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Abstract

Many machine learning problems can be formulated as consensus optimization
problems which can be solved efficiently via a cooperative multi-agent system.
However, the agents in the system can be unreliable due to a variety of reasons:
noise, faults and attacks. Providing erroneous updates leads the optimization pro-
cess in a wrong direction, and degrades the performance of distributed machine
learning algorithms. This paper considers the problem of decentralized learning
using ADMM in the presence of unreliable agents. First, we rigorously analyze
the effect of erroneous updates (in ADMM learning iterations) on the convergence
behavior of multi-agent system. We show that the algorithm linearly converges to
a neighborhood of the optimal solution under certain conditions and characterize
the neighborhood size analytically. Next, we provide guidelines for network de-
sign to achieve a faster convergence. We also provide conditions on the erroneous
updates for exact convergence to the optimal solution. Finally, to mitigate the in-
fluence of unreliable agents, we propose ROAD, a robust variant of ADMM, and
show its resilience to unreliable agents with an exact convergence to the optimum.

1 Introduction

Many machine learning and statistics problems fit into the general framework where a finite-sum of
functions is to be optimized. In general, the problem is formulated as

D
min f(), f(x) =D filx). (1)
i=1
The problem structure in (I is applicable to collaborative autonomous inference in statistics, dis-
tributed cooperative control of unmanned vehicles in control theory, and training of models (such
as, support vector machines, deep neural networks, etc.) in machine learning. Due to the emer-
gence of the big data era and associated sizes of datasets, solving problem (1) at a single node (or
agent) is often infeasible. This gives rise to the decentralized optimization setting [, [3], in which
the training data for the problem is stored and processed across a number of interconnected nodes
and the optimization problem is solved collectively by the cluster of nodes. The decentralized learn-
ing system can be implemented on an arbitrarily connected network of computational nodes that
solves (@) by treating it as a consensus optimization problem. There exist several decentralized opti-
mization methods for solving (), including belief propagation [[12], distributed subgradient descent
algorithms [[10], dual averaging methods [3], and the alternating direction method of multipliers
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(ADMM) [E]. Among these, ADMM has drawn significant attention, as it is well suited for de-
centralized optimization and demonstrates fast convergence in many applications, such as online
learning, decentralized collaborative learning, neural network training, and so on [|j|, 16, @].

However, most of these past works assume an ideal system where updates are not erroneous. This
assumption is very restrictive and rarely met in practice which limits the applicability of these results.
Note that due to the decentralized nature of the systems considered, computation over federated
machines induces a higher risk of unreliability because of communication noise, crash failure, and
adversarial attacks. Therefore, the design and analysis of decentralized optimization algorithms
in the presence of these practical challenges is of utmost importance. A systematic convergence
analysis of ADMM in the presence of unreliable agents has been void for a long time. The reason
is that unreliable agents have a large degree of freedom without abiding to an error model and this
makes the convergence analysis significantly more challenging as existing proof techniques used in
studying the convergence of ADMM do not directly apply.

Related work. Although, the problem of design and analysis of ADMM with unreliable
agents has not been considered in the past, a related research direction is: inexact consensus
ADMM [IZI, , , , , ]. The inexactness in ADMM can be categorized as of two different
types. Type 1 assumes that there are errors that can occur in an intermediate step of proximal map-
ping in each ADMM iteration. Type 2 replaces the computationally complex calculation in each
ADMM iteration by a proximity operator that can be computed more easily, and hence inexactness
occurs. Error in inexact ADMM is induced implicitly in intermediate proximal mapping steps and,
thus, has a specific restrictive and bounded form with amenable properties for convergence analysis
(such as, it converges to zero). These assumptions are very limited in their ability to model unre-
liability in updates, and are different from what we have studied in our paper. Furthermore, since
the proof techniques for the convergence analysis of inexact ADMMs are designed on an algorithm-
by-algorithm basis with restrictive assumptions on error, it lacks a unified framework to analyze
the convergence problem of ADMM with an arbitrary error model (of utmost importance to cyber
physical security and noisy communication channel scenarios).

Contributions.  This paper proposes a unified framework to study the convergence analysis of
decentralized ADMM algorithms in the presence of an arbitrary error model]. We consider a general
error model where an unreliable agent i adds an arbitrary error term e’ to its state value x* at each
time step k. The error first contaminates x¥ and the resulting output x* + e¥ is broadcast to the
neighboring agents. First, we provide a comprehensive convergence analysis both for convex (and
strongly convex) cost functions. Next, we show that ADMM converges to a neighborhood of the
optimal solution if certain conditions involving the network topology, the properties of the objective
function, and algorithm parameters, are satisfied. Guidelines are developed for network structure
design and algorithm parameter optimization to achieve faster convergence. We also give several
conditions on the errors such that exact convergence to the optimum can be achieved, instead to the
neighborhood of the optimum. Finally, to mitigate the effect of unreliable agents, a robust variant of
ADMM, referred to as ROAD, is proposed. We show that ROAD achieves exact convergence to the
optimum with a rate of O(1/T) for convex cost functions.

2 Problem Formulation

2.1 Decentralized Learning with ADMM

Consider a network consisting of D agents bidirectionally connected with I edges. We can describe
the network as a symmetric directed graph G; = {V, A}, where V is the set of vertices and A is
the set of arcs with |.A] = 2F. In a distributed setup, a connected network of agents collaboratively
minimize the sum of their local loss functions over a common optimization variable. Each agent
generates local updates individually and communicates with its neighbors to reach a network-wide
common minimizer. The decentralized learning problem, can be formulated as follows

D
min Y fi(xi),  stXi =i, X5 = yij, V(i 5) € A, (@)
xibAyii}

"Note that, the results in inexact ADMM literature [4, [1,[17,13,[11,/6] can be seen as a special cases of our
analysis.



where x; € RY is the local optimization variable at agent i and y;; € R is an auxiliary variable

imposing the consensus constraint on neighboring agents i and j. Defining x € RP¥ as a vector
concatenating all x;,y € R2EN a5 a vector concatenating all y;;, @) is written in a matrix form as

min f(x) +g(y), st Ax+By=0, (€)

D
where f(x) = Y fi(x;) and g(y) = 0. Here A = [A1;Az]; A1, Ay € R2ENXIN are both
=1

composed of 2E x D blocks of N x N matrices. If (¢, j) € A and y;; is the gth block of y, then
the (g, ¢)th block of A; and the (g, j)th block of Ay are N x N identity matrices Iy; otherwise the
corresponding blocks are N x N zero matrices O . Also,we have B = [—Iogn; —Iogpn]| with Iogy
being a 2E N x 2E N identity matrix. Define the matrices: M, = AT + AT and M_ = AT — AT,
Let W € RPN*XPN be a block diagonal matrix with its (4, )th block being the degree of agent
¢ multiplying Iy and other blocks being Oy, L, = %M+Mf_, L. = %M,MZ, and we know
W = %(LJr + L_). These matrices are related to the underlying network topology.

2.2 Decentralized ADMM with Unreliable Agents

The iterative updates of the decentralized ADMM algorithm are given by [13] as
x —update : Vf(x*1) + ¥ + 2c6Wx ! = oL x*,

o —update : o — of — L_xF1 = 0.

“)

Note that x = [x;;...;xp] where x; € R¥ is the local update of agent i and o = [a1;...;ap]
where a; € RY is the local Lagrange multiplier of agent i. Recalling the definitions of W, Ly and
L_, @) results in the decentralized update of agent i given as follows

k+1 k k+1 k K
Vi) 4 o + 26N xEF = cifxE e Y
JEN;
k+1 k E+1 k+1
™t = af + NixiT — ¢ Z XJ'Jr ’
JEN;
where N; denotes the set of neighbors of agent 7.

In such a setup, we consider the case where a fraction of the agents are unreliable and generate
erroneous updates. Assume that the true update is x*, and the erroneous update is modeled as
x* + e*, which is denoted as z* = x* + e*. The corresponding algorithm becomes

k+1 k+1
V(x5 4+ af 4+ 2¢| N [xET = c|Nj|zh + ¢ Z z¥,
JEN;
A AR D/
JEN;
For a clearer presentation, we will use the following form of the updates for our analysis

x —update : Vf(x*1) + oF + 2cWxH! = L, 2",

o —update : ot — af — (L_z"1 = 0.

(&)

Compared to (@), x* is replaced by the erroneous update z" in the first step, and x**! is replaced by

z"*1 in the second step. The convergence analysis of (3)) is nontrivial and is not a straightforward
extension of the analysis with (@) in [@]. Additionally, the analysis in [13] was restricted to strongly
convex cost functions. We analyze the problem for both convex and strongly convex cost functions.

2.3 Problem Assumptions

We provide definitions and assumptions that will be used for the cost functions in our analysis.
Definition 1. For a differentiable function f(x) : RPN — R:

o fisv-strongly convex if ¥x,y € RPY, f(x) > f(y) + (Vf(y).x —y) + v[x—y|*



o fis L-smooth if vx,y € RPN, |V f(x) = Vf(y)ll < Llx - y].
Assumption 1. For a differentiable function f(x) : RPN — R:

e The feasible x € RY is bounded as ||x|| < V4.

o The gradient V f(x) is bounded as ||V f (x)|| < Va.

Note that these assumptions are very common in the analysis of first-order optimization methods [2].

3 Convergence Analysis

To effectively present the convergence resultdd, we first introduce a few notations. Let Q =

VE2VT, where LT* = VXV7 is the singular value decomposition of the positive semidefinite

k
. L_ -
matrix —-. We also construct a new auxiliary sequence rF = 3 Q(x® +e°). Let z* = x*, where

x* denotes the optimal solution to the problem. Define the auxiliary vector q*, matrix p*, and

matrix G as
k k
E_|T E_|T | 0
q = |:ij| P = |:Xk:| 7G - |:0 CL+/2:| .

For a positive semidefinite matrix X, we use omin(X) as the nonzero smallest eigenvalue of matrix
X and 0p,.x(X) as the nonzero largest eigenvalue in sequel.

3.1 Convex Case

In this case, we assume convexity for the cost function and analyze the convergence of the ADMM
algorithm in the presence of errors.

Theorem 1. There exists p = [;*} with r = 0 such that
fT) = f(x) < [la" " = pl&, and (6)

2

ZT: f(xk) Hp _pH c max
Lot IO o) < G+TZ( e leh o3 4 (et 2064 ). )

2Um1n

Theorem [1] provides the upper bound for the residual of the function value over the iterations, and
shows how errors accumulate and affect the convergence of the algorithm. In (@), the effect of
the errors that occurred before the T-th iteration is represented by g’ —!, which means that the
previous errors have accumulated to impact the current algorithm state. It is observed in (@) that
the averaged function value approaches the neighborhood of the minimum function value in a sub-
linear fashion, and the second term on the right hand side of the bound represents the radius of
this neighborhood. It also shows that the algorithm converges sub-linearly if after a certain number
of iterations, there are no errors in the updates Comparing to convergence rate of (’)(T) with
decentralized ADMM for convex programming, e.g., [9], our result is very different. In the presence
of errors, the algorithm converges to the neighborhood of the minimizer with a rate of O( T) as well,
but the true convergence to the minimizer cannot be guaranteed. The bounds are obtained in the form
of G norm. Recall the definition of G, we can see that the structure of the network also plays a role
in bounding the residual of the function value. Both the bounds show that a network with smaller
Omax (L) (Which is proportional to the network connectivity) is more resilient to errors. Intuitively,
a less connected network can lower the spread of the errors. However, a more connected network
has a faster convergence speed. This observation also highlights a potential trade-off between the
resilience and the convergence speed.

2Proofs of the theoretical analysis are provided in the supplementary material.



3.2 Strongly Convex & Lipschitz Continuous Case

We assume that f(x) is v-strongly convex and L-smooth, and provide the convergence analysis.

*

Theorem 2. There exists q* = {;*] such that for the k-th iteration,

qu _ q*”Q < ||qk71 - q*”QG PHekH2 <e S>
G= 149 1+6
with s = cLy(z"F — zF71) + 2¢Q(r* — r*) + 2cW(x* — x*), where P = Lﬂ‘(“égm +
C26)\30‘§?ax(L+)y and
5 = min { (/\1 _ 1)(/\2 B 1) mln(Q) mln(LJr) 41}()\2 _ 1)(/\3 B 1) mm(Q) }
/\1/\20max(L+) ’ /\1)‘2()\3 - 1)L2 + 02)‘3(/\2 - 1) max(L+) mm(Q)

with quantities \1, \a, and \3 being greater than 1.

Theorem 2] shows that the sequence ||q* — q*||4 converges linearly with a rate of + 175 if after a
certain number of iterations, there are no data-falsification errors in the updates. Then, it can be
easily shown that the sequence z* or x* converges to the minimizer. However, if the errors persist
in the updates, this theorem shows how the errors are accumulated after each iteration. As a general
result, one can further optimize over A1, A2, and A3 to obtain maximal § and minimal P to achieve
fastest convergence and least impact from the errors.

b(1+8)02,, (L) (1)
4602, (L) (1= 55 ) #1602, (W)

k
|l2* —=*|3 < B* <A + ZB_SCIGSH%)

Theorem 3. Choose 0 < 5 < where b > 0 and Ay > 1, then

s=1
y w2 1+48)02 (L
where A = ||z°—z*||3+ Az||r° —r*||% with Ay = m,andB =z ZE)(1+5) 4,8)a(m;:)(L+)’
O = 4P+2/8 ICVES)
= EADe4pel, L) T 15

Theorem 3] presents a general convergence result for ADMM for decentralized consensus optimiza-
tion with errors, and indicates that the erroneous update z* approaches the neighborhood of the

minimizer in a linear fashion. The radius of the neighborhood is given as B* Z B=5C||e*||3. Note

that B is not guaranteed to be less than 1. This is very different from the convergence result of
ADMM for decentralized consensus optimization [13], which can guarantee that the update con-
Verges to the minimizer linearly fast and the corresponding rate is less than 1. Additionally, if

02..(Ly) >> 02, (L_), and it ends up with B being greater than 1, then the algorithm will not
converge at all.

Thus, the first problem that follows is to guarantee that B is within the range (0, 1), and the second
one is to minimize the radius of the neighborhood by minimizing C'. Accordingly, we optimize
over the variables that appeared in the above theorems and the algorithm parameter c, and give the
convergence result with B € (0, 1).

Theorem 4. Ifb and \s can be chosen, such that

(1 =0)(1 + &) omin(Lt) > omax(Lt) ®)
with § = ()‘2);1) Iz jm‘n"&“i?_);;';‘;%ii?i”, then the ADMM algorithm with a parameter ¢ =
\/)\3()\27)‘11;;%(12‘5(11250&‘“((%) converges linearly with a rate of B € (0,1), to the neighborhood of
the minimizer where \y = 1 + 7%20‘332253, A3 =1 +\/ ‘};‘;(Eizzjﬁ%f)@*) and

0 < 8 <min

b1 + 9o () (1= ) (=004 D L) e}
4b mm(LJr)( )+160§1aX(W)7 max(L+)+4(1_b) mln( JF) .



Theorem @] provides an optimal set of choices of variables and the algorithm parameter such that
B € (0,1) and C' is minimized in Theorem[3] Recalling condition (8)), it is equivalent to

02in(Ly) 4v
L. '
Thax (L) \/(L2+2v) +160223-102. (Q) — L2 + 2

(C))

min
As the only condition for the convergence, we show in our experiments that it can be easily satisfied.
(Li)) which corresponds to the network structure, has to be greater
than a certain threshold such that B € (0,1) can be achieved. This shows that a decentralized

network with a random structure may not converge at all to the neighborhood of the minimizer, in
the presence of errors in iteration.

Remark 2. The right hand side of inequality Q) is upper bounded by ( \/5_1)“4:(2\5”)1}, which

depends on the geometric properties of the cost function. There exists a certain class of cost functions
(e.g., vis small, L is large), such that a more flexible network structure design is allowed for a linear
convergence to the neighborhood of the minimizer.

Remark 1. The value of -~ %

Corollary 1. When Q) is satisfied, the first condition below achieves linear convergence to the
neighborhood of the minimizer with a radius of 1?—%, and either of the last two conditions guarantees
linear convergence to the minimizer

o [l E<e
o |le*||2 decreases linearly at a rate R such that0 < R < B

o Clle¥||2 < B(A; — Ag)|lrF~t —r*||2 with A = uﬁb)dim(—L”

The first result in Corollary [[] simply states that if the error at every iteration is bounded, then the
algorithm will approach the bounded neighborhood of the minimizer, and the second result states
that if the error in the update decays faster than the distance between the update and the minimizer
||z* — z*||3, then the algorithm will reach the minimizer at a linear rate. The third result provides a
much more general condition for convergence to the minimizer, which gives an upper bound for the
current error based on the past errors, such that the network can tolerate the accumulated errors and
the convergence to the minimizer can still be guaranteed.

4 Robust Decentralized ADMM Algorithm (ROAD)

Based upon insights provided by our theoretical results in Section 3, we investigate the design of
the robust ADMM algorithm which can tolerate the errors in the ADMM updates We focus on the
scenario where a fraction of the agents generate erroneous updates. The remaining agents in the
network follow the protocol and generate true updates, which are referred to as reliable agentd] in
this paper. We refer to our proposed robust ADMM algorithm as “ROAD” (Algorithm 1).

To explain the idea behind ROAD, let us define two crucial variables used in the al-
gorithm:  [) deviation statistics Z(k) = Zle |Qz'||, and II) threshold U =

(amax(LJr)Vl2 + #‘ﬁ)& + 4) / 2v/2. The deviation statistics accumulates agents’ update de-

viation from each other over ADMM iterations. Next, we obtain an upper bound on the deviation
statistics for the error-free case. Specifically, if there were no errors in the updates from the neigh-
bors, we show in Lemma 8 (in supplementary materials) that Z (k) < U/+/2. This upper bound U

serves as a threshold to identify unreliable agents. Note that Z(k) = \/% Zle DG )ev |z — z¥|,
thus, we have\/_iz,iC L2k — 2% < Z(k) < U/v/2, V(i,j) € V. Inspired by this relationship,

each agent ¢ maintains the local deviation statistics Zt  ||zF — 25| for every neighboring agent
j € N; and compares it with the threshold U to 1dent1fy if nelghbormg agent 7 is providing erro-

neous updates. For a reliable node j, the statistic thl [|z; — 2%|| will not exceed the threshold U If

the statistic Zle ||z} — 2" || exceeds the threshold U, the neighboring agent j is labeled as unreliable

3We also assume that reliable neighbors are in a majority for each agent i in the network.



Algorithm 1 ROAD(x?, ¢, a°, T, U)

D
1: function [ = ) fi(x)
i=1

2 Initialization: x° = 0,¢,a% =0, T, U

3 for k =1to T do

4: For the node i :

s: if SF, [[xt — x4]| > U, j € N, then

6: Replace x¥ with x} in current update @)
7 else

8: Use x¥ in current update (@)

9: endif
10: end for

11: Output x7
12: end function

and its update is not be used by agent 7. To avoid network disconnection in the case of unreliable
neighbors, the link {i, j} would not be cut off, however, the update from j will be replaced by node
©’s own value. Next, we show in Theorem [3] that the proposed ROAD algorithm converges to the
optimum at a rate of O(1/T).

Theorem 5. For convex function f(x), there exists p = [;‘*} with v = 0, and ROAD provides

1 2 (L
f&r) = f(x) < 7 (Ilpo—pllé+8c(j§f"‘7&+;E?U2> (10)

where X7 = Zle x¥ /T, and U = (Umax(L+)V12 + #ﬁi)& + 4) /2V/2.

Theorem 5 shows that the ROAD achieves a sub-linear convergence rate of O(1/T'). Note that to
account for the thresholding operation in ROAD, the upper bound in (10) introduces an additional

term 80';‘22;‘_“7(({“3)E2 U?. ROAD still falls under the formulation in (4) and follows the general analy-
sis framework considered in Section 3. Thus, Theorem[5lalso connects with the results in Theorem
[1l TheoremP]and Corollary[Il In the next section, we will also show empirically that employing the

algorithmic parameter c derived in Theorem 4 accelerates the convergence rate of ROAD.

5 Experiments

In this section, we use ROAD to solve two different decentralized consensus optimization problems
with D = 10 agents. We provide the network topology for the experiments in supplementary ma-
terials (Figure 2). We assume that there are 3 unreliable agents (chosen randomly) in the network.
Unreliable agents introduce errors in their updates by adding Gaussian noisd] with mean 1, and

variance o7.

5.1 Decentralized Regression

First, we present the experimental results for a decentralized linear regression problem. The algo-
rithm is deployed to minimize the following mean square error,
&l )
min 5”)’1‘ — B;x||5.

=x€R3
X=X P

For comparison, we use the same experiment setting as that in [13]. Here x € R? is the parameter
to be estimated and it is generated by normal distribution A/(0,I), B; € R3*3 is the measurement

“Note that our theoretical analysis and the proposed mitigation scheme (ROAD) does not assume the error
to be of any parametric structure and are applicable to any arbitrary type of error.
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Figure 1: (a) Performance comparison with different noise intensities. (b) Performance comparison
with different choices of algorithm parameter.
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Figure 2: (a) Performance comparison with different noise intensities. (b) Classification with unreli-
able agents.

matrix of node 7 and its elements follow N (0,1), and y; € RR3 is the linear measurement vector,
which is, however, corrupted by Gaussian noise A'(0,I). Note that the cost function is strongly
convex and L-smooth, and we find that condition (9} is satisfied by the network. We record the cost
function value over different iterations.

In Figure 1(a), we compare the performance of original ADMM [[13] with ROAD in the presence of
unreliable agents. We set the noise variance for unreliable agents as o7 = 1.5% and give results for
different noise intensities, i.e., 11,. We can see that if there are no unreliable agents in the network,
the ADMM converges quickly to the minimizer. However, in the presence of unreliable agents,
with up = 0.5 and pp = 1, it can be seen that the performance of the original ADMM degrades
significantly. We observe that original ADMM approaches a neighborhood of the minimizer whose
size depends on the intensities (1) of the noise. On the other hand, ROAD achieves a comparable
convergence speed as ADMM without error.

Next, we employ the derived optimal choice of the algorithm parameter c and show the performance
comparison. The optimal ¢, which is termed as cop, is given in Theorem @ We compare the
performance of the ROAD in the cases where ¢ = 0.9 and ¢ = c¢,,. We can see clearly from
Figure 1(b) that with the optimal ¢, ROAD achieves a much faster convergence speed. Even though
the optimal algorithm parameter is derived for the situation where there are unreliable nodes, the
original ADMM can also obtain an acceleration with the optimal c.

5.2 Decentralized Classification

Consider a binary classification problem with a support vector machine, and the local cost function

18
N

1
filwis bi) = Slwills + O max(0,1 - y;(w'x; +by)).

J=1



Here, the training set with NV = 1000 sample points is equally partitioned across 10 agents. For each
training point {x;,y;}, x; € R? is the feature vector, and y; € {—1, 1} is the corresponding label.
We assume that x; follows a normal distribution A/([2.8,2.8]7,I) when y; = 1, and (0, I) when
y; = —1, respectively. Locally, the training data is evenly composed of samples from two different
distributions. In our experiment, each agent updates{w, b}, and the whole network tries to reach a
final consensus on a globally optimal solution. We choose the regularization parameter ¢ = 0.35 in
our experiment.We model the error injected by unreliable agents with distribution (0, 1.52).

In Figure 2(a), we present the objective function value against the number of iterations for different
algorithms. We observe that in the absence of unreliable agents, the original ADMM algorithm
converges quickly and there are no function value fluctuations. When unreliable agents provide
erroneous updates, ADMM algorithm diverges from the minimizer significantly. We can see that
when the noise intensity i, is larger, the size of the neighborhood is larger. On the other hand, when
ROAD is employed, we observe that the algorithm converges to the minimizer which corroborates
our theoretical results in Theorem 5.

We show the classification results by depicting the hyperplane (w”'x + b = 0) in Figure 2(b). When
there are unreliable agents, the algorithm learns an “incorrect” classifier as is shown by the red line.
By using ROAD, we obtain a classifier which is almost the same as the case where there are no
unreliable agents. The slight difference arises because the algorithms stop after the same number of
iterations in our experiments, thus, ROAD does not achieve the same accuracy as error-free ADMM.

6 Conclusion

We considered the problem of decentralized learning using ADMM in the presence of unreliable
agents. We studied the convergence behavior of the decentralized ADMM algorithm and showed
that the ADMM converges to a neighborhood of the solution under certain conditions. We sug-
gested guidelines for network structure design to achieve faster convergence. We also gave several
conditions on the errors to obtain exact convergence to the solution. A robust variant of the ADMM
algorithm was proposed to enable decentralized learning in the presence of unreliable agents and
its convergence to the optima was proved. We also provided experimental results to validate the
analysis and showed the effectiveness of the proposed robust scheme. We assumed the convexity of
the cost function, and one might follow our lines of analysis for non-convex functions. Extension of
the analysis and the algorithm to an asynchronous setting can also be considered.
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Supplementary Materials

Figure 3: Decentralized network topology.
Lemma 1. The update of the the algorithm can be written as

1 WL WL [
k+1 _ —1 k+1 + k ky _ s s
X" = _2cw Vi )—1—72 (x" +e") — (SE_OX —i—e). (11)

Proof. Using the second step of the algorithm, we can write
M = o 4 L (xM 4 eM T (12)
and

of =af 7t 4 L (xF 4 e"). (13)

Sum and telescope from iteration 0 to k& using (I3), and we can get the following by assuming
a’=0

k
¥ = cL_ Z (x* +e°). (14)
s=0

Substitute the above result to the first step in the algorithm and it yields

k
2eWxHH! = —V (x4 Ly (x" + eF) — cL_ > (x* + ), (15)
s=0
which completes the proof. O
Lemma 2. The sequences satisfy
L.

7(z}’c-i-l _ Zk) _ Wek-l—l _ _Qrk-i-l _

1 k1
2CVf(x ) (16)

Proof. Based on Lemma[lland the fact W = 1(L_ + L), we can write

W(xF! —xF —e?) + W(x" + eb) - LTJF(XIC +eb) = —Qrt - %Vf(x’”l). (17)
&

Subtracting LT* (x*+1 + eF*+1) from both sides of the above equation provides

in(xk“). (18)

L_ L_
W(karl —xF - ek) + - (xk + ek) — —(ka + ekH) = —Qrftt — 5
¢

2

Rearrange and we have the desired result. O

Lemma 3. The null space of Q null(Q) is span{1}.
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Proof. Note that the null space of Q and L_ are the same. By definition, L_ = %M_M:f and

M_ = AT — AT Recall that if (i,5) € A and y;; is the gth block of y, then the (g, i)th block
of A; and the (g, j)th block of Ay are N x N identity matrices Iy; otherwise the corresponding
blocks are N x N zero matrices 0. Therefore, MY = A; — A is a matrix that each row has one

“1”, one “-17, and all zeros otherwise, which means M~ 1 = 0, i.e., null(M7 )=span{1}.

1

Note that L_ = M_MZ and Q = (LT’) ® | thus null(Q)=null(MZ), completing the proof. [

Lemma 4. For some r* that satisfies Qr* + %Vf(x*) = 0 and r* belongs to the column space of
Q, the sequences satisfy

L * 1 *
(@ =) = Wl = QUM — ) — (VI - VF(x) (19)
Proof. Using Lemmal2] we have
L 1
7+(z’€+1 —zF) — Wer ! = —QrFtt — %Vf(xk“). (20)

According to Lemma 3l null(Q) is span{1}. Since 17V f(x*) = 0, Vf(x*) can be written as a
linear combination of column vectors of Q. Therefore, there exists r such that %V f(z*) = —Qr.
Let r* be the projection of r onto Q to obtain Qr = Qr* where r* lies in the column space of Q.

Hence, we can write

L7+(Zk+1 _ Zk) _ WekJrl _ _Q(rkJrl _ I‘*)

L

(VI = Vi) @

O
Lemma 5. (x*,Q) = 0.

Proof. Since the optimal consensus solution x* has an identical value for all its entries, x* lies
in the space spanned by 1. Thus, according to Lemma Bl we have the desired result, and also
(x*,L_)=0. O

A Proof of Theorem [I]

Proof. We prove the first part in Theorem[Il Assuming f(x) is convex, we can have

FEEFD) = f(x7) < (M= x, V(). (22)
By Lemma[2] it yields
FEF) — f(x7) <(xME - x* 2eWek ! — 2cQrf ! — (L (25! — 2F)) (23)
=" —x* ey (2 - 2")) + (M — X 2cWeM ) (24)
+ (xM = x*, —2cQrFtY) (29)
:<zk+1 — CL+(Zk _ zk+1)> _ (ek“, cL+(zk _ Zk+1)> (26)
+ (2" — 2", —2eQrF Tt — (eF1 —2cQrFtY) 4 (eF L 2eW (xF L — x*))
(27)
_ o/ k+1 . Ly oy k+1 k k+1 k41 ’
=2(z —z ,T(z =z +2(" — " e(r —1')) (28)
+ (e Ly (2 — 28) 4+ 2eQrt T 4 2eW (X — x7)). (29)

If the algorithm stops at T-th iteration, then the function value f(x”') is affected by the error e* with
k=0,1,...,T — 1. Thus, we can set k = T — 1 and e” = 0 in the above bound, and obtain

FE) = fx) <llz" T =2t e, = 2t =2y, — 2" =2 (30)
2 2 2

et =2 [F = =13 —cflr" T =3 (31)

<[la"' - pll&. (32)

12



[e%

Now we prove the second part in Theorem[Il By convexity, for any r € RPY, we can have

k+1\ _ *
f(X ) f(X ) + 2r/ka+1 (33)
c
§<Xk+l _ X*, _L+(Xk+1 _ Xk) L+( ) ( k+1 I‘) +L_ (Zk-l-l _ Xk+1)> (34)
= (M Ly (8 = X)) 4+ (M X L (Z —xM)) + (" —x*,2Q(r — £)
(35)
4 <Xk+1 L ( k+1 k+1)> (36)
=" =X Ly (38 = X)) Ly (2 - X)) 4+ (2 -3 2Q(e — o)
(37)
4 <Xk+1 X L ( k+1 _xk+1)> +< k+1 2Q( k+1 _r)> (38)
=(xFH —x* Ly (%P — xF) 4 (B T - x* L (2 - %))+ (P R 2(r — 2P (39)
+< k+1 _ x* L ( k+1 _Xk+1)> +< k+1,2Q( k+1 —I‘)> (40)
1 .
==(Ip" = pl& — IP""" = plg — [P"" = pH[&) + (6 —x Ly (2" = x5)) (41)
+ <Xk+1 _ X*,L, (ZkJrl _ Xk+1)> + <ek+1, 2Q(rk+1 _ I‘)> (42)
1 L .
=~ (" = pl& — [P — pIZ) — Q13 — [ Qet 3 + 2 (! — x7), 2 — )
(43)
+ ("1 2Q(r* ! — 1)) (44)
1 Umin(L—) *
==(Ip" = plg — [P""" = pl&) - =5 Ix""" = x7|5 — Q™[ (45)
1 L .
o R X3 + a2t — X3 + (e, 2Q(rHH ) (46)
_ L"'r21r1ax(1"+) 2
= Tomn@) 1 Umax(L )
= E(Hpk—PHé— Ip* —pll) - HQeHlH%‘i‘mHZk—XkH% (47)
+ (ef 1 2Q(r*F ! — 1)) (48)
1 k 2 k41 2 Tonax(Lt) k|2 k41 k+1
SE(HP -plle—Ip —P||G)+m”e 3+ (e",2Q(x"" —1)). (49)
By letting r = 0, telescope and sum from & = 0 to T — 1 (the error for the last iteration e’ = 0),

and we obtain

%Z(f(x’“)— f(x7)) < —Hp —pIG+Z( mas )Ilekllg <ek,2Qrk)>). (50)

k=1 mm

Rearrange and we have the desired result. |
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B Proof of Theorem

Proof. By v-strong convexity, we obtain

P xR <G - 1 V) - V()

=(x"1 —x* cLy (2" — ") + 2cWeF L — 2cQ(r* Tt — 1))
=(xF1 — x* cL+(zk — M) 4 (XM - x* 2cWeh )

X, -2 - r)
:<zk+1 k+1)> _ < k+1

v||x

-z 7cLJr(z -z ,cL (zF — zF))

4 <Xk+1 +ek+1 ZCQ( k+1 *)>
— (eF 1, —QCQ(rkJrl — 1)) 4 ("1 2eW (xFH — x*))
L
CTJF(ZIC — 2 po(rk PR (Rt )
+ (ef L cLy (28! — 2F) 4+ 2¢Q(r* T — r*) + 26W (xF L — x*))

=ld" —q*|& - [|ld" —a*||1& — d" — a"T&

+ (ef L cLy (28! — 2F) 4+ 2¢Q(r* T — r*) + 26W (xF L — x*))

=2(z""! — 2,

For any A > 0, using the basic inequality

la+ b3 + (A = 1)l[all3 > (1——)||b|\2

we can write for Ay > 1l and Ay > 1

max(LJr) HZkJrl _ kHQ ()‘1 - 1)L2||Xk+1 - X*H%
4 2 4c2
L 1 .
> | 2@ = 2B+ (= Dl (V76 = V6) 13

z( - )|Wek+l Q! — )2

Lo

Lyqer+ — ez - <1 - %) (A — 1) We1|2

Y

Thus, for a positive quantity 4,

5)\1)\2L2|‘Xk+1 — X*H%

do 12nax(L+)/\1/\2 ||Zk+1 _ ZkH
4Um1n(Q)()‘1 - 1)()\2 - ) ? 4c? 1211111(Q)(/\2 - 1)
SAac2 (W)
>4 rk-i—l —p* 2 max ek-i—l 2
> 0| 2 — 2 Q) [e" 13
Since x**1 — x* = z#*t1 — z* — eF*! forany \3 > 1, we can get

* 1 *
I =1 2 (1= 50 ) 18 = 2 - o - 1 e

14

1
DY
1 1
(1 - )\_1) (1 - /\_) rznln(Q)HrkJrl - r*H% - (1 - )\1> (/\2 - 1) max( )Hek+1”§'

(51
(52)
(53)
(54)
(55)
(56)
(57)

(58)

(59)
(60)
(61)

(62)

(63)
(64)
(65)
(66)

(67)

(68)

(69)

(70)



Therefore, the addition of (&8 x ¢? and ([0) x w yields

-1
c 5Umax(L+)/\1/\2 HZkJrl N Zk||2 ( dA1 A2 L? + dc? Umax(L+)/\3) kaJrl _
40m1n(Q)(/\1 - 1)(/\2 - 1) ? 4o I%lln(Q)()\2 - 1) 4‘()\3 - 1)
(71)
> st -y E 0 gy (O (W) O s el ) ot
(72)
L C 5/\20’ (W) 5 (LJF)Ag
>4 k+1 2 5 C + k+1 _ _ky|2 _ max max k+12
> Ofle(r )|z + 0| —— (= z7) |3 2 Q) 1 e I3
(73)
C 5)\20 (W) 5 (L+))\3 k
= qk-i-l _q* 2 ( max + max e +1 2' (74)
Choose 9 to be such that
2C 00 max(L+)/\1/\2 < c20§1in(L+) (75)
4Umin(Q)(/\1 - 1)(/\2 - 1) 4
5)\1)\2[12 60 0' a (L+)/\3)
+ S <w, (76)
(4Um1n(Q)()\2 - 1) ()\3 - 1)
and we can have
L
mz}( +) ||Zk+1 _ Zng + vkaJrl _ Xk||2 > (717)
5)\20’ (W) 5 (L+>)\3
5 k+1 _ %2 C max max k+1 2' 78
Thus, it is straightforward to write
la™*" = a g + vl = xS (79)
L
> (et = )3+ | SR = o)+ ol - X3 (80)
2 2
(L
> C2||I,k+1 _ I'ng + c Ule( Jr) ||Zk+1 _ ZkHQ + ,U”XkJrl _ Xk||2 (81)
2602, (W) §c? (LA
> 2.k+1 _ k2 5 k+1 )2 _ 20 max max + )3 k+1 2'
2 Il (e #7113
(82)
Recall the result in (51)) regarding the bound to v||x**1 — x*|2, and we can further write
la* —a*l& — lla**" — a*ll& (83)
+ (" el (2" — 2F) 4+ 2eQ(rF T — r*) + 2 W (xF T — x*)) (84)
002 (W) 6c202  (Li)As
Z 5 qk+1 _q* 2 _< max 4 max ) ek+1 2 (85)
[ Iret 2 (Q) 1 eI
LetP =< Mwm(“égw) il de(L”Ag. Rearrange the expression and we get
k * (12
E+1 %2 <Hq -aq'lg P k4172 86
1
+ T (ef Tl Ly (2" — 2F) + 2eQ(r* ! — r¥) 4+ 2cW (xMH! — x*))
(87)
O
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Lemma 6. Let 3 € (0,12), b € (0,1), Ay > 1, and then we have

1 B " 4B .
-0 (5~ 125 ) 2@l 2+ (1- 25 ) I -

5 [

w0 (5 prg) (@) (10 5 ) It - xB

<MD e (L)l o+ g et — e
[% %i-%) mm<L+>(A4—1)} le* 113

Proof. First, we rewrite the result in Lemmallin the following form

2

P k412 1 k+1 k+1 k k+1 * k+1
e e e (2 ) 2@ 1) 4 2eW (x
cLi P 1/2p k+1))2
_1+5(|| (= )+ el ||2)+(1+5+1+5 13
cL
PTG ) QU ) W )
cLi P 1/25 k12
_1+5(|| @ =)+ Dot - )R + (g + 1ag ) e+ 1B
L
PP T ) b eQEt - ) + W )3
oL P 1/28
< 5 (1526 - 2B + et - v ||2)+<—5 1220 ek
46 ey pir ez, 4o el
PN Gl + 1+5” )
43 Bl )2 S T
Qs - e+ W — )3
where 5 > 0.

Rearranging the inequality provides

CL+ E+1 %y (2 k+1 _ _*x\(12
(1- 1+5)” =g (1 ) ettt e

1 CL+ k * |2 1 k * (]2
<

P+1/28

k412 B+l _ %\ (2
+ L kg 4 2 oW T — )3
Note that the parameters should be chosen such that (1 — %) > 0.

Then we can write

1 B " 4B .
(1 155) b @il =2+ (1= 25 ) I -l

146 149
1 B Lok 2
< P L " -
= < (1+6) + 1+5> mdx( Jr)HZ z ||2 1+5HI‘ r ||2
P+1/28 402, (W .
P2 oo g 4 L Whyr oy

(1+0)c2 1+6

16

cLh * cL * *
5@ 2B+ el = e < s (1526 = )1 + et = x7)13)

(88)

(89)

(90)

o

92)

93)

- x))

(94)

95)

(96)

o7)

(98)

99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)



Since we have the inequality [|z"T! — z*||3 > (1 - A_14) [xFFt — x*||3 — (A — 1)[|eF*Y||2, for

b € (0,1), we can get

1 ﬂ k+1 * (12 1 B 1 k+1 * (12
R — > - — — —
b (4 1+ 5) mln(L+)||z —Z H2 >b 4 1+5 mln(L+) 1- A4 ”X X H2

(108)
1 B &
b - - — L —1 +112
(- 125) @ - Dl
(109)
Thus,
1B * 4B *
-0 (1= 155 Au@ala -2+ (1- 225 ) I - o)
L B 2 1 Rl |2
b(-— )02 (Ly)(1-— - 111
(- 155) ot (1- 1) It - xg un
1 4+ 4 . .
<MD g (L)l o+ g et — e (1)
P+1/2p 1 B k12
——+b(-——— L -1 11
T (- 1) @it - ] et 13
— T =X (114)
|
Defining
A 1 (115)
EERCEE- )
and
A 1 (116)
2T (1+4ﬂ) ma‘x(:[“r)7
we have the desired result.
C Proof of Theorem [3]
C.1 Eliminate ||x**! — x*|3
First, we want to eliminate the term ||x**! — x*||3 in Lemmal@l which requires
1 B 1\ _ 4802, (W)
bl -——— L 1—— ) > —mx 7 117
(4 1+5> mln( +)< )\4)— 1+5 ( )
and it is equivalent to that
B < (118)
4bo mln(L+) ( ) + 160r211dx(w)
Then we can write
1 B 4B .
(1-0) (Z - m) Tin (L )[|2°71 = 27[[3 + (1 - m) [ =3 (119)
1 4+ 4 . .
<P ol o Bt et~ (120
P+1/2p 1 B k12
|:(1+5)02 b (4 146 mln(L+)()‘4 1) ”e ”2 (121)
(122)
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which can be further simplified
12"t — 2[5 + Ar[e" T —x*(|3 < B(||l2" — 2" (3 + Aoflr® —*[3) + Clle™ 3 (123)
We require the following for convergence analysis
Ay > Ay (124)
which leads to the requirement
(1= 0)0min (Lt) < (1+ B)omax (Lt ). (125)
Note that this requirement is satisfied intrinsically.

Therefore, we get

k+1
125 — 2% )3 + Ay fr" T =3 < B <|ZO —2"[|3 + Ao[|r® — r*|3 + ZB‘SCIIeﬂ%)
s=1

(126)

and we have the desired result since A, [[r*+1 —r*||3 > 0.

C2 Be(0,1)

The above convergence result requires that B € (0,1). First, having 3 in Theorem [3 at hand, we
can make sure that B is greater than 0. Then, it requires that B < 1 and correspondingly

(1+48)070x (L) < (1= b)(1+0 = 4B)o7, (L) (127)
which is equivalent to that

(1 — b)(l + 5)Ur2nin(L+) — O'rznax(LJr)

< 128
B N 401211ax(L+) + 4(1 - b)o-?nin(L'i') ( )
and

(1 =0)(1 + 6)opmin(Lt) — Opax(Ly) > 0. (129)

Since b can be arbitrarily chosen from (0, 1), we also need

2
L

o< Tmaxlb) (130)

(L + 0)oZ, (L)

2
One intuition is that we should design a network such that Z’g‘a" (i‘ +)) is the smallest possible. Substi-

min

tuting J in the expression and we have

o2 (L) LP-20+ (24202 + 160225007, (Q)

min > 131
Tiax (Lip) wA=lo2, (Q) +2L2 (131)
D Proof of Theorem [
Note that ¢ is chosen as
s [0 = D0 — 102, Q) (L) 100 1) ~ 103, (Q)
/\1/\20r211ax(L+) , /\1/\2()\3 - 1)L2 + 62)\3()\2 - 1)012rlax(L+)01211in(Q)
(132)
We choose ¢ such that
MA2(Ag — 1)L? = P A3(Xa — 1)o7 (L4 )omin(Q), (133)
which yields
AAa(Ag — 1)L2
c= 134
V&W—W&ﬂ@ﬁa@ (3

18



and

6 = min { (/\1 — D2 —1) mln(Q) mln(L+) 2v(\2 — 1) mln(Q) }

/\1/\20de( Jr) , )\1)‘2L2
(/\2 — 1) mm(Q) min ()\1 — 1) mln(L'i'), 20
A2 Alarleax(L+) /\1L2

It is desirable that § can achieve its maximum, which is obtained by

(/\1 - 1) mln(L+) 2v

A1 max(LJr) B )‘1L2 '
Therefore, we can set A\ as
2uo (L+)
A — 1 max
' - L2012111n(L+),

and thus, we have § as

§ = ()\2 — 1) 2v0m1n(Q) mln(L+)
)\2 L?o mln(LJr) + 2vamax(L+)

The constraint on 3 in Theorem 4 ensures that B > 0.

(135)

(136)

(137)

(138)

(139)

Note that A3 only appears in C' and P. It is straightforward to derive the optimal A3 to minimize C,

and we arrive at

+1

Ao = L? Umln(L+) + 2U0max(L+)
s BA1L2vo?, (Ly)

thus resulting in

T min (Q)

2
46A2U[]]ax(w) 2(A2 1 mll)(Q)
2 + Umdx( ) (\/_ + BA1A2L2 ) b()\4 _ 1)
_|_

O:

E Proof of CorollaryI]

E.1 First one:

According to the result in Theorem 3] we have

k+1
244 =273 < B (|12 — 2713 + Auflx —x73) + B DT B Ce|3
s=1
and then
k+1
244t =273 < BY (12— 273 + Arflx —x* ) + CeBH Y B
s=1
1— BkJrl
= B (|12 — "3 + Ail|e® —x73) + Co—pm
C
< B (|2~ 23 + Al - ) + -

Since B € (0, 1), we have the desired result.

19
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(141)

(142)

(143)

(144)

(145)



E.2 Second one:

Recall the result in (123)),
k+1
|25 — 2|3 < B¥F(|l2° — 2713 + A [[x° — x*|[3) + B¥TL Y BTECllef||3 (146)
s=1
which then can be written as
k+1
|1z5 — 2|3 < BM(|l2° — 27| + Au[[x° = x*[[3) + BMTIC Y O BTER)3  (147)
s=1
k+1 R s
<L -2 Al - B (5) a4
s=1
R
< BF([12° — 273 + A [|le® — r¥]|3) + Bk+10||e°|\§B 7 (149)
RC||€%|2
= B0 — 23+ Ay — 3+ el ]2 (150)
B—-R
completing the proof.
E.3 Third one:
Recall the result in (123)),
1257 — 23 + Au[le"! — ¥ |3 < B(|l2" — 2|3 + Aoflr” — ¥ [|3) + Clle* 3. a5
If C|lef 1|2 < B(A; — Ao)|rF — r*||2, we can write
257 — 2|13 + Au e — ¥ |3 < B(|l2" — 273 + Aollr” — ¥ ||3) + Clle* T3 (152)
< B(||z" — 2*[|5 + Ao|lr" —r*|3) + B(A1 — Ao)|Ir* —r*||5
(153)
< B(|z" —2"|3 + Ar[r* —r*[3). (154)
Then we have
1254 — 2[5 + Ay [le" = e)3 < BM()|20 = 273 + Ay|r® - e7)13), (155)
which leads to
12 — 2% ][5 < BM(||2° — 2*||5 + Au[Ir® — r¥|]3), (156)

completing the proof as B € (0, 1).

Lemma 7. There exists a vectory € RN and oin(yy?) = 1, such that Vx € RN, yTx > |x]|.

Proof. Since Vx € RP, yTx > ||x]|, it leads to

xTyyTx > xT'x, (157)
which is equivalent to
Tmin(yy”) = 1. (158)
O
Lemma 8. In the error-free case, starting from x° = 0, we have
T
%Z 1Qx" < % (Umax(L+)V12 + #‘fw + 4) - (159)
k=1

20



Proof. First, for any r € RPN, we obtain

P 1) | g iy

= - xSy (T - %) - 2Qt T - )

— (e Ly (T - xF) - 2Q(t ! - 1))
= L () et et 2 )
Telescope and sum from k = O ,T', we can get
1 I
SO M) () + Q!
k=1
<l —x 3, T =, an —xE

+ I =3 — [lr" — x5 - Z [ S
k=1

Therefore, we obtain
T

1
—Zf ) +2r'Qx” < |x° x|| +[Ir° — r|13

C

EE:TI X and we get the following by Jensen’s inequality as
. « . c

For) = F(7) + 20'Qr < 710° — b

If we choose r = 0, we obtain
A * c
o) = 10) < £ (I x0T+ 10918 )

The saddle point inequality implies
f(x) = f(¥r) < 2¢(Qr”, X7).

Define X7 =

Thus, using (I&7), it yields

(160)

(161)
(162)
(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

2¢(Qr*, xXr) < f(Xr) — f(x*) 4+ 2¢(Q2r*, x71) < % (Hx -x H + |0 — 2r*|2> (171)

Now we let r = r* + y with y chosen according to Lemma[7l Thus, we obtaln

f(Xr) — f(x*) +2¢(Qr*, Xr) + 2eyT Qxp < % (|xO — x*||2LT+ + Hr0 —r* — y||§) . (172)

Since (x*,r*) is a primal-dual optimal solution, the saddle point inequality provides

J(r) = f(x*) +2¢(Qr", xr) > 0.

Using Lemmal[7l we obtain

2c c
ZHQX’“I 2 (I =l - - 1B).
which yields

—Zankn_ iz (I =1, 2 =g+ 2)

Choose the starting point xY = 0 and thus r° = 0, and we have

2V2

).

1
k * * 2
ZHQX 1= g (1, + 20+ 2) < o (omn (T2 + 2
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(173)

(174)

(175)

(176)
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F Proof of Theorem

For any r € RPY, we can write

f(xk+1)c— f&) L or' Qxt+ (177)

<P xf Ly (3P - xP) — Ly (xF - 2F) — 2Q(e* T —r) + L_ (2" — XM (178)
=(xF - X" Ly (xF = X)) (M - xf Ly (28 - X)) 4+ (T - xF 2Q(r — M)
(179)
+ (xFT —x* L (2FT - xM) (180)
:<Xk+1 _ X*,L+(Xk _ Xk+1)> 4 <xk+1 _ X*,L+(Zk _ xk)> 4 <Zk+l _ X*,QQ(I‘ _ rk+1)>
(181)
+ <xk+1 _ X*,L_(Zk-‘rl _ Xk+1)> + <e/€+1, 2Q(r/€+l _ I‘)> (182)
=(xF - x* Ly (k= xM) 4+ (XM - X L (2 - X))+ (e R 2 — 2R T)
(183)
+ (xMH —x* L (2P — X)) 4 (R 2Q (e — 1)) (184)
1 .
=—(Ip" = pl& — [P = pl& — IP"" = p"[&) + ("' —x* L (2" — x")) (185)
+ (M x* L (2P - xFT) 4 (e 2Q (e — 1)) (186)
1 L .
=E(Hp’“ - pl& - IP"" = pl&) — Qx5 — |Qe" |5 + 2<7+(><’“+1 —x*),z" — x¥)
(187)
+ ("1 2Q(r* ! — 1)) (188)
1 Umin(L—) %
=(Ip" - pl& — [P"*" = pl&) - === = x7|5 — 1Qe™ 13 (189)
1 L .
G )3 a2t~ F + (e, 2Q(rH ! — 1) (190)
_ Utznax(L+) 2
I R I ST S RN AN k12 L Omax(Lt) |k k2
= -(Ip* = pllec —lIp ple) — Qe |2 + 72%111@7)”2 x"[|3 (191)
+ (eF1 2Q(r* ! — 1)) (192)
1 01211ax(L+)
:E(Hp’“ —-plle — IP"™ —pll&) — 11Qe" 15 + ml\zk - x"|3 (193)
+2Qe" | e — x| (194)

Algorithm ROAD guarantees that >>F_, |Qz’|| < 2EUA/2 =v2EU, and 7, |QX|| <v2EU
due to the thresholding as well. Thus, we have Zle |Qet|| < 2v/2EU. Then, we can have

xFHL) — f(x* 1
o 2T o <X (ip — plig — 0~ pli2) — [QeHE (99)
01211ax(L+) k12 k+1 \/_EU 96
+ Zaostled Qe+ 2ot (VEEU + el (196
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Telescope and sum from k& = 0 to 7' — 1 (e = 0 since it is the last iteration), and we get

T T
D FF) = f(x) 20 Qx” < ||p° — pllE — P Pl + 20 ) Qe (V2EU + )
k=1 k=1

(197)
2 (Ly) = 0250 (L) S g2
max min 1
L ;I\Qe 13 (198)
<P’ - pl& — IPp" — P& + AV2EU(V2EU + [|r||) (199)
O'rznax(LJr) - U]?nin(L*) 27712
+ec ) 8E2U (200)
= |p° - pll& — [Ip” — pll& + AV2EU |1 (201)
Thax(Lit)
max E2 2' 2 2
+c0r2nin(L_)8 U (202)

Choosing r = 0, we obtain

2

0 2 Cmax(L+) 2772

1l

fG&r) = f(x") <

min
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