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Probability of Resolution of MUSIC and g-MUSIC:

An Asymptotic Approach
David Schenck, Xavier Mestre, and Marius Pesavento

Abstract—In this article, the outlier production mechanism
of the conventional Multiple Signal Classification (MUSIC) and
the g-MUSIC Direction-of-Arrival (DoA) estimation technique is
investigated using tools from Random Matrix Theory (RMT). A
general Central Limit Theorem (CLT) is derived that allows to
analyze the asymptotic stochastic behavior of eigenvector-based
cost functions in the asymptotic regime where the number of
snapshots and the number of antennas increase without bound
at the same rate. Furthermore, this CLT is used to provide an
accurate prediction of the resolution capabilities of the MUSIC
and the g-MUSIC DoA estimation method. The finite dimensional
distribution of the MUSIC and the g-MUSIC cost function is
shown to be asymptotically jointly Gaussian distributed in this
asymptotic regime.

Index Terms—MUSIC, g-MUSIC, DoA estimation, central
limit theorem, random matrix theory, probability of resolution,
performance analysis.

I. INTRODUCTION

Due to the vast variety of use cases, DoA estimation belongs

to the most relevant research areas in signal processing. The

applications range from radar and sonar to electric surveil-

lance, seismology, astronomy and mobile communications

[1]–[4]. Multiple DoA estimation techniques have been pro-

posed in the literature. Among them, subspace-based DoA

estimation techniques which are known to provide a good

compromise between computational complexity and DoA

estimation accuracy. This is mainly because these methods

avoid multidimensional searches while providing relatively

good performance. One of the most popular examples of

subspace-based DoA estimation methods is MUSIC [5], which

exploits the orthogonality between signal and noise subspaces

by finding the DoAs that achieve the highest orthogonality

between the array signature and the noise subspace of the

sample covariance matrix. It is well known [6] that the noise

space spanned by the sample covariance matrix is not a

consistent estimate of the true one when both the sample size

and the number of array elements become large but are still

comparable in magnitude. Therefore, it is possible to come

up with a refined MUSIC algorithm, usually referred to as g-

MUSIC [6], which replaces the noise sample eigenvectors by
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a consistent estimate of the true noise subspace. This provides

a significant improvement in terms of both accuracy and res-

olution in the low sample size scenario, whereby the number

of snapshots and the number of array elements have the same

order of magnitude. In any case, both MUSIC and g-MUSIC

are subspaced-based algorithms, and as such both suffer from

the so-called breakdown or threshold effect. This effect is

characterized by a rapid loss of resolution capabilities due

to the systematic appearance of outliers in the DoA estimates

when either the sample size (in snapshots per antennas) or the

Signal-to-Noise Ratio (SNR) falls below a certain threshold.

When this occurs, merging signal extrema in the null-spectrum

of the DoA estimator leads to the appearance of outliers in

the DoA estimates, as in this case at least one of the deepest

local minima in the null-spectrum is not associated with a true

source. The presence of outliers causes a severe performance

breakdown in terms of DoA estimation accuracy which has

great practical implications [7]. Moreover, the threshold effect

and thus the production of outliers in the DoA estimates is

not captured by standard statistical performance bounds such

as the Cramer-Rao Bound (CRB) and therefore requires an

estimator specific analysis.

The objective of this paper is to analytically characterize

the breakdown effect (thus the outlier production mechanism)

in the threshold region of MUSIC and g-MUSIC by studying

the resolution capabilities of both DoA estimation algorithms.

More specifically, we investigate the probability that these

algorithms resolve two close sources in the asymptotic regime

where both the sample size and the number of array elements

tend to infinity at the same rate. Up to now, the literature

has mainly focused on the performance characterization of the

conventional MUSIC method in terms of both accuracy and

resolution probability [8]–[14]. Most of the performance anal-

yses rely on conventional large sample-size asymptotics, where

the number of array elements is assumed to be fixed while the

number of snapshots grows without bound. This asymptotic

regime is not very suitable for characterizing the threshold

performance, since loss of resolution occurs e.g. when the

number of snapshots is not much larger (or even smaller)

than the number of antennas. For this reason, we propose here

to analyze this outlier production mechanism under the more

appropriate setting where these two quantities are large but

comparable in magnitude. This is indeed the setting that was

considered in [15] to investigate the consistency of the DoA

estimates obtained through MUSIC or g-MUSIC.

We extend the work in [15] and analyze the statistical

fluctuations of the MUSIC and g-MUSIC cost functions, which

are the key to understanding the outlier production mechanism

that leads to loss of resolution. The approach is similar to the

http://arxiv.org/abs/2106.08738v3
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one followed in [16]–[18] to study the resolution capabilities

of the recently introduced Partially Relaxed Deterministic

Maximum Likelihood (PR-DML) algorithm. It also shares

some ideas with [19], [20], where the resolution probability of

the conventional Deterministic Maximum Likelihood (DML)

and the Stochastic Maximum Likelihood (SML) method are

derived through an asymptotic characterization of stochastic

fluctuations of the corresponding multidimensional cost func-

tions. In comparison to the PR-DML, DML and SML cost

functions, the MUSIC and g-MUSIC cost functions involve

eigenvectors of a random matrix and therefore require a funda-

mentally new asymptotic analysis. Furthermore, eigenvector-

based cost functions are shown to be asymptotically jointly

Gaussian distributed and a general CLT is provided that

allows to characterize the asymptotic fluctuations of such cost

functions. The asymptotic second order behavior is expressed

as a double contour integral which is solved for both MUSIC

and g-MUSIC. Finally, the derived asymptotic distribution

of both cost functions is used to predict the probability of

resolution of both subspace-based DoA estimation methods.

In comparison to [21], we do not only analyze the asymptotic

stochastic behavior of the g-MUSIC cost function but also

of the conventional MUSIC cost function. Additionally, the

detailed proofs for the second order asymptotic behavior of

both cost functions are provided.

The original contributions of this article can be summarized

as follows:

• We derive a CLT which states that eigenvector-based cost

functions are asymptotically jointly Gaussian distributed

for Gaussian distributed observations in the asymptotic

regime where both sample size and array dimension

go to infinity at the same rate. A general theorem is

provided that completely specifies the asymptotic behav-

ior of eigenvector-based cost functions in terms of (i)

asymptotic deterministic behavior and (ii) fluctuations

around this deterministic equivalent.

• We determine a set of conditions that guarantee that both

MUSIC and g-MUSIC cost functions fluctuate around

their asymptotic deterministic equivalents in this asymp-

totic regime.

• We particularize the above results to the MUSIC and g-

MUSIC cost functions and derive a closed-form expres-

sion for the asymptotic probability of resolution of both

DoA estimation methods. These expressions can be used

to determine the probability of resolving closely spaced

sources for a given array geometry, a sample volume per

antenna and a scenario configuration.

The rest of the paper is organized as follows. Section II

introduces the signal model that is assumed in the paper,

while some important RMT fundamentals are then intro-

duced in Section III. The conventional MUSIC and g-MUSIC

DoA estimation techniques are presented in Section IV. The

asymptotic stochastic analysis of these two cost functions and

the corresponding probability of resolution of the associated

methods are given in Section V. Section VI is devoted to the

derivation of the asymptotic deterministic behavior of these

two cost functions and the characterization of the correspond-

ing fluctuations around it. Finally, these theoretical derivations

are then validated by numerical experiments in Section VII and

Section VIII concludes the paper.

Notation: Matrices are denoted by boldface uppercase

letters A, vectors are denoted by boldface lowercase letters

a, and scalars are denoted by regular letters a. Symbols (·)T,

(·)H, (·)−1 and (·)1/2 denote the transpose, Hermitian transpose,

inverse and the positive square root of the matrix argument,

which is assumed positive semidefinite. The expectation op-

erator is represented by E[·]. The trace operator is denoted

by tr[·], and the residue of a holomorphic complex function

f(·) evaluated at b is denoted by Res[f(·), b]. ‖·‖F denotes the

Frobenius norm, and ‖·‖ is the spectral norm of the matrix

argument.

II. SIGNAL MODEL

Consider a sensor array that is equipped with M sensors and

K impinging narrowband signals with DoAs θ=[θ1,...,θK ]T

that lie within the field of view Θ of the array. The number

of sources K is assumed to be known and smaller than

the number of sensors K<M . The full-rank steering matrix

is given by A(θ)=[a(θ1),...,a(θK)]T∈CM×K where a(θi)∈CM

denotes the steering vector associated to the i-th source, which

is assumed to be located at θi. Without loss of generality, we

will assume that the array steering vector is normalized to

have unit norm, that is ‖a(θ)‖=1. The received baseband signal

y(n)=[y1(n),...,yM (n)]T∈CM at time instant n is modeled as:

y(n)=A(θ)s(n)+n(n) for n=1,...,N (1)

where s(n)=[s1(n),...,sK(n)]T∈CK denotes the transmitted

baseband source signal and n(n) represents the sensor noise.

Assuming that both signal and noise vectors are statistically

independent, zero-mean and circularly symmetric Gaussian

vectors, the observation y(n) in (1) can be modeled as a zero-

mean circularly symmetric Gaussian vector with covariance

matrix R∈CM×M given by

R=E

[

y(n)y(n)H
]

=ARsA
H+σ2

IM (2)

where Rs=E[s(n)s(n)H]∈CK×K is the covariance matrix of the

transmitted source signal s(n) and σ2IM denotes the noise

covariance. Let us consider the eigendecomposition of this

covariance matrix, which can be expressed as

R=

M̄
∑

m=1

γmEmE
H
m=E









γ1IK1

. . .

γM̄IKM̄









E
H. (3)

Here, M̄≤M denotes the total number of distinct eigenvalues,

which are sorted in ascending order as γ1<γ2<···<γM̄ , and Km

denotes the multiplicity of γm, m=1,...,M̄ . The eigenvectors

associated to γm are grouped into an M×Km matrix Em of

orthogonal columns that span the corresponding subspace and

we let E=[E1,...,EM̄ ]∈CM×M .

We also consider here the sample covariance matrix

R̂=
1

N

N
∑

n=1

y(n)y(n)H=
1

N
Y Y

H (4)
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which has eigendecomposition given by

R̂=

M
∑

m=1

λ̂mêmê
H
m=Ê









λ̂1

. . .

λ̂M









Ê
H

(5)

where now λ̂1≤λ̂2≤···≤λ̂M are the sample eigenvalues, êm

denotes the eigenvector associated to λ̂m, m=1,...,M and

Ê=[ê1,...,êM ]. These sample eigenvalues are almost surely

different, unless N<M , in which case we have a zero sam-

ple eigenvalue of multiplicity M−N . In this situation, êm

for m=1,...,M−N , span the subspace associated to the zero

sample eigenvalue. In the following section, we provide some

interesting properties of the asymptotic behavior of sample

eigenvalues and eigenvectors based on RMT results that will

be extensively used throughout the paper.

III. RANDOM MATRIX THEORY PRELIMINARIES

Under the above statistical assumptions, the sample covari-

ance matrix R̂ in (4) is a consistent estimator of the true one R,

provided that the number of antennas M is kept fixed while

the number of samples grows without bound, N→∞. More

formally, one can easily show that ‖R̂−R‖→0 with probability

one under these asymptotic assumptions. As pointed out

before, this asymptotic regime is often inappropriate in the

sense that both M,N are typically comparable in magnitude.

In this paper, we will therefore consider an asymptotic regime

where these two quantities tend to infinity at the same rate.

Assumption 1. The number of samples N is a function of the

number of antennas M , that is N=N(M) and N(M)→∞ as

M→∞ in a way that M/N(M)→c for some constant 0<c<∞.

It turns out that under Assumption 1 the sample covariance

matrix R̂ in (4) is not a consistent estimate of the true one in

(2), in the sense that ‖R−R̂‖90. In particular, this shows that

the eigenvalues and eigenvectors of R̂ do not really converge

to the eigenvalues and eigenvectors of R when the dimensions

of these matrices increase without bound. However, it is well

known that, under some additional assumptions, the empir-

ical eigenvalue distribution of the sample covariance matrix

R̂ in (4) still shows a deterministic behavior in the large-

dimensional regime. In order to formalize this observation,

we need to introduce some additional technical assumptions.

Assumption 2. The observations y(n) in (1), n=1,...,N form

a collection of independent circularly symmetric complex

Gaussian vectors with zero-mean and covariance matrix R,

bounded in spectral norm. In particular, the quantities M̄ ,

γ1,...,γM̄ and K1,...,KM̄ corresponding to the eigendecompo-

sition of R in (3) may vary with M , but supMγM̄<∞.

We remark that the received signal y(n) for n=1,...,N in

(1) and the covariance matrix R in (2) satisfy Assumption

2 by default as long as the SNR is bounded. Under the

above technical assumptions, the eigenvalues of the sample

covariance matrix R̂ in (4) are asymptotically almost surely

distributed as a non-random measure with density qM (x) [22]–

[25]. Informally stated, the histogram of the eigenvalues of the

sample covariance matrix tends to be shaped around qM (x)

as M,N grow large, with probability one. This deterministic

density is therefore the key to understanding the asymptotic

behavior of the sample covariance matrix. In particular, one

can show that, when N>M , the density qM (x) has compact

support consisting of the union of S closed intervals, namely

S=[x−
1 ,x

+
1 ]∪···∪[x−

S ,x
+
S ] [24], [26], [27]. When N≤M , the

same description is valid but with the addition of the zero

eigenvalue, i.e. {0}. The procedure to obtain S is as follows

(see [25, Proposition 1] and also [26]). Consider the following

function of the true covariance matrix

Ψ(ω)=
1

N
tr
[

R
2(R−ωIM )−2

]

. (6)

The polynomial equation Ψ(ω)=1 has 2S solutions counting

multiplicities, which can be denoted as {ω−
1 ,ω

+
1 ,...,ω

−
S ,ω

+
S }. We

then define x±
s =z(ω

±
s ), s=1,...,S, where z(ω) is the transfor-

mation

z(ω)=ω

(

1− 1

N
tr
[

R(R−ωIM )−1]
)

. (7)

Each eigenvalue of R can be univocally associated to one

of the S intervals, in the sense that there exists a single

interval [ω−
s ,ω

+
s ] that contains that particular eigenvalue. On

the other hand, given a certain covariance matrix R, the

number of intervals of the support S increases with increasing

N . Furthermore, there exists a minimum number of samples

per antenna that guarantees that a certain interval [x−
s ,x

+
s ] is

associated to a single eigenvalue of R. In this paper, we will

strongly rely on the assumption that the lowest eigenvalue of

R is the only eigenvalue that belongs to the interval [ω−
1 ,ω

+
1 ]

(see Assumption 3 below). This will allow us to analyze

the behavior of subspace DoA detection techniques in large

dimensional arrays.

Having reviewed some basic notions on the asymptotic

spectral behavior of the sample covariance matrix, we are

now in the position of introducing the MUSIC and g-MUSIC

subspace DoA estimators in the large antenna regime.

IV. MUSIC AND G-MUSIC DIRECTION-OF-ARRIVAL

ESTIMATION

The main idea behind the conventional MUSIC estimator

is to exploit the fact that the eigenvectors associated to the

noise subspace E1 of the true covariance matrix R in (3) are

orthogonal to the steering vectors evaluated at the true DoAs

of the received signals. Hence, we can consider a cost function

η̄g(θ)=a(θ)HE1E
H
1 a(θ). (8)

where we recall from (3) that E1 contains the M−K eigen-

vectors associated to the smallest eigenvalue of R. The DoAs

of the received signals can be determined as the K distinct

values of θ at which η̄g(θ)=0 [6]. Since the noise subspace E1

is unknown in practice, the conventional MUSIC cost function

is obtained by replacing the noise subspace E1 in (8) with the

noise eigenvectors of the sample covariance matrix, namely

η̂c(θ)=a(θ)H
M−K
∑

m=1

êmê
H
ma(θ) (9)

and the DoAs are determined by the K distinct values in θ

where η̂c(θ) in (9) attains its K deepest local minima [5].
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Now, as a consequence of the fact that under Assumption

2 ‖R−R̂‖90 one can generally expect that |η̂c(θ)−ηg(θ)|90.

With the help of RMT tools, one can however find a modifica-

tion of the MUSIC cost function in (9) that is indeed consistent

in this large dimensional regime. This is usually referred to

as M,N-consistency, as opposed to the more conventional

concept of N-consistency, which assumes a constant M . The

modified cost function is usually referred to as g-MUSIC [6]

and can be built from a proper combination of signal and noise

subspaces, that is

η̂g(θ)=
M
∑

m=1

φ(m)a(θ)Hêmê
H
ma(θ) (10)

with real-valued weights

φ(m)=







1+
∑M

k=M−K+1

(

λ̂k

λ̂m−λ̂k
− µ̂k

λ̂m−µ̂k

)

, m≤M−K
−∑M−K

k=1

(

λ̂k

λ̂m−λ̂k
− µ̂k

λ̂m−µ̂k

)

, m>M−K

where µ̂1≤µ̂2≤···≤µ̂M are the real-valued solutions (counting

multiplicities) to the following equation in µ̂

1

N

M
∑

k=1

λ̂k

λ̂k−µ̂
=1.

The DoAs of the g-MUSIC estimator are determined by

searching for the K deepest local minima of the cost function

η̂g(θ) in (10). In order to justify the superiority of this DoA

estimation algorithm, we need to impose separation between

the signal and noise subspaces in the asymptotic covariance

R. This is more formally stated in the following assumption.

Assumption 3. We have 0<infMK1/M≤supMK1/M<1 and

infMγ1>0. The eigenvalue γ1 is the unique eigenvalue that is

associated to the cluster with support [x−
1 ,x

+
1 ] for all M,N

sufficiently large. Furthermore, there exists a deterministic

̺ and some small ǫ>0, both independent of M , such that

supMx
+
1 +ǫ<̺<infMx

−
2 −ǫ.

The first part of Assumption 3 guarantees that the noise

subspace E1 does not vanish in the large dimensional regime

when the number of antennas grows to infinity. Hence, the

number of sources K is allowed to increase with M but in

a way that limsupMK/M<1. Furthermore, the noise power

(γ1=σ
2) can also vary with the number of antennas, as long

as it does not vanish with M→∞. The second part of the

assumption ensures that the eigenvalue cluster associated with

the noise eigenvalue γ1, denoted by [x−
1 ,x

+
1 ] is separated

from the clusters of adjacent eigenvalues in the asymptotic

eigenvalue distribution of the sample covariance matrix R̂.

The existence of separation in the asymptotic eigenvalue

distribution between the cluster associated to the smallest

eigenvalue γ1 and the clusters of adjacent eigenvalues depends

on the DoAs, the SNR, as well as the number of snapshots

N and the number of sensors M and can be verified using

the procedure in [25, Section II] or [24, Section II-A]. With

the aid of this separability assumption, we are now ready to

describe the asymptotic behavior of both subspace-based cost

functions.

Theorem 1. Under Assumptions1 1-3 and for each θ∈Θ

|η̂c(θ)−η̄c(θ)|→0 (11)

|η̂g(θ)−η̄g(θ)|→0 (12)

almost surely, where η̄c(θ) and η̄g(θ) are two deterministic

equivalent objective functions defined as follows. The deter-

ministic equivalent of the MUSIC cost function is defined as

η̄c(θ)=

M̄
∑

m=1

ψ(m)a(θ)HEmE
H
ma(θ) (13)

with real-valued weights

ψ(m)=







1− 1
K1

∑M̄
r=2Kr

(

γ1
γr−γ1

− µ1
γr−µ1

)

, m=1

γ1
γm−γ1

− µ1
γm−µ1

, m 6=1

where µ1<µ2<···<µM̄ are the real-valued solutions to the

following equation in µ

1

N

M̄
∑

r=1

Krγr
γr−µ

=1. (14)

The deterministic equivalent η̄g(θ) of the g-MUSIC cost func-

tion η̂g(θ) in (10) is defined in (8).

Proof. See [24, Theorem 2]. A sketch of the proof is provided

in Section VI. �

Remark: The above theorem points out that only the g-

MUSIC cost function is an M,N-consistent estimator of the

originally intended cost function in (8). However, this does

not need to have a direct translation into the consistency

of the DoA estimates themselves. It was shown in [15]

that for widely spaced sources and a Uniform Linear Array

(ULA), both the conventional MUSIC and the g-MUSIC DoA

estimators provide M,N-consistent DoA estimates in spite of

the inherent inconsistency of the conventional MUSIC cost

function. Hence, under certain circumstances, the position of

the local minima of the conventional MUSIC cost function

converge to the true DoAs, although the global cost function

does not. Also, for closely spaced sources, both MUSIC

methods provide M,N-consistent DoA estimates. However the

g-MUSIC method provides M,N-consistent DoA estimates

under lower asymptotic conditions on N , which explains the

superiority in DoA estimation accuracy of g-MUSIC over

conventional MUSIC in scenarios with closely spaced sources

and limited sample size.

In order to analyze the probability of resolution of both

MUSIC methods, we next focus on the characterization of

the asymptotic fluctuations of both cost functions around the

asymptotic deterministic equivalents in Theorem 1.

V. MAIN RESULT: ASYMPTOTIC FLUCTUATIONS OF THE

MUSIC AND G-MUSIC COST FUNCTION

The objective of this section is to characterize the asymp-

totic fluctuations of both conventional MUSIC and g-MUSIC

1Gaussianity is not necessary for this result, and can be replaced by a milder
condition on the fourth order moments of the observations.
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cost functions in (9) and (10) around their asymptotic deter-

ministic equivalents. To that effect, we will describe the finite-

dimensional asymptotic distribution of these cost functions

evaluated at a constant number of L points. Let us therefore

consider a fixed set of L directions given by θ̄=[θ̄1,...,θ̄L]
T

within the field of view Θ of the sensor array and denote

η̂c(θ̄)=[η̂c(θ̄1),...,η̂c(θ̄L)]
T (15)

η̂g(θ̄)=[η̂g(θ̄1),...,η̂g(θ̄L)]
T, (16)

where η̂c(θ) and η̂g(θ) are given in (9) and (10), respectively.

In order to investigate the asymptotic behavior of the two

vectors η̂c(θ̄) and η̂g(θ̄) we will also consider the two L-

dimensional vectors η̄c(θ̄) and η̄g(θ̄) that contain the cor-

responding deterministic equivalents. These two vectors are

respectively defined as (15)-(16) by replacing η̂c(θ̄l) and η̂g(θ̄l)

with η̄c(θ̄l) in (13) and η̄g(θ̄l) in (8), where l=1,...,L.

In order to introduce the main result of this section, we need

to introduce the asymptotic covariance matrices of the vectors

in (15)-(16). Let ω(z) be defined by inverting the mapping in

(7) as follows. When z∈C+ .
={z∈C:Im[z]>0}, ω(z) is defined

as the unique solution to

z=ω(z)

(

1− 1

N

M̄
∑

r=1

Krγr
γr−ω(z)

)

(17)

in C
+. When z∗∈C+, we take ω(z)=ω∗(z∗). Finally, when z∈R,

we take ω(z) to be the unique solution to the above equation

such that 1
N

∑M̄
r=1

Krγ
2
r

|γr−ω(z)|2
≤1. It can be shown that ω(z) is

well defined on all C and holomorphic on C\S , with derivative

ω′(z)=
∂ω(z)

∂z
=

(

1− 1

N

M̄
∑

r=1

Krγ
2
r

(γr−ω(z))2

)−1

. (18)

Using tools from RMT it is shown in Section VI that both

the conventional MUSIC and the g-MUSIC cost functions fluc-

tuate around their asymptotic equivalents as Gaussian random

vectors. In order to formulate this result, we now define the

asymptotic covariance matrices of the corresponding random

vectors in (15)-(16) after proper centering and normalization.

Regarding the conventional MUSIC algorithm, we define

[

Γc(θ̄)
]

p,q
=

M̄
∑

r=1

M̄
∑

k=1

(

ξc(r,k)a(θ̄p)
H
ErE

H
r a(θ̄q)

×a(θ̄q)
H
EkE

H
k a(θ̄p)

)

(19)

for p,q∈{1,...,L} where the real-valued weights

ξc(r,k)=

{

γrγk ξ̃c(r,k) M>N

γrγk ξ̄c(r,k) M≤N
(20)

differ depending on the number of snapshots N and the num-

ber of sensors M . In the oversampled case (M≤N) the weights

are given by ξ̄c(r,k) in (21) whereas in the undersampled case

(M>N) the weights are given by ξ̃c(r,k) in (22), both at the top

of the next page. The real-valued quantities µr for r=1,...,M̄

are defined as in (14). We remark that µ1=0 if M=N .

Regarding the g-MUSIC cost function, we define

[

Γg(θ̄)
]

p,q
=

M̄
∑

r=1

M̄
∑

k=1

(

ξg(r,k)a(θ̄p)
H
ErE

H
r a(θ̄q)

×a(θ̄q)
H
EkE

H
k a(θ̄p)

)

(23)

for p,q∈{1,...,L} where the real-valued weights ξg(r,k) are

given by

ξg(r,k)=− N

K1
δr=k=1+

2

π

∫ x
+
1

x−
1

γrγk|ω′(x)|2Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx. (24)

Having introduced these two asymptotic covariance matri-

ces, we next introduce an additional assumption that essen-

tially guarantees that the eigenvalues of the matrices Γc(θ̄) in

(19) and Γg(θ̄) in (23) are contained in a compact interval of

the positive real axis independent of M . This is necessary

in order to guarantee that the two random cost functions

asymptotically fluctuate around the corresponding determin-

istic equivalents.

Assumption 4. Let A(θ̄) denote the M×L matrix that con-

tains, stacked side by side, the steering vectors a(θ) evaluated

at the directions θ̄1,...,θ̄L. Then, if λmin(·) denotes the minimum

eigenvalue of a matrix, we have

inf
M

M̄
∑

m=2

λ2
min

(

A
H(θ̄)EmE

H
mA(θ̄)

)

>0.

This assumption is essentially pointing out that the matrix

A(θ̄) must be full-rank, and its projection onto the different

signal-subspaces E2,...,EM̄ of the true covariance matrix R

cannot vanish uniformly. Having introduced this last assump-

tion, we are now in the position to introduce the main result

of this paper.

Theorem 2. Under Assumptions 1-4, we have

√
NΓc(θ̄)

−1/2(
η̂c(θ̄)−η̄c(θ̄)

)D→N (0,IL) (25)
√
NΓg(θ̄)

−1/2(
η̂g(θ̄)−η̄g(θ̄)

)D→N (0,IL) (26)

where
D→ denotes convergence in distribution and where

Γc(θ̄)∈RL×L is given in (19) and Γg(θ̄)∈RL×L is given in

(23), respectively.

Proof. The proof is given in Section VI. �

Remark: The order of convergence in (25) and (26) is

O(N−1/2). The real-valued integrals in (20) and (24) can be

computed using numerical integration techniques such as the

Riemann sum or the Simpson’s rule.

Theorem 2 fully characterizes the asymptotic stochastic

behavior of the MUSIC as well as the g-MUSIC cost function

at any point within the Field of View (FoV) of the sensor

array. With the aid of Theorem 2 we can approximate the

probability density function of both MUSIC cost functions also

under non-asymptotic conditions, which can be useful, e.g., for

source detection or to quantify the resolution capabilities of

the corresponding DoA estimator.

A. Probability of Resolution

The practical relevance of a DoA estimator highly depends

on its computational complexity as well as its estimation

accuracy. For the estimation accuracy of subspace-based DoA

estimators like MUSIC and g-MUSIC the so called threshold

effect is of major interest. The threshold effect describes an

abrupt increase in the Mean Square Error (MSE) below a
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ξ̄c(r,k)=− N

K1

1
(

1
N
K1γ1

)2

(

1− 1

N

M̄
∑

m=2

Kmγm
γm−γ1

)2

δr=k=1− 1
(

1
N
K1γ1

)2

(

1− 1

N

M̄
∑

m=2

Kmγ
2
m

(γm−γ1)2

)

δr=k=1 (21)

− N

K1

1

(γk−γ1)2
δr=16=k− N

K1

1

(γr−γ1)2
δk=16=r+

2

π

∫ x+
1

x−
1

1
∣

∣

∣
1− 1

N

∑M̄
m=1

Kmγm
γm−ω(x)

∣

∣

∣

2

Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx

+2
µ1

γ1

1
(

1
N
K1γ1

)2

(

1− 1

N

M̄
∑

m=2

Kmγ
2
m

(γm−γ1)(γm−µ1)

)

δr=k=1+2
µ1

γ1−µ1

1
(

1
N
K1γ1

)2

(

1− 1

N

M̄
∑

m=2

Kmγm
γm−γ1

)

δr=k=1

+2
N

K1

1

(γk−γ1)γ1
µ1

γk−µ1
δr=16=k+2

N

K1

1

(γr−γ1)γ1
µ1

γr−µ1
δk=16=r+

µ2
1

(γr−µ1)
2(γk−µ1)

2

1

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−µ1)
2

ξ̃c(r,k)=ξ̄c(r,k)− 1

γrγk

µ1

(γr−µ1)(γk−µ1)

1
1
N

∑M̄
n=1

Kn

γn−µ1

− 1

γrγk

µ2
1

(γr−µ1)(γk−µ1)

N

N−M (22)

certain SNR threshold due to the production of outliers in

the DoA estimates and can be characterized by analyzing the

resolution capabilities of the underlying DoA estimator [2],

[7], [28]. In the literature, several criteria to declare resolution

between two neighboring sources have been introduced [29]–

[32]. In case of a one-dimensional spectral search based DoA

estimator, one may declare that two sources located at DoAs

θ=[θ1,θ2]
T are resolved if both DoA estimation errors, namely

|θ1−θ̂1| and |θ2−θ̂2| are smaller than |θ1−θ2|/2 [31]. A popular

alternative is to evaluate the cost function at both true DoAs

and to verify if the cost at the mid-angle (θ1+θ2)/2 is larger

than at the true DoAs [32]. Hence, under the latter criterion

resolution is declared if uTη̂(θ̄)<0 where

u=







1/2

1/2

−1






, θ̄=







θ1
θ2

θ1+θ2
2






, η̂(θ̄)=







η̂(θ1)

η̂(θ2)

η̂
(

θ1+θ2
2

)







and η̂(θ) denotes a generic cost function. Using the previously

derived asymptotic stochastic behavior of the cost function

vector η̂(θ̄) in Theorem 2, the probability of resolution can be

expressed as the cumulative distribution function [33]

Pres=Pr
(

u
T
η̂(θ̄)<0

)

=

∫ 0

−∞

fuTη̂(θ̄)(x)dx (27)

where fuTη̂(θ̄)(x) denotes the pdf of the test quantity uTη̂(θ̄)

that can be asymptotically approximated by a Gaussian dis-

tribution with law N (uTη̄(θ̄),N−1uT
Γ(θ̄)u), where η̄(θ̄) and

Γ(θ̄) take the form in (13)-(19) or in (8)-(23) depending on

the subspace method under evaluation [34].

VI. PROOF OF THEOREM 2

We begin by reviewing some standard arguments that allow

to represent the MUSIC and g-MUSIC cost functions as

contour integrals of the resolvent of the sample covariance

matrix, which is a matrix-valued function of a complex vari-

able z∈C\R defined as Q̂(z)=(R̂−zIM )−1 [24], [25]. Observe

that, using the eigenvalue decomposition of R̂ in (5) we are

able to write

Q̂(z)=
M
∑

m=1

1

λ̂m−z
êmê

H
m

and therefore a direct application of the Cauchy integral

theorem shows that
M−K
∑

m=1

êmê
H
m=

1

2πj

∮

Cz

Q̂(z)dz (28)

where Cz is a clockwise oriented simple closed contour that

encloses only the K1=M−K smallest eigenvalues of the

sample covariance matrix R̂.

Now, it is well known that for all M,N sufficiently large,

the M−K smallest eigenvalues of R̂ are located inside [x1,x
+
1 ]

plus {0} if M>N [26], [35]. Thanks to this fact, we can always

deform the contour in (28) and make it independent of M . This

deterministic contour may cross the real axis at the points ̺

(defined in Assumption 3) and any other point in the negative

real axis. Consequently, one can investigate the asymptotic

behavior of the eigenvectors of the sample covariance matrix

by equivalently characterizing the asymptotic behavior of the

resolvent Q̂(z).

A. Asymptotic Equivalent of MUSIC and Derivation of g-

MUSIC

Under Assumptions 1-2 and for fixed θ and z∈C\R we have
∣

∣

∣

∣

a
H(θ)Q̂(z)a(θ)−ω(z)

z
a
H(θ)(R−ω(z)IM )−1

a(θ)

∣

∣

∣

∣

→0 (29)

almost surely [22], [23], where ω(z) is defined as in (17).

A direct application of the dominated convergence theorem

therefore shows that, since

η̂c(θ)=
1

2πj

∮

Cz

a
H(θ)Q̂(z)a(θ)dz

we can write
∣

∣

∣

∣

η̂c(θ)− 1

2πj

∮

Cz

ω(z)

z
a
H(θ)(R−ω(z)IM )−1

a(θ)dz

∣

∣

∣

∣

→0.

The right hand side of the above difference can be shown

to coincide with the expression in (13) after applying the

change of variables z=z(ω) as given in (7) and solving the

corresponding integral via Cauchy integration [24].

A very similar idea can be used to derive the g-MUSIC

cost function. We begin by expressing the cost function that

we want to estimate using again the Cauchy integral, that is

η̄g(θ)=
1

2πj

∮

Cω

a
H(θ)(R−ωIM )−1

a(θ)dω
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where now Cω is a clockwise oriented simple closed contour

that encloses γ1 and no other eigenvalue. In particular, it can be

shown that [6] z 7→ω(z) in (17) can be used as parametrization

of such a contour, in the sense that we can choose Cω=ω(Cz)

with Cz as defined above. It can be seen that the generated

contour has the properties that we are looking for [6], and

consequently we can express

η̄g(θ)=
1

2πj

∮

Cz

a
H(θ)(R−ω(z)IM )−1

a(θ)ω′(z)dz (30)

with ω′(z) as in (18). Now, observe that the above contour

does not depend on M , so that invoking again the dominated

convergence theorem we can find an M,N-consistent estimator

of η̄g(θ) by simply replacing the integrand above with a

correspondingM,N-consistent estimate. Using (29) we readily

see that we only need to find an M,N-consistent estimator of

ω(z) and ω′(z). An M,N-consistent estimator of ω(z) can be

obtained by using the well-known fact that [22], [23], under

Assumptions 1-2 we have
∣

∣

∣

∣

1

M
tr
[

Q̂(z)
]

−ω(z)
z

1

M
tr
[

(R−ω(z)IM )−1
]

∣

∣

∣

∣

→0

almost surely for fixed z∈C\R. Using the fact that ω(z) is a

solution to the equation in (17), this can be reformulated as
∣

∣

∣

∣

∣

ω(z)−z
(

1− 1

N
tr
[

R̂(R̂−zIM )−1
]

)−1
∣

∣

∣

∣

∣

→0

(see [19, Lemma 8]). Therefore, the right hand side of the

above difference, which will be denoted as ω̂(z), is an M,N-

consistent estimator of ω(z). Furthermore, the M,N-consistent

estimator of ω′(z) can be obtained by using the fact that

convergence of holomorphic functions imply the convergence

of their derivatives, so that

ω̂′(z)=
∂ω̂(z)

∂z
=
ω̂(z)

z
+
ω̂(z)2

z

1

N
tr

[

R̂
(

R̂−zIM

)−2
]

is an M,N-consistent estimator of ω′(z). We can therefore

obtain the M,N-consistent estimator of the g-MUSIC cost

function by inserting these estimators into the Cauchy integral

in (30), that is

η̂g(θ)=
1

2πj

∮

Cz

a
H(θ)Q̂(z)a(θ)

z

ω̂(z)
ω̂′(z)dz. (31)

The contour integral in (31) is solved in closed-form in [6,

Theorem 2] (also see [25, Theorem 3]) using conventional

residue calculus, which yields the expression in (10).

B. Asymptotic Fluctuations

Let us now consider again the fluctuations of these two cost

functions at a set of L fixed distinct angles, θ̄1,...,θ̄L. Using

the previously derived asymptotic equivalents of the MUSIC

cost function we can express

√
N
(

η̂c(θ̄l)−η̄c(θ̄l)
)

=
1

2πj

∮

Cz

√
Na

H(θ̄l)
(

Q̂(z)−Q̄(z)
)

a(θ̄l)dz

where we have introduced Q̄(z)=ω(z)
z

(R−ω(z)IM )−1. Simi-

larly, for the g-MUSIC cost function we have
√
N
(

η̂g(θ̄l)−η̄g(θ̄l)
)

=
1

2πj

∮

Cz

√
Na

H(θ̄l)

(

zω̂′(z)

ω̂(z)
Q̂(z)−zω

′(z)

ω(z)
Q̄(z)

)

a(θ̄l)dz.

It can be seen that both expressions take the form

√
N
(

η̂(θ̄l)−η̄(θ̄l)
)

=
1

2πj

∮

Cz

√
Na

H(θ̄l)
(

ĥ(z)Q̂(z)−h̄(z)Q̄(z)
)

a(θ̄l)dz
(32)

where η̂(θ) is a generic cost function with deterministic equiv-

alent η̄(θ). In case of the conventional MUSIC cost function

we have ĥ(z)=1 and h̄(z)=1 whereas in case of the g-MUSIC

cost function ĥ(z)= zω̂′(z)
ω̂(z)

and h̄(z)= zω′(z)
ω(z)

. It is well known

[36], [37] that the statistic in (32) asymptotically fluctuates

as a Gaussian random variable with zero-mean and positive

variance. However, we are interested in the more general case

of the asymptotic joint distribution of a collection of random

variables, namely

√
N
(

η̂(θ̄)−η̄(θ̄)
)

=









√
N(η̂(θ̄1)−η̄(θ̄1))

...√
N(η̂(θ̄L)−η̄(θ̄L))









(33)

where
√
N(η̂(θ̄l)−η̄(θ̄l) for l=1,...,L is defined in (32). The

second order asymptotic behavior in Theorem 2 is derived

by establishing pointwise convergence of the characteristic

function of the statistic
√
N
(

η̂(θ̄)−η̄(θ̄)
)

in (33) to the char-

acteristic function of a Gaussian distributed random variable.

Moreover, by the Cramér-Wold device [38] it is sufficient to

establish that the one-dimensional projection of the statistic in

(33), namely

L
∑

l=1

√
Nwl

(

η̂(θ̄l)−η̄(θ̄l)
)

=
√
Nw

T
(

η̂(θ̄)−η̄(θ̄)
)

(34)

is asymptotically Gaussian distributed for any collection of

real-valued bounded quantities w=[w1,...,wL]
T∈RL to show

that (33) is asymptotically jointly Gaussian distributed. Ad-

ditionally, by Lévy’s continuity Theorem convergence in dis-

tribution of a set of random variables can be proven by estab-

lishing pointwise convergence of the characteristic functions.

Let χ(r) be defined as χ(r)=exp
(

jr
√
NwT

(

η̂(θ̄)−η̄(θ̄)
)

)

and

let E[χ(r)] be the corresponding characteristic function of the

one-dimensional projection in (34). The target is to study the

asymptotic behavior of the characteristic function E[χ(r)] in

the asymptotic regime where M,N→∞ at the same rate by

establishing convergence towards the characteristic function

of a Gaussian random variable with zero-mean and covariance

wT
Γ(θ̄)w, that is E[χ(r)]−χ̄(r)→0 where

χ̄(r)=exp

(

−r2w
T
Γ(θ̄)w

2

)

. (35)

In (35), Γ(θ̄)∈RL×L characterizes the second order asymptotic

behavior of the statistic
√
N(η̂(θ̄)−η̄(θ̄)) in (33), which is

the quantity of interest. In the asymptotic analysis of the

characteristic function E[χ(r)] of the one-dimensional projec-

tion
√
NwT(η̂(θ̄)−η̄(θ̄)) we rely on the integration by parts

formula [39]–[41] and the Nash-Poincaré inequality [40]–[42].

It can be shown that the second order asymptotic behavior of

the statistic in (34) is computed as follows.
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Theorem 3. Consider an L×L matrix Γ(θ̄) the elements of

which are given by

[

Γ(θ̄)
]

p,q
=

1

2πj

1

2πj

∮

Cω1

∮

Cω2

h̄(z(ω1))h̄(z(ω2))
∂z(ω1)

∂ω1

∂z(ω2)

∂ω2

× ω1

z(ω1)

ω2

z(ω2)

Υp,q(ω1,ω2)

1−Ω(ω1,ω2)
dω2dω1

(36)

for p,q∈{1,...,L}, where Cω1 , Cω2 are two clockwise oriented

simple closed contours enclosing only the smallest eigenvalue

γ1 of R,

Υp,q(ω1,ω2)=a(θ̄p)
H(R−ω1IM )−1

R(R−ω2IM )−1
a(θ̄q)

×a(θ̄q)
H(R−ω2IM )−1

R(R−ω1IM )−1
a(θ̄p)

(37)

and where

Ω(ω1,ω2)=
1

N
tr
[

R(R−ω1IM )−1
R(R−ω2IM )−1

]

. (38)

Function z(ω) is defined in (7) and its first order derivative

can be computed as

∂z(ω)

∂ω
=1− 1

N

M̄
∑

r=1

Krγ
2
r

(γr−ω)2 . (39)

Let Assumptions 1-3 hold true and assume additionally that

the eigenvalues of Γ(θ̄) are all located in a compact in-

terval of the positive real axis independent of M . Then,√
NΓ(θ̄)−1/2(η̂(θ̄)−η̄(θ̄)) in (33) converges in law to a stan-

dardized multivariate Gaussian distribution.

Proof. A detailed proof is provided in [43]. �

With the help of Theorem 3 above, the proof of Theorem

2 follows directly once we have been able to (i) compute

the integral that defines the asymptotic covariance matrix for

these two cost functions and (ii) prove that the maximum

(resp. minimum) eigenvalue of these two covariance matrices

is bounded (resp. bounded away from zero).

Let us first consider the computation of the two asymp-

totic covariance matrices, which follows from solving the

integral in (36) for h̄(z(ω))=1 (conventional MUSIC) and for

h̄(z(ω))= z(ω)
ω

∂ω(z)
∂z

(g-MUSIC). To simplify the computation

of the asymptotic covariance, we express Γ(θ̄) in (36) as

Γ(θ̄)=
M̄
∑

r=1

M̄
∑

k=1

ξ(r,k)AH(θ̄)ErE
H
r A(θ̄)⊙

(

A
H(θ̄)EkE

H
k A(θ̄)

)T

(40)

where ⊙ denotes element-wise product and where the coeffi-

cients ξ(r,k) are defined as

ξ(r,k)=
1

2πj

∮

Cω1

h̄(z(ω1))
ω1

z(ω1)

∂z(ω1)

∂ω1

γrγkIr,k(ω1)

(γr−ω1)(γk−ω1)
dω1,

(41)

with

Ir,k(ω1)=
1

2πj

∮

Cω2

h̄(z(ω2))
ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
dω2.

(42)

These two integrals are solved in Appendices A and B for the

conventional MUSIC and the g-MUSIC cost functions, leading

to the expressions in (19) and (23) respectively.

To obtain an upper bound on the spectral norm of Γ(θ̄),

we consider the expression in (40) and observe that the

coefficients ξ(r,k) are all real-valued and positive. The fact that

they are real-valued follows from the property z(ω∗)=z∗(ω) in

(7) as well as the fact that h̄(z∗)=h̄∗(z) for both definitions of

this function. The fact that the coefficients ξ(r,k) in (41) are

non-negative can be shown by using the following results.

Lemma 1. Let Ω(ω1,ω2) be defined as in (38). Then,

sup
M

sup
(z1,z2)∈Cz×Cz

|Ω(ω(z1),ω(z2))|<1. (43)

Proof. By the Cauchy-Schwarz inequality, we have

|Ω(ω(z1),ω(z2))|2≤Ψ̃(ω(z1))Ψ̃(ω(z1)) with

Ψ̃(ω)=
1

N

M̄
∑

m=1

Km
γ2
m

|γm−ω|2 . (44)

Hence, it is sufficient to prove that supM supz∈Cz
|Ψ̃(ω(z))|<1.

Let us first consider z∈C+. Taking imaginary parts on both

sides of (17) we see that

Ψ̃(ω(z))=1− Im[z]

Im[ω(z)]

where we recall that Im[ω(z)]>0 when Im[z]>0. This implies

that supM Ψ̃(ω(z))≤1 and infM Im[ω(z)]>0. In order to see that

the inequality supM Ψ̃(ω(z))≤1 must be strict, we reason by

contradiction. Assume that the equality holds, and consider a

subsequence M ′ such that Ψ̃(ω(z))→1, implying Im[ω(z)]→∞,

as M ′→∞. Now, using the fact that |γm−ω(z)|2≥Im[w(z)]2

we see from the definition of Ψ̃(ω(z)) in (44) that Ψ̃(ω(z))≤
Im[ω(z)]−2 1

N

∑M̄
m=1Kmγ

2
m→0 along that subsequence, leading

to contradiction.

Consider now z∈Cz∩R and observe that this means that

either z<0 or z=̺ in Assumption 3, which are the two crossing

points of the contour on the real axis. Assume first that z=̺

and consider ω+
1 as right hand side of the first cluster of

the support S and ω−
2 as the left hand side of the second

cluster such that γ1<ω
+
1 <ω(̺)<ω

−
2 <γ2 (the case z<0 follows

by similar arguments). It can be observed that Ψ̃(ω) in (44) is

a strongly convex function since the second order derivative

w.r.t. ω

Ψ̃′′(ω)=
6

N

M̄
∑

r=1

Krγ
2
r

(γr−ω)4 (45)

is lower bounded by a positive quantity q, namely

q=inf
M

inf
ω∈(ω+

1 ,ω−
2 )

Ψ̃′′(ω)>
3

4

1

N

M̄
∑

r=1

Krγ
2
r

γ4
r+γ

4
2

>0.

By strong convexity it follows that

Ψ̃(ω−
2 )−Ψ̃(ω(̺))≥Ψ̃′(ω(̺))(ω−

2 −ω(̺))+ q
2
(ω−

2 −ω(̺))2

Ψ̃(ω+
1 )−Ψ̃(ω(̺))≥−Ψ̃′(ω(̺))(ω(̺)−ω+

1 )+
q

2
(ω+

1 −ω(̺))2.

Using the fact that Ψ̃(ω−
2 )=1 and Ψ̃(ω+

1 )=1 we obtain

1−Ψ̃(ω(̺))≥
{

Ψ̃′(ω(̺))(ω−
2 −ω(̺))+ q

2
(ω−

2 −ω(̺))2

−Ψ̃′(ω(̺))(ω(̺)−ω+
1 )+

q
2
(ω+

1 −ω(̺))2.

Hence, infM1−Ψ̃(ω(̺))> q
2
min

[

(ω−
2 −ω(̺))2,(ω+

1 −ω(̺))2
]

>0

and therefore supM Ψ̃(ω(̺))<1. The boundedness of Ψ̃(ω(z))

at the second crossing point with the real axis z<0 follows

by similar reasoning. �
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The fact that Ω(ω1,ω2) is uniformly bounded on Cω×Cω

implies that we can take a power series expansion of the term

(1−Ω(ω1,ω2))
−1 and write

ξ(r,k)=γrγk
∑

n≥0

1

Nn

∑

r1+...+rM̄=n

(

n

r1,...,rM̄

)

M̄
∏

m=1

Krm
m γ2rm

m

×
(

1

2πj

∮

Cz

ω(z)

z

h̄(z)

(γr−ω(z))(γk−ω(z))
M̄
∏

m=1

1

(γm−ω(z))rm dz

)2

(46)

where we employed the multinomial theorem to factor out the

different powers Ωn(ω1,ω2), n≥0. An immediate consequence

of the above decomposition is the fact that the coefficients

ξ(r,k) are non-negative. This will be useful in order to de-

termine the appropriate lower bound on the corresponding

covariance matrix.

Lemma 2. Under Assumptions 1-3, we have supM‖Γc(θ̄)‖<
+∞ and supM‖Γg(θ̄)‖<+∞.

Proof. Consider the general expression in (40) and assume

that we are able to find a positive constant κ such that

supM supr,kξ(r,k)<κ. It will immediately follow that

‖Γ(θ̄)‖≤κ

∥

∥

∥

∥

∥

∥

M̄
∑

r=1

M̄
∑

k=1

A
H(θ̄)ErE

H
r A(θ̄)⊙

(

A
H(θ̄)EkE

H
k A(θ̄)

)T

∥

∥

∥

∥

∥

∥

=κ

∥

∥

∥

∥

A
H(θ̄)A(θ̄)⊙

(

A
H(θ̄)A(θ̄)

)T
∥

∥

∥

∥

≤Lκ

where in the last inequality we have used the fact that the

steering vectors have unit norm and the spectral norm of a

matrix is upper bounded by its trace. Hence, we only need

to find an upper bound on the coefficients. Following the

definition of these coefficients in (46) we can readily see that

ξ(r,k)≤γrγk
1−Ω̄

(

1

2πj

∮

Cz

|h̄(z)| |ω(z)||z|
1

|γr−ω(z)||γk−ω(z)|
|dz|

)2

(47)

where Ω̄=supM,(ω1,ω2)∈Cω×Cω
Ω(ω1,ω2)<1. Now, from the

proof of Lemma 1 it directly follows that infM,ω∈Cω |ω(z)−γk|>
0 for k=1,...,M̄ . On the other hand, taking real and imaginary

part on both sides of (17) it can be shown by contradiction

that for bounded |z|<∞ we have supM |ω(z)/z|<∞.

This directly shows that the coefficients ξ(r,k) are bounded

for the MUSIC cost function, which has h̄(z)=1. In order

to prove boundedness of the g-MUSIC covariance Γg(θ̄) we

only need to show that supM |ω′(z)|<∞ since h̄(z)= z
ω(z)

ω′(z)

and z
ω(z)

cancels out with ω(z)
z

in (47). The upper bound

supM |ω′(z)|<∞ follows from the fact that, by the triangular

inequality, supM |ω′(z)|≤supM (1−|Ψ̃(ω(z))|)−1<1. This com-

pletes the proof of Lemma 2. �

We finally conclude the proof of Theorem 2 by showing

that the smallest eigenvalue of the two asymptotic covariance

matrices is bounded away from zero.

Lemma 3. Under Assumptions 1-4, we have

infMλmin(Γc(θ̄))>0 and infMλmin(Γg(θ̄))>0, where λmin(·)
denotes the minimum eigenvalue of a matrix.

Proof. In order to proof this lemma, we consider again the

general expression of any of these two matrices that is given in

(40). By inserting the series expansion of ξ(r,k)≥0 in (46) into

(40) we obtain an expression of Γ(θ̄) as a linear combination of

positive semidefinite matrices with non-negative coefficients.

Hence, the original covariance can be lower bounded (in the

ordering of positive semidefinite matrices) by selecting any of

the terms of this expansion. In the case of MUSIC we can

select the term n=0 in (46) along the sum k=r≥2 in (40),

leading to the lower bound

Γc(θ̄)≥
M̄
∑

k=2

υc(k)A
H(θ̄)EkE

H
k A(θ̄)⊙

(

A
H(θ̄)EkE

H
kA(θ̄)

)T

where

υc(k)=

(

1

2πj

∮

C−
z

ω(z)

z

γk
(γk−ω(z))2

dz

)2

. (48)

Likewise, for the g-MUSIC cost function we can select the

term n=1 in (46) along the sum k=r≥2 in (40), so that

Γg(θ̄)≥
M̄
∑

k=2

υg(k)A
H(θ̄)EkE

H
k A(θ̄)⊙

(

A
H(θ̄)EkE

H
kA(θ̄)

)T

where now

υg(k)=
1

N

M̄
∑

j=1

Kjγ
2
j

(

1

2πj

∮

C−
ω

ω

z(ω)

γk
(γk−ω)2(γj−ω)

dω

)2

. (49)

Using the fact that, for any two positive semidefinite matrices

A,B, we have λmin(A⊙B)≥λmin(A)λmin(B) [44], we see that

the lemma will follow from Assumption 4 if we are able to

show that infM,k≥2υc(k)>0 and infM,k≥2υg(k)>0.

In case of υg(k) in (49), we have

υg(k)=
K1

N

γ2
1γ

2
k

(γ1−γk)4
δk≥2+

1

N

M̄
∑

j=2

Kj
γ2
j γ

2
k

(γ1−γj)4
δk=1

≥K1

N

γ4
1

(2‖R‖)4 δk≥2+
M−K1

N

γ4
1

(2‖R‖)4 δk=1

and the lower bound follows from the fact that infMγ1>

0, supM‖R‖<∞ and 0<infMK1/M≤supMK1/M<1. Further-

more, the closed-form solution for υc(k) in (48) is given by

υc(k)=γ
2
k(Φk(µ1)−Φk(γ1))

2δk≥2

+

(

γ1

M̄
∑

m=2

(Φ1(µm)−Φ1(γm))

)2

δk=1

(50)

where we have introduced Φk(x)=
x

(γk−x)2
. Consider first the

lower bound of vc(k) in (50) for k≥2 in the oversampled case

(M≤N). Since Φk(x) is a convex function on the region 0<

x<γk, we can upper bound Φk(γ1)>Φk(µ1)+Φ′
k(µ1)(γ1−µ1)

where Φ′
k(x) is the derivative of Φk(x) w.r.t. x. This shows

that

(Φk(γ1)−Φk(µ1))
2≥(Φ′

k(µ1))
2(γ1−µ1)

2≥ (γ1−µ1)
2

γ4
k

≥ (γ1−µ1)
2

‖R‖4

where we have used the fact that in the oversampled case µ1≥0

and therefore Φ′
k(µ1)≥Φ′

k(0)=1/γ2
k. On the other hand, to see

that infM |γ1−µ1|>0 we simply recall from the definition of µ1

in (14) that we can write

γ1−µ1=

(

1− 1

N

M̄
∑

j=2

Kj
γj

γj−µ1

)−1
K1γ1
N

>
K1γ1
N
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where in the last equation we used the fact that µ1<γ1<γj for

j=2,...,M̄ and therefore the second term in the denominator

is always positive. The fact that infM |µ1−γ1|>0 follows the

boundedness of the spectral norm of R and Assumption 1.

This proves that in the oversampled case vc(k) in (50) for

k≥2 is lower bounded by a constant independent of M .

Let us now consider the lower bound of vc(k) in (50) in

the undersampled case (M>N) for k≥2. In the undersampled

case we know that µ1<0<γ1 and therefore

φk(γ1)−φk(µ1)>
γ1

(γk−γ1)2
>

γ1

(2‖R‖)2
=

γ1
4‖R‖2

where we have used the fact that −φk(µ1)>0. Consequently,

the lower bound on vc(k) in (50) for k≥2 in the undersam-

pled case directly follows from the fact that infMγ1>0 and

supM‖R‖<∞. This concludes the proof of Lemma 3. �

VII. SIMULATION RESULTS

In this Section the predicted probability of resolution in

(27) is compared to the simulated one. Consider a scenario

with K=2 sources that are located at θ=[45◦,50◦]T and a ULA

that is equipped with M=15 sensors. Since we consider only

non-asymptotic scenarios with a finite number of sensors, we

refrain from normalizing the steering vectors in all simulations.

The transmitted signals are zero-mean with unit power and

the SNR is given by SNR=1/σ2. The simulations are carried

out for correlated signals with correlation coefficient ρ=0.95

as well as uncorrelated signals. The separation boundary is

defined as the lowest SNR or the smallest angular separation

between both sources that provides separation between the

eigenvalue cluster that is associated to the noise eigenvalue

γ1 and remaining eigenvalue clusters. Hence, the separation

boundary is given by the smallest SNR or the smallest angular

separation between both sources that allows to differentiate

between noise and signal subspace and therefore satisfies

Assumption 3. All simulations are conducted for 10000 Monte-

Carlo trials.

In Figure 1, 2 and 3 the probability of resolution is depicted

for different SNRs and for N=10 (undersampled case), N=15

(special case where M=N) and N=100 (oversampled case)

snapshots, respectively. In all three scenarios our prediction

of the probability of resolution in (27) is very accurate since

it is very close to the simulated one. Even in case of correlated

sources and limited number of snapshots the proposed forecast

of the probability of resolution in (27) provides a remarkably

accurate description of the threshold effect. Furthermore, in all

three scenarios the g-MUSIC DoA estimation method shows

superior resolution capabilities than the conventional MUSIC

technique.

In Figure 4 the probability of resolution is depicted for

different numbers of snapshots N . The SNR is fixed to

SNR=6dB and the source signals are uncorrelated. The pro-

posed analytic expression for the probability of resolution

very accurately describes the empirical simulated probability

of resolution of MUSIC as well as g-MUSIC. Furthermore,

g-MUSIC outperforms conventional MUSIC especially under

harsh conditions with limited number of snapshots.
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Fig. 1: Uncorrelated and Correlated Sources, Correlation Co-

efficient ρ=0.95, M=15 Sensors, N=10 Snapshots
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Fig. 2: Uncorrelated and Correlated Sources, Correlation Co-

efficient ρ=0.95, M=15 Sensors, N=15 Snapshots

In Figure 5 the probability of resolution is depicted for

different angular separation ∆ϑ between two sources. The

SNR is fixed to SNR=2dB and a total of N=15 snapshots

are considered. The transmitted signals are uncorrelated and

the two sources are located at θ=[45◦,45◦+∆ϑ]T with ∆ϑ∈
[0.2◦,10◦]. Furthermore, a ULA with M=15 antennas is used. It

can be observed that the proposed prediction of the probability

of resolution is almost identical to the actual one. Especially

in difficult scenarios with low SNR and closely spaced sources

g-MUSIC is superior to conventional MUSIC.

VIII. CONCLUSION

In this article the asymptotic stochastic behavior of the

conventional MUSIC and the g-MUSIC cost function is in-

vestigated in the asymptotic regime where the number of

snapshots and the number of sensors go to infinity at the

same rate. Using tools from RMT the finite dimensional
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efficient ρ=0.95, M=15 Sensors, N=100 Snapshots
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distribution of the random MUSIC and g-MUSIC cost function

is derived and shown to be asymptotically jointly Gaussian

distributed. Furthermore, the resolution capabilities of both

MUSIC DoA estimation methods is analyzed based on the

asymptotic stochastic behavior of their cost functions. An

analytic expression for the probability of resolution is provided

that allows to predict the probability of resolution in the

threshold region and thus provides an accurate description of

the outlier production mechanism.

APPENDIX A

DETERMINATION OF THE ASYMPTOTIC COVARIANCE OF

THE MUSIC COST FUNCTION

In case of the conventional MUSIC cost function h̄(z(ω2))=

1. Hence, the complex contour integral in (42) yields

Ir,k(ω1)=
1

2πj

∮

Cω2

ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
dω2 (51)

and can be solved in closed-form by applying conventional

residue calculus [45]. A closed-form expression for Ir,k(ω1)

is obtained by summing the residues of the integrand in

(51) evaluated at all singularities that lie within the complex

contour Cω2 . To begin with, we consider the oversampled case

where M≤N . It can be seen, that the integrand of Ir,k(ω1)

in (51) exhibits three different types of singularities that lie

inside the complex contour Cω2 . The first type of singularities

corresponds to the poles of ω2
z(ω2)

, which are denoted by

µ1<µ2<···<µM̄ in (14). The corresponding residue w.r.t. ω2

evaluated at µt yields

Res

[

ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, µt

]

=

µt

(γr−µt)(γk−µt)

1−Ω(ω1,µt)
(52)

where we have used Ω(ω1,ω2) in (38), and ∂z(ω)
∂ω

in (39).

However, only µ1 lies within the contour Cω2 which is why

only the residue evaluated at µ1 contributes to the solution of

Ir,k(ω1) in (51).

The second type of singularities corresponds to the roots of

1−Ω(ω1,ω2) where Ω(ω1,ω2) is given in (38). The complex-

valued roots are denoted by ϕr(ω1) for r=1,...,M̄ and sorted

according to their real-part in ascending order Re[ϕ1(ω1)]<

···<Re[ϕM̄ (ω1)] and given by the solutions of the polynomial

equation in ϕ(ω1)

1

N

M̄
∑

l=1

Klγ
2
l

(γl−ω1)(γl−ϕ(ω1))
=1. (53)

The corresponding residue evaluated at ϕt(ω1) is given by

Res

[

ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, ϕt(ω1)

]

=
ϕt(ω1)−ω1

(γr−ϕt(ω1))(γk−ϕt(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕt(ω1)

.

(54)

Lemma 4. Assuming that ω1 is located outside the contour

generated by the parameterization x 7→ω1(x) in [25, Remark

3], there exists exactly one solution of the equation in (53)

that is enclosed by the contour Cω2 , namely ϕ1(ω1).

Proof. Since ω1 is located outside the contour Ψ̃(ω1)<1 where

Ψ̃(ω) is given in (44). It can be observed that for a fixed ω1 the
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ϕr(ω1) values are the zeros of the function f(ϕ)=1−Ω(ω1,ϕ)

where Ω(ω1,ω2) is given in (38). By Cauchy-Schwarz inequal-

ity it follows that, if ϕ∈Cω2 , we have |1−f(ϕ)|2≤Ψ̃(ω1)Ψ̃(ϕ)<1

(see Lemma 1). It can also be seen that f(ϕ) has no singu-

larities or zeros lying directly on the contour Cω2 , so that

by Rouché’s theorem f(ϕ) has the same number of zeros

and poles inside Cω2 . The poles of f(ϕ) are located at the

true eigenvalues γr for r=1,...,M̄ . However, only the smallest

eigenvalue γ1 is enclosed by Cω2 . Hence, it follows that only

one zero of 1−f(ϕ) is enclosed by the contour Cω2 , namely

ϕ1(ω1). �

Consequently, only the residue evaluated at ϕ1(ω1) con-

tributes to the solution of Ir,k(ω1) in (51).

The third type of singularities corresponds to the poles at

the true eigenvalues γt for t=1,...,M̄ . However, we have to

distinguish between poles of order one and order two. The

residue with respect to ω2 evaluated at γt yields

Res

[

ω2

z(ω2)

∂z(ω2)

∂ω2

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, γt

]

=















N
Ktγt

γt−ω1
γk−γt

, for t=r 6=k
N

Ktγt

γt−ω1
γr−γt

, for t=k 6=r
αt(ω1), for r=k=t

(55)

where

αt(ω1)=
(γt−ω1)
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγm
γm−γt

)

+
(γt−ω1)

2

γt
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγ
2
m

(γm−ω1)(γm−γt)

)

.

(56)

It can be observed that only the noise eigenvalue γ1 is enclosed

by the contour Cω2 . Correspondingly, the closed-form solution

for the complex contour integral Ir,k(ω1) in (51) is obtained

by taking the negative sum (negative sum because of the

negatively orientated contour Cω2) of the residues in (52),

(54) and (55) evaluated at all singularities that lie inside the

complex contour Cω2 and yields

Ir,k(ω1)=− µ1

(γr−µ1)(γk−µ1)

1

1−Ω(ω1,µ1)
−α1(ω1)δr=k=1

− ϕ1(ω1)−ω1

(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

− N

K1γ1

γ1−ω1

γk−γ1
δr=16=k− N

K1γ1

γ1−ω1

γr−γ1
δk=16=r. (57)

In the following we substitute the closed-form expression for

Ir,k(ω1) in (57) into the general expression for the real-valued

weights ξ(r,k) in (41) such that

1

γrγk
ξc(r,k)=

−1

2πj

∮

Cω1

ω1

z(ω1)

∂z(ω1)

∂ω1

1

(γr−ω1)(γk−ω1)

×
(

α1(ω1)δr=k=1+
µ1

(γr−µ1)(γk−µ1)

1

1−Ω(ω1,µ1)

+
N

K1γ1

γ1−ω1

γk−γ1
δr=16=k+

N

K1γ1

γ1−ω1

γr−γ1 δk=16=r

+
ϕ1(ω1)−ω1

(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

)

dω1

(58)

where we have used h̄(z(ω1))=1, Ω(ω1,ω2) in (38) and αt(ω1)

in (56). The integrand in (58) exhibits four different types of

singularities. The first group of singularities corresponds to the

poles that are located at the true eigenvalues γt. Hence, the

residue of the first part of the integrand in (58) evaluated at

γt is given by

Res

[

ω1

z(ω1)

∂z(ω1)

∂ω1

αt(ω1)

(γr−ω1)(γk−ω1)
δr=k=t, γt

]

=− N

Kt

1
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγm
γm−γt

)2

δr=k=t

− 1
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγ
2
m

(γm−γt)2

)

δr=k=t

(59)

whereas the residue of the second part of the integrand in (58)

yields

Res

[

µt

(γr−µt)(γk−µt)

1−Ω(ω1,µt)

ω1
z(ω1)

∂z(ω1)
∂ω1

(γr−ω1)(γk−ω1)
, γt

]

=















1
1
N

Ktγt

µt

γk−µt

1
γk−γt

, for t=r 6=k
1

1
N

Ktγt

µt

γr−µt

1
γr−γt

, for t=k 6=r
βt, for t=k=r

(60)

where

βt=
1

(

1
N
Ktγt

)2

µt

γt−µt

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγm
γm−γt

)

+
µt

γt
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγ
2
m

(γm−γt)(γm−µt)

)

.

The residue of the third part of the integrand in (58) evaluated

at γt is computed as follows

Res

[

N

Ktγt

ω1

z(ω1)

∂z(ω1)

∂ω1

γt−ω1
γk−γt

δr=t 6=k+
γt−ω1
γr−γt

δk=t 6=r

(γr−ω1)(γk−ω1)
, γt

]

=− N

Kt

1

(γk−γt)2
δr=t 6=k− N

Kt

1

(γr−γt)2 δk=t 6=r.

(61)

Since only the noise eigenvalue γ1 is enclosed by the contour

Cω1 , only the residues in (59), (60) and (61) evaluated at γ1
contribute to the result of ξc(r,k) in (58).

The second type of singularities belongs to the poles of
ω1

z(ω1)
, which are located at the µ-values that are defined in (14).

The corresponding residue of the first part of the integrand in

(58) evaluated at µt is given by

Res

[

ω1

z(ω1)

∂z(ω1)

∂ω1

αt(ω1)

(γr−ω1)(γk−ω1)
δr=k=t, µt

]

=
µt

γt−µt

1
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγm
γm−γt

)

δr=k=t

+
µt

γt
(

1
N
Ktγt

)2

(

1− 1

N

M̄
∑

m=1
m 6=t

Kmγ
2
m

(γm−µt)(γm−γt)

)

δr=k=t.

(62)
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Furthermore, the residues of the second and third part of the

integrand in (58) evaluated at µt are given by

Res

[

µt

(γr−µt)(γk−µt)

1−Ω(ω1,µt)

ω1
z(ω1)

∂z(ω1)
∂ω1

(γr−ω1)(γk−ω1)
, µt

]

=
µ2
t

(γr−µt)2(γk−µt)2
1

(

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−µt)2

)

(63)

and

Res

[

N

Ktγt

ω1

z(ω1)

∂z(ω1)

∂ω1

γt−ω1
γk−γt

δr=t 6=k+
γt−ω1
γr−γt

δk=t 6=r

(γr−ω1)(γk−ω1)
, µt

]

=
N

Kt

1

(γk−γt)γt
µt

γk−µt
δr=t 6=k+

N

Kt

1

(γr−γt)γt
µt

γr−µt
δk=t 6=r.

(64)

However, only µ1 is enclosed by the contour Cω1 which is

why only the residues in (62), (63) and (64) evaluated at µ1

contribute to the final result of ξc(r,k) in (58).

The third type of singularities of the integrand in (58) is

given by the solutions to the polynomial equation 1=Ω(ω1,µt)

in ω1 where Ω(ω1,ω2) is defined in (38). However, using

Cauchy’s argument principle it can be shown that the solu-

tions to 1=Ω(ω1,µt) are located outside the contour Cω1 and

therefore do not contribute to the solution of ξc(r,k) in (58).

The following lemma is in line.

Lemma 5. Function f(ω1)=1−Ω(ω1,µt) with Ω(ω1,ω2) in (38)

does not exhibit any zeros inside the contour Cω1 .

Proof. Let P denote the number of poles and Z the number

of zeros of f(ω1) that are located inside the contour Cω1 , then

according to Cauchy’s argument principle

− 1

2πj

∮

Cω1

f ′(ω1)

f(ω1)
dω1=Z−P, (65)

where the first order derivative of f(ω1) w.r.t. ω1 is given by

f ′(ω1)=
∂f(ω1)

∂ω1
=− 1

N

M̄
∑

m=1

Kmγ
2
m

(γm−ω1)2(γm−µt)
. (66)

Substituting f(ω1)=1−Ω(ω1,µt) and its first order derivative in

(66) into the argument principle in (65) yields

1

2πj

∮

Cω1

1
N

∑M̄
m=1

Kmγ2
m+γm−γm

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

µt−ω1

µt−ω1
dω1

=
1

2πj

∮

Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ2
m(µt−γm)

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

+
1

2πj

∮

Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ2
m(γm−ω1)

(γm−ω1)2(γm−µt)

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

where we have added and subtracted γm and multiplied and

divided by µt−ω1. Next, we add and subtract 1 to obtain

1

2πj

∮

Cω1

1

µt−ω1

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)2

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

+
1

2πj

∮

Cω1

1

µt−ω1

1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)
−1

1− 1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−µt)

dω1

=
1

2πj

∮

Cω1



− 1

z1



1− 1

N

M̄
∑

m=1

Kmγ
2
m

(γm−ω1)2



− 1

µt−ω1



dω1

(67)

where we have used

z1=(ω1−µt)



1− 1

N

M̄
∑

m=1

Kmγ
2
m

(γm−ω1)(γm−µt)





which follows by subtracting 0=µt

(

1− 1
N

∑M̄
m=1

Kmγm
γm−µt

)

from

the definition of z1 in (17). Applying the change of variables

dω1=
∂ω(z1)
∂z1

dz1 in (67) one obtains

− 1

2πj

∮

Cz1

1

z1
dz1− 1

2πj

∮

Cω1

1

µt−ω1
dω1

=Res

[

1

z1
, 0

]

+Res

[

1

µt−ω1
, µt

]

=1−1=0

for (65). Furthermore, it can be observed that in the over-

sampled case if Cz1 encloses zero, also Cω1 encloses zero.

Correspondingly, f(ω1) exhibits a single zero at ω1=0 that

is enclosed by the contour Cω1 such that Z=1 and a single

pole at ω=γ1 such that P=1. Consequently, except of the zero

at ω=0 no other zero of f(ω1) is located inside the contour

Cω1 . �

The fourth and last type of singularities of the integrand in

(58) is located at zero. The corresponding residue with respect

to ω1 evaluated at zero is given by

Res

[

1

(γr−ω1)(γk−ω1)

µ1
(γr−µ1)(γk−µ1)

1−Ω(ω1,µ1)

ω1

z(ω1)

∂z(ω1)

∂ω1
, 0

]

=− 1

γrγk

µ1

(γr−µ1)(γk−µ1)

1
1
N

∑M̄
m=1

Km

γm−µ1

. (68)

It remains to compute the complex contour integral that

belongs to the last part in (58)

−1

2πj

∮

Cω1

(ϕ1(ω1)−ω1)
ω1

z(ω1)
∂z(ω1)
∂ω1

1
(γr−ω1)(γk−ω1)

(γr−ϕ1(ω1))(γk−ϕ1(ω1))
(

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

)dω1

(69)

which can be solved in part numerically and in part in closed-

form. The numerical part is obtained by applying the change

of variables dω1=
∂ω(z1)
∂z1

dz1 to (69) and parameterizing the

complex contour through z 7→ω(z) for z∈[x−
1 ,x

+
1 ] as proposed

in [25, Section IV] and given by

− 1

π

∫ x+
1

x−
1

Im

[

1
(

1− 1
N

∑M̄
n=1

Knγn
γn−ω(x)

)(

1− 1
N

∑M̄
n=1

Knγn
γn−ϕ1(ω(x))

)

× ϕ1(ω(x))−ω(x)
(γr−ω(x))(γr−ϕ1(ω(x)))(γk−ω(x))(γk−ϕ1(ω(x)))

]

dx

=
2

π

∫ x+
1

x−
1

1
∣

∣

∣
1− 1

N

∑M̄
m=1

Kmγm
γm−ω(x)

∣

∣

∣

2

Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx.

(70)

The following lemma was used to simplify the real-valued

integral.

Lemma 6. By parameterizing the contour Cω1 as proposed in

[25, Section IV]

1

N

M̄
∑

r=1

Krγ
2
r

|γr−ω(x)|2
=1 (71)

for x∈S and it can be shown that

lim
ω1→ω(x)

ϕt(ω1)=ω(x)
∗, for x∈[x−

t ,x
+
t ]. (72)
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Proof. Let u(x) and v(x) denote the real and imaginary parts

of ω(x) in (17), i.e., ω(x)=u(x)+jv(x). It is shown in [24,

Proposition 2] that v(x)>0 for x∈
◦

S≡(x−
1 ,x

+
1 )∪···∪(x−

S ,x
+
S ).

Taking imaginary parts on both sides of (17) one obtains

0=v(x)

(

1− 1

N

M̄
∑

r=1

Krγ
2
r

(γr−u(x))2+v(x)2

)

which implies that

1=
1

N

M̄
∑

r=1

Krγ
2
r

(γr−u(x))2+v(x)2
=

1

N

M̄
∑

r=1

Krγ
2
r

|γr−ω(x)|2
(73)

for x∈
◦

S. From [25, Proposition 1] it follows that (73) also

holds for the boundaries of the clusters x∈{x−
1 ,x

+
1 ,...,x

−
S ,x

+
S }.

Furthermore, the convergence result in (72) follows as a direct

consequence of (71) and the definition of ϕt(ω1) in (53). �

In the undersampled case (M>N) it can be observed that

the contour obtained through the parameterization z 7→ω(z) for

z∈[x−
1 ,x

+
1 ] encloses zero but not µ1 since ω(0)=µ1<ω(x

−
1 )<

0<ω(x+
1 ). However, since µ1 is enclosed by Cω1 we compute

the residue of the integrand in (69) with respect to ω1 and

evaluate it at µ1

Res





(ϕ1(ω1)−ω1)
ω1

z(ω1)
∂z(ω1)
∂ω1

1
(γr−ω1)(γk−ω1)

δM>N

(γr−ϕ1(ω1))(γk−ϕ1(ω1))
(

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

) , µ1





=− 1

γrγk

µ2
1

(γr−µ1)(γk−µ1)

N

N−M δM>N .

(74)

Furthermore, in the oversampled case (M<N) it can be

observed that the contour obtained through the parameteri-

zation z 7→ω(z) for z∈[x−
1 ,x

+
1 ] encloses µ1, however it does

not enclose zero since 0<ω(x−
1 )<µ1<ω(x

+
1 ) although zero is

enclosed by the contour. Therefore, we compute the residue

of the integrand in (69) with respect to ω1 and evaluate it at

zero

Res





(ϕ1(ω1)−ω1)
ω1

z(ω1)
∂z(ω1)
∂ω1

1
(γr−ω1)(γk−ω1)

δM<N

(γr−ϕ1(ω1))(γk−ϕ1(ω1))
(

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

) , 0





=
1

γrγk

µ1

(γr−µ1)(γk−µ1)

1
1
N

∑M̄
m=1

Km

γm−µ1

δM<N .

(75)

Consequently, the solution of the contour integral in (69) is

obtained by summing the intermediate results in (70), (74) and

(75) and yields

−1

2πj

∮

Cω1

(ϕ1(ω1)−ω1)
ω1

z(ω1)
∂z(ω1)
∂ω1

1
(γr−ω1)(γk−ω1)

(γr−ϕ1(ω1))(γk−ϕ1(ω1))
(

1− 1
N

∑M̄
m=1

Kmγm
γm−ϕ1(ω1)

)dω1

=
2

π

∫ x+
1

x−
1

1
∣

∣

∣
1− 1

N

∑M̄
m=1

Kmγm
γm−ω(x)

∣

∣

∣

2

Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx

− 1

γrγk

µ2
1

(γr−µ1)(γk−µ1)

N

N−M δM>N

+
1

γrγk

µ1

(γr−µ1)(γk−µ1)

1
1
N

∑M̄
m=1

Km

γm−µ1

δM<N . (76)

Finally, the expression of the real-valued weights ξc(r,k) in

(20) is obtained by taking the sum of the residues in (59),

(60), (61), (62), (63), (64), (68) evaluated at all singularities

that lie inside the contour Cω1 namely {0,γ1,µ1} and adding

(76).

APPENDIX B

DETERMINATION OF THE ASYMPTOTIC COVARIANCE OF

THE G-MUSIC COST FUNCTION

In case of the g-MUSIC cost function h̄(z(ω2))=
z(ω2)
ω2

∂ω(z2)
∂z2

.

Hence the complex contour integral in (42) simplifies as

follows

Ir,k(ω1)=
1

2πj

∮

Cω2

1

(γr−ω2)(γk−ω2)

1

1−Ω(ω1,ω2)
dω2 (77)

which can be solved in closed-form using conventional residue

calculus [45]. It can be observed that the integrand in (77)

exhibits two different types of singularities. The first type

of singularities belongs to the roots of 1−Ω(ω1,ω2) where

Ω(ω1,ω2) is given in (38). The complex-valued roots are

denoted by ϕt(ω1) for t=1,...,M̄ and defined in (53). The

residue w.r.t. ω2 evaluated at ϕt(ω1) is given by

Res

[

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, ϕt(ω1)

]

=

−1
(γr−ϕt(ω1))(γk−ϕt(ω1))

1
N

∑M̄
r=1

Krγ2
r

(γr−ω1)(γr−ϕt(ω1))2

.

(78)

However, it can be seen that only the residue evaluated at

ϕ1(ω1) contributes to the solution of Ir,k(ω1) in (77) as it is

the only singularity of the roots of 1−Ω(ω1,ω2) that is enclosed

by the contour Cω2 .

The second type of singularities belongs to the poles of

the integrand in (77) at γt for t=1,...,M̄ . The corresponding

residue w.r.t. ω2 evaluated at γt is given by

Res

[

1
(γr−ω2)(γk−ω2)

1−Ω(ω1,ω2)
, γt

]

=







γt−ω1
1
N

Ktγ
2
t

for r=k=t

0 for r 6=k.
(79)

It can be observed that only the first eigenvalue γ1 is enclosed

by the contour Cω2 . Hence, only the residue evaluated at γ1
contributes to the closed-form expression of Ir,k(ω1) in (77)

which is obtained by taking the negative sum (negative due

to the negatively orientated contour) of the residue in (78)

evaluated at ϕ1(ω1) and the residue in (79) evaluated at γ1

Ir,k(ω1)=

1
(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
r=1

Krγ2
r

(γr−ω1)(γr−ϕ1(ω1))2

− γ1−ω1

1
N
K1γ2

1

. (80)

Substituting the closed-form expression for Ir,k(ω1) in (80)

into the general expression of ξg(r,k) in (41) and using

h̄(z(ω1))=
z(ω1)
ω1

∂ω(z1)
∂z1

yields

ξg(r,k)=
1

2πj

∮

Cω1

γrγk
(γr−ω1)(γk−ω1)(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−ϕ1(ω1))2

dω1

− 1

2πj

∮

Cω1

1

(γr−ω1)(γk−ω1)

γ1−ω1

1
N
K1γ2

1

dω1. (81)

It can be observed that the integrand of the second contour

integral in (81) exhibits a single singularity at γ1 that lies

within the contour Cω1 . The corresponding residue w.r.t. ω1

evaluated at γ1 is given by

Res





(γt−ω1)
1

1
N

Ktγ
2
t

(γr−ω1)(γk−ω1)
, γt



=







−1
1
N

Ktγ
2
t

, for r=k=t

0, r 6=k.
(82)
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Hence the closed-form solution for the second integral in (81)

is given by the residue in (82) evaluated at γ1 for r=k=1 or

zero otherwise. The first contour integral in (81) can be solved

numerically by applying the change of variables dω= ∂ω(x)
∂x

dx

and parameterizing the contour Cω1 by concatenation of ω(x)

and ω(x)∗ as proposed in [25, Section IV] such that

1

2πj

∮

Cω1

1
(γr−ω1)(γk−ω1)(γr−ϕ1(ω1))(γk−ϕ1(ω1))

1
N

∑M̄
m=1

Kmγ2
m

(γm−ω1)(γm−ϕ1(ω1))2

dω1

=
1

π

∫ x+
1

x−
1

Im





1
|γr−ω(x)|2|γk−ω(x)|2

1
N

∑M̄
r=1

Krγ2
r

|γr−ω(x)|2(γr−ω(x)∗)

∂ω(x)

∂x



dx

(83)

where we have used Lemma 6 to simplify the expression. The

following Lemma allows to further simplify the real-valued

integral in (83).

Lemma 7. By parameterizing the contour Cω through concate-

nation of ω(x) in (17) and ω(x)∗ as proposed in [25, Section

IV] the following equality holds

1

N

M̄
∑

r=1

Krγ
2
r

|γr−ω(x)|2(γr−ω(x))∗
=

1

2jIm[ω(x)]ω′(x)∗
(84)

where ω′(x) is defined in (18).

Proof. Let u(x) and v(x) denote the real and imaginary parts

of ω(x) in (17), i.e., ω(x)=u(x)+jv(x). Using the expression

in (71) we can express the inverse of the first order derivative

of ω(x) with respect to x in (18) as

1

ω′(x)
=

1

N

M̄
∑

r=1

Krγ
2
r [(γr−ω(x))2−|γr−ω(x)|2]
(γr−ω(x))2|γr−ω(x)|2

(85)

=
1

N

M̄
∑

r=1

−Krγ
2
r [2jv(x)(γr−u(x))+2v(x)2]

|γr−ω(x)|2[(γr−u(x))2−v(x)2−2jv(x)(γr−u(x))] .

Taking the complex conjugate of 1
ω′(x)

in (85) and multiplying

by 1
2jv(x)

one obtains the following expression for 1
2jv(x)ω′(x)∗

1

N

M̄
∑

r=1

Krγ
2
r [(γr−u(x))+jv(x)]

|γr−ω(x)|2[(γr−u(x))2+2jv(x)(γr−u(x))−v(x)2]

which is identical to the one in (84). �

Using the equalities established in (84) the real-valued

integral in (83) can equivalently be expressed as

2

π

∫ x+
1

x−
1

|ω′(x)|2Im[ω(x)]

|γr−ω(x)|2|γk−ω(x)|2
dx. (86)

Finally, the solution for ξg(r,k) in (24) is obtained by summing

the residue in (82) for t=1 and (86).
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SUPPLEMENTARY MATERIAL

This document provides some additional proofs of results used in the article ”Probability of Resolution of MUSIC and

G-MUSIC: An Asymptotic Approach”. More specifically the proof of the Central Limit Theorem in Theorem 3 is provided.

Notation: Let x, x1 and x2 be three random quantities then E[x] denotes the expectation of x, var[x] denotes the variance

of x and cov[x1, x2] denotes the covariance between x1 and x2. Furthermore, let x(◦) = x−E[x].

APPENDIX C

PROOF OF THEOREM 3

In the following a more general form of Theorem 3 is derived. Instead of focusing on the noise subspace estimator only

the asymptotic stochastic behavior of the estimator for the subspace that is associated to the eigenvalue γm for m = 1,...,M̄ is

derived. Let Km denote a set of indexes

Km =

{

m−1
∑

r=1

Kr+1,
m−1
∑

r=1

Kr+2,...,
m
∑

r=1

Kr

}

.

The cardinality of the set Km is equal to the multiplicity of the corresponding eigenvalue γm, namely Km. It is assumed that

the cluster with support [x−
s ,x

+
s ] that is associated to γm is well separated from the rest of the eigenvalue distribution and

that γm is the unique eigenvalue that is associated to this cluster (subspace separability condition holds). Let C(m)
z denote a

negatively (clockwise) orientated contour that encloses the sample eigenvalues {λ̂k : k ∈ Km} that correspond to the true and

distinct eigenvalue γm only. Next, consider the random cost function η̂
(m)
l that belongs to the estimator of the subspace that is

associated to the eigenvalue γm and its deterministic equivalent η̄
(m)
l

η̂
(m)
l =

1

2πj

∮

C
(m)
z

ĥ(z)m̂l(z)dz, η̄
(m)
l =

1

2πj

∮

C
(m)
z

h̄(z)m̄l(z)dz, (83)

where l denotes the point of evaluation of the cost function. Furthermore, for the M,N-consistent estimator of the subspace

that is associated to the m-th distinct eigenvalue we define ĥ(z) = z
ω̂(z)

∂ω̂(z)
∂z

and h̄(z) = z
ω(z)

∂ω(z)
∂z

where

z

ω̂(z)
= 1− 1

N

M
∑

r=1

λ̂r

λ̂r−z
,

∂ω̂(z)

∂z
=
ω̂(z)

z
+
ω̂(z)2

z

1

N

M
∑

r=1

λ̂r

(λ̂r−z)2
,

and

z

ω(z)
= 1− 1

N

M̄
∑

r=1

Krγr
γr−ω(z)

,
∂ω(z)

∂z
=



1− 1

N

M̄
∑

r=1

Krγ
2
r

(γr−ω(z))2





−1

.

On the other hand, in case of the N-consistent estimator we instead have ĥ(z) = 1 and h̄(z) = 1. Furthermore, the Stieltjes

transform and its deterministic equivalent are defined as

m̂l(z) = v
H
l Q̂(z)vl, m̄l(z) = v

H
l Q̄(z)vl (84)

Q̂(z) =
(

R̂−zIM

)−1

, Q̄(z) =
ω(z)

z
(R−ω(z)IM )−1, (85)

where ω(z) is given by the unique solution to the following equation

z = ω(z)

(

1− 1

N
tr
[

R(R−ω(z)IM )−1
]

)

, (86)

on {ω(z) ∈ C
+ : Im(ω(z)) ≥ 0} for z ∈ C

+ and vl ∈ C
M is a deterministic M×1 vector which depends on the point of

evaluation l of the cost function. The cost function is evaluated at L distinct points where η̂(m) = [η̂
(m)
1 ,...,η̂

(m)
L ]T ∈ R

L

denotes the corresponding real-valued L×1 cost function vector and η̄(m) = [η̄
(m)
1 ,...,η̄

(m)
L ]T ∈ R

L its deterministic equivalent,

respectively. Subtracting the deterministic equivalent η̄
(m)
l from the random cost function η̂

(m)
l in (83) yields

η
(m)
l =

√
N
(

η̂
(m)
l −η̄(m)

l

)

=

√
N

2πj

∮

C
(m)
z

(

ĥ(z)m̂l(z)−h̄(z)m̄l(z)
)

dz. (87)

It is shown in [37] that the statistic in (87) asymptotically fluctuates as a Gaussian random variable with zero-mean and positive

variance. However, we are interested in the more general case of the asymptotic joint distribution of a collection of random

variables, namely

√
N
(

η̂
(m)−η̄

(m)
)

=









√
N(η̂

(m)
1 −η̄(m)

1 )
...√

N(η̂
(m)
L −η̄(m)

L )









(88)

where
√
N(η̂(θ̄l)−η̄(θ̄l)) for l = 1,...,L is defined in (87). In order to derive the Central Limit Theorem (CLT) we have to

establish pointwise convergence of the characteristic function of the statistic
√
N
(

η̂(θ̄)−η̄(θ̄)
)

in (88) towards the characteristic

http://arxiv.org/abs/2106.08738v3
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function of a Gaussian random variable. According to the Cramér-Wold device it is sufficient to show that the one-dimensional

projection

η(m) =
L
∑

p=1

wpη
(m)
p =

L
∑

p=1

√
Nwp

(

η̂(m)
p −η̄(m)

p

)

=
L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z

(

ĥ(z)m̂p(z)−h̄(z)m̄p(z)
)

dz, (89)

is asymptotically Gaussian distributed for any collection of real-valued quantities wl, l = 1,...,L to proof that
√
N(η̂(m)−η̄(m))

in (88) is asymptotically jointly Gaussian distributed. Let χ(r) be defined as

χ(r) = exp
(

jrη(m)
)

=exp

(

jr
√
N

L
∑

p=1

wp

(

η̂(m)
p −η̄(m)

p

)

)

= exp

(

jr

L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z

(

ĥ(z)m̂p(z)−h̄(z)m̄p(z)
)

dz

)

=exp

(

jr
L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z

v
H
p

(

ĥ(z)Q̂(z)−h̄(z)Q̄(z)
)

vpdz

) (90)

and let E[χ(r)] be the corresponding characteristic function of the random one-dimensional projection η(m) in (89). In the

following we analyze the asymptotic behavior of the characteristic function E[χ(r)] in (90) in the asymptotic regime where

M,N → ∞ at the same rate. In fact, we approximate the characteristic function E[χ(r)] in (90) with the characteristic function

χ̄(r) of a normal distributed random variable

χ̄(r) = exp

(

jrwT
µ−r2w

T
Γw

2

)

, (91)

with mean wTµ and covariance wT
Γw where µ ∈ R

L, Γ ∈ R
L×L, and w = [w1,...,wL]

T ∈ R
L. Hence, the target is to determine

µ and Γ such that E[χ(r)]−χ̄(r) → 0 pointwise in r for M,N → ∞ at the same rate. Assuming that Γ has bounded spectral

norm and that the infimum of the smallest eigenvalue of Γ is bounded away from zero uniformly in M we have

Γ
−1/2

(√
N(η̂(m)−η̄

(m))−µ
)

D→ N (0,IL), (92)

for M,N → ∞ at the same rate (M/N → c, 0 < c < ∞) where
D→ denotes convergence in distribution. In order to derive µ

and Γ in (92) we choose a deterministic parameterization of the contour C(m)
z that is independent on the sample eigenvalues

an M and N . Therefore, it is assumed that there exists a deterministic ̺− and ̺+ for the cluster [x−
s ,x

+
s ] that is associated to

γm such that
̺− < 0 < sup

M,N
x+
s < ̺+ < inf

M,N
x−
s+1, for s = 1

sup
M,N

x+
s−1 < ̺− < inf

M,N
x−
s ≤ sup

M,N
x+
s < ̺+ < inf

M,N
x−
s+1, for 1 < s < S

sup
M,N

x+
s−1 < ̺− < inf

M,N
x−
s ≤ sup

M,N
x+
s < ̺+, for s = S.

This allows to deform the contour such that it becomes independent on M and N . The negatively orientated deterministic

contour C(m)
z may cross the real axis at the points ̺− and ̺+ and can e.g. be described by the boundaries of the rectangle

R
(m)
y =

{

z ∈ C : ̺− ≤ Re(z) ≤ ̺+, |Im(z)| ≤ y
}

(93)

where y > 0 and C(m)
z = ∂R

(m)
y . Unfortunately, the random variable η(m) in (89) does not need to have a characteristic function

for all M and N as there might exist realizations for which the singularities of ĥ(z)Q̂(z) become dangerously close to the

contour C(m)
z or even lie on C(m)

z . Therefore, we need to consider the points where ĥ(z)Q̂(z) is not holomorphic, namely λ̂k

for k = 1,...,M and in case of the M,N-consistent subspace estimator (the g-MUSIC case) where

ĥ(z) =
z

ω̂(z)

∂ω̂(z)

∂z
= 1+ω̂(z)

1

N
tr
[

R̂Q̂
2
(z)
]

= 1+
z

1− 1
N

∑M
m=1

λ̂m

λ̂m−z

1

N
tr
[

R̂Q̂
2
(z)
]

, (94)

also the points µ̂k for k = 1,...,M which are the solutions (counting multiplicities) to

1 =
1

N

M
∑

m=1

λ̂m

λ̂m−z
=

1

N

M
∑

m=[M−N]++1

λ̂m

λ̂m−z
, (95)

where

[M−N ]+ =

{

M−N for M > N

0 for M ≤ N.

Furthermore, it can be observed that the µ̂-values satisfy the interlacing property such that 0 < µ̂1 < λ̂1 < µ̂2 < ··· < λ̂M−1 <

µ̂M < λ̂M for M < N , 0 = µ̂1 < λ̂1 < µ̂2 < ··· < λ̂M−1 < µ̂M < λ̂M for M = N , and 0 = µ̂1 = λ̂1 = ··· = µ̂M−N = λ̂M−N =

µ̂M−N+1 < λ̂M−N+1 < µ̂M−N+2 < ··· < λ̂M−1 < µ̂M < λ̂M for M > N . It can be observed that, for all M and N sufficiently

large, the roots {µ̂k : k ∈ Km} of the polynomial in (95) and the sample eigenvalues {λ̂k : k ∈ Km} always lie inside the
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contour C(m)
z [25, Appendix IV]. For those realizations of M and N where either one of the sample eigenvalues λ̂k or one of

the µ̂-values become dangerously close to the contour C(m)
z or even lie on C(m)

z , we will follow the approach in [19], [40], [41]

and consider an equivalent representation of η(m) in (89) that is guaranteed to have a characteristic function for all M and N .

For this purpose we introduce Sǫ = {x ∈ R : dist(x,S) ≤ ǫ} for positive ǫ > 0. It is assumed that ǫ is small enough such that

Sǫ does not intersect with the deterministic contour ∂R
(m)
y in (93). Furthermore, let φ denote a smooth function φ : R → [0,1]

such that φ(x) = 1 for x ∈ Sǫ and φ(x) = 0 for x ∈ R\S2ǫ. We will write φM = φ̃M φ̌M where

φ̃M =
∏

k∈Km

φ
(

λ̂k

)

, and φ̌M =
∏

k∈Km

φ(µ̂k). (96)

By [26], [41] and [25, Appendix IV] we know that φ̃M = 1 and φ̌M = 1 with probability one for all M and N sufficiently

large. Furthermore, φ̃M and φ̌M can almost surely be extended to a continuous function, such that the integration by parts

formula is applicable [41, Appendix IV] and φM = φ̃M φ̌M = 1 for all M and N sufficiently large. Correspondingly, we may

represent η(m) in (89) as

η(m) =
L
∑

p=1

wpη
(m)
p φM =

L
∑

p=1

√
Nwp

(

η̂(m)
p −η̄(m)

p

)

φM =
L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z

(

ĥ(z)m̂p(z)−h̄(z)m̄p(z)
)

φMdz, (97)

almost surely for M,N sufficiently large. Please note that the characteristic in (97) exists for every realization and every possible

M and N . From now on we will therefore consider the definition of η(m) in (97).

During this proof, we strongly rely on the integration by parts formula for Gaussian functionals as well as the Nash-Poincaré

in [19, Proposition 2, supplementary material].

Remark: In the following O(N−k) denotes a general bivariate complex function that is bounded by ǫ(z1,z2)N
−k, where

ǫ(z1,z2) does not depend on N and is such that

sup
(z1,z2)∈C

(m)
z1

×C
(m)
z2

‖ǫ(z1,z2)‖ <∞. (98)

The function ǫ(z1,z2) may differ from one line to another and may be matrix valued in which case (98) is understood as the

spectral norm. Furthermore, O(N−N) should be understood as bivariate complex function that can be written as O(N−l) for

every l ∈ N (see [19, Remark 1, supplementary material]).

Proposition 3. Assume that, for each fixed z ∈ C, function Ω(X,X∗,z) : R
2MN → C is continuously differentiable with

polynomially bounded derivatives and partial derivatives. The regularizer φM is a continuous function with polynomially

bounded partial derivatives. Then, for M,N → ∞ at the same rate and if

sup
z∈C

(m)
z

E

[

|Ω(X,X∗,z)φM |2
]

< C

for some positive deterministic C independent on M we have

E[Ω(X ,X∗,z)φr
M ] = E[Ω(X,X∗,z)φM ]+O

(

N−N

)

,

for any r ∈ N and also

E

[

Ω(X,X∗,z)
∂φM

∂Xij

]

= O
(

N−N

)

.

This allows to ignore the presence of the regularizer φM in the asymptotic analysis up to an error term of order O(N−N)

which will be irrelevant for our purpose.

Proof. See [19, Proposition 2, supplementary material]. �

Moreover, it can be seen that the characteristic function of η(m) in (97), namely E[χ(r)] = E

[

exp
(

jrη(m)
)]

is a differentiable

function of r with derivative

∂E[χ(r)]

∂r
= jE

[

η(m)χ(r)φM

]

=j

L
∑

p=1

wp

√
NE

[(

η̂(m)
p −η̄(m)

p

)

χ(r)φM

]

=j

L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z1

E

[(

ĥ(z1)m̂p(z1)−h̄(z1)m̄p(z1)
)

χ(r)φM

]

dz1

=j
L
∑

p=1

wp

√
N

2πj

∮

C
(m)
z1

E

[

v
H
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)
)

vpχ(r)φM

]

dz1. (99)

In parallel we compute the first order derivative of the characteristic function χ̄(r) in (91) with respect to r

∂χ̄(r)

∂r
=
(

jwT
µ−rwT

Γw
)

χ̄(r). (100)
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Instead of approximating the characteristic function E[χ(r)] = E

[

exp
(

jrη(m)
)]

with χ̄(r) in (91) such that E[χ(r)]−χ̄(r) → 0,

one can utilize the first order derivatives in (99) and (100) to establish that

∂E[χ(r)]

∂r
−∂χ̄(r)

∂r
→ 0, (101)

for M,N → ∞ at the same rate. Noting that χ(0) = 1, it can be seen that the integration constant is zero which allows to

compute µ and Γ from (101). The quantity inside the expectation in (99) can be studied using the resolvent identity

zQ̂(z) = Q̂(z)R̂−IM , (102)

which immediately follows from the definition of the resolvent Q̂(z) = (R̂−zIM )−1. According to Assumption 2 it is possible

to express the sample covariance matrix in terms of the true covariance matrix as R̂ = R1/2 XX
H

N
RH/2 where X = [x1,...,xN ]

denotes an M×N matrix of independent identically distributed Gaussian random variables with law CN (0,1). The (i,j)-th entry

of X is denoted by Xij and the sample covariance matrix R̂ can equivalently be expressed as

R̂ =
M
∑

i=1

N
∑

j=1

XijR
1/2 eix

H
j

N
R

H/2, (103)

where ei denotes a column vector with all zeros except the i-th entry which is one. Throughout the proof we will be working

with with the first order derivative of the sample covariance matrix R̂ and the resolvent Q̂(z) with respect to Xij and its

complex conjugate X∗
ij :

∂

∂Xij
R

1/2XXH

N
R

H/2 = R
1/2 eix

H
j

N
R

H/2,
∂

∂X∗
ij

R
1/2XXH

N
R

H/2 = R
1/2xje

T
i

N
R

H/2, (104)

∂Q̂(z)

∂Xij
= −Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z),

∂Q̂(z)

∂X∗
ij

= −Q̂(z)R1/2xje
T
i

N
R

H/2
Q̂(z). (105)

We begin by expressing the quantity of interest
√
NE

[

vH
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)
)

vpχ(r)φM

]

in (99) as

√
NE

[

v
H
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)
)

vpχ(r)φM

]

=
√
NE

[

v
H
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)−h̄(z1)Q̂(z1)+h̄(z1)Q̂(z1)
)

vpχ(r)φM

]

=
√
NE

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]

(106)

+
√
Nh̄(z1)E

[

v
H
p

(

Q̂(z1)−Q̄(z1)
)

vpχ(r)φM

]

, (107)

where we have added and subtracted h̄(z1)Q̂(z1) and used the fact that h̄(z1) is deterministic. The expectation in (106) can be

upper bounded according to the following lemma.

Lemma 8. As M,N → ∞ at the same rate, the quantity in (106) can be approximated by

√
NE

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]

=







0 for MUSIC

O
(

N−1/2
)

for G-MUSIC.
(108)

Proof. See Appendix D. �

Next, we analyze the quantity in (107).

Lemma 9. As M,N → ∞ at the same rate, the quantity in (107) can be approximated by
√
Nh̄(z1)E

[

v
H
p

(

Q̂(z1)−Q̄(z1)
)

vpχ(r)φM

]

=jrh̄(z1)
L
∑

q=1

wq

2πj

∮

C
(m)
z2

z1
ω(z1)

z2
ω(z2)

h̄(z2)
vH
p Q̄(z1)RQ̄(z2)vqv

H
q Q̄(z2)RQ̄(z1)vp

1−γ(z1,z2)
E[χ(r)]dz2+O

(

N−1/2
)

.
(109)

Proof. See Appendix F. �

Consequently, the quantity of interest can be expressed as
√
NE

[

v
H
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)
)

vpχ(r)φM

]

=jrh̄(z1)
L
∑

q=1

wq

2πj

∮

C
(m)
z2

z1
ω(z1)

z2
ω(z2)

h̄(z2)
vH
p Q̄(z1)RQ̄(z2)vqv

H
q Q̄(z2)RQ̄(z1)vp

1−γ(z1,z2)
E[χ(r)]dz2+O

(

N−1/2
)

.
(110)
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Substituting (110) into ∂E[χ(r)]
∂r

in (99) yields

∂E[χ(r)]

∂r
= j

L
∑

p=1

wp

2πj

∮

C
(m)
z1

√
NE

[

v
H
p

(

ĥ(z1)Q̂(z1)−h̄(z1)Q̄(z1)
)

vpχ(r)φM

]

dz1

=−r
L
∑

p=1

L
∑

q=1

wp

2πj

wq

2πj

∮

C
(m)
z1

∮

C
(m)
z2

z1
ω(z1)

z2
ω(z2)

h̄(z1)h̄(z2)
vH
p Q̄(z1)RQ̄(z2)vqv

H
q Q̄(z2)RQ̄(z1)vp

1−γ(z1,z2) dz2dz1E[χ(r)]+O
(

N−1/2
)

.

(111)

Comparing (111) with (100) as proposed in (101), it can be seen that µ = 0 and

[Γ]p,q =
1

2πj

1

2πj

∮

C
(m)
z1

∮

C
(m)
z2

z1
ω(z1)

z2
ω(z2)

h̄(z1)h̄(z2)
vH
p Q̄(z1)RQ̄(z2)vqv

H
q Q̄(z2)RQ̄(z1)vp

1−γ(z1,z2) dz2dz1, (112)

where p,q ∈ {1,...,L}. Substituting Q̄(z) from (85) into (112) and applying the change of variables dz = ∂z(ω)
∂ω

dω we obtain

[Γ]p,q =
1

2πj

1

2πj

∮

C
(m)
ω1

∮

C
(m)
ω2

h̄(z(ω1))h̄(z(ω2))
ω1

z(ω1)

ω2

z(ω2)

∂z(ω1)

∂ω1

∂z(ω2)

∂ω2

Υp,q(ω1,ω2)

1−Ω(ω1,ω2)
dω2dω1 (113)

where C(m)
ω = ω(C(m)

z ) denotes a negatively orientated contour that encloses γm only and

Ω(ω1,ω2) =
1

N
tr
[

R(R−ω1IM )−1
R(R−ω2IM )−1],

Υp,q(ω1,ω2) = v
H
p (R−ω1IM )−1

R(R−ω2IM )−1
vqv

H
q (R−ω2IM )−1

R(R−ω1IM )−1
vp.

In order to obtain the expression given in Theorem 3 of the article we choose m = 1 and vl = a(θ̄l) for l = 1,...,L.

APPENDIX D

PROOF OF LEMMA 8

It can be observed that in case of the conventional N-consistent estimator (the MUSIC case)
√
NE

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]

= 0,

since ĥ(z1)−h̄(z1) = 0. However, in case of the M,N-consistent estimator (the g-MUSIC case) we have to study the asymptotic

behavior of (ĥ(z)−h̄(z)) since ĥ(z1)−h̄(z1) 6= 0. Using the Cauchy-Schwarz inequality we can upper-bound
∣

∣

∣E

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]∣

∣

∣

2

≤E

[

∣

∣

∣ĥ(z1)−h̄(z1)
∣

∣

∣

2

φM

]

E

[

∣

∣

∣v
H
p Q̂(z1)vpχ(r)

∣

∣

∣

2

φM

]

=E

[

∣

∣

∣
ĥ(z1)−h̄(z1)

∣

∣

∣

2

φM

]

E

[

∣

∣

∣
v
H
p Q̂(z1)vp

∣

∣

∣

2

|χ(r)|2φM

]

=E

[

∣

∣

∣
ĥ(z1)−h̄(z1)

∣

∣

∣

2

φM

]

E

[

∣

∣

∣
v
H
p Q̂(z1)vp

∣

∣

∣

2

φM

]

, (114)

where we have used |χ(r)|2 = 1. Using the definition of the variance of a random variable we can express E

[

∣

∣

∣
ĥ(z1)−h̄(z1)

∣

∣

∣

2

φM

]

in (114) as follows

E

[

∣

∣

∣
ĥ(z1)−h̄(z1)

∣

∣

∣

2

φM

]

= var
[

(ĥ(z1)−h̄(z1))φM

]

+E

[

(ĥ(z1)−h̄(z1))φM

]2

. (115)

The asymptotic stochastic behavior of ĥ(z) is analyzed next.

Lemma 10. As M,N → ∞ at the same rate,

E

[

ĥ(z)φM

]

= h̄(z)+O
(

N−1
)

and the variance decays with

var
[

ĥ(z)φM

]

= O
(

N−2).

Proof. See Appendix E �

According to Lemma 10 and (115), E

[

∣

∣

∣
ĥ(z1)−h̄(z1)

∣

∣

∣

2

φM

]

= O
(

N−2
)

. Similarly, we can express the second term on the

right hand side of (114) as

E

[

∣

∣

∣
v
H
p Q̂(z1)vpφM

∣

∣

∣

2
]

= var
[

v
H
p Q̂(z1)vpφM

]

+E

[

v
H
p Q̂(z1)vpφM

]2

= O
(

N−1)+O(1) = O(1)

such that (114) decays with
∣

∣

∣E

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]∣

∣

∣

2

≤ E

[

∣

∣

∣ĥ(z1)−h̄(z1)
∣

∣

∣

2

φM

]

E

[

∣

∣

∣v
H
p Q̂(z1)vpχ(r)

∣

∣

∣

2

φM

]

= O
(

N−2
)

,

and consequently, the quantity of interest decays with
√
NE

[(

ĥ(z1)−h̄(z1)
)

v
H
p Q̂(z1)vpχ(r)φM

]

= O
(

N−1/2
)

.
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APPENDIX E

PROOF OF LEMMA 10

Computing the first order derivative of

z

ω̂(z)
= 1− 1

N
tr
[

R̂Q̂(z)
]

= 1− 1

N
tr

[

R̂
(

R̂−zIM

)−1
]

, (116)

w.r.t. z, we can express

ω̂′(z) =
∂ω̂(z)

∂z
=
ω̂(z)

z
+
ω̂(z)2

z

1

N
tr
[

R̂Q̂(z)2
]

=
ω̂(z)

z
+
ω̂(z)2

z

1

N
tr

[

R̂
(

R̂−zIM

)−2
]

, (117)

such that

ĥ(z) =
z

ω̂(z)

∂ω̂(z)

∂z
= 1+ω̂(z)

1

N
tr
[

R̂Q̂(z)2
]

.

Similarly, we compute the first order derivative of

z

ω(z)
= 1− z

ω(z)

1

N
tr
[

RQ̄(z)
]

= 1− 1

N
tr
[

R(R−ω(z)IM )−1
]

, (118)

w.r.t. z and obtain

ω′(z) =
∂ω(z)

∂z
=

(

z

ω(z)
−ω(z) 1

N
tr
[

R(R−ω(z)IM )−2
]

)−1

=

(

z

ω(z)
−ω(z) 1

N

z2

ω(z)2
tr
[

RQ̄(z)2
]

)−1

=
ω(z)

z

(

1−z 1

N
tr
[

RQ̄(z)2
]

)−1

, (119)

such that

h̄(z) =
z

ω(z)

∂ω(z)

∂z
=

(

1−z 1

N
tr
[

RQ̄(z)2
]

)−1

.

A. Variance

The variance of ĥ(z) = 1+ω̂(z) 1
N
tr
[

R̂Q̂(z)2
]

φM is identical to var
[

ω̂(z) 1
N
tr
[

R̂Q̂(z)2
]

φM

]

which can be upper-bounded

using the common bound

var

[

ω̂(z)
1

N
tr
[

Q̂(z)2R̂
]

φM

]

≤ 2‖ω̂(z)φM‖2var
[

1

N
tr
[

Q̂(z)2R̂
]

φM

]

+2

∥

∥

∥

∥

1

N
tr
[

Q̂(z)2R̂
]

φM

∥

∥

∥

∥

2

var[ω̂(z)φM ]. (120)

According to Lemma 15,

var

[

1

N
tr
[

Q̂(z)2R̂φM

]

]

= O
(

N−2).

Next, the variance of ω̂(z) in (116) is upper-bounded by

var[ω̂(z)φM ] =E
[

|ω̂(z)−E[ω̂(z)]|2φM

]

= E
[

|ω̂(z)−ω(z)+ω(z)−E[ω̂(z)]|2φM

]

≤2E
[

|ω̂(z)−ω(z)|2φM

]

+2E
[

|ω(z)−E[ω̂(z)]|2φM

]

,
(121)

where we have added and subtracted ω(z) and applied Jensen’s inequality. Inserting the expressions of ω(z) in (118) and ω̂(z)

in (116) into (121) yields

var[ω̂(z)φM ] ≤2E





∣

∣

∣

∣

∣

∣

z

1− 1
N
tr
[

R̂Q̂(z)
]− z

1− 1
N
tr[RQ(z)]

∣

∣

∣

∣

∣

∣

2

φM





+2E





∣

∣

∣

∣

∣

∣

z

1− 1
N
tr[RQ(z)]

−E





z

1− 1
N
tr
[

R̂Q̂(z)
]





∣

∣

∣

∣

∣

∣

2

φM



,

(122)

where Q(z) = (R−ω(z)IM )−1 and Q̂(z) = (R̂−zIM )−1. Before the upper-bounds for the first and second term on the right

hand side of (122) are computed it is shown that

φM
∣

∣

∣
1− 1

N
tr
[

R̂Q̂(z)
]∣

∣

∣

(123)
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is bounded on z ∈ C(m)
z for all M,N sufficiently large which is essential in order to proof that (122) is bounded. Using the

fact that the roots µ̂k are the solutions to the polynomial equation 1 = 1
N

∑M
r=1

λ̂r

λ̂r−z
= 1

N

∑M
r=[M−N]++1

λ̂r

λ̂r−z
we can establish

the following identity

M
∏

k=[M−N]++1

(µ̂k−z) =
M
∏

k=[M−N]++1

(λ̂k−z)− 1

N

M
∑

r=[M−N]++1

λ̂r

M
∏

k=[M−N ]++1
k 6=r

(λ̂k−z).

which allows us to express 1− 1
N
tr
[

R̂Q̂(z)
]

as

1− 1

N

M
∑

m=1

λ̂m

λ̂m−z
=

∏M
k=[M−N]++1(µ̂k−z)

∏M
k=[M−N]++1(λ̂k−z)

. (124)

Furthermore, using the representation of 1− 1
N
tr
[

R̂Q̂(z)
]

in (124) we can establish that

∣

∣

∣

∣

∣

1− 1

N

M
∑

m=1

λ̂m

λ̂m−z

∣

∣

∣

∣

∣

−1

φM =

∏M
k=[M−N]++1

∣

∣

∣λ̂k−z
∣

∣

∣

∏M
k=[M−N]++1|µ̂k−z|

φM ≤
(‖R‖F+|z|+ǫ

dist(z,S)

)min(M,N)

. (125)

Due to the regularizer φM in (96) we have a continuous function φM

(

1− 1
N
tr
[

R̂Q̂(z)
])−1

in (125) over a compact support

that always has a minimum and a maximum and is therefore bounded. In the following the upper-bound of (123) on z ∈ C(m)
z

is denoted by κ(z) =
(

‖R‖F+|z|+ǫ
dist(z,S)

)min(M,N)

. With this the first term on the right hand side of (122) can be upper-bounded by

E
[

|ω̂(z)−ω(z)|2φM

]

=E





∣

∣

∣

∣

∣

∣

z

1− 1
N
tr
[

R̂Q̂(z)
]− z

1− 1
N
tr[RQ(z)]

∣

∣

∣

∣

∣

∣

2

φM





=|z|2E







∣

∣

∣

∣

∣

∣

1− 1
N
tr[RQ(z)]−1+ 1

N
tr
[

R̂Q̂(z)
]

(

1− 1
N
tr[RQ(z)]

)

(

1− 1
N
tr
[

R̂Q̂(z)
])

∣

∣

∣

∣

∣

∣

2

φM







=|z|2E







∣

∣

∣

∣

∣

∣

1
N
tr
[

R̂Q̂(z)
]

− 1
N
tr[RQ(z)]

(

1− 1
N
tr[RQ(z)]

)

(

1− 1
N
tr
[

R̂Q̂(z)
])

∣

∣

∣

∣

∣

∣

2

φM







=|ω(z)|2E







∣

∣

∣

∣

∣

∣

1
N
tr
[

R̂Q̂(z)
]

− 1
N
tr[RQ(z)]

1− 1
N
tr
[

R̂Q̂(z)
]

∣

∣

∣

∣

∣

∣

2

φM







≤ sup
z∈C

(m)
z

|ω(z)κ(z)|2E
[

∣

∣

∣

∣

1

N
tr
[

R̂Q̂(z)
]

− 1

N
tr[RQ(z)]

∣

∣

∣

∣

2

φM

]

= sup
z∈C

(m)
z

|ω(z)κ(z)|2
(

var

[

1

N
tr
[

R̂Q̂(z)φM

]

]

+

∣

∣

∣

∣

E

[(

1

N
tr
[

R̂Q̂(z)
]

− 1

N
tr[RQ(z)]

)

φM

]
∣

∣

∣

∣

2
)

= sup
z∈C

(m)
z

|ω(z)κ(z)|2
(

var

[

1

N
tr
[

R̂Q̂(z)φM

]

]

+O
(

N−2)
)

= sup
z∈C

(m)
z

|ω(z)κ(z)|2O
(

N−2), (126)
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where we have used (159) and (161) in Lemma 13. Similarly, the second term on the right hand side of (122) can be

upper-bounded by

E
[

|ω(z)−E[ω̂(z)]|2φM

]

=E





∣

∣

∣

∣

∣

∣

z

1− 1
N
tr[RQ(z)]

−E





z

1− 1
N
tr
[

R̂Q̂(z)
]





∣

∣

∣

∣

∣

∣

2

φM





=

∣

∣

∣

∣

∣

∣

E









z

1− 1
N
tr[RQ(z)]

− z

1− 1
N
tr
[

R̂Q̂(z)
]



φM





∣

∣

∣

∣

∣

∣

2

=|z|2
∣

∣

∣

∣

∣

∣

E





1− 1
N
tr
[

R̂Q̂(z)
]

−1+ 1
N
tr[RQ(z)]

(

1− 1
N
tr[RQ(z)]

)

(

1− 1
N
tr
[

R̂Q̂(z)
])φM





∣

∣

∣

∣

∣

∣

2

=|ω(z)|2
∣

∣

∣

∣

∣

∣

E





1
N
tr[RQ(z)]− 1

N
tr
[

R̂Q̂(z)
]

1− 1
N
tr
[

R̂Q̂(z)
] φM





∣

∣

∣

∣

∣

∣

2

≤ sup
z∈C

(m)
z

|ω(z)κ(z)|2
∣

∣

∣

∣

E

[(

1

N
tr[RQ(z)]− 1

N
tr
[

R̂Q̂(z)
]

)

φM

]
∣

∣

∣

∣

2

= sup
z∈C

(m)
z

|ω(z)κ(z)|2O
(

N−2) (127)

where we have used (159) in Lemma 13. Correspondingly, (126) and (127) both decay with O
(

N−2
)

and the variance of ω̂(z) in

(122) decays with var[ω̂(z)φM ] = O
(

N−2
)

. Furthermore, since ω̂(z)φM and 1
N
tr
[

Q̂(z)2R̂
]

φM in (120) are bounded on z ∈ C(m)
z

by definition, the variance in (120) decays with O
(

N−2
)

. Hence, the variance of ĥ(z) also decays with var
[

ĥ(z)φM

]

= O
(

N−2
)

.

B. Expectation

Using Lemma 15 and the definition of ω′(z) in (119) it can be shown that the expectation of ĥ(z) is given by

E

[

ĥ(z)φM

]

=E

[(

1+ω̂(z)
1

N
tr
[

R̂Q̂(z)2
]

)

φM

]

=1+ω(z)
z2

ω(z)2
1

N
tr
[

Q̄(z)2R
]

ω′(z)+O(N−1)

=ω′(z)

(

1

ω′(z)
+

z2

ω(z)

1

N
tr
[

Q̄(z)2R
]

)

+O(N−1)

=ω′(z)

(

z

ω(z)
− z2

ω(z)

1

N
tr
[

Q̄(z)2R
]

+
z2

ω(z)

1

N
tr
[

Q̄(z)2R
]

)

+O(N−1)

=
z

ω(z)
ω′(z)+O(N−1)

=h̄(z)+O(N−1),

where h̄(z) = z
ω(z)

∂ω(z)
∂z

.

APPENDIX F

PROOF OF LEMMA 9

To begin with, we develop the expectation E

[

Q̂(z)R̂χ(r)φM

]

by using the expression of the sample covariance matrix in

(103) and by applying the integration by parts formula

E

[

Q̂(z)R̂χ(r)φM

]

=
M
∑

i=1

N
∑

j=1

E

[

XijQ̂(z)R1/2 eix
H
j

N
R

H/2χ(r)φM

]

=
M
∑

i=1

N
∑

j=1

E

[

∂

∂X∗
ij

Q̂(z)R1/2 eix
H
j

N
R

H/2χ(r)φM

]

, (128)
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where the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

Q̂(z1)R
1/2 eix

H
j

N
R

H/2χ(r)φM

=−Q̂(z1)R
1/2xje

T
i

N
R

H/2
Q̂(z1)R

1/2 eix
H
j

N
R

H/2χ(r)φM+Q̂(z1)R
1/2 eie

T
i

N
R

H/2χ(r)φM+O
(

N−N

)

+jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

Q̂(z2)R
1/2 eix

H
j

N
R

H/2
v
H
q

[(

∂

∂X∗
ij

ĥ(z2)

)

Q̂(z2)+ĥ(z2)

(

∂

∂X∗
ij

Q̂(z2)

)]

vqχ(r)φMdz2

=−Q̂(z1)R
1/2xje

T
i

N
R

H/2
Q̂(z1)R

1/2 eix
H
j

N
R

H/2χ(r)φM+Q̂(z1)R
1/2 eie

T
i

N
R

H/2χ(r)φM+O
(

N−N

)

−jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

ĥ(z2)Q̂(z1)R
1/2 eix

H
j

N
R

H/2
v
H
q Q̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)vqχ(r)φMdz2

+jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

Q̂(z2)R
1/2 eix

H
j

N
R

H/2
v
H
q

(

∂

∂X∗
ij

ĥ(z2)

)

Q̂(z2)vqχ(r)φMdz2.

(129)

The first order derivative of ĥ(z2) in (94) with respect to X∗
ij yields

∂

∂X∗
ij

ĥ(z2) =
∂

∂X∗
ij

(

1+ω̂(z2)
1

N
tr
[

R̂Q̂(z2)
2
]

)

=
∂

∂X∗
ij



1+
z2

1
N
tr
[

R̂Q̂(z2)
2
]

1− 1
N
tr
[

R̂Q̂(z2)
]





=ω̂(z2)
1

N

M
∑

m=1

e
T
mR

1/2xje
T
i

N
R

H/2
Q̂(z2)

2
em

−ω̂(z2) 2
N

M
∑

m=1

e
T
mR̂Q̂(z2)

3
R

1/2xje
T
i

N
R

H/2
em

+
ω̂(z2)

2

z2

1

N
tr
[

R̂Q̂(z2)
2
] 1

N

M
∑

m=1

e
T
mR

1/2xje
T
i

N
R

H/2
Q̂(z2)em

− ω̂(z2)
2

z2

1

N
tr
[

R̂Q̂(z2)
2
] 1

N

M
∑

m=1

e
T
mR̂Q̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)em.

(130)

Substituting the first oder derivative of ĥ(z2) in (130) into (129) one obtains

∂

∂X∗
ij

Q̂(z1)R
1/2 eix

H
j

N
R

H/2χ(r)φM

=−Q̂(z1)R
1/2xje

T
i

N
R

H/2
Q̂(z1)R

1/2 eix
H
j

N
R

H/2χ(r)φM+Q̂(z1)R
1/2 eie

T
i

N
R

H/2χ(r)φM+O
(

N−N

)

−jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

ĥ(z2)Q̂(z1)R
1/2 eix

H
j

N
R

H/2
v
H
q Q̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)vqχ(r)φMdz2

+jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N
ω̂(z2)Q̂(z2)R

1/2 eie
T
i

N
R

H/2
Q̂(z2)

2
R

1/2xjx
H
j

N
R

H/2
v
H
q Q̂(z2)vqχ(r)φMdz2

−jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

2

N
ω̂(z2)Q̂(z2)R

1/2 eie
T
i

N
R

H/2
R̂Q̂(z2)

3
R

1/2xjxj

N
R

H/2
v
H
q Q̂(z2)vqχ(r)φMdz2

+jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N

ω̂(z2)
2

z2

1

N
tr
[

R̂Q̂(z2)
2
]

Q̂(z2)R
1/2 eie

T
i

N
R

H/2
Q̂(z2)R

1/2xjx
H
j

N
R

H/2
v
H
q Q̂(z2)vqχ(r)φMdz2

−jr
L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N

ω̂(z2)
2

z2

1

N
tr
[

R̂Q̂(z2)
2
]

Q̂(z2)R
1/2 eie

T
i

N
R

H/2
Q̂(z2)R̂Q̂(z2)R

1/2xjx
H
j

N
R

H/2
v
H
q Q̂(z2)vqχ(r)φMdz2

(131)
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Next, substituting (131) into (129) and computing the double sum we can equivalently express the expectation E

[

Q̂(z1)R̂χ(r)φM

]

as

E

[

Q̂(z1)R̂χ(r)φM

]

=−E

[

Q̂(z1)R̂χ(r)φM
1

N
tr
[

Q̂(z1)R
]

]

+E

[

Q̂(z1)Rχ(r)φM

]

+O
(

N−N
)

−jr
L
∑

q=1

wq

√
N

2πj

1

N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2

+jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N2
E

[

ω̂(z2)Q̂(z2)RQ̂(z2)
2
R̂v

H
q Q̂(z2)vqχ(r)φM

]

dz2

−jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

2

N2
E

[

ω̂(z2)Q̂(z2)RR̂Q̂(z2)
3
R̂v

H
q Q̂(z2)vqχ(r)φM

]

dz2

+jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N2
E

[

ω̂(z2)
2

z2

1

N
tr
[

R̂Q̂(z2)
2
]

Q̂(z2)RQ̂(z2)R̂v
H
q Q̂(z2)vqχ(r)φM

]

dz2

−jr

L
∑

q=1

wq

√
N

2πj

∮

C
(m)
z2

1

N2
E

[

ω̂(z2)
2

z2

1

N
tr
[

R̂Q̂(z2)
2
]

Q̂(z2)RQ̂(z2)R̂Q̂(z2)R̂v
H
q Q̂(z2)vqχ(r)φM

]

dz2.

(132)

In (132) it can be seen that due to the regularizer φM all expectations will converge to bounded quantities as M and N increase

without bound at the same rate. Moreover, the last four terms on the right hand side in (132) decay one order faster than the

third term on the right hand side. Therefore, we neglect the last four terms and add an error term O(N−3/2) such that

E

[

Q̂(z1)R̂χ(r)φM

]

=−E

[

Q̂(z1)R̂χ(r)φM
1

N
tr
[

Q̂(z1)R
]

]

+E

[

Q̂(z1)Rχ(r)φM

]

+O
(

N−3/2
)

−jr
L
∑

q=1

wq

√
N

2πj

1

N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2.

(133)

In the following we add the quantity E

[

Q̂(z1)R̂χ(r)φM

]

1
N
tr
[

RQ̄(z1)
]

on both sides of (133). For the left hand side of (133)

we obtain

E

[

Q̂(z1)R̂χ(r)φM

]

+E

[

Q̂(z1)R̂χ(r)φM

] 1

N
tr
[

RQ̄(z1)
]

=E

[

Q̂(z1)R̂χ(r)φM

]

(

1+
1

N
tr
[

RQ̄(z1)
]

)

= E

[

Q̂(z1)R̂χ(r)φM

]ω(z1)

z1
,

(134)

where we have used
(

1+ 1
N
tr
[

RQ̄(z1)
])

= ω(z1)
z1

which follows from (86). For the right hand side of (133) we obtain

−E

[

Q̂(z1)R̂χ(r)φM
1

N
tr
[

Q̂(z1)R
]

]

+E

[

Q̂(z1)Rχ(r)φM

]

+E

[

Q̂(z1)R̂χ(r)φM

] 1

N
tr
[

RQ̄(z1)
]

−jr

L
∑

q=1

wq

2πj

1

N

√
N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2+O
(

N−3/2
)

=−E

[

Q̂(z1)R̂χ(r)φMα(z1)
]

+E

[

Q̂(z1)Rχ(r)φM

]

−jr
L
∑

q=1

wq

2πj

1

N

√
N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2+O
(

N−3/2
)

,

(135)

where we have introduced

α(z1) =
1

N
tr
[

RQ̂(z1)
]

φM− 1

N
tr
[

RQ̄(z1)
]

. (136)

Equating (134) and (135) and multiplying by z1
ω(z1)

on both sides yields

E

[

Q̂(z1)R̂χ(r)φM

]

=− z1
ω(z1)

E

[

Q̂(z1)R̂χ(r)φMα(z1)
]

+
z1

ω(z1)
E

[

Q̂(z1)Rχ(r)φM

]

+O
(

N−3/2
)

− z1
ω(z1)

jr

L
∑

q=1

wq

2πj

1

N

√
N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2.
(137)

In the following we apply the resolvent identity in (102) to the left hand side of (137) and subtract z1
ω(z1)

E

[

Q̂(z1)Rχ(r)φM

]

on both sides

z1E
[

Q̂(z1)χ(r)φM

]

+IME[χ(r)φM ]− z1
ω(z1)

E

[

Q̂(z1)Rχ(r)φM

]

=− z1
ω(z1)

E

[

Q̂(z1)R̂χ(r)φMα(z1)
]

−jr
z1

ω(z1)

L
∑

q=1

wq

2πj

1

N

√
N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂χ(r)φM

]

dz2+O
(

N−3/2
)

.

(138)
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Next, we multiply both sides of (138) by −Q̄(z1)

−z1E
[

Q̂(z1)Q̄(z1)χ(r)φM

]

−E
[

Q̄(z1)χ(r)φM

]

+
z1

ω(z1)
E

[

Q̂(z1)RQ̄(z1)χ(r)φM

]

=
z1

ω(z1)
E

[

Q̂(z1)R̂Q̄(z1)χ(r)φMα(z1)
]

+jr
z1

ω(z1)

L
∑

q=1

wq

2πj

1

N

√
N

∮

C
(m)
z2

E

[

ĥ(z2)Q̂(z1)RQ̂(z2)vqv
H
q Q̂(z2)R̂Q̄(z1)χ(r)φM

]

dz2+O
(

N−3/2
)

.

(139)

Using IM = −z1Q̄(z1)+
z1

ω(z1)
RQ̄(z1) which immediately follows from the definition of Q̄(z1) in (85) we can develop

−z1E
[

Q̂(z1)Q̄(z1)χ(r)φM

]

+
z1

ω(z1)
E

[

Q̂(z1)RQ̄(z1)χ(r)φM

]

=E

[

Q̂(z1)

(

−z1Q̄(z1)+
z1

ω(z1)
RQ̄(z1)

)

χ(r)φM

]

=E

[

Q̂(z1)χ(r)φM

]

.

(140)

Substituting (140) into (139) and multiplying by
√
Nh̄(z1)v

H
p from the left hand side and by vp from the right hand side yields

√
Nh̄(z1)E

[

v
H
p

(

Q̂(z1)−Q̄(z1)
)

vpχ(r)φM

]

=
√
Nh̄(z1)

z1
ω(z1)

E

[

v
H
p Q̂(z1)R̂Q̄(z1)vpχ(r)φMα(z1)

]

+jrh̄(z1)
z1

ω(z1)

L
∑

q=1

wq

2πj

∮

C
(m)
z2

E

[

ĥ(z2)v
H
p Q̂(z1)RQ̂(z2)vqv

H
q Q̂(z2)R̂Q̄(z1)vpχ(r)φM

]

dz2+O
(

N−3/2
)

,

(141)

Please note that (141) is equivalent to the first quantity of interest in (106). Hence, it remains to study the asymptotic stochastic

behavior of (141). We will do so by analyzing the asymptotic stochastic behavior of the first term on the right hand side of

(141) first.

Lemma 11. Let ζ = vH
p Q̂(z1)R̂Q̄(z1)vpφM then

√
NE[ζχ(r)α(z1)] = O

(

N−1/2
)

.

Proof. See Appendix G. �

The asymptotic stochastic behavior of the second term on the right hand side of (141) is analyzed next.

Lemma 12. Let ζ1 = vH
p Q̂(z1)RQ̂(z2)vqφM and ζ2 = vH

q Q̂(z2)R̂Q̄(z1)vpφM then the expectation E

[

ĥ(z2)ζ1ζ2χ(r)
]

can be

approximated by

E

[

ĥ(z2)ζ1ζ2χ(r)
]

=h̄(z2)E[ζ1]E[ζ2]E[χ(r)]+O
(

N−1/2
)

.

Proof. See Appendix H. �

Using Lemmas 11 and 12 we can approximate the quantity on the right hand side of (141) by

√
Nh̄(z1)E

[

v
H
p

(

Q̂(z1)−Q̄(z1)
)

vpχ(r)φM

]

= jrh̄(z1)
z1

ω(z1)

L
∑

q=1

wq

2πj

∮

C
(m)
z2

h̄(z2)E[ζ1]E[ζ2]E[χ(r)]dz2+O
(

N−1/2
)

, (142)

With the help of Lemma 17 and Lemma 16 we can compute the expectations E[ζ1] and E[ζ2]

E[ζ1] =v
H
p Q̄(z1)RQ̄(z2)vq

(

1

1−γ(z1,z2)

)

+O
(

N−1
)

(143)

E[ζ2] =
z2

ω(z2)
v
H
q Q̄(z2)RQ̄(z1)vp+O

(

N−1
)

, (144)

where

γ(z1,z2) =
z1

ω(z1)

z2
ω(z2)

1

N
tr
[

RQ̄(z1)RQ̄(z2)
]

. (145)

Substituting the expressions in (143) and (144) into (142) yields the expression in (109).
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APPENDIX G

PROOF OF LEMMA 11

Using the Cauchy-Schwarz inequality we can upper-bound

|E[ζχ(r)α(z1)]|2 ≤ E
[

|ζχ(r)|2
]

E
[

|α(z1)|2
]

= E
[

|ζ|2|χ(r)|2
]

E
[

|α(z1)|2
]

= E
[

|ζ|2
]

E
[

|α(z1)|2
]

,

where we have used |χ(r)|2 = 1. According to Lemma 13, the expectation and the variance of α(z1) in (136) decay with

E[α(z1)] = O(N−1) and var[α(z1)] = O(N−2), respectively. Furthermore, it can be seen in Lemma 16 that the expectation

E[ζ] converges to something deterministic and the variance decays with var[ζ] = O(N−1). Hence, E
[

|α(z1)|2
]

= var[α(z1)]+

E[α(z1)]
2 = O(N−2) and E

[

|ζ|2
]

= var[ζ]+E[ζ]2 = O(1) and the quantity of interest can be upper-bounded by

√
NE[ζχ(r)α(z1)] ≤

√
N
√

E
[

|ζ|2
]

E
[

|α(z1)|2
]

= O
(
√
N

N

)

= O
(

N−1/2
)

.

APPENDIX H

PROOF OF LEMMA 12

Let us use the following notation (ζ1ζ2)
(◦) = (ζ1ζ2)−E[(ζ1ζ2)] such that E

[

(ζ1ζ2)
(◦)χ(r)

]

= E[((ζ1ζ2)−E[ζ1ζ2])χ(r)] =

E[ζ1ζ2χ(r)]−E[ζ1ζ2]E[χ(r)]. Hence, the quantity of interest can equivalently be expressed as

E[ζ1ζ2χ(r)] = E

[

(ζ1ζ2)
(◦)χ(r)

]

+E[ζ1ζ2]E[χ(r)]. (146)

Next, we apply the Cauchy-Schwarz inequality to upper bound the expectation E

[

(ζ1ζ2)
(◦)χ(r)

]

according to

∣

∣

∣
E

[

(ζ1ζ2)
(◦)χ(r)

]∣

∣

∣

2

≤ E

[

∣

∣

∣
(ζ1ζ2)

(◦)
∣

∣

∣

2
]

E
[

|χ(r)|2
]

= var[ζ1ζ2], (147)

where we have used |χ(r)| = 1 and E

[

|(ζ1ζ2)(◦)|2
]

= E
[

|ζ1ζ2−E[ζ1ζ2]|2
]

= var[ζ1ζ2]. Using the Nash-Poincaré inequality allows

to upper bound the variance

var[ζ1ζ2] ≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂Xij

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂X∗
ij

∣

∣

∣

∣

2
])

= O
(

N−1
)

, (148)

where both derivatives can be upper bounded itself by applying Jensen’s inequality

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂Xij

∣

∣

∣

∣

2
]

=

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂Xij

)

ζ2+ζ1

(

∂ζ2
∂Xij

)
∣

∣

∣

∣

2
]

≤ 2

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂Xij

)

ζ2

∣

∣

∣

∣

2
]

+2

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

ζ1

(

∂ζ2
∂Xij

)
∣

∣

∣

∣

2
]

, (149)

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂X∗
ij

∣

∣

∣

∣

2
]

=
M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂X∗

ij

)

ζ2+ζ1

(

∂ζ2
∂X∗

ij

)∣

∣

∣

∣

2
]

≤ 2
M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂X∗

ij

)

ζ2

∣

∣

∣

∣

2
]

+2
M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

ζ1

(

∂ζ2
∂X∗

ij

)∣

∣

∣

∣

2
]

. (150)

The first order derivatives of ζ1 with respect to Xij and X∗
ij are given in (257) and (258) respectively, where s1 = vp and

s2 = vq . Furthermore, the first order derivatives of ζ2 with respect to Xij and X∗
ij are given in (243) and (244) where s1 = vq

and s2 = Q̄(z1)vp. Substituting the derivatives into (149) and (150) and applying Jensen’s inequality a second time it can be

seen that
M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂Xij

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂(ζ1ζ2)

∂X∗
ij

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

since

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂Xij

)

ζ2

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

ζ1

(

∂ζ2
∂Xij

)∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

(

∂ζ1
∂X∗

ij

)

ζ2

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

ζ1

(

∂ζ2
∂X∗

ij

)
∣

∣

∣

∣

2
]

≤ O
(

N−1
)

.

Hence, the variance in (148) decays with var[ζ1ζ2] = O(N−1) and as a direct consequence the expectation E

[

(ζ1ζ2)
(◦)χ(r)

]

decays with E

[

(ζ1ζ2)
(◦)χ(r)

]

≤ O(N−1/2) which follows from (147). With this, we can approximate the quantity of interest in

(146) by

E[ζ1ζ2χ(r)] = E[ζ1ζ2]E[χ(r)]+O
(

N−1/2
)

, (151)

and it remains to study the asymptotic stochastic behavior of E[ζ1ζ2]. Introducing the covariance

cov[ζ1, ζ2] = E

[

ζ
(◦)
1 ζ

(◦)
2

]

= E[(ζ1−E[ζ1])(ζ2−E[ζ2])] = E[ζ1ζ2]−E[ζ1]E[ζ2],
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allows us to equivalently express E[ζ1ζ2] as

E[ζ1ζ2] = cov[ζ1, ζ2]+E[ζ1]E[ζ2]. (152)

The covariance cov[ζ1, ζ2] can be upper-bounded using the Cauchy-Schwarz inequality

|cov[ζ1, ζ2]|2 = |E[(ζ1−E[ζ1])(ζ2−E[ζ2])]|2 ≤ E
[

|ζ1−E[ζ1]|2
]

E
[

|ζ2−E[ζ2]|2
]

= var[ζ1]var[ζ2] = O
(

N−2), (153)

such that cov[ζ1, ζ2] ≤
√

var[ζ1]var[ζ2] = O(N−1) where we have used var[ζ1] = O(N−1) and var[ζ2] = O(N−1) which

follows from Lemmas 16 and 17. Substituting the square root of (153) into (152) we have successfully decorrelated E[ζ1ζ2] =

E[ζ1]E[ζ2]+O(N−1). Inserting E[ζ1ζ2] = E[ζ1]E[ζ2]+O(N−1) into the expression in (151) we obtain

E[ζ1ζ2χ(r)] =E[ζ1ζ2]E[χ(r)]+O
(

N−1/2
)

= (cov[ζ1, ζ2]+E[ζ1]E[ζ2])E[χ(r)]+O
(

N−1/2
)

=
(

O
(

N−1
)

+E[ζ1]E[ζ2]
)

E[χ(r)]+O
(

N−1/2
)

= E[ζ1]E[ζ2]E[χ(r)]+O
(

N−1/2
)

.
(154)

By adding and subtracting h̄(z2) inside the expectation of the quantity of interest E
[

ĥ(z2)ζ1ζ2χ(r)
]

we can write

E

[

ĥ(z2)ζ1ζ2χ(r)
]

=E

[(

ĥ(z2)−h̄(z2)+h̄(z2)
)

ζ1ζ2χ(r)
]

= E

[(

ĥ(z2)−h̄(z2)
)

ζ1ζ2χ(r)
]

+E
[

h̄(z2)ζ1ζ2χ(r)
]

=E

[(

ĥ(z2)−h̄(z2)
)

ζ1ζ2χ(r)
]

+h̄(z2)E[ζ1ζ2χ(r)].
(155)

Applying the Cauchy-Schwarz inequality to the first term on the right hand side of (155) we can upper-bound

∣

∣

∣E

[(

ĥ(z2)−h̄(z2)
)

ζ1ζ2χ(r)
]∣

∣

∣

2

≤ E

[

∣

∣

∣ĥ(z2)−h̄(z2)
∣

∣

∣

2
]

E
[

|ζ1ζ2χ(r)|2
]

. (156)

From Lemma 10 it follows that

E

[

∣

∣

∣
ĥ(z2)−h̄(z2)

∣

∣

∣

2
]

= var
[

ĥ(z2)−h̄(z2)
]

+E

[

ĥ(z2)−h̄(z2)
]2

= O
(

N−2
)

,

and from our previous analysis we know that

E
[

|ζ1ζ2χ(r)|2
]

= E
[

|ζ1ζ2|2|χ(r)|2
]

= E
[

|ζ1ζ2|2
]

= var[ζ1ζ2]+E[ζ1ζ2]
2 = var[ζ1ζ2]+(cov[ζ1, ζ2]+E[ζ1]E[ζ2])

2 = O(1),

where we have used (148) and (152). Correspondingly, the first term on the right hand side of (155) decays with

E

[(

ĥ(z2)−h̄(z2)
)

ζ1ζ2χ(r)
]

≤
√

E

[

∣

∣

∣
ĥ(z2)−h̄(z2)

∣

∣

∣

2
]

E
[

|ζ1ζ2χ(r)|2
]

= O
(

N−1
)

and therefore

E

[

ĥ(z2)ζ1ζ2χ(r)
]

= h̄(z2)E[ζ1ζ2χ(r)]+O
(

N−1
)

. (157)

Finally, substituting (154) into (157) we obtain the result of Lemma 12

E

[

ĥ(z2)ζ1ζ2χ(r)
]

= h̄(z2)E[ζ1]E[ζ2]E[χ(r)]+O
(

N−1/2
)

.

APPENDIX I

AUXILIARY LEMMAS

In this appendix, we provide some bounds on expectations and variances of different random functions of complex variables.

The notation O(N−l) should be understood as a deterministic term whose magnitude is upper bounded by a quantity of the form

ε(z1,z2)N
−l, where ε(z1,z2) is a bivariate real-valued positive function independent of N such that sup

(z1,z2)∈C
(m)
z1

×C
(m)
z2

ε(z1,z2) <

∞. Further insights are provided in [19, Remark 1, supplementary material].

Lemma 13. Let B denote an M×M deterministic matrix with bounded spectral norm. Then, as M,N → ∞ at the same rate

1

N
E

[

tr
[

BQ̂(z1)φM

]]

=
1

N
tr
[

BQ̄(z1)
]

+O
(

N−1
)

(158)

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=
z1

ω(z1)

1

N
tr
[

BQ̄(z1)R
1/2
]

+O
(

N−1
)

(159)

and also

var

[

1

N
tr
[

BQ̂(z1)φM

]

]

=O
(

N−2) (160)

var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=O
(

N−2). (161)

Proof. See Appendix J and [19, Lemma 8, supplementary material]. �
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Lemma 14. Let B denote an M×M deterministic matrix with bounded spectral norm. Then, as M,N → ∞ at the same rate

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=
1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)
]

+O
(

N−1
)

(162)

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=
z2

ω(z2)

1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)R
1/2
]

(163)

− γ(z1,z2)

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)R
1/2
]

+O
(

N−1)

where

γ(z1,z2) =
z1

ω(z1)

z2
ω(z2)

1

N
tr
[

RQ̄(z1)RQ̄(z2)
]

(164)

and also

var

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)φM

]

]

=O
(

N−2) (165)

var

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=O
(

N−2). (166)

Proof. See Appendix K and [19, Lemma 9, supplementary material]. �

Lemma 15. As M,N → ∞ at the same rate

1

N
E

[

tr
[

Q̂(z1)R̂Q̂(z1)φM

]]

=
z21

ω(z1)2
1

N
tr
[

RQ̄(z1)
2]∂ω(z1)

∂z1
+O

(

N−1)

and the variance decays with

var

[

1

N
tr
[

Q̂(z1)R̂Q̂(z1)φM

]

]

= O
(

N−2
)

.

Proof. See Appendix L. �

Lemma 16. Let s1, s2 denote two generic M×1 deterministic column vectors. Then, as M,N → ∞ at the same rate

E

[

s
H
1 Q̂(z2)R̂s2φM

]

=
z2

ω(z2)
s
H
1 Q̄(z2)Rs2+O

(

N−1) (167)

and also

var
[

s
H
1 Q̂(z2)R̂s2φM

]

= O
(

N−1) (168)

Proof. See Appendix M. �

Lemma 17. Let s1, s2 denote two generic M×1 deterministic column vectors. Then, as M,N → ∞ at the same rate

E

[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

= s
H
1 Q̄(z1)RQ̄(z2)s2

(

1

1−γ(z1,z2)

)

+O
(

N−1
)

(169)

and also

var
[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

= O
(

N−1) (170)

where

γ(z1,z2) =
z1

ω(z1)

z2
ω(z2)

1

N
tr
[

RQ̄(z1)RQ̄(z2)
]

(171)

Proof. See Appendix N. �

APPENDIX J

PROOF OF LEMMA 13

1) Variances: We start by upper-bounding the variance in (160) by applying the Nash-Poincaré inequality to

var
[

tr
[

BQ̂(z1)φM

]]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

BQ̂(z1)φM

]

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

BQ̂(z1)φM

]

∣

∣

∣

∣

2
])

, (172)

where

∂

∂Xij
tr
[

BQ̂(z1)φM

]

=
M
∑

m=1

e
T
mB

(

∂

∂Xij
Q̂(z1)

)

φMem = −
M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)φMem+O

(

N−N

)

, (173)

∂

∂X∗
ij

tr
[

BQ̂(z1)φM

]

=
M
∑

m=1

e
T
mB

(

∂

∂X∗
ij

Q̂(z1)

)

φMem = −
M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)φMem+O

(

N−N

)

. (174)
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It follows from (173) and (174) that

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

BQ̂(z1)φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

,
M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

BQ̂(z1)φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

,

and consequently the variance in (172) is upper-bounded by var
[

tr
[

BQ̂(z1)
]]

≤ O(M/N). Hence, the variance in (160) decays

with

var

[

1

N
tr
[

BQ̂(z1)φM

]

]

=
1

N2
var
[

tr
[

BQ̂(z1)φM

]]

≤ 1

N2
O
(

M

N

)

= O
(

N−2).

Next, we analyze the variance in (161). Therefore, we use the Nash-Poincaré inequality to upper-bound

var

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
])

,

(175)

where
∂

∂Xij
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)R

1/2XXH

N
emφM

+

M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
emφM+O

(

N−N

)

,

(176)

∂

∂X∗
ij

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)R

1/2XXH

N
emφM

+
M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
emφM+O

(

N−N

)

.

(177)

Using Jensen’s inequality we can upper-bound the squared absolute value of the two derivatives in (176) and (177) by

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)R

1/2XXH

N
emφM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

,

(178)

and
∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)R

1/2XXH

N
emφM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

.

(179)

It follows from (178) and (179) that

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]
∣

∣

∣

∣

2
]

= O
(

M

N

)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]
∣

∣

∣

∣

2
]

= O
(

M

N

)

,

and the variance in (175) is upper bounded by var
[

tr
[

BQ̂(z1)R
1/2 XX

H

N

]]

≤ O(M/N). As a direct consequence the variance

in (161) decays with

var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=
1

N2
var

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

≤ 1

N2
O
(

M

N

)

= O
(

N−2).

2) Expectations: To derive the expectation in (158) we express the trace as sum

1

N
E

[

tr
[

BQ̂(z1)φM

]]

=
1

N

M
∑

m=1

E

[

e
T
mBQ̂(z1)emφM

]

=
1

N

M
∑

m=1

e
T
mBE

[

Q̂(z1)φM

]

em. (180)

By replacing the random resolvent Q̂(z1) with its asymptotic deterministic equivalent Q̄(z1) in (85) we obtain the expectation

in (158) in Lemma 13

1

N
E

[

tr
[

BQ̂(z1)φM

]]

=
1

N

M
∑

m=1

e
T
mBQ̄(z1)em+O

(

N−1
)

=
1

N
tr
[

BQ̄(z1)
]

+O
(

N−1
)

, (181)

where we have used E

[

Q̂(z)φM

]

= Q̄(z)+O(N−1).
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To derive the expectation in (159) we express the trace as sum and the sample covariance matrix R̂ as shown in (103) and

apply the integration by parts formula

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

Xije
T
mBQ̂(z1)R

1/2 eix
H
j

N
emφM

]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

∂

∂X∗
ij

(

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
emφM

)]

,

(182)

where
∂

∂X∗
ij

(

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
emφM

)

=−e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)R

1/2 eix
H
j

N
emφM

+e
T
mBQ̂(z1)R

1/2 eie
T
i

N
emφM+O

(

N−N

)

.

(183)

Substituting the derivative in (183) into (182) and computing the triple sum yields

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=− 1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

Q̂(z1)R
]

φM

]

+
1

N
E

[

tr
[

BQ̂(z1)R
1/2φM

]]

+O
(

N−N

)

.

(184)

Next, we decorrelate the first term on the right hand side of (184). Therefore, we express the covariance as

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

Q̂(z1)RφM

]

]

=E

[

(

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

])(◦)(
1

N
tr
[

Q̂(z1)RφM

]

)(◦)
]

=E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

Q̂(z1)R
]

φM

]

−E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

Q̂(z1)RφM

]

]

,

(185)

Afterwards, we apply the Cauchy-Schwarz inequality to upper-bound the covariance
∣

∣

∣

∣

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

Q̂(z1)RφM

]

]∣

∣

∣

∣

2

≤E

[∣

∣

∣

∣

∣

(

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

])(◦)
∣

∣

∣

∣

∣

2]

E

[∣

∣

∣

∣

∣

(

1

N
tr
[

Q̂(z1)RφM

]

)(◦)
∣

∣

∣

∣

∣

2]

=var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

var

[

1

N
tr
[

Q̂(z1)RφM

]

]

.

(186)

Using the previously derived variances in (160) and (161) we know that

var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

= O
(

N−2
)

, var

[

1

N
tr
[

Q̂(z1)RφM

]

]

= O
(

N−2
)

,

and therefore the covariance in (185) decays with

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

Q̂(z1)RφM

]

]

≤ O
(

N−2).

This allows to decorrelate the first term on the right hand side of (184) as follows

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

Q̂(z1)R
]

φM

]

=E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

Q̂(z1)RφM

]

]

+cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

Q̂(z1)RφM

]

]

=E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

Q̂(z1)RφM

]

]

+O
(

N−2).

(187)

Substituting the decorrelated expression in (187) into (184) yields

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

=
1

N
E

[

tr
[

BQ̂(z1)R
1/2φM

]]

−E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

Q̂(z1)RφM

]

]

+O
(

N−2
)

,



17

which can be rearranged as follows

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]](

1+
1

N
E

[

tr
[

Q̂(z1)RφM

]]

)

=
1

N
E

[

tr
[

BQ̂(z1)R
1/2φM

]]

+O
(

N−2). (188)

Using the previously derived expectation in (158) we know that (188) simplifies to

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]](

1+
1

N
tr
[

Q̄(z1)R
]

)

=
1

N
tr
[

BQ̄(z1)R
1/2
]

+O
(

N−1
)

. (189)

Using ω(z1)
z1

= (1+ 1
N
tr
[

RQ̄(z1)
]

) which immediately follows from (86) and multiplying (189) on both sides with z1
ω(z1)

we

obtain (159).

APPENDIX K

PROOF OF LEMMA 14

1) Variances: In order to upper-bound the covariance in (165) we apply the Nash-Poincaré inequality

var
[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2
])

, (190)

where the first order derivative with respect to Xij and X∗
ij are given by

∂

∂Xij
tr
[

BQ̂(z1)RQ̂(z2)φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)emφM

−
M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)emφM+O

(

N−N

)

,

(191)

and
∂

∂X∗
ij

tr
[

BQ̂(z1)RQ̂(z2)φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)emφM

−
M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)emφM+O

(

N−N

)

.

(192)

Using Jensen’s inequality we can upper bound the squared absolute value of the first order derivative with respect to Xij in

(191)
∣

∣

∣

∣

∂

∂Xij
tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)emφM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

(193)

and the first order derivative with respect to X∗
ij in (192)

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)emφM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

(194)

Furthermore, it can be observed in (193) and (194) that

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

BQ̂(z1)RQ̂(z2)φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

.

Consequently, the variance in (190) is upper-bounded by var
[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

≤ O(M/N) and the variance in (165)

decays with

var

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)φM

]

]

=
1

N2
var
[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

≤ 1

N2
O
(

M

N

)

= O
(

N−2
)

.

In the following we upper-bound the variance in (166) by using the Nash-Poincaré inequality

var

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
])

,

(195)



18

where the first order derivative with respect to Xij is given by

∂

∂Xij
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)

XXH

N
emφM

−
M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)

XXH

N
emφM

+
M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM+O

(

N−N

)

,

(196)

and the first order derivative with respect to Xij is given by

∂

∂X∗
ij

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]

=−
M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)

XXH

N
emφM

−
M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)

XXH

N
emφM

+

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
emφM+O

(

N−N

)

.

(197)

Using Jensen’s inequality we can upper-bound the absolute value squared of the first order derivative in (196) by

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2

≤3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)

XXH

N
emφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)

XXH

N
emφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

(198)

as well as the absolute value squared of the first order derivative in (197)

∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2

≤3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)

XXH

N
emφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)

XXH

N
emφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

m=1

e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
emφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

.

(199)

From (198) and (199) it follows that

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
]

=O
(

M

N

)

,

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]∣

∣

∣

∣

2
]

=O
(

M

N

)

,

and consequently the variance in (195) var
[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2 XX

H

N
φM

]]

= O(M/N). Hence the variance in (166) decays

with

var

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=
1

N2
var

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

≤ 1

N2
O
(

M

N

)

= O
(

N−2).

2) Expectations: In the following we derive the two expectations in (162) and (163). Using the resolvent identity z2Q̂(z2) =

Q̂(z2)R̂−IM in (102) we can express the expectation in (162) as

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

= z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RφM

]]

. (200)
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Next, we develop the first term on the right hand side of (200) by rewriting the trace as sum and the sample covariance R̂ as

shown in (103) and apply the integration by parts formula

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

Xije
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
emφM

]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

∂

∂X∗
ij

(

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
emφM

)]

,

(201)

where the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

(

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
emφM

)

=e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eie
T
i

N
R

H/2
emφM+O

(

N−N

)

−e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
emφM

−e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)R

1/2 eix
H
j

N
R

H/2
emφM .

(202)

Substituting (202) into (201) and computing the triple sum we can equivalently express the first term on the right hand side

of (200) as

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]]

=
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

− 1

N
E

[

tr
[

BQ̂(z1)R̂
] 1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

− 1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂
] 1

N
tr
[

RQ̂(z2)
]

φM

]

+O
(

N−N

)

.

(203)

Inserting (203) into (200) yields

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)R̂
] 1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂
] 1

N
tr
[

RQ̂(z2)
]

φM

]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RφM

]]

+O
(

N−N

)

.

(204)

Next, we need to decorrelate the second and third term on the right hand side of (204). We begin with the second term on the

right hand side of (204) by analyzing the following covariance

cov

[

1

N
tr
[

BQ̂(z1)R̂φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

=E

[

(

1

N
tr
[

BQ̂(z1)R̂φM

]

)(◦)(
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

)(◦)
]

=E

[

1

N
tr
[

BQ̂(z1)R̂
] 1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

−E

[

1

N
tr
[

BQ̂(z1)R̂φM

]

]

E

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

.

(205)

Applying the Cauchy-Schwarz inequality to (205) yields
∣

∣

∣

∣

cov

[

1

N
tr
[

BQ̂(z1)R̂φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]
∣

∣

∣

∣

2

≤E

[∣

∣

∣

∣

∣

(

1

N
tr
[

BQ̂(z1)R̂φM

]

)(◦)
∣

∣

∣

∣

∣

2]

E

[∣

∣

∣

∣

∣

(

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

)(◦)
∣

∣

∣

∣

∣

2]

=var

[

1

N
tr
[

BQ̂(z1)R̂φM

]

]

var

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−4
)

,

(206)

where we have used (161) in Lemma 13 and (165) in Lemma 14 to obtain

var

[

1

N
tr
[

BQ̂(z1)R̂φM

]

]

= O
(

N−2
)

, var

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−2
)

.

It follows from (206) that the covariance in (205) decays with

cov

[

1

N
tr
[

BQ̂(z1)R̂φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−2
)

. (207)
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Hence, we can decorrelate the second quantity on the right hand side of (204) as

E

[

1

N
tr
[

BQ̂(z1)R̂
] 1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

=
1

N
E

[

tr
[

BQ̂(z1)R̂φM

]] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+cov

[

1

N
tr
[

BQ̂(z1)R̂φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

=
1

N
E

[

tr
[

BQ̂(z1) ˆRφM

]] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+O
(

N−2).

(208)

Let us now decorrelate the third quantity on the right hand side of (204) by applying the same technique. We start by analyzing

the following covariance

cov

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]

=E

[

(

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

)(◦)(
1

N
tr
[

RQ̂(z2)φM

]

)(◦)
]

=E

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂
] 1

N
tr
[

RQ̂(z2)
]

φM

]

−E

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

]

E

[

1

N
tr
[

RQ̂(z2)φM

]

]

.

(209)

Applying the Cauchy Schwarz inequality to the covariance in (209) yields
∣

∣

∣

∣

cov

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]∣

∣

∣

∣

2

≤E

[∣

∣

∣

∣

∣

(

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

)(◦)
∣

∣

∣

∣

∣

2]

E

[∣

∣

∣

∣

∣

(

1

N
tr
[

RQ̂(z2)φM

]

)(◦)
∣

∣

∣

∣

∣

2]

=var

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

]

var

[

1

N
tr
[

RQ̂(z2)φM

]

]

= O
(

N−4),

(210)

where we have used (166) in Lemma 14 and (160) in Lemma 13 to obtain

var

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

]

= O
(

N−2
)

, var

[

1

N
tr
[

RQ̂(z2)φM

]

]

= O
(

N−2
)

.

From (210) it follows that the covariance in (209) decays with

cov

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]

= O(N−2).

Using (209) we can decorrelated the third term on the right hand side of (204) as

E

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂
] 1

N
tr
[

RQ̂(z2)
]

φM

]

=E

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

]

E

[

1

N
tr
[

RQ̂(z2)φM

]

]

+cov

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]

=E

[

1

N
tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]

]

E

[

1

N
tr
[

RQ̂(z2)φM

]

]

+O
(

N−2).

(211)

Substituting the two decorrelated terms in (208) and (211) into (204) yields

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)R̂φM

]] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]] 1

N
E

[

tr
[

RQ̂(z2)φM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RφM

]]

+O
(

N−2
)

.

(212)

Using the previously derived expectation in (158) in Lemma 13 we can equivalently express (212) as

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

z1
ω(z1)

1

N
tr
[

BQ̄(z1)R
] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

−z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]] 1

N
tr
[

RQ̄(z2)
]

−z−1
2

1

N
tr
[

BQ̄(z1)R
]

+O
(

N−1).

(213)
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In order to derive the second expectation in (163) we express the sample covariance matrix R̂ as shown in (103) and rewrite

the trace as sum to apply the integration by parts formula

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

Xije
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM

]

=
1

N

M
∑

i=1

N
∑

j=1

M
∑

m=1

E

[

∂

∂X∗
ij

(

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM

)]

,

(214)

where the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

(

e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM

)

=−e
T
mBQ̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
emφM

−e
T
mBQ̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)R

1/2 eix
H
j

N
emφM

+e
T
mBQ̂(z1)RQ̂(z2)R

1/2 eie
T
i

N
emφM+O

(

N−N

)

.

(215)

Substituting the derivative in (215) into (214) and computing the triple sum yields

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=− 1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

− 1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z2)
]

φM

]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2φM

]]

+O
(

N−N

)

.

(216)

In the following we decorrelate the first and second term on the right hand side of (216). We start with the first term on the

right hand side of (216) by analyzing the covariance

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

=E

[

(

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

])(◦)(
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

)(◦)
]

=
1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

−E

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

.

(217)

Using the Cauchy-Schwarz inequality we can upper-bound (217) by
∣

∣

∣

∣

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]∣

∣

∣

∣

2

≤E

[∣

∣

∣

∣

∣

(

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

])(◦)
∣

∣

∣

∣

∣

2]

E

[∣

∣

∣

∣

∣

(

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

)(◦)
∣

∣

∣

∣

∣

2]

=var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

var

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−4
)

,

(218)

where we have used (161) in Lemma 13 and (165) in Lemma 14 to obtain

var

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

= O
(

N−2), var

[

1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−2).

From (218) it follows that the covariance in (217) decays with

cov

[

1

N
tr

[

BQ̂(z1)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z1)RQ̂(z2)φM

]

]

= O
(

N−2
)

.

With this we have decorrelated the first term on the right hand side of (216) as

1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z1)RQ̂(z2)
]

φM

]

=
1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+O
(

N−2
)

,

(219)
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which follows from (217). In order to decorrelate the second term on the right hand side of (216) we analyze the covariance

cov

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]

=E

[

(

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

])(◦)(
1

N
tr
[

RQ̂(z2)φM

]

)(◦)
]

=
1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z2)
]

φM

]

−E

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

E

[

1

N
tr
[

RQ̂(z2)φM

]

]

.

(220)

Next, we apply the Cauchy-Schwarz inequality to (220)
∣

∣

∣

∣

cov

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]∣

∣

∣

∣

2

≤E

[∣

∣

∣

∣

∣

(

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

])(◦)
∣

∣

∣

∣

∣

2]

E

[∣

∣

∣

∣

∣

(

1

N
tr
[

RQ̂(z2)φM

]

)(◦)
∣

∣

∣

∣

∣

2]

=var

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

var

[

1

N
tr
[

RQ̂(z2)φM

]

]

= O
(

N−4
)

,

(221)

where we have used (166) in Lemma 14 and (160) in Lemma 13 to obtain

var

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

= O
(

N−2), var

[

1

N
tr
[

RQ̂(z2)φM

]

]

= O
(

N−2).

As a direct consequence of (221) the covariance in (220) decays with

cov

[

1

N
tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]

,
1

N
tr
[

RQ̂(z2)φM

]

]

= O
(

N−2
)

,

and we can decorrelated the second term on the right hand side of (216) as

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N

]

1

N
tr
[

RQ̂(z2)
]

φM

]

=
1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

1

N
E

[

tr
[

RQ̂(z2)φM

]]

+O
(

N−2
)

.

(222)

Substituting the two decorrelated terms in (219) and (222) into (216) yields

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=− 1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

− 1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

1

N
E

[

tr
[

RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2φM

]]

+O
(

N−2
)

.

(223)

Using the previously derived expectation in (158) and adding 1
N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2 XX

H

N
φM

]]

1
N
tr
[

RQ̄(z2)
]

on both

sides of (223) yields
1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]](

1+
1

N
tr
[

RQ̄(z2)
]

)

=− 1

N
E

[

tr

[

BQ̂(z1)R
1/2XXH

N
φM

]]

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2φM

]]

+O(N−1).

(224)

Multiplying (224) by z2
ω(z2)

on both sides where 1+ 1
N
tr
[

RQ̄(z2)
]

= ω(z2)
z2

which follows from (86) and using the expectation

in (159) in Lemma 13 we obtain

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=− 1

N

z1
ω(z1)

z2
ω(z2)

tr
[

BQ̄(z1)R
1/2
] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+
1

N

z2
ω(z2)

E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2φM

]]

+O(N−1).

(225)
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Next, we replace B by RH/2B in (225) such that

1

N
E

[

tr

[

R
H/2

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R̂φM

]]

=− 1

N

z1
ω(z1)

z2
ω(z2)

tr
[

BQ̄(z1)R
] 1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+
1

N

z2
ω(z2)

E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

+O(N−1).

(226)

Inserting the previous expression in (226) into (213) yields

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=−z−1
2

z1
ω(z1)

1

N
tr
[

BQ̄(z1)R
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

(

1− z2
ω(z2)

1

N
tr
[

RQ̄(z2)
]

)

+z−1
2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

(

1− z2
ω(z2)

1

N
tr
[

RQ̄(z2)
]

)

−z−1
2

1

N
tr
[

BQ̄(z1)R
]

+O(N−1).

(227)

Now using z2
ω(z2)

= 1− z2
ω(z2)

1
N
tr
[

RQ̄(z2)
]

which follows from (86) we can simplify the expression in (227) as

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=− z1
ω(z1)ω(z2)

1

N
tr
[

BQ̄(z1)R
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

+
1

ω(z2)

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

1

N
tr
[

BQ̄(z1)R
]

+O(N−1).
(228)

Replacing B in (228) by Q̄(z2)R we obtain

1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)φM

]]

=− z1
ω(z1)ω(z2)

1

N
tr
[

Q̄(z2)RQ̄(z1)R
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

+
1

ω(z2)

1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

1

N
tr
[

Q̄(z2)RQ̄(z1)R
]

+O(N−1).

(229)

By subtracting and adding ω(z2)IM inside the trace of the second term on the right hand side of (229), we can equivalently

express 1
ω(z2)

1
N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)RφM

]]

as

1

ω(z2)

1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)RφM

]]

=
1

ω(z2)

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)(R−ω(z2)IM+ω(z2)IM )Q̄(z2)φM

]]

=
1

ω(z2)

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)(R−ω(z2)IM )Q̄(z2)φM

]]

+
1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

=
1

ω(z2)

ω(z2)

z2

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

=
1

z2

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

,

(230)

where we have used the resolvent Q̄(z2) =
ω(z2)
z2

(R−ω(z2)IM )−1 in (85). Rearranging the expression in (229) according to

z1
ω(z1)ω(z2)

1

N
tr
[

Q̄(z2)RQ̄(z1)R
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

=− 1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)φM

]]

+
1

ω(z2)

1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RQ̂(z2)RφM

]]

−z−1
2

1

N
tr
[

Q̄(z2)RQ̄(z1)R
]

+O
(

N−1),

(231)

and substituting (230) into (231) and multiplying by z2 on both sides yields

z1z2
ω(z1)ω(z2)

1

N
tr
[

Q̄(z2)RQ̄(z1)R
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

=
1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

− 1

N
tr
[

Q̄(z2)RQ̄(z1)R
]

+O
(

N−1
)

,

which can equivalently be expressed as

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

(

z1z2
ω(z1)ω(z2)

1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

−1

)

= − 1

N
E

[

tr
[

Q̄(z2)RQ̂(z1)RφM

]]

+O
(

N−1
)

. (232)

Using the previously derived expectation in (158) in Lemma 13 we obtain

1

N
E

[

tr
[

RQ̂(z1)RQ̂(z2)φM

]]

=
1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+O
(

N−1), (233)
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where

γ(z1,z2) =
z1z2

ω(z1)ω(z2)

1

N
tr
[

RQ̄(z1)RQ̄(z2)
]

. (234)

Replacing B by Q̄(z2)B in (228) yields

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

=− z1
ω(z1)ω(z2)

1

N
tr
[

BQ̄(z1)RQ̄(z2)
] 1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

+
1

ω(z2)

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RQ̄(z2)φM

]]

− 1

z2

1

N
E

[

tr
[

BQ̂(z1)RQ̄(z2)φM

]]

+O(N−1).

(235)

Substituting (233) into (235) we obtain

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

=− z1
ω(z1)ω(z2)

1

N
tr
[

BQ̄(z1)RQ̄(z2)
] 1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+
1

ω(z2)

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RQ̄(z2)φM

]]

− 1

z2

1

N
E

[

tr
[

BQ̂(z1)RQ̄(z2)φM

]]

+O(N−1).

(236)

By adding and subtracting ω(z2)IM inside the trace of the second term on the right hand side of (236) and using Q̄(z2) =
ω(z2)
z2

(R−ω(z2)IM )−1 in (85), we can equivalently express 1
ω(z2)

1
N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RQ̄(z2)φM

]]

as

1

ω(z2)

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)RQ̄(z2)φM

]]

=
1

ω(z2)

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)(R−ω(z2)IM+ω(z2)IM )Q̄(z2)φM

]]

=
1

z2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

.

(237)

Substituting (237) into (236) yields

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

=− z1
ω(z1)ω(z2)

1

N
tr
[

BQ̄(z1)RQ̄(z2)
] 1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+
1

z2

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)Q̄(z2)φM

]]

− 1

z2

1

N
E

[

tr
[

BQ̂(z1)RQ̄(z2)φM

]]

+O(N−1).

(238)

Rearranging (238) and using the previously derived expectation in (158) in Lemma 13 we obtain the expectation in (162)

of Lemma 14

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)φM

]]

=
z1z2

ω(z1)ω(z2)

1

N
tr
[

BQ̄(z1)RQ̄(z2)
] 1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+
1

N
E

[

tr
[

BQ̂(z1)RQ̄(z2)φM

]]

+O(N−1)

=
1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)
]

+O(N−1),

(239)

where we have used γ(z1,z2) in (234). Using the previously derived expectation in (162) we can develop

1

N
E

[

tr
[

BQ̂(z1)RQ̂(z2)R
1/2φM

]]

=
1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)R
1/2
]

+O
(

N−1), (240)

1

N
E

[

tr
[

Q̂(z1)RQ̂(z2)RφM

]]

=
1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+O
(

N−1) (241)

Substituting (240) and (241) into (225) we obtain the expectation in (163) in Lemma 14

1

N
E

[

tr

[

BQ̂(z1)RQ̂(z2)R
1/2XXH

N
φM

]]

=− z1
ω(z1)

z2
ω(z2)

1

N
tr
[

BQ̄(z1)R
1/2
] 1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

+
z2

ω(z2)

1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)R
1/2
]

+O(N−1)

=
z2

ω(z2)

1

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)RQ̄(z2)R
1/2
]

− γ(z1,z2)

1−γ(z1,z2)
1

N
tr
[

BQ̄(z1)R
1/2
]

+O(N−1).

APPENDIX L

PROOF OF LEMMA L

A. Variance

Using the Nash-Poincare inequality we can upper-bound the variance of

var

[

1

N
tr
[

Q̂(z)2R̂φM

]

]

≤ 1

N2

M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2
])

,
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where

∂

∂Xij
tr
[

Q̂(z)2R̂φM

]

=
∂

∂Xij

M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)el

=
M
∑

l=1

e
H
l

(

∂

∂Xij
Q̂(z)

)

R̂Q̂(z)elφM+
M
∑

l=1

e
H
l Q̂(z)

(

∂

∂Xij
R̂

)

Q̂(z)elφM+
M
∑

l=1

e
H
l Q̂(z)R̂

(

∂

∂Xij
Q̂(z)

)

elφM

=−
M
∑

l=1

e
H
l Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)R̂Q̂(z)elφM+

M
∑

l=1

e
H
l Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)elφM

−
M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)elφM+O

(

N−N

)

and

∂

∂X∗
ij

tr
[

Q̂(z)2R̂φM

]

=
∂

∂Xij

M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)elφM

=

M
∑

l=1

e
H
l

(

∂

∂X∗
ij

Q̂(z)

)

R̂Q̂(z)elφM+

M
∑

l=1

e
H
l Q̂(z)

(

∂

∂X∗
ij

R̂

)

Q̂(z)elφM+

M
∑

l=1

e
H
l Q̂(z)R̂

(

∂

∂X∗
ij

Q̂(z)

)

elφM

=−
M
∑

l=1

e
H
l Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)R̂Q̂(z)elφM+

M
∑

l=1

e
H
l Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)elφM

−
M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)elφM+O

(

N−N

)

.

Using Jensen’s inequality we can upper-bound both derivatives by

∣

∣

∣

∣

∂

∂Xij
tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2

≤3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)R̂Q̂(z)elφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)elφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)R1/2 eix

H
j

N
R

H/2
Q̂(z)elφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

,

and
∣

∣

∣

∣

∂

∂X∗
ij

tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2

≤3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)R̂Q̂(z)elφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)elφM

∣

∣

∣

∣

∣

2

+3

∣

∣

∣

∣

∣

M
∑

l=1

e
H
l Q̂(z)R̂Q̂(z)R1/2xje

T
i

N
R

H/2
Q̂(z)elφM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

,

such that

E

[

∣

∣

∣

∣

∂

∂Xij
tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

E

[

∣

∣

∣

∣

∂

∂X∗
ij

tr
[

Q̂(z)2R̂φM

]

∣

∣

∣

∣

2
]

= O
(

M

N

)

and consequently the variance of the quantity of interest decays with

var

[

1

N
tr
[

Q̂(z)2R̂φM

]

]

= O
(

N−2).

B. Expectation

The expectation can be derived by taking the derivative of (159) with respect to z for B = IM which yields

∂

∂z

1

N
E

[

Q̂(z)R̂φM

]

=
1

N

∂ω(z)

∂z
tr
[

R(R−ω(z)IM )−2φM

]

+O
(

N−1)

=
1

N
ω′(z)tr

[

R(R−ω(z)IM )−2φM

]

+O
(

N−1
)

=
z2

ω(z)2
1

N
tr
[

RQ̄(z)2
]

ω′(z)+O
(

N−1).
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APPENDIX M

PROOF OF LEMMA 16

A. Variance

The variance var
[

sH
1 Q̂(z2)R̂s2φM

]

can be upper-bounded using the Nash-Poincaré inequality which states that

var
[

s
H
1 Q̂(z2)R̂s2φM

]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
s
H
1 Q̂(z2)R̂s2φM

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

s
H
1 Q̂(z2)R̂s2φM

∣

∣

∣

∣

2
])

, (242)

with first order derivative with respect to Xij

∂

∂Xij

(

s
H
1 Q̂(z2)R̂s2φM

)

= s
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM−s

H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)R̂s2φM+O

(

N−N

)

, (243)

and first order derivative with respect to X∗
ij

∂

∂X∗
ij

(

s
H
1 Q̂(z2)R̂s2φM

)

= s
H
1 Q̂(z2)R

1/2xje
T
i

N
R

H/2
s2φM−s

H
1 Q̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)R̂s2φM+O

(

N−N

)

. (244)

Jensen’s inequality allows to upper-bound the absolute value squared of the first order derivative with respect to Xij in (243)

by

∣

∣

∣

∣

∂

∂Xij

(

s
H
1 Q̂(z2)R̂s2φM

)

∣

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

∣

s
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

s
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)R̂s2φM

∣

∣

∣

∣

∣

2

+O
(

N−N

)

, (245)

as well as the first order derivative with respect to X∗
ij in (244) by

∣

∣

∣

∣

∂

∂X∗
ij

(

s
H
1 Q̂(z2)R̂s2φM

)

∣

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

s
H
1 Q̂(z2)R

1/2xje
T
i

N
R

H/2
s2φM

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

s
H
1 Q̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)R̂s2φM

∣

∣

∣

∣

2

+O
(

N−N

)

. (246)

From (245) and (246) it follows that

M
∑

i=1

M
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij

(

s
H
1 Q̂(z2)R̂s2φM

)

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

M
∑

i=1

M
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

(

s
H
1 Q̂(z2)R̂s2φM

)

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

. (247)

Substituting (247) into (242) we obtain the expression in Lemma 16 in (168)

var
[

s
H
1 Q̂(z2)R̂s2φM

]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
s
H
1 Q̂(z2)R̂s2φM

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

s
H
1 Q̂(z2)R̂s2φM

∣

∣

∣

∣

2
])

≤ O
(

N−1
)

.

B. Expectation

In order to derive the expectation in (167) we use the expression of the sample covariance matrix in (103) and apply the

integration by parts formula to develop

E

[

s
H
1 Q̂(z2)R̂s2φM

]

=
M
∑

i=1

N
∑

j=1

E

[

Xijs
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

]

=

M
∑

i=1

N
∑

j=1

E

[

∂

∂X∗
ij

(

s
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

)]

,

(248)

where the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

(

s
H
1 Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

)

=s
H
1 Q̂(z2)R

1/2 eie
T
i

N
R

H/2
s2φM

−s
H
1 Q̂(z2)R

1/2xje
H
i

N
R

H/2
Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM+O

(

N−N

)

.

(249)

Substituting (249) into (248) yields

E

[

s
H
1 Q̂(z2)R̂s2φM

]

= E

[

s
H
1 Q̂(z2)Rs2φM

]

−E

[

s
H
1 Q̂(z2)R̂s2φM

1

N
tr
[

Q̂(z2)R
]

]

+O
(

N−N

)

. (250)

Furthermore, we can use the definition of α(z2) in (136) to express

φM
1

N
tr
[

Q̂(z2)R
]

= α(z2)+
1

N
tr
[

RQ̄(z2)
]

. (251)
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Replacing 1
N
tr
[

Q̂(z2)R
]

in the second term on the right hand side of (250) by (251) leads to

E

[

s
H
1 Q̂(z2)R̂s2φM

]

= E

[

s
H
1 Q̂(z2)Rs2φM

]

−E

[

s
H
1 Q̂(z2)R̂s2φMα(z2)

]

−E

[

s
H
1 Q̂(z2)R̂s2φM

] 1

N
tr
[

RQ̄(z2)
]

+O
(

N−N

)

. (252)

By bringing the third term of the right hand side of (252) to the left hand side and using ω(z2)
z2

= 1+ 1
N
tr
[

RQ̄(z2)
]

which

follows from (86) we obtain

E

[

s
H
1 Q̂(z2)R̂s2φM

]ω(z2)

z2
= E

[

s
H
1 Q̂(z2)Rs2φM

]

−E

[

s
H
1 Q̂(z2)R̂s2φMα(z2)

]

+O
(

N−N

)

. (253)

Multiplying by z2
ω(z2)

on both sides of (253) yields

E

[

s
H
1 Q̂(z2)R̂s2φM

]

=
z2

ω(z2)
E

[

s
H
1 Q̂(z2)Rs2φM

]

− z2
ω(z2)

E

[

s
H
1 Q̂(z2)R̂s2φMα(z2)

]

+O
(

N−N

)

. (254)

According to Lemma 13 the expectation and the variance of α(z2) in (136) decay with E[α(z2)] = O(N−1) and var[α(z2)] =

O(N−1). Hence, E
[

|α(z2)|2
]

= var[α(z2)]+E[α(z2)]
2 = O(N−2) and we can upper-bound the second term on the right hand

side of (254) using the Cauchy-Schwarz inequality

E

[

s
H
1 Q̂(z2)R̂s2φMα(z2)

]

≤
√

E

[

∣

∣

∣
sH
1 Q̂(z2)R̂s2φM

∣

∣

∣

2
]

E
[

|α(z2)|2
]

= O
(

N−1),

and (254) simplifies to

E

[

s
H
1 Q̂(z2)R̂s2φM

]

=
z2

ω(z2)
E

[

s
H
1 Q̂(z2)Rs2φM

]

+O
(

N−1
)

. (255)

By definition the resolvent Q̂(z2) converges to its deterministic equivalent Q̄(z2) in (85). Hence, the expectation in (167) in

Lemma 16 is obtained by replacing Q̂(z2) with Q̄(z2) in (255) according to

E

[

s
H
1 Q̂(z2)R̂s2φM

]

=
z2

ω(z2)
s
H
1 Q̄(z2)Rs2+O

(

N−1),

since E

[

sH
1 Q̂(z2)Rs2φM

]

= sH
1 E

[

Q̂(z2)φM

]

Rs2.

APPENDIX N

PROOF OF LEMMA 17

A. Variance

The variance var
[

sH
1 Q̂(z1)RQ̂(z2)s2φM

]

can be upper-bounded by applying the Nash-Poincaré inequality

var
[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

≤
M
∑

i=1

N
∑

j=1

(

E

[

∣

∣

∣

∣

∂

∂Xij
s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2
]

+E

[

∣

∣

∣

∣

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2
])

, (256)

where the first order derivative with respect to Xij is given by

∂

∂Xij
s
H
1 Q̂(z1)RQ̂(z2)s2φM =−s

H
1 Q̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)s2φM

−s
H
1 Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)s2φM+O

(

N−N

)

,

(257)

and the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)s2φM =−s

H
1 Q̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)s2φM

−s
H
1 Q̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)s2φM+O

(

N−N

)

.

(258)

Using Jensen’s inequality we can upper-bound the squared absolute value of the first order derivative with respect to Xij in

(257) by
∣

∣

∣

∣

∂

∂Xij
s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

∣

s
H
1 Q̂(z1)R

1/2 eix
H
j

N
R

H/2
Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

∣

s
H
1 Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
Q̂(z2)s2φM

∣

∣

∣

∣

∣

2

+O
(

N−N
)

(259)
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as well as the squared absolute value of the first oder derivative with respect to X∗
ij in (258) by

∣

∣

∣

∣

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2

≤2

∣

∣

∣

∣

s
H
1 Q̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2

+2

∣

∣

∣

∣

s
H
1 Q̂(z1)RQ̂(z2)R

1/2xje
T
i

N
R

H/2
Q̂(z2)s2φM

∣

∣

∣

∣

2

+O
(

N−N

)

.

(260)

It can be observed in (259) and (260) that

M
∑

i=1

M
∑

j=1

E

[

∣

∣

∣

∣

∂

∂Xij
s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,
M
∑

i=1

M
∑

j=1

E

[

∣

∣

∣

∣

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)s2φM

∣

∣

∣

∣

2
]

≤ O
(

N−1
)

,

and as a direct consequence the variance in (256) decays with var
[

sH
1 Q̂(z1)RQ̂(z2)s2φM

]

≤ O(N−1) which coincides with the

variance in (170) in Lemma 17.

B. Expectations

In order to derive the expectation in (169) we use the expression of the sample covariance matrix R̂ in (103) and apply the

integration by parts formula

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

=
M
∑

i=1

N
∑

j=1

E

[

Xijs
H
1 Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

]

=

M
∑

i=1

N
∑

j=1

E

[

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

]

,

(261)

where the first order derivative with respect to X∗
ij is given by

∂

∂X∗
ij

s
H
1 Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM =−s

H
1 Q̂(z1)R

1/2xje
T
i

N
R

H/2
Q̂(z1)RQ̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

−s
H
1 Q̂(z1)RQ̂(z2)R

1/2xje
H
i

N
R

H/2
Q̂(z2)R

1/2 eix
H
j

N
R

H/2
s2φM

+s
H
1 Q̂(z1)RQ̂(z2)R

1/2 eie
T
i

N
R

H/2
s2φM+O

(

N−N

)

.

(262)

Substituting (262) into (261) and computing the double sum yields

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

=−E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

−E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

1

N
tr
[

RQ̂(z2)
]

]

+E

[

s
H
1 Q̂(z1)RQ̂(z2)Rs2φM

]

+O
(

N−N

)

.

(263)

Using the definition of α(z2) in (136) we know that

φM
1

N
tr
[

RQ̂(z2)
]

= α(z2)+
1

N
tr
[

RQ̄(z2)
]

,

which allows to express (263) as

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

=−E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

−E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φMα(z2)

]

−E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

] 1

N
tr
[

RQ̄(z2)
]

+E

[

s
H
1 Q̂(z1)RQ̂(z2)Rs2φM

]

+O
(

N−N

)

.

(264)

Bringing the third term on the right hand side of (264) to the other side and using 1+ 1
N
tr
[

RQ̄(z2)
]

= ω(z2)
z2

which follows

from (86) we obtain

ω(z2)

z2
E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

=−E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

−E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φMα(z2)

]

+E

[

s
H
1 Q̂(z1)RQ̂(z2)Rs2φM

]

+O
(

N−N

)

.

(265)

By adding and subtracting z2IM to E

[

sH
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

and using the definition of the resolvent Q̂(z2) in (85) we can

equivalently express the left hand side of (265) as

ω(z2)

z2
E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φM

]

=
ω(z2)

z2
E

[

s
H
1 Q̂(z1)RQ̂(z2)

(

R̂−z2IM+z2IM

)

s2φM

]

=
ω(z2)

z2
E

[

s
H
1 Q̂(z1)RQ̂(z2)

(

R̂−z2IM

)

s2φM

]

+
ω(z2)

z2
z2E
[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

=
ω(z2)

z2
E

[

s
H
1 Q̂(z1)Rs2φM

]

+ω(z2)E
[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

.

(266)
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Replacing the left hand side of (265) with the expression obtained in (266) and subtracting ω(z2)E
[

sH
1 Q̂(z1)RQ̂(z2)s2φM

]

on

both sides yields

ω(z2)

z2
E

[

s
H
1 Q̂(z1)Rs2φM

]

=−E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

−E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φMα(z2)

]

+E

[

s
H
1 Q̂(z1)RQ̂(z2)(R−ω(z2)IM )s2φM

]

+O
(

N−N

)

.

(267)

Next, we decorrelate the first term on the right hand side of (267) by analyzing the covariance

cov

[

s
H
1 Q̂(z1)R̂s2φM , φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

=E

[

(

s
H
1 Q̂(z1)R̂s2φM

)(◦)
(

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

)(◦)
]

=E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

−E

[

s
H
1 Q̂(z1)R̂s2φM

]

E

[

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

.

(268)

Using the Cauchy-Schwarz inequality we can upper-bound
∣

∣

∣

∣

∣

E

[

(

s
H
1 Q̂(z1)R̂s2φM

)(◦)
(

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

)(◦)
]∣

∣

∣

∣

∣

2

≤E

[

∣

∣

∣

∣

(

s
H
1 Q̂(z1)R̂s2φM

)(◦)
∣

∣

∣

∣

2
]

E

[∣

∣

∣

∣

∣

(

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

)(◦)
∣

∣

∣

∣

∣

2]

=var
[

s
H
1 Q̂(z1)R̂s2φM

]

var

[

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

= O
(

N−3
)

,

(269)

where we have used (168) in Lemma 16 and (165) in Lemma 14 to obtain

var
[

s
H
1 Q̂(z1)R̂s2φM

]

= O(N−1), var

[

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

= O(N−2).

From (269) it follows that the covariance in (268) decays with

cov

[

s
H
1 Q̂(z1)R̂s2φM , φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

≤ O
(

N−3/2
)

,

and we can express the first term on the right hand side of (267) as

E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

= E

[

s
H
1 Q̂(z1)R̂s2φM

]

E

[

φM
1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

+O
(

N−3/2
)

. (270)

Using the previously derived expectations in (167) in Lemma 16 and in (162) in Lemma 14 we can further develop (270) as

E

[

s
H
1 Q̂(z1)R̂s2φM

1

N
tr
[

Q̂(z1)RQ̂(z2)R
]

]

=

(

z1
ω(z1)

s
H
1 Q̄(z1)Rs2

)(

1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

)

+O
(

N−1), (271)

where γ(z1,z2) is defined in (164). Substituting (271) into (267) and multiplying with z2
ω(z2)

on both sides yields

E

[

s
H
1 Q̂(z1)Rs2φM

]

=− z1
ω(z1)

z2
ω(z2)

s
H
1 Q̄(z1)Rs2

(

1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

)

− z2
ω(z2)

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂s2φMα(z2)

]

+
z2

ω(z2)
E

[

s
H
1 Q̂(z1)RQ̂(z2)(R−ω(z2)IM )s2φM

]

+O
(

N−1).

(272)

Inserting Q̄(z2)s2 for s2 and using Q̄(z2) =
ω(z2)
z2

(R−ω(z2)IM )−1 we obtain

E

[

s
H
1 Q̂(z1)RQ̄(z2)s2φM

]

=− z1
ω(z1)

z2
ω(z2)

s
H
1 Q̄(z1)RQ̄(z2)s2

(

1

1−γ(z1,z2)
1

N
tr
[

Q̄(z1)RQ̄(z2)R
]

)

− z2
ω(z2)

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂Q̄(z2)s2φMα(z2)

]

+E

[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

+O
(

N−1).
(273)

By rearranging (273) the quantity of interest in (169) can be expressed as

E

[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

=E

[

s
H
1 Q̂(z1)RQ̄(z2)s2φM

]

+s
H
1 Q̄(z1)RQ̄(z2)s2

γ(z1,z2)

1−γ(z1,z2)
+

z2
ω(z2)

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂Q̄(z2)s2φMα(z2)

]

+O
(

N−1),
(274)

where we have used γ(z1,γ2) in (171). In the following we upper-bound the third expression on the right hand side of (274).

Using Cauchy-Schwarz inequality it can be seen that
∣

∣

∣E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂Q̄(z2)s2φMα(z2)

]∣

∣

∣

2

≤ E

[

∣

∣

∣s
H
1 Q̂(z1)RQ̂(z2)R̂Q̄(z2)s2φM

∣

∣

∣

2
]

E
[

|α(z2)|2
]

,
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where E
[

|α(z2)|2
]

= var[α(z2)]+E[α(z2)]
2 = O(N−2) which follows from Lemma 13 and the definition of α(z2) in (136).

Consequently, the third term on the right hand side of (274) decays as

z2
ω(z2)

E

[

s
H
1 Q̂(z1)RQ̂(z2)R̂Q̄(z2)s2φMα(z2)

]

≤ O
(

N−1
)

,

and can therefore be neglected. Using the deterministic equivalent Q̄(z2) in (85) of the resolvent Q̂(z2) and E

[

Q̂(z)φM

]

=

Q̄(z)+O(N−1) we obtain the expectation in (169) in Lemma 17

E

[

s
H
1 Q̂(z1)RQ̂(z2)s2φM

]

=s
H
1 Q̄(z1)RQ̄(z2)s2+s

H
1 Q̄(z1)RQ̄(z2)s2

γ(z1,z2)

1−γ(z1,z2)
+O

(

N−1
)

=

(

1

1−γ(z1,z2)

)

s
H
1 Q̄(z1)RQ̄(z2)s2+O

(

N−1).
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