76 10.24 14.24 23.18 27.56 43.62

FastAnchor 1.06 2.02 3.90 4.80 6.18 7.98 9.92 11.22

XRAY 1.00 3.88 5.66 10.24 14.16 23.18 28.00 43.4

LDA 1.08 2.96 5.62 7.84 12.24 17.28 21.84 27.5

FastGradient 14.80 26.34 47.16 62.28 71.24 100.58 109.84 127.32

MERIT 1.56 4.98 5.76 7.92 13.30 21.16 28.52 36.08

MERIT(0) 1.06 3.64 5.78 10.56 14.38 22.62 27.50 43.06

Accuracy

SPA 0.87 0.83 0.81 0.81 0.78 0.76 0.75 0.72

FastAnchor 0.77 0.72 0.67 0.63 0.66 0.63 0.65 0.65

XRAY 0.87 0.82 0.80 0.81 0.78 0.75 0.75 0.71

LDA 0.78 0.77 0.74 0.75 0.73 0.72 0.68 0.70

FastGradient 0.70 0.71 0.65 0.64 0.61 0.56 0.58 0.57

MERIT 0.88 0.88 0.85 0.86 0.84 0.82 0.80 0.77

MERIT(0) 0.86 0.83 0.80 0.81 0.78 0.76 0.75 0.72

Reuters-21578

Method / K 3 4 5 6 7 8 9 10

SPA -402.7 -416.4 -420.5 -442.1 -516.5 -520.3 -541.5 -548.3

FastAnchor -655.0 -681.0 -693.6 -711.1 - 757.5 -827.7 -832.8 -843.4

XRAY -404.4 -415.2 -422.7 -441.6 -516.3 -519.6 -542.2 -548.6

LDA -674.1 -677.2 -686.3 -715.2 -705.9 -762.9 -776.8 -776.5

FastGradient -657.1 -768.3 -782.0 -821.8 -847.1 -967.7 -989.5 -959.8

MERIT -430.6 -452.8 -466.4 -494.0 -539.2 -541.1 -564.8 -570.8

MERIT(0) -401.7 -413.3 -422.5 -440.8 -511.2 -518.2 -536.0 -544.0

SPA 7.46 15.16 23.82 51.98 59.38 158.50 235.62 219.16

FastAnchor 5.40 8.46 13.06 20.06 25.56 42.28 54.9 57.84

XRAY 6.76 14.18 23.82 52.06 59.64 160.96 235.10 221.50

LDA 3.20 6.46 9.32 12.48 21.22 24.60 33.56 39.68

FastGradient 12.96 20.62 30.42 47.56 60.46 82.86 106.66 144.38

MERIT 7.34 16.04 21.88 36.08 48.36 93.32 131.62 141.42

MERIT(0) 7.38 15.18 23.24 45.12 54.60 145.52 223.66 214.60

SPA 0.64 0.57 0.54 0.51 0.49 0.44 0.42 0.40

FastAnchor 0.60 0.57 0.52 0.52 0.46 0.42 0.38 0.37

XRAY 0.63 0.57 0.54 0.51 0.49 0.45 0.42 0.40

LDA 0.63 0.57 0.53 0.51 0.46 0.44 0.41 0.42

FastGradient 0.62 0.57 0.56 0.51 0.50 0.48 0.44 0.46

MERIT 0.66 0.62 0.53 0.53 0.51 0.48 0.43 0.45

MERIT(0) 0.64 0.58 0.54 0.52 0.49 0.44 0.42 0.41

C. Real Data Experiment: Community Detection

The link between mixed membership stochastic model

(MMSB)-based overlapped community detection and simplex-

structured matrix factorization has often been used in the liter-

ature; see [6]–[9]. By applying eigendecomposition to a node-

node undirected adjacency matrix, the membership estimation

problem boils down to a noisy matrix factorization under

probability simplex constraints. This leads to X ≈ WH ,

where X ∈ R
K×N is extracted by the eigendecomposition of

the N × N adjacency matrix (the rows of X are the first

K eigenvectors), H’s columns are the mixed membership

vectors correspond to the N node. More precisely, hk,ℓ is the

probability that node ℓ is associated with community k. This

physical interpretation also means that 1⊤H = 1
⊤ and H ≥ 0.

Hence, both SPA and convex optimization based separable

NMF algorithms can be applied to tackle this problem, if

the separability condition holds. In the context of commu-

nity detection, separability is equivalent to the existence of

“pure nodes” for each community, i.e., nodes who are only

associated with a single community.

Data. We use two co-authorship networks, namely, the Data

Base systems and Logic Programming (DBLP) data and the

Microsoft Academic Graph (MAG) data. A community in

DBLP is defined as a group of conferences. The “field of

study” is considered as a community in MAG. The ground-

truth memberships of the nodes in these two datasets are

known; see the Matlab format of this data from [7].

In our experiments, we consider the nodes who contribute

to 99% of the energy (in terms of squared Euclidean norm).

The remaining nodes are not used in the algorithms due to

their rare collaboration with others. The detailed statistics of

the used DBLP and MAG data are given in Table III.

Baselines. We compare MERIT and MERIT(0) with three

baselines. The first two algorithms are GeoNMF [7] and

SPOC [8] as they are reportedly popular within the class

of greedy method in context of community detection. And

FastGradient as a candidate for the convex optimiza-

TABLE III: Statistics of the DBLP and MAG datasets Used

In The Experiments.

Dataset # nodes # communities

DBLP1 6437 6

DBLP2 3248 3

DBLP3 3129 3

DBLP4 1032 3

DBLP5 3509 4

MAG1 1447 3

MAG2 4974 3

TABLE IV: SRC Performance on DBLP and MAG.

Dataset GeoNMF SPOC FastGradient MERIT MERIT(0)

DBLP1 0.2974 0.2996 0.3145 0.2937 0.2912

DBLP2 0.2948 0.2126 0.3237 0.3257 0.2931

DBLP3 0.2629 0.2972 0.1933 0.2763 0.2766

DBLP4 0.2661 0.3479 0.1601 0.3559 0.3559

DBLP5 0.1977 0.1720 0.0912 0.1983 0.1983

MAG1 0.1349 0.1173 0.0441 0.1149 0.1074

MAG2 0.1451 0.1531 0.2426 0.2414 0.1374

tion based approach is included. MERIT uses the same

hyperparameters setting as in the topic modeling problem,

i.e., λ = 10−6, µ = 10−5. Again, we try multiple λ’s for

FastGradient and report its best performance.

Metric. Following [7]–[9], we evaluate the performance based

on the averaged Spearman’s rank correlation (SRC) coeffi-

cient between the learned community membership matrix Ĥ

and the ground-truth H .

By the definition, the SRC measures the ranking similarity

between the estimated and ground-truth mixed membership

vectors. The estimated Ĥ is obtained by probability simplex-

constrained least squares using data X and the basis Ŵ =
X(:, K̂). By definition, SRC can take value in the interval from

−1 to 1. A higher value indicates a better alignment between

Ĥ and H .

Results. From Table IV, one can see that the proposed MERIT

method offers competitive SRC results over all the datasets
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Fig. 7: The memory consumption of MERIT and

FastGradient after the eigendecomposition step.

under test. Similar as before, the convex all-at-once algorithms,

especially, MERIT, and MERIT(0), often output competitive

SRC results. In particular, the MERIT class’ SRC values are

in top 2 over five out of seven datasets. The greedy methods

(i.e., GeoNMF, and SPOC) also work reasonably well, but

less competitive in some datasets. For example, in MAG2 and

DBLP2, the performance gap between the greedy algorithms

and the convex methods are particularly articulate.

Fig. 7 compares the memory consumption of

FastGradient and MERIT. As N reaches 6500,

FastGradient consumes more than 2GB while MERIT

and MERIT(0) use significant less memory, i.e., under

0.3GB. This is consistent with our observations in the topic

modeling examples.

A final remark is that the theorems in this work are

based on worst-case analyses, and thus the noise bounds and

identification conditions are naturally pessimistic. However,

note that our conditions are only sufficient (instead of sufficient

and necessary). This may explain the reason why the proposed

method works under many settings of the experiments where

the noise level is quite high.

VI. CONCLUSION

In this work, we revisited convex optimization-based self-

dictionary SD-MMV for separable NMF. This line of work

emerged about a decade ago as a tractable and robust means

for solving the challenging NMF problem. The method is

recognized as an important category of NMF algorithms,

but has serious challenges when dealing with big data. In

particular, existing convex SD-MMV approaches’ memory

complexity scales quadratically with the number of samples,

which is hardly feasible for datasets that have more than 1000

samples. We proposed a new algorithm based on the Frank-

Wolfe method, or, conditional gradient. Unlike existing algo-

rithms, our method is shown to have linear memory complexity

under mild conditions—even in the presence of noise. For

performance enhancement, we also offered a smoothed row-

sparsity-promoting regularizer, and showed that it can provide

stronger guarantees for memory efficiency against noise under

the FW framework. We tested the algorithm using synthetic

data and real-world topic modeling and community detection

datasets. The results corroborate our theoretical analyses.
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APPENDIX A

PROOF OF THEOREM 1

Since ‖X −XC‖2F =
∑N

ℓ=1 ‖Xcℓ − xℓ‖22, i.e., the cost

function is decomposable over the columns of X , one can

consider each f(cℓ) = 1/2 ‖Xcℓ − xℓ‖22 individually.

The FW algorithm first finds u such that ∇cℓ
f(cℓ)

⊤u

is minimized over the probability simplex. This is a linear

program, and its solution is always attained at a vertex of the

probability simplex [47]. Hence, the solution is an unit vector,

i.e.,

u = en⋆ , n⋆ = arg min
n∈[N ]

[∇f(cℓ)]n.

Next, we show that n⋆ ∈ K always holds. To see this, we

have

∇f(cℓ) = X⊤(Xcℓ − xℓ)

= H⊤W⊤W (Hcℓ − hℓ)

=



h⊤1W

⊤W (Hcℓ − hℓ)
...

h⊤NW⊤W (Hcℓ − hℓ)




Recall that qℓ = W⊤W (Hcℓ−hℓ) ∈ R
K . Hence, we have

[∇f(cℓ)]n = h⊤nqℓ

=

K∑

i=1

hi,nqi,ℓ

≥
(
min
j∈[K]

qj,ℓ

) K∑

j=1

hj,n

= min
j∈[K]

qj,ℓ (24)

If qℓ 6= 0, then the lower bound can be attained if hn = ej⋆

where j⋆ = argminj∈[K] qj,ℓ. Note that such hn always exists

because of the separability assumption. Let us denote it as hn⋆ ,

we have n⋆ = argminn[∇f(cℓ)]n. Since hn⋆ is a unit vector,

and because of the assumption that non-repeated unit vectors

appears in H , one can conclude n⋆ ∈ K.

If there are more than one smallest element in qℓ, say, there

are 2 smallest elements q1,ℓ = q2,ℓ = minj qj,ℓ, then, any hn⋆

in a form of hn⋆ =
[
z, 1− z, 0, . . . , 0

]⊤
for any 0 ≤ z ≤ 1
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also makes the lower bound in (24) attained. Such hn⋆ might

be not a unit vector and hence n⋆ /∈ K. Nonetheless, the

assumption that no duplicate minimal values appear in the

gradient [cf. Eq. (15)] assures that this case never happens.

If qℓ = 0, which means that the objective function already

reaches optimal value of 0 since

W⊤W (Hcℓ − hℓ) = 0 =⇒Hcℓ = hℓ.

Therefore, one should stop FW.

APPENDIX B

PROOF OF THEOREM 2

Under the noisy model, for any cℓ, we have

∇f(cℓ) = X⊤(Xcℓ − xℓ)

= (WH + V )⊤((WH + V )cℓ − (Whℓ + vℓ)).

Hence,

[∇f(cℓ)]n = (h⊤nW
⊤+ v⊤n)((WH + V )cℓ −Whℓ − vℓ)

= (h⊤nW
⊤+ v⊤n)(WHcℓ + V cℓ −Whℓ − vℓ)

= h⊤nW
⊤W (Hcℓ − hℓ)

+ h⊤nW
⊤(V cℓ − vℓ) + v⊤n(WHcℓ + V cℓ −Whℓ − vℓ)︸ ︷︷ ︸

ǫn

= h⊤nW
⊤W (Hcℓ − hℓ) + ǫn. (25)

Similar to the proof of Theorem 1, the key is to show that for

1 ≤ ℓ ≤ N , n⋆ℓ ∈ K, where

n⋆ℓ = argmin
n

h⊤nW
⊤W (Hcℓ − hℓ) + ǫn.

Since the proof in the sequel holds for all ℓ, we omit the

subscript and use n⋆ instead. From the proof of Theorem 1,

when ǫn = 0, we know that hn⋆ = ej where ej is a certain

unit vector. Our goal is to show that with such n⋆, for any

n 6= n⋆,

h⊤nW
⊤W (Hcℓ − hℓ) + ǫn > h⊤n⋆W

⊤W (Hcℓ − hℓ) + ǫn⋆ .

Equivalently, we hope to show the following

(hn − hn⋆)⊤W⊤W (Hcℓ − hℓ) > ǫn⋆ − ǫn
⇐⇒(hn − ej)

⊤W⊤W (Hcℓ − hℓ) > ǫn⋆ − ǫn, (26)

which will leads to that the FW algorithm selects n⋆ at the

current iteration with cℓ.

We will prove (26) using the following two Lemmas. Their

proofs are provided in Appendix E and Appendix F in the

supplementary material.

Lemma 3 For any ℓ ∈ [N ], n ∈ [N ], n 6= n⋆, where

n⋆ := argmaxn h
⊤
nW

⊤W (Hcℓ − hℓ), we have

(hn − ej)
⊤W⊤W (Hcℓ − hℓ) ≥

νη(1 − d(H))

σmax(W )
, (27)

where ν is defined in (16), and δ satisfies (17) in Theorem 2.

Lemma 4 For any ℓ ∈ [N ], n ∈ [N ], n 6= n⋆, where

n⋆ := argmaxn h
⊤
nW

⊤W (Hcℓ − hℓ), we have

ǫn⋆ − ǫn ≤ 4(2γδ + δ2). (28)

Using upper bound of noise δ, we have

δ ≤
√
γ2 +

(1 − d(H))νη

4σmax(W )
− γ

⇔ δ2 + γ2 + 2δγ ≤ γ2 + (1 − d(H))νη

4σmax(W )

⇔ 4(δ2 + 2δγ) ≤ (1− d(H))νη

σmax(W )
. (29)

Using (27), (28), and (29), one can see that

(hn − ej)
⊤WW (Hcℓ − hℓ) ≥

(1− d(H))νη

σmax(W )

≥ 4(2γδ + δ2)

≥ ǫn⋆ − ǫn,

which is exactly (26). Until now, we have established that

the FW algorithm will not update any C(n, :) such that

n ∈ Kc before it reaches the stopping criterion. Whenever

FW terminates at Ĉ , we have

η + 2δ ≥ ‖Xĉℓ − xℓ‖2
= ‖W (Hĉℓ − hℓ) + V ĉℓ − vℓ‖2
≥ ‖W (Hĉℓ − hℓ)‖2 − ‖V ĉℓ − vℓ‖2
≥ σmin(W ) ‖Hĉℓ − hℓ‖2 − 2δ,

which leads to

‖Hĉℓ − hℓ‖2 ≤
η + 4δ

σmin(W )
.

This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

Without loss of generality, assume that K = {1, . . . ,K}
and H(:, 1:K) = I. Therefore, we have

C⋆ =

[
H

0

]

that is the desired solution. Note that C⋆ is an optimal solution

of Problem (4). Our goal is to show that Problem (18)’s

optimal solutions are close to C⋆. We will show this step

by step.

a) Step 1: We first find an upper bound of the objective

function associated with C⋆. For 1 ≤ ℓ ≤ N , it can be seen

that

‖xℓ −Xc⋆ℓ‖2 = ‖Whℓ + vℓ − (WH + V )c⋆ℓ‖2
≤ ‖Whℓ −WHc⋆ℓ‖2 + ‖vℓ − V c⋆ℓ‖2
= ‖vℓ − V c⋆ℓ‖2
≤ ‖vℓ‖2 +max

ℓ
‖vℓ‖2

≤ 2max
ℓ
‖vℓ‖2 ,

which leads to

‖xℓ −Xc⋆ℓ‖
2
2 ≤ 4max

ℓ
‖vℓ‖22 ≤ 4

ρ

N
‖V ‖2F .
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Consequently, we have

N∑

ℓ=1

‖xℓ −Xc⋆ℓ‖22 =

N∑

ℓ=K

‖xℓ −Xc⋆ℓ‖22

≤
N∑

ℓ=K

4
ρ

N
‖V ‖2F = 4ρ

N −K
N

‖V ‖2F

(30)

where the first equality holds because we have xℓ = Xc⋆ℓ for

1 ≤ ℓ ≤ N .

By Lemma 2, we have

Φ(C⋆) ≤ ‖C‖∞,1 = K. (31)

Combining (30) and (31), we have

f̂(C⋆) =
1

2

N∑

ℓ=1

‖xℓ −Xc⋆ℓ‖22 + λΦµ(C
⋆)

≤ 2ρ
N −K
N

‖V ‖2F + λK. (32)

Consider any solution C such that f̂(C⋆) ≥ f̂(C), or

2f̂(C⋆) ≥ 2f̂(C). Then, we have

4ρ
N −K
N

‖V ‖2F + 2λK ≥ ‖X −XC‖2F + 2λΦµ(C)

≥ ‖X −XC‖2F =

N∑

ℓ=1

‖xℓ −Xcℓ‖22

≥ ‖xk −Xck‖22 , k ∈ K
= ‖Whk + vk − (WH + V )ck‖22 , k ∈ K
≥ (‖Whk −WHck)‖2 − ‖vk − V ck‖2)2, k ∈ K
≥ (‖wk −WHck‖2 − 2δ)2, k ∈ K.

Therefore, we have
√
4ρ
N −K
N

‖V ‖2F + 2λK + 2δ ≥ ‖wk −WHck‖2 , (33)

for any k ∈ K.

b) Step 2: Following the idea in [16, Lemma 17], define

τ = H(k, :)ck. It is readily seen that 0 ≤ τ ≤ 1. Suppose

τ < 1, one can see that for 1 ≤ k ≤ K

‖wk −WHck‖2
= ‖wk − [wkH(k, :)ck +W (:,−k)H(−k, :)ck]‖2
= ‖(1 − τ)wk −W (:,−k)H(−k, :)ck‖2
= (1− τ)

∥∥∥∥wk −W (:,−k)H(−k, :)ck
1− τ

∥∥∥∥
2

where W (:,−k),H(−k, :) refers to a sub-matrix constructed

by removing the kth column and kth row from W and H ,

respectively.

Denote θ =
1

1− τH(−k, :)ck, it is easy to verify that

1
⊤θ = 1, θ ≥ 0. Then,

‖wk −WHck‖2 ≥ (1 − τ)κ(W ) (34)

by the definition of κ(W ) for k ∈ K.

Combining (33)-(34), we have

⇒ τ ≥ 1−

√
4ρ
N −K
N

‖V ‖2F + 2λK + 2δ

κ(W )
(35)

In case τ = 1, the inequality above holds trivially.

c) Step 3: Since hk,k = 1 for k ∈ K = [K], we have

τ = H(k, :)ck =

N∑

ℓ=1

hk,ℓcℓ,k = hk,kck,k +
∑

ℓ 6=k

hk,ℓcℓ,k

= ck,k +
∑

ℓ 6=k

hk,ℓcℓ,k (36)

≤ ck,k + (1− ck,k)max
ℓ 6=k

hk,ℓ ≤ 1. (37)

By (37), for k ∈ K, we have

τ ≤ ck,k + (1− ck,k)max
ℓ 6=k

hk,ℓ ≤ ck,k + (1− ck,k)d(H),

Hence, it can be seen that for k ∈ K, the following holds:

‖C(k, :)‖∞ ≥ ck,k ≥
τ − d(H)

1− d(H)

≥ 1−

√
4ρ
N −K
N

‖V ‖2F + 2λK + 2δ

κ(W )(1 − d(H))︸ ︷︷ ︸
β

.

Meanwhile, for 1 ≤ n ≤ N , we have

‖C(n, :)‖∞ − µ log(N) ≤ ϕµ(C(n, :)) ( Lemma 2).

This leads to

N∑

n=1

‖C(n, :)‖∞ − µN log(N) ≤ 1

λ
λ

N∑

n=1

ϕµ(C(n, :))

≤ 1

λ
f̂(C⋆) ≤ 2ρ

N −K
λN

‖V ‖2F +K,

where the last inequality was established in Step 1.

Finally, for n /∈ K

‖C(n, :)‖∞ ≤
∑

i∈Kc

‖C(i, :)‖∞

=
∑

i∈[N ]

‖C(i, :)‖∞ −
∑

i∈K

‖C(i, :)‖∞

≤
(
2ρ
N −K
λN

‖V ‖2F +K + µN log(N)

)
−K(1− β)

= 2ρ
N −K
λN

‖V ‖2F + µN log(N) + βK.

This completes the proof.

APPENDIX D

PROOF OF THEOREM 4

By theorem’s assumption, supp(cinitℓ ) ⊆ K holds at initial-

ization. Our goal is to prove that if supp(ctℓ) ⊆ K holds, then

supp(ct+1
ℓ ) ⊆ K always holds.

To proceed, we will need the following lemmas:
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Lemma 5 Denote yn,ℓ = exp(cn,ℓ/µ)/
∑

N
i=1 exp(cn,i/µ) where

µ > 0. If cn,ℓ is not the largest element in row C(n, :), i.e.,

cn,ℓ < max
i
cn,i, (38)

then we have yn,ℓ < (1/|Ln|)exp((cn,ℓ−cn,⋆)/µ) where cn,⋆ :=
maxi cn,i, and Ln := {i|cn,i = cn,⋆}.

Lemma 6 Given vector x ∈ R
K . Suppose x satisfies the

followings: x ≥ 0,1⊤x = 1, ‖x‖∞ ≤ a for some a ≤ 1,

then

‖x‖2 ≤
√
max (2(a− 1/2)2 + 1/2, 2(1/2− 1/K)2 + 1/2)

Lemma 7 For n ∈ K,m ∈ Kc, the following holds:

(hm − hn)
⊤W⊤W (Hcℓ − hℓ)

≥ −(d′(H)2 + 2d′(H) + 5)λmax(W
⊤W )/2.

(39)

where

d′(H) =
√
max(2(d(H)− 1/2)2 + 1/2, 2(1/2− 1/K)2 + 1/2).

Proofs of Lemmas 5, 6, and 7 are relegated to the supplemen-

tary material in Appendices G, H, and I, respectively.

Let us assume Ct = C . The gradient of (18) is

∇f̂(C) = X⊤(XC −X) + λ∇Φµ(C).

Denote P = X⊤(XC−X) and Y = ∇Φµ(C). One can see

that

Y (n, ℓ) = yn,ℓ =
exp(cn,ℓ/µ)∑N
i=1 exp(cn,i/µ)

.

Our goal is to show that there always exists n ∈ K such that

cn,ℓ satisfies condition (38) in Lemma 5 for any ℓ. If this holds,

then the corresponding gradient value [∇f̂(C)]n,ℓ is expected

to be small, since the corresponding yn,ℓ is small.

To this end, denote gℓ as the ℓth column of ∇f̂(C), i.e.,

gℓ = pℓ + λyℓ,

where pℓ and yℓ are the ℓth columns of P and Y , respectively.

Our objective then amounts to showing that j ∈ K where

j = argmin
n∈[N ]

pn,ℓ + λyn,ℓ.

Again, w.o.l.g., we assume that K = [K] and hn = en
for n ∈ K. We use a contradiction to show our conclusion.

Suppose that for every n ∈ K, cn,ℓ is the largest element in

row C(n, :)—i.e., cn,ℓ ≥ cn,ℓ′ for all ℓ′ 6= ℓ for every n ∈ K.

Since cn,ℓ is the largest element, and since C(n, :) is not a

constant by our assumption, one can always find an ℓ′ such

that cn,ℓ > cn,ℓ′ . Then, we have

1 = 1
⊤cℓ =

N∑

i=1

ci,ℓ =

K∑

i=1

ci,ℓ

= cn,ℓ +

K∑

i6=n

ci,ℓ ≥ cn,ℓ +
K∑

i6=n

ci,ℓ′ >

K∑

i=1

ci,ℓ′ = 1.

The third equality holds because of the assumption that

supp(cℓ) ⊆ K. The above is a contradiction, which means

that for any given ℓ, there must be at least an n ∈ K such that

cn,ℓ < cn,ℓ′ for a certain ℓ′. Therefore, by Lemma 5, we have

the following inequality:

yn,ℓ <
1

|Ln|
exp((cn,ℓ − cn,⋆)/µ) < exp(−ψ/µ). (40)

In the meantime, for m ∈ Kc, we have

ym,ℓ =
exp(cm,ℓ/µ)∑N
i=1 exp(cm,i/µ)

=
1

N
,

because C(m, :) = 0
⊤. For an n ∈ K that satisfies (40) and

an m ∈ Kc, we have

gm,ℓ − gn,ℓ = pm,ℓ + λym,ℓ − pn,ℓ − λyn,ℓ

= pm,ℓ − pn,ℓ + λ

(
1

N
− yn,ℓ

)
.

Using Lemma 7, we can establish an lower bound of pm,ℓ −
pn,ℓ, i.e.,

pm,ℓ − pn,ℓ = (hm − hn)
⊤W⊤W (Hcℓ − hℓ) + (ǫm − ǫn)

≥ (hm − hn)
⊤W⊤W (Hcℓ − hℓ)− 4(2γδ + δ2)

≥ −(d′(H)2 + 2d′(H) + 5)λmax(W
⊤W )/2− 4(2γδ + δ2)

where the first equality is by (25), the first and second

inequalities are by (28) and Lemma 7, respectively.

Therefore, we have

gm,ℓ − gn,ℓ ≥ λ(1/N − yn,ℓ)
− (d′(H)2 + 2d′(H) + 5)λmax(W

⊤W )/2

− 4(2γδ + δ2)

> λ/N − λexp(−ψ/µ)
− (d′(H)2 + 2d′(H) + 5)λmax(W

⊤W )/2

− 4(2γδ + δ2)

≥ 0.
(41)

where the last inequality can be derived from noise bound

given in (22).

Hence, one can see that

argmin
n

pn,ℓ + λyn,ℓ ∈ K

As a result, the update rule of FW will make supp(cℓ) ⊆ K
for the next iteration. This completes the proof.
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APPENDIX E

PROOF OF LEMMA 3

By the stopping criterion, before FW terminates, η + 2δ ≤
‖Xcℓ − xℓ‖2 holds. Hence, the following chain of inequalities

holds:

η + 2δ ≤ ‖(WH + V )cℓ −Whℓ − vℓ‖2
= ‖W (Hcℓ − hℓ) + V cℓ − vℓ‖2
≤ ‖W (Hcℓ − hℓ)‖2 + ‖V cℓ − vℓ‖2
≤ ‖W (Hcℓ − hℓ)‖2 + ‖V cℓ‖2 + ‖vℓ‖2
≤ ‖W (Hcℓ − hℓ)‖2 + ‖V cℓ‖2 + δ

≤ ‖W (Hcℓ − hℓ)‖2 + 2δ

≤ σmax(W ) ‖Hcℓ − hℓ‖2 + 2δ,

=⇒ ‖Hcℓ − hℓ‖2 ≥
η

σmax(W )
. (42)

The last inequality holds since ‖V cℓ‖2 ≤
∑N
i=1 ci,ℓ ‖vi‖2 ≤

maxj ‖vj‖2 = δ.

Let qℓ = W⊤W (Hcℓ − hℓ). In addition, w.o.l.g., let

qj,ℓ, qs,ℓ be the smallest and the second smallest elements in

qℓ, respectively. By the definition of d(H), we have

h⊤nqℓ =

K∑

k=1

hk,nqk,ℓ

= hj,nqjℓ + hs,nqs,ℓ +
∑

k 6=j,k 6=s

hk,nqk,ℓ

≥ hj,nqj,ℓ + hs,nqs,ℓ + qs,ℓ
∑

k 6=j,k 6=s

hk,n

= hj,nqj,ℓ + hs,nqs,ℓ + qs,ℓ(1− hj,n − hs,n)
= hj,nqj,ℓ + qs,ℓ(1− hj,n)
≥ d(H)qj,ℓ + (1− d(H))qs,ℓ, (43)

where the last inequality holds because

(d(H)− hj,n)qs,ℓ ≥ (d(H)− hj,n)qj,ℓ.

By the definition of ν in (16), we have

qs,ℓ − qj,ℓ

= ‖Hcℓ − hℓ‖2
(
min
j 6=i

min
i
(wj −wi)

⊤W
Hcℓ − hℓ

‖Hcℓ − hℓ‖2

)

≥ νη

σmax(W )
. (44)

Consequently, we have

e⊤jW
⊤W (Hcℓ − hℓ) = e⊤jqℓ = qj,ℓ.

In addition, since for any n 6= j, we have

h⊤nW
⊤W (Hcℓ − hℓ) = h⊤nqℓ

≥ d(H)qj,ℓ + (1− d(H))qs,ℓ,

which is by (43), we get

(hn − ej)
⊤W⊤W (Hcℓ − hℓ)

≥ d(H)qj,ℓ + (1− d(H))qs,ℓ − qj,ℓ
= (1− d(H))(qs,ℓ − qj,ℓ)

≥ νη(1 − d(H))

σmax(W )
,

where the last step is by (44).

APPENDIX F

PROOF OF LEMMA 4

For 1 ≤ ℓ ≤ N , we have

|ǫn| = |h⊤nW⊤(V cℓ − vℓ)

+ v⊤n(WHcℓ + V cℓ −Whℓ − vℓ)|
≤
∣∣h⊤nW⊤V cℓ

∣∣+
∣∣h⊤nW⊤vℓ

∣∣+
∣∣v⊤nW (Hcℓ − hℓ)

∣∣
+
∣∣v⊤nV cℓ

∣∣+
∣∣v⊤nvℓ

∣∣

Note that we have

∣∣h⊤nW⊤V cℓ
∣∣ ≤ ‖Whn‖2 ‖V cℓ‖2
≤
(
max
k
‖wk‖2

)(
max
i
‖vi‖2

)

= γδ.

and

∣∣h⊤nW⊤vℓ
∣∣ ≤ ‖Whn‖2 ‖vℓ‖2
≤
(
max
k
‖wk‖2

)(
max
i
‖vi‖2

)
= γδ.

In addition, it is seen that

∣∣v⊤nW (Hcℓ − hℓ)
∣∣ ≤ ‖vn‖2 ‖W (Hcℓ − hℓ)‖2
≤ ‖vn‖2 (‖WHcℓ‖2 + ‖Whℓ‖2)
≤ 2γδ.

We also have

∣∣v⊤nV cℓ
∣∣ ≤ ‖vn‖2 ‖V cℓ‖2 ≤ δ2,

∣∣v⊤nvℓ
∣∣ ≤ ‖vn‖2 ‖vℓ‖2 ≤ δ2.

Combining the upper bounds, we have

|ǫn| ≤ 2(2γδ + δ2),

and therefore,

ǫn⋆ − ǫn ≤ |ǫn⋆ − ǫn| ≤ 2 |ǫn| ≤ 4(2γδ + δ2). (45)

APPENDIX G

PROOF OF LEMMA 5

Let Ln be a set of indices of the largest elements in row

C(n, :): Ln := {argmaxi cn,i}.
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Let cn,⋆ be the maximum value in row C(n, :), i.e., cn,⋆ =
cn,i where i ∈ Ln

yn,ℓ =
exp(cn,ℓ/µ)∑N
i=1 exp(cn,i/µ)

=
exp(cn,ℓ/µ)∑

i∈Ln
exp(cn,⋆/µ) +

∑
i/∈Ln

exp(cn,i/µ)

=
1

|Ln| exp(cn,⋆/µ− cn,ℓ/µ) +
∑

i/∈Ln
exp(cn,i/µ− cn,ℓ/µ)

<
1

|Ln| exp(cn,⋆/µ− cn,ℓ/µ)

=
1

|Ln|
exp((cn,ℓ − cn,⋆)/µ),

That concludes

yn,ℓ <
1

|Ln|
exp((cn,ℓ − cn,⋆)/µ). (46)

APPENDIX H

PROOF OF LEMMA 6

Suppose that x1 = maxi xi, which is without loss of

generality. It is easy to verify a ≥ x1 ≥ 1/K . Therefore,

‖x‖22 =

K∑

i=1

x2i = x21 +

K∑

i=2

x2i

≤ x21 +
(

K∑

i=2

xi

)2

= x21 + (1− x1)2

= 2(x1 −
1

2
)2 +

1

2

≤ max

(
2(a− 1

2
)2 +

1

2
, 2(

1

K
− 1

2
)2 +

1

2

)

APPENDIX I

PROOF OF LEMMA 7

Let a = hm − hn, b = Hcℓ − hℓ. The LHS of (39) is

(hm − hm)⊤W⊤W (Hcℓ − hℓ) = a⊤W⊤Wb.

Note that

a⊤W⊤Wb =
1

2

[
a⊤ b⊤

] [ 0 W⊤W

W⊤W 0

] [
a

b

]

=
1

2
z⊤Zz,

where we denote z =

[
a

b

]
,Z =

[
0 W⊤W

W⊤W 0

]
.

Since characteristic polynomial of Z is

det(Z − λI) = det(λ2I −W⊤WW⊤W )

= det(λI −W⊤W ) det(λI +W⊤W ),

hence λ is eigenvalue of W⊤W leads to −λ, λ are eigenvalues

of Z.

2|(hm − hn)
⊤W⊤W (Hcℓ − hℓ)|

= z⊤Zz

≤ λmax(G) ‖z‖22
= λmax(W

⊤W ) ‖z‖22
= λmax(W

⊤W )(‖hm − hn‖22 + ‖Hcℓ − hℓ‖22)
≤ λmax(W

⊤W )((‖hm‖2 + ‖hn‖2)2

+ (‖Hcℓ‖2 + ‖hℓ‖2)2)
≤ λmax(W

⊤W )((‖hm‖2 + 1)2 + (1 + 1)2)

= λmax(W
⊤W )(‖hm‖22 + 2 ‖hm‖2 + 5).

Furthermore, using Lemma 6 on hm,

‖hm‖2 ≤
√
max (2(d(H)− 1/2)2 + 1/2, 2(1/2− 1/K)2 + 1/2)

= d′(H)

Thus,

2|(hm − hn)
⊤W⊤W (Hcℓ − hℓ)|

≤ (d′(H)2 + 2d′(H) + 5)λmax(W
⊤W )

⇒ (hm − hn)
⊤W⊤W (Hcℓ − hℓ)

≥ −(d′(H)2 + 2d′(H) + 5)λmax(W
⊤W )/2.

APPENDIX J

PROOF OF PROPOSITION 1

Let Ctinit(ℓ, :) = Ct(ℓ, :). The FW algorithm’s element-wise

updating rule can be expressed as

ct+1
n,i =

(
1− 2

t+ 2

)
ctn,i +

2

t+ 2
Itn,i

ct+1
n,j =

(
1− 2

t+ 2

)
ctn,j +

2

t+ 2
J tn,j ,

where Itn,i, J
t
n,j can only be either 0 or 1.

Let Stn,(i,j) = ctn,i − ctn,j, and U tn,(i,j) = Itn,i − J tn,j .
The updating rule in terms of Sti,j is

St+1
n,(i,j) =

t

t+ 2
Stn,(i,j) +

2

t+ 2
U tn,(i,j).

a) Step 1: We first show that Stn,(i,j) for t > tinit has

the following relation with Stinitn,(i,j):

t(t+ 1)

2
Stn,(i,j) =

tinit(tinit + 1)

2
Stinitn,(i,j)+

t−1∑

k=tinit

(k+1)Ukn,(i,j).

(47)

Indeed, (47) can be shown by induction. Since (47) involves

the sample tuple n, i, j on both sides, and for the sake of sim-

plicity, we omit these subscript temporarily in the following

induction proof.

To see this, let us consider the first iteration first. We have

Stinit+1 = tinit
tinit+2S

tinit + 2
tinit+2U

tinit . This means that

(tinit + 1)(tinit + 2)

2
Stinit+1 =

(tinit + 1)tinit
2

Stinit+

(tinit + 1)U tinit .
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To proceed, suppose that (47) holds for any t > tinit + 1,

i.e.,

t(t+ 1)

2
St =

tinit(tinit + 1)

2
Stinit +

t−1∑

k=tinit

(k + 1)Uk.

We consider the next iteration. One can see that

(t+ 1)(t+ 2)

2
St+1 =

(t+ 1)(t+ 2)

2

(
t

t+ 2
St +

2

t+ 2
U t
)

=
t(t+ 1)

2
St + (t+ 1)U t

=
tinit(tinit + 1)

2
Stinit +

t−1∑

k=tinit

(k + 1)Uk

+ (t+ 1)U t

=
tinit(tinit + 1)

2
Stinit +

t∑

k=tinit

(k + 1)Uk.

b) Step 2: As a result of step 1, we have

∣∣∣Stn,(i,j)
∣∣∣ = 2

t(t+ 1)

∣∣∣ tinit(tinit + 1)

2
Stinitn,(i,j)+

t−1∑

k=tinit

(k + 1)Ukn,(i,j)

∣∣∣. (48)

Observe that the second term inside absolute operator of (48)

is an integer,

∣∣∣Stn,(i,j)
∣∣∣ ≥ 2

t(t+ 1)
min
z∈Z

∣∣∣∣
tinit(tinit + 1)

2
Stinitn,(i,j) + z

∣∣∣∣

=
2

t(t+ 1)
min
z∈N

∣∣Dn
i,j(C

init)− z
∣∣

≥ 2

T (T + 1)
min
z∈N

∣∣Dn
i,j(C

init)− z
∣∣ , (49)

where we use the definition of Dn
i,j and the equality holds

because both min operators results in

min(⌈Dn
i,j(C

init)⌉−Dn
i,j(C

init), Dn
i,j(C

init)−⌊Dn
i,j(C

init)⌋),
where ⌈·⌉, ⌊·⌋ denotes ceiling and floor operators, resp. Next,

we establish lower bound of

∣∣∣Stn,(i,j)
∣∣∣ by considering 2 pos-

sibilities regarding to Dn
i,j(C

init):

• If Dn
i,j(C

init) ∈ N, then




∣∣∣Stn,(i,j)
∣∣∣ = 0 or

∣∣∣Stn,(i,j)
∣∣∣ ≥ 2

T (T + 1)

,

because both terms inside the absolute operator in (49)

are integers

• If Dn
i,j(C

init) /∈ N, then by the definition of ξ,

∣∣∣Stn,(i,j)
∣∣∣ ≥ 2ξ

T (T + 1)
.

Such pair of i, j exists for some n⋆ ∈ K, e.g., i = i⋆, j =
j⋆, and hence

|Stn⋆,(i⋆,j⋆)| ≥
2ξ

T (T + 1)
> 0.

This further ensures that Ct(n⋆, :) at the tth iteration is

not a constant row.

Combine two cases and take the minima, we have, for

tinit ≤ t ≤ T ,

min
n∈K,
i,j

ctn,i 6=c
t
n,j

∣∣ctn,i − ctn,j
∣∣ = min

n∈K,
i,j

St
n,(i,j) 6=0

∣∣∣Stn,(i,j)
∣∣∣

≥ min

(
2

T (T + 1)
,

2ξ

T (T + 1)

)

≥ 2ξ

T (T + 1)
.

This completes the proof.

APPENDIX K

PROOF OF LEMMA 2

Let xmax := maxi xi.

ϕµ(x) = µ log

(
1

N

N∑

i=1

exp(xi/µ)

)

= µ log

(
1

N
exp(xmax/µ)

N∑

i=1

exp((xi − xmax)/µ)

)

= µ

(
− logN +

xmax

µ
+ log

(
N∑

i=1

exp((xi − xmax)/µ)

))

= −µ logN + xmax + µ log

(
N∑

i=1

exp((xi − xmax)/µ)

)

≤ ‖x‖∞.

Hence, it is seen that

lim
µ→0

ϕµ(x) = xmax = ‖x‖∞.

In addition,

ϕµ(x) = µ log

(
1

N

N∑

i=1

exp(xi/µ)

)

≥ µ log
(

1

N
exp(xmax/µ)

)
= −µ logN + xmax.

This completes the proof.


