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Abstract—This paper considers joint active user detection
(AUD) and channel estimation (CE) for massive connectivity
scenarios with sporadic traffic. The state-of-art method under
a Bayesian framework to perform joint AUD and CE in such
scenarios is approximate message passing (AMP). However, the
existing theoretical analysis of AMP-based joint AUD and CE
can only be performed with a given fixed point of the AMP
state evolution function, lacking the analysis of AMP phase
transition and Bayes-optimality. In this paper, we propose a novel
theoretical framework to analyze the performance of the joint
AUD and CE problem by adopting the replica method in the
Bayes-optimal condition. Specifically, our analysis is based on
a general channel model, which reduces to particular channel
models in multiple typical MIMO communication scenarios. Our
theoretical framework allows ones to measure the optimality and
phase transition of AMP-based joint AUD and CE as well as to
predict the corresponding performance metrics under our model.
To reify our proposed theoretical framework, we analyze two typ-
ical scenarios from the massive random access literature, i.e., the
isotropic channel scenario and the spatially correlated channel
scenario. Accordingly, our performance analysis produces some
novel results for both the isotropic Raleigh channel and spatially
correlated channel case.

I. INTRODUCTION

Recently, under the basic characteristics of mMTC, i.e,

a large number of user devices and sporadic user traffic,

the grant-free access strategy has been considered to allow

the active devices to access the wireless network without a

grant [1], [2], which reduces both the access latency and

signal processing overhead. Accordingly, the base station (BS)

should simultaneously identify all the active user devices under

grant-free random access. Furthermore, the BS is required to

accurately acquire the channel state information for decoding

uplink signals and executing downlink precoding after user

activity detection. Hence, both active user detection (AUD)

and channel estimation (CE) are required at the BS based on

pilot sequences sent by the user devices. Typically, the number

of user devices in mMTC is very large, and thus assigning

orthogonal pilot sequences to all user devices is prohibitive

in practice, motivating the application of non-orthogonal pilot

sequences in such situations. A central problem in the mMTC
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scenario is to jointly perform AUD and CE based on non-

orthogonal pilot sequences.

Different from the sparse detection problem [3], [4], the

joint AUD and CE requires both the support set and the

corresponding amplitudes of the sparse vector, and can be

formulated as a compressed sensing (CS) problem. Several

CS-based solutions have been reported [5]–[9]. In [5], a

dimension reduction method to reduce the pilot sequence

length and computational complexity for joint AUD and

CE has been proposed, which projects the original device

state matrix onto a low-dimensional space by exploiting its

sparse and low-rank structure. To fully utilize the statistical

information of wireless channels, some Bayesian-based CS

methods have been designed to achieve joint AUD and CE

with higher accuracy. Specifically, the authors in [6] proposed

an approximate message passing (AMP)-based joint AUD and

CE strategy based on the randomly generated non-orthogonal

pilot sequences for a massive MIMO system, and the statistical

knowledge of both the channel and user sparsity was modeled

using a prior distribution to facilitate the performance of AMP.

Along this line, the authors in [7] design an AMP-based

algorithm to adaptively detect the active devices by exploiting

the virtual angular domain sparsity of the channels in an or-

thogonal frequency division multiplexing (OFDM) broadband

system. Furthermore, an expectation propagation (EP)-based

joint AUD and CE algorithm was proposed in [8] for massive

access with a single-antenna BS, where the computationally

intractable posterior probability of the involved sparse signals

was approximated by a multivariate Gaussian distribution,

enhancing the performance of joint AUD and CE. In addition,

we have claimed in [9] that the inherent temporal correlations

of both the user channels and the active indicators between

adjacent time slots can be used to enhance both the detection

performance and channel estimation performance.

One critical issue for joint AUD and CE for massive

connectivity is to analyze the performance of user detec-

tion and channel estimation. The AMP algorithm provides a

corresponding theoretical framework called state evolution to

accurately track the performance of AMP in each iteration.

By using state evolution analysis, the authors in [6], [10]

provide analytical characterizations of the missed detection

and false alarm probabilities for device detection and chan-

nel error covariance for channel estimation under a massive

MIMO Raleigh channel assumption. However, although state

evolution provides a theoretical framework for analyzing the

performance metrics of joint AUD and CE, there are some

http://arxiv.org/abs/2206.12541v1


2

critical issues that are left untouched. First, the performance

analysis is based on the fixed point of the state evolution

function, but the connection between the performance and the

specific choices of system parameters such as pilot length,

transmit power, fraction of number of active users and number

of antennas was not established. Second, for specific choices

of system parameters, the AMP iterations are blocked in a

sub-optimal fixed point, so that the Bayes-optimal AUD and

CE performance cannot be achieved via the AMP framework

[11]. The region of the system parameters where the AMP

framework is sub-optimal cannot be measured via the state

evolution analysis in [6], [10]. Finally, some related works

[12], [13] have shown that the performance of AMP exhibits

a phase transition phenomenon where the AMP algorithm

will exhibit disconnect performance variations with variations

of the system parameters, which has not been analyzed for

massive connectivity.

To address the above problems, in this paper, we propose

a theoretical framework to analyze the performance of joint

AUD and CE based on the replica method [14], [15], which

is a classical tool for analyzing large systems that comes

primarily from physics. The proposed framework established

the connection between the system parameters and the per-

formance of joint AUD and CE. Based on that, both the

Bayes-optimal and the AMP achievable mean square error

(MSE) can be predicted, and the region of system parameters

where the AMP algorithm is sub-optimal can be determined. In

addition, the phase transition phenomenon of our system can

be analyzed, which guides the system design for massively

connected networks.

Note that, different from [6], where the performance analy-

sis is performed based on the isotropic Raleigh channel model,

the analysis in this paper is considered based on a more

general channel model following the approach of [16]. Such a

channel model has strong flexibility and reduces to particular

channel models in multiple typical MIMO communication

scenarios, such as the isotropic Raleigh channel model [10],

and the spatially correlated channel model [7], [17], [18], etc.

In particular, our performance analysis produces some novel

results for both the isotropic Raleigh channel and spatially

correlated channel case, and provides verifications for the

analytical results in [6], [10]. Our main contributions can be

summarized as follow.

• First, we consider a general grouping channel model for

the joint AUD and CE scenario. We design a theoretical

framework carefully tailored to our considered scenario

based on the general idea of replica method. Based

on that, we establish relations between the joint AUD

and CE performance metrics and the system parameters:

pilot length, transmit power, fraction of number of active

users and number of BS antennas, under our considered

channel model.

• Second, we analyze the isotropic channel scenario based

on our theoretical framework. Concretely, we prove that

the Bayes-optimal/AMP-achievable joint AUD and CE

performance can be evaluated by a scalar valued function,

which also provides a phase transition diagram. We

further provide the analysis in the asymptotic MIMO

Fig. 1. Our model of the massive device communication network.

regime and prove that the phase transition phenomenon

disappears and the AMP can always achieve Bayes-

optimal performance when the number of BS antennas

is very large.

• Third, we analyze the performance of joint AUD and CE

in the spatially correlated channel case. We prove that

the performance of each user group can be separately

evaluated by a particular free entropy function when

the user groups are in mutually orthogonal subspaces,

implying the per-group processing (PGP) will never bring

the performance loss. In addition, we show that the

spatially correlated channel is more likely to promote

a phase transition compared with the isotropic channel,

due to the small number of subspace dimensions and

corresponding antenna gains, leading that there will be

a performance gap between AMP and Bayes-optimal

performance. However, the pilot length required to step

over the phase transition can be significantly reduced in

that case.

II. SYSTEM MODEL

A. Massive Random Access Scenario

We consider a uplink massive random access scenario in a

single-cell cellular network with N user devices. Each user is

equipped with a single antenna, and the BS is equipped with

M antennas. The user traffic is assumed to be sporadic, i.e.,

most of user devices are idle at any given time.

Following the approach of [16], in this paper, we con-

sider the following channel model. We suppose that N users

are divided into G groups based on the similarity of their

covariance matrixes, where each group has Kg users and

the number of users is assumed same in each group for

concise, i.e., Kg = K = N/G. Our model of the massive

device communication network is shown in Fig. 1. We denote

hgk ∈ C
M×1 as the channel response of kth user in the group

g. We further assume that users in the same group have an

identical channel probability density function (PDF) denoted

as Qg(hkg) = CN (hkg ;0, Cg) with covariance matrix Cg.

For the kth user in the group g, the user state, i.e., active

or idle, is characterized by an activity indicator, denoted as
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agk, i.e., agk = 1 if it is active and agk = 0 otherwise. We

denote fkg ∈ C
T×1 as the non-orthogonal pilot sequence that

is assigned to the kth user in the group g with independent

and identically distributed (i.i.d.) components generated from

a complex Gaussian distribution with zero mean and variance

1/T , so that the pilot sequence has a unit norm1. Accordingly,

the overall channel input-output is

Y = FS +W =
∑

g,k

agkfgkh
T
gk +W , (1)

where F ∈ CT×N , [f1, . . . ,fGK ] is the pilot matrix, S ∈
CN×M , [s11, . . . , sGK ]T with sgk ∈ CN×1 , agkhgk, and

W is the additive white Gaussian noise (AWGN) matrix with

i.i.d. elements distributed as CN (0, σ2
w). Each user device has

a constant transmit power Pt, which is absorbed into the large-

scale fading of the channel coefficients in (1) for concise.

We assume that the user devices are synchronized and each

user decides whether or not to access the channel with a

probability ρ in an i.i.d. manner [6], [7], [10], [19], and we

further assume the fraction of active users ρ and the PDF

Qg(hkg) of the kth user channel in the group g are known

for the BS2. As a consequence, the corresponding PDF of the

matrix S can be formulated as

p(S) =

G
∏

g=1

K
∏

k=1

[(1− ρ)δ(sgk) + ρQg(sgk)]. (2)

Based on our model (1) and the prior distribution of the

transmitted signals (2)3, our task is to identify the active users,

i.e., determine the active indicator agk for each user, as well

as estimate the corresponding channel coefficients hgk for the

active users.

Remark: Note that our channel model assumption has a

strong flexibility and reduces to particular channel models in

multiple typical MIMO communication scenarios, such as the

isotropic Rayleigh fading channels [6], [10], where the channel

coefficients of each user device are i.i.d., and the spatially

correlated channels [7], [17], [18], where different user groups

are sufficiently well separated in the angular domain, and

the channel covariance matrixes exhibit a low rank structure.

We also note that although we consider the case where each

group has the same number of users and the fraction of active

users for each group is also the same, our following proposed

theoretical framework can be easily extended to the case where

the active ratio and user number are different for each group.

Based on our general channel model (2), in the following,

we propose a novel theoretical framework by adopting replica

method [14], [15] to provide phase transition analysis, Bayes-

optimality analysis of our scenario, and our theoretical frame-

work can also provide the performance prediction of the AMP-

1In the asymptotic regime that we consider, the pilot sequences have an
unit power.

2Note that the parameters learning strategy under mMTC scenario has been
considered in the related work [7], [20] based on the expectation-maximization
method, which can be easily extended under our model. Since we focus on
the theoretical analysis under our framework, the parameters learning issue is
beyond the scope of this paper

3Note that we assume joint AUD and CE is performed within one coherence
time so that the channel coefficients remain unchanged.

based joint AUD and CE, which is the state-of-art algorithm

under the Bayesian framework.

III. REPLICA ANALYSIS ON JOINT AUD AND CE

Our theoretical framework is based on statistical physics.

In the statistical physics literature, the free entropy of a

system reflects the macro performance that characterizes some

thermodynamic properties of the system [15]. Some related

works in the signal processing literature have also shown that

evaluating the fixed point of free entropy function provides the

minimum MSE (MMSE) prediction for signal recovery and

the achievable MSE for the AMP framework [12], [13]. For

the massive connectivity scenario, evaluating the free entropy

function of our system (1) provides an analytic tool to measure

the performances metrics of joint AUD and CE.

Towards this end, we adopt the replica method in this paper

to evaluate the free entropy function of our system. The replica

method [14], [15], which is a classical tool in the statistical

physics literature, provides an efficiency way to reduce the

calculation of a certain free entropy into an optimization

problem over specific covariance matrices. Such a reduction

is based on a set of typical replica assumptions that include

the self-averaging property, the validity of “replica trick”, the

ability to exchange certain limits and the replica symmetry

[11]. It has been shown in many related works that the

replica method provides correct predictions on many typical

applications, such as signal processing [21] and physical layer

communications [22], [23].

Our analysis based on the replica method framework [11] is

considered under a certain asymptotic regime with K → ∞,

T → ∞ and a fixed ratio T/K → α. Next, we provide the

background of the statistical physics literature and obtain the

free entropy function with respect to the system parameters

under our scenario via replica method. Although these system

parameters can not be infinity in the practice, we still utilize

the asymptotic regime to facilitate analysis, since the system

parameters are typically large in the massive connectivity.

Authors in [6] have shown that the recovery performances in

the practical settings match the theoretical results in the large

system limit.

A. Free Entropy Function Derivation via Replica Method

Under the statistical physics literature, a probabilistic infer-

ence approach to reconstruct the transmitted signal S aims to

sample X from the following posterior distribution based on

(1), given by

p(X|Y ) =
p(X)

Z

T
∏

t=1

exp
(

−(yt − ftX)∆−1(yt − ftX)H
)

πM |∆|
,

(3)

where ∆ , σ2
wI, Z is the partition function of this distribu-

tion, and p(X) =
∏

g,k[(1−ρ)δ(xgk)+ρQg(xgk)], which can

be regarded as the prior distribution of X . Under the Bayes-

optimal assumption, the prior distribution over X matches the
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Φ(E) =− Tr

(

(

∆+
EG

α

)−1
(

∑

g

ρCg − EG

))

− αM − α log

∣

∣

∣

∣

∆+
EG

α

∣

∣

∣

∣

+
∑

g

∫

dsg[(1− ρ)δ(sg) + ρQg(sg)]

∫

Dz log

{∫

dxg[(1− ρ)δ(xg) + ρQg(xg)]

exp

{

−xH
g (∆+

EG

α
)−1xg + 2R

(

xH
g [(∆+

EG

α
)−1sg + (∆ +

EG

α
)−

1
2 z]

)}}

.

(7)

PDF of transmitted signal p(S). As a consequence, Z can be

formulated as

Z =

∫

dX

T
∏

t=1

1

πM |∆|
e−(yt−ftX)∆−1(yt−ftX)H

×
G
∏

g=1

K
∏

k=1

[(1− ρ)δ(xgk) + ρQg(xgk)], (4)

where ft is the tth row of the pilot matrix F . We note that

above integration is performed over each element of matrix

X and such a integral expression will be used throughout this

paper. According to the statistical physics literature, the free

entropy is defined as Φ , logZ . Utilizing the self-averaging

assumption [14], [15]: lim
N→∞

Pr
[∣

∣

∣

Z
N

− E(Z)
N

∣

∣

∣ ≥ θ
]

= 0, for

any tolerance θ > 0, the free entropy can be reformulated

as Φ = 1
N
EF ,S,W (logZ). Hence, to determine the free

entropy function, one requires to compute the average of the

log-partition function EF ,S,W (logZ). Based on the standard

procedure of the replica method [11], we can alternatively

determine the average log-partition function by the following

relation EF ,S,W (logZ) = lim
n→0

1
n
log (EF ,S,WZn). Accord-

ing to the replica trick in [11], [14], [15], the quantity

EF ,S,WZn is carried out as if n were an integer, and we

take the fact that n is a real number into consideration after

obtaining a manageable enough expression. As a consequence,

the free entropy can be formulated as

Φ = lim
N→∞

lim
n→0

1

Nn
log (EF ,S,WZn) . (5)

Based on this, we have the following theorem.

Theorem 1: Define the reconstruction MSE matrix over the

system (1) as E , 1
G

∑

g Eg , where

Eg ,
1

K

K
∑

k=1

(x̂gk(Y )− sgk) (x̂gk(Y )− sgk)
H
, (6)

where [x̂11(Y ), . . . , x̂GK(Y )] = X̂ is the sample of the

posterior distribution p(X|Y ) with given Y defined in (3).

Under our certain asymptotic regime defined in Sec. III, and

using the standard assumptions of the replica method, i.e., the

self-averaging assumption, the replica-symmetry assumption,

and the replica trick in (5), the free entropy (5) can be

calculated by optimizing a function with respect to E , which

is given in the equation (7). We note that the term Dz is a

complex Gaussian integration measure.

Proof 1: Please see the appendix A.

We call the function (7) as free entropy function4. According

to [12], [13], optimizing E that maximizes the free entropy

function (7) corresponds to the minimum MSE (MMSE) of

specific choices of system parameters, i.e., ρ, α, Cg , ∀g, in

the Bayes-optimal condition. Setting the first order derivative

of Φ(E) with respect to the matrix E into zero, we get the

following equation.

E =
1

G

∑

g

Esg,z

[(

ηg

(

sg + (∆+
EG

α
)

1
2z

)

− sg

)

×

(

ηg

(

sg + (∆+
EG

α
)

1
2z

)

− sg

)H
]

, (8)

where z obeys CN (z;0, I) and ηg(·) is the Bayes-optimal

denoiser of the noisy measurement ŝg , sg + (∆ + EG
α
)

1
2z

with the latent signal sg distributed as (1−ρ)δ(sg)+ρQg(sg).
We note that ηg(·) is the corresponding MMSE denoiser of

noisy measurement ŝg.

We can also observe from (8) that there is a close match

between the fixed point of the AMP state evolution function

in [24] and the stationary point of the free energy function

(7). In addition, according to [12], [13], the AMP algorithm

will be blocked by a particular local maximum point of

(7). This means that seeking the stationary points of the

free entropy function (7) also provides accurate prediction of

the performance of the AMP algorithm. We remark that the

recovery MSE of AMP is sometimes sub-optimal since only

the global maximum point that maximizes the free entropy

function (7) corresponds to the MMSE, and we call it AMP-

achievable MSE.

In the following, we establish connections between the fixed

point of the AMP state evolution function predicted by the

free entropy function (7), and the performance metrics of joint

AUD and CE. Typically, we adopt the likelihood ratio test

(LRT) detection for AUD, and adopt MMSE criterion for CE.

We note that the author in [25] claims that, in the case of large

i.i.d. zero-mean Gaussian sensing matrix, the AMP methods

exhibit fast convergence. Since in the massive access literature,

the system is large enough and the i.i.d. zero-mean Gaussian

sensing matrix is adopted, guaranteeing the convergence of the

AMP algorithm in the following sections.

B. Prediction of AMP-based Joint AUD and CE

After executing the AMP algorithm on the transmitted signal

Y in (1), the overall estimation problem is decoupled as a

4Since the free entropy function is closely related to the free entropy, we
also use Φ to represent it.



5

Φ(τ) = − αM

(

σ2
w

1
α
τ + σ2

w

+ log(σ2
w +

1

α
τ)

)

+M
∑

g

(1− ρ)σ2
g

σ2
g + σ2

w + 1
α
τ

+
∑

g

∫

Dzρ log



(1 − ρ) exp

{

−
||z||2σ2

g

σ2
w + 1

α
τ

}

+ ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M




+
∑

g

∫

Dz(1 − ρ) log



(1− ρ) exp

{

−
||z||2σ2

g

σ2
g + σ2

w + 1
α
τ

}

+ ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M


 .

(14)

sequence of vector-valued estimation problems. For the users

in the group g, the decoupled signal model is ŝg , sg +
Σ

1
2z, where we define Σ , ∆+ E⋆G

α
as the equivalent noise

covariance matrix. The E⋆ denotes the fixed point of AMP

state evolution function that fulfills equation (8), so that it is

also a stationary point of the free entropy function (7). Note

that we have dropped the subscript about the user indicator k,

much as the following expressions, since all the users within

a group share a common probabilistic model.

As a consequence, for the user devices in the group g, the

AUD rule based on log-likelihood ratio (LLR) with a threshold

lg can be formulated as

LLR(ŝg) = log

(

p(ŝg|ag = 1)

p(ŝg|ag = 0)

)

=ŝHg Σ̃ŝg + log
|Σ|

|Cg +Σ|
> lg, (9)

where we define Σ̃ , Σ
−1 − (Cg +Σ)−1

. Accordingly, the

missed detection and false alarm probabilities PM and PF can

be obtained via

PF = Pr
{

ŝHg Σ̃ŝg > l′g|ag = 0
}

, (10)

PM = Pr
{

ŝHg Σ̃ŝg < l′g|ag = 1
}

, (11)

where l′g , lg − log |Σ|+ log |Cg +Σ|.
We then consider the performance analysis for CE. Since

the CE for the active users are performed after the AUD, we

thus consider the mean of conditional posterior distribution

p(sg|ŝg, ag = 1) as the channel estimator for active user

devices. Based on the definition of noisy measurement ŝg,

after performing the AMP algorithm, the CE for the active

user devices in the group g is

ĥg =
(

Σ
−1 + C−1

g

)−1
Σ

−1ŝg. (12)

For the ease of analysis, we only consider the CE error in

the case where the AUD is executed perfectly. Under such a

circumstance, the CE error matrix can be formulated as

E

[

(

sg − ĥg

)(

sg − ĥg

)H
]

=
(

C−1
g +Σ

−1
)−1

, (13)

where the expectation is taken over p(sg, ŝg|ag = 1). As

a consequence, the performance of joint AUD and CE can

be analyzed after obtaining the stationary point E⋆ of the

free entropy (7). We note that the equation (7) and the

corresponding performance of joint AUD and CE in this

section is based on the general channel model (2). In the

following sections, we will show our theoretical framework

can reduce to two typical scenarios in the massive random

access literature, i.e., the isotropic channel scenario and the

spatially correlated channel scenario. Concretely, in Sec IV,

we provide the performance analysis of the isotropic channel

case. While in the Sec. V, we provide the performance analysis

of the spatially correlated channel case.

IV. ISOTROPIC CHANNEL

In this section, we consider a typical scenario in wireless

communications, where there are many small reflectors around

the BS, and the Rayleigh fading MIMO channel with isotropic

channel is assumed [6], [10]. In this case, the Rayleigh

channel components of each user group are assumed to be

i.i.d. complex Gaussian with zero means and unit variances

across all the BS antennas, and function Qg(hg) in the

prior distribution over the channel in the gth user group is

Qg(hg) = CN (hg ; 0, σ
2
gI), where σ2

g is the product of the

large scale coefficient and the user transmitted power. In the

following, we will analyze the performance of joint AUD and

CE under this case by first deriving the corresponding free

entropy function as well as its expression under an asymptotic

massive MIMO regime. Then, the performance analysis of

joint AUD and CE is given.

A. Free Entropy Function

Before deriving the concrete free entropy function, we note

that it is proved in [6] that the equivalent noise covariance

matrix in the AMP state evolution iterations always in the

form of a diagonal matrix with identical diagonal entries in

the isotropic Rayleigh channel case, so that the fixed point of

the state evolution function (8) remains the same form. We

therefore restrict the domain of E in the form of E = τG−1
I,

and the newly derived free entropy function with respect to τ
is in the following theorem.

Theorem 2: With the assumption of the isotropic Rayleigh

channel, i.e., Qg(sg) = CN (sg; 0, σ
2
gI) and the matrix E

is diagonal with identical entries, i.e., E = τG−1
I, the

free entropy function can be reformulated as a scalar valued

function, given by (14).

Proof 2: Please see the appendix B.

Note that the MMSE under the isotropic channel case can

be derived by calculating the global maximum point of the free

entropy function (14), and the fixed point of the AMP state
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evolution can be predicted by the largest τ that associated with

a local maximum of (14). As we shall see in the following Sec.

IV-C, there exists a region of system parameters, i.e., pilot

length L, transmit power Pt, fraction of number of active user

devices ρ and number of BS antennas M , where the MSE of

AMP is blocked by a local maximum point, so that the AMP

algorithm is suboptimal. However, the following proposition

indicates that when considering an asymptotic MIMO regime

with the number of BS antennas go to infinity, the region

where the AMP algorithm is suboptimal vanishes.

Proposition 1: In an asymptotic massive MIMO regime,

i.e., M → ∞, by neglecting some constants and the irrelevant

factor, the free entropy function (14) is reduced to

Φ(τ) =−
ασ2

w
1
α
τ + σ2

w

− α log(σ2
w +

1

α
τ)

− ρ
∑

g

log(1 +
σ2
g

σ2
w + 1

α
τ
), (15)

which has and only has one local maximum point, and can be

derived by calculating the equation

τ = ρ
∑

g

(

σ−2
g +

(

1

α
τ + σ2

w

)−1
)−1

. (16)

Proof 3: Please see the appendix C.

Therefore, with an asymptotic number of BS antennas, since

there is only one local maximum point, the AMP algorithm

always achieves Bayes-optimal performance in the isotropic

Rayleigh channel case, and the fixed point of AMP state

evolution can be derived by solving (16).

B. Prediction of AMP-based AUD and CE

Define τ⋆ as the largest stationary point of (14) that associ-

ated with the fixed point of the AMP state evolution. Together

with (9), the LLR in the isotropic channel case is

LLR(ŝg) = M log
σ2
w + 1

α

σ2
g + σ2

w + 1
α
τ⋆

+ ŝg
H

(

(σ2
w +

1

α
τ⋆)−1 − (σ2

g + σ2
w +

1

α
τ⋆)−1

)

ŝg. (17)

Obviously, the corresponding detection sufficient statistic is

||ŝg||2. As a consequence, we have

PD(M) = γ

(

M,

(

σ2
g + σ2

w +
1

ατ⋆

)−1

l′g

)

Γ−1(M), (18)

PF (M) = γ

(

M,

(

σ2
w +

1

ατ⋆

)−1

l′g

)

Γ−1(M). (19)

where γ(M, ·)Γ(M)−1 is the CDF of the Chi-square distribu-

tion with 2M degrees of freedom, and

l′g , σ−2
g

(

σ2
w +

1

ατ⋆

)(

σ2
g + σ2

w +
1

ατ⋆

)

(

lg −M log
σ2
w + 1

α
τ⋆

σ2
g + σ2

w + 1
α
τ⋆

)

,

with arbitrary threshold lg. Further, in the asymptotic

massive MIMO regime, as M go to infinity, we have

limM→∞ PF (M) = PM (M) = 0.

As for the CE performance, according to (12) and E =
τG−1

I, after performing the AMP algorithm, the CE error for

an active user in the group g is

E

[

(

sg − ĥg

)(

sg − ĥg

)H
]

= ǫI, (20)

where ǫ =
(

(

σ2
w + 1

α
τ⋆
)−1

+ σ−2
g

)−1

.

Therefore, in the isotropic Rayleigh channel, perfect AUD

and the Bayes-optimal channel estimation can be achieved as

long as the number of antennas is large enough. We also note

the above results validate and extend the analytical results in

[6]. Besides, studying the free entropy function (14) provides

a phase transition diagram and an optimality analysis of the

isotropic channel case with a finite number of BS antennas,

as shown in the following section.

C. Verification in the Isotropic Channel Scenario

In this section, we provide numerical examples to verify our

results based on the replica method in the isotropic channel

scenario. Specifically, we consider that each user accesses

the channel with a probability ρ = 0.1 and we assume the

served user devices have been divided into 5 user groups

and the distance dg between each user group is randomly

distributed in the regime [0.1, 1]km. The path loss model

of the wireless channel for each user group g is given as

PLg = −128.1− 36.7 log10(dg) in dB. Since, we assume no

power adaption, we denote the transmit power for each user as

Pt, and we have σ2
g = Pt×PLg. We assume the bandwidth of

the wireless channel are 1MHz and the power spectral density

of the AWGN at the BS is −169dBm/Hz. The

1) Phase Transition of the Free Entropy Function: First,

we examine the phase transition of the free entropy function

and demonstrating the optimal recovery MSE and the AMP-

achievable MSE under our scenario, showing that for different

settings of the system parameters, i.e., Pt and α, the MSE

performance can be divided into some performance regions.

Specifically, we can notice that in the Fig. 2(c), there exists

phase transitions and the MSE performance can be divided

into several regions. In the first region, with α = 0.525, the

free entropy function has only one local maximum, indicating

the optimal MSE performance, and the AMP-achievable MSE

coincide. In the second region, with α = 0.550, the second

local maximum point with a lower function value than the

first local maximum of the free entropy function appears, in-

dicating the unachievable MSE point. In the third region, with

α = 0.575, the smaller local maximum point leads to a larger

value of the free entropy function, which indicates the MMSE

under such a choice of parameters. However, a larger local

maximum point blocks the MSE performance of AMP, since

it always converges to the local maximum point associated

with the largest MSE. Hence, in this region, there exists a gap

between the AMP-achievable MSE and the MMSE. Finally, in

the region with α = 0.600 ∼ 0.675, one local maximum point

disappears, and the AMP-achievable MSE and the MMSE
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(a) Pt = 18dBm. (b) Pt = 23dBm. (c) Pt = 33dBm.

Fig. 2. Free entropy as a function of MSE with M = 2 BS antennas under different settings of α and Pt. (The “red cross” denotes the MMSE point, the
“red circle” denotes the AMP-achievable MSE point, the “red square” denotes the unachievable local maxima MSE point, and such marks will also be used
in the following figures.)

(a) M = 4. (b) M = 8. (c) M → ∞.

Fig. 3. Free entropy as a function of MSE with Pt = 33dBm transmit power under different settings of α and M .

coincide again. We can intuitively infer that there exists a

hard threshold between the latter two regions, i.e, when the

pilot length exceeds the threshold, the local maximum point

associated with the largest MSE τ discards, and the AMP

algorithm converges to the local maximum associated with a

lower MSE, leading that there is a phase transition of the MSE

performance of AMP.

We remark that in order to reduce the gap between the

AMP-achievable MSE and the MMSE in the case that the

AMP algorithm is sub-optimal, one can consider the idea of

seeding matrix introduced in [11] in the design of pilot matrix

F , which is beyond the scope of this manuscript.

In addition, Figs. 2(a)-2(c) demonstrate the free entropy

as a function of MSE with M = 2 BS antennas, and

Figs. 2(a)-2(c) demonstrate the free entropy function with

Pt = 33dBm transmit power. We can notice that the region

where AMP is suboptimal persists, but becomes smaller and

eventually disappears as the number of BS antennas increases

and transmit power decreases. Interestingly, we find that in

the isotropic channel scenario, M = 8 antennas is enough to

avoid phase transition in the case with the transmit power is

lower than Pt = 33dBm.

Fig. 4. Detection performance prediction of AMP with different settings of
pilot length.

2) Performance Analysis of AUD: We then provide numer-

ical results to analyze the missed detection and false alarm
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probabilities in the isotropic channel scenario. The number

of user devices is set as N = 10000. Fig. 4 demonstrates

the prediction of AMP-based AUD by equation (19) and (18)

versus pilot length, with τ⋆ predicted by the free entropy

function. The simulation curves are depicted by the empirical

AMP algorithm [13], [26]. Different from the standard AMP

algorithm, the empirical AMP algorithm adopts an empirical

state evolution function in the iterations, substituting the stan-

dard state evolution function in the AMP algorithm, in order

to avoid the complex expectation calculations. The numerical

results shows that our predicted performances are consistent

with that of the empirical AMP algorithm for most of the

settings. The empirical AMP and the proposed theoretical

prediction have the similar tendency and there exists phase

transition phenomenons in both of them. We notice that when

phase transition occurs, the required length of pilot sequences

for our prediction is slightly shorter than that for the empirical

algorithm. Since the prediction error is about 0.04 over the

length of pilot sequence, we think the theoretical results

can provide a prediction for the detection performance in

the practice. We also note that our predicted performance

corresponding to the AMP achievable MSE provides a bound

of the performance of the empirical AMP algorithm. The

performance loss of the empirical AMP algorithm is because

that the state evolution function that fulfills the fixed point

condition (8) of the free entropy function is substituted by an

empirical one.

3) Performance Analysis of CE: The results of the CE error

prediction is demonstrated in Fig. 5. We can observe that the

CE error prediction performance is consistent compared with

the detection error prediction. Our numerical results show that

when the phase transition occurs, the performances of the joint

AUD and CE are highly improved. The predicted performance

corresponding to the AMP achievable MSE reveals the min-

imum length of pilot sequences to make the AMP algorithm

accomplish the phase transition. We think this is a guide

to how long pilot sequences are needed when designing the

system. For the prediction error that may occur when using the

empirical AMP algorithm in the practice, we can appropriately

increase the number of pilots to ensure that the phase transition

occurs.

V. SPATIALLY CORRELATED CHANNEL

In this section, we concern another typical channel scenario

in the wireless communications literature, where the scattering

is localized around the user devices and the BS is elevated

and thus has no scatterers in its near filed [27], resulting

in the spatially correlated channel. Assuming no line-of-sight

propagation, the channel of each user k in the group g is

distributed as Qg(hg) = CN (0, Cg), where Cg = UgΛgU
H
g

with a rank rg ≪ M . Considering the number of BS antennas

is sufficiently large, the Λg is approximated diagonal [17],

[18].

We further suppose that different user groups are sufficiently

well separated in the angle of arrival (AoA) domain and the

angular spread (AS) of each group is sufficiently small. Ac-

cordingly, we assume that channels coefficients in all the user

groups are in different mutually orthogonal subspaces such

that UH
g Uj = 0, for j 6= g. We note that although directly

achieving the mutually orthogonal subspaces is too restrictive,

some user scheduling strategies can be adopted to guarantee

the user groups in mutually orthogonal subspaces are served

simultaneously [16]. In the following of this section, we will

see that the above spatially correlated channel assumption

reduces the expression of the free entropy function (7) and

provides some novel propositions for joint AUD and CE.

A. Free Entropy Function

Before deriving the free entropy function in the spatially

correlated channel scenario, we recall that the matrix E is

defined as EG =
∑

g Eg, where Eg is the corresponding

recovery MSE matrix of each user group g. As a consequence,

we have the following lemma.

Lemma 1: Under the spatially correlated channel assump-

tion, i.e., UH
g Uj = 0, for j 6= g, all the stationary points

of the free entropy function (7) fulfill the equation: E(s) =
∑

g UgΞ
(s)
g UH

g for some symmetric positive semidefinite ma-

trix Ξ
(s)
g .

Proof 4: Please see the appendix D.

Since the statistical characteristics of our considered sce-

nario are all reflected in the stationary points of the free

entropy function, we restrict the form of the matrix E as

E =
∑

g UgΞgU
H
g . As a consequence, the following theorem

holds.

Theorem 3: Under the spatially correlated channel assump-

tion, the free entropy function (7) can be decoupled into

a summation of G independent free entropy functions, i.e.,

Φ(E) =
∑G

g=0 Φg(Eg), where Φ0(E0) is a constant, and

the specific expression of each Φg(Eg) is formulated in the

equation (21).

Proof 5: Please see the appendix E.

Accordingly, the recovery MSE of each user group can be

evaluated separately via the equation (21), indicating that the

transmitted signals from users outside one group will not affect

the reconstruction within such a group. In the following, the

performance analysis of joint AUD and CE in the spatially

correlated channel scenario will be provided based on the

Theorem 3.

B. Prediction of AMP-Based joint AUD and CE

According to the Lemma 1, we define Ξ
⋆
g, ∀g as the matrixs

that associated with the fixed point E⋆ of AMP state evolution.

We further restrict the structure of the matrix Ξ
⋆
g to be

diagonal5, with the mth diagonal element denoted as ξ⋆g,m. By

combining Theorem 3 with Lemma 1, the matrix Ξ
⋆
g can be

obtained by seeking the local maximum point of the equation

(22), where the quantities ξg,m, λg,m are defined as the mth

element of the diagonal of Ξg and Λg.

5Restricting the matrix Ξ⋆
g into diagonal is reasonable. As proved in [13],

the state of state evolution function always maintains the same structure with
iterations. The initial state of the state evolution in the AMP framework is
always set to be E

(0)
g = E(sgsHg ), and in our situation, we have E

(0)
g =

ρCg = ρUgΛgU
H
g . Hence, Ξ⋆

g will also be diagonal since the matrix Λg

is approximately diagonal in our scenario with a large number of antennas.
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Φg(Eg) = −αTr

(

(

∆+
Eg
α

)−1(
1

α
ρCg +∆

)

)

− α log

∣

∣

∣

∣

∆+
Eg
α

∣

∣

∣

∣

+

∫

dsg[(1− ρ)δ(sg) + ρQg(sg)]

∫

Dz

log

(∫

dxg[(1− ρ)δ(xg) + ρQg(xg)] exp

(

−xH
g (∆+

Eg
α
)−1xg + 2R

(

xH
g [(∆+

Eg
α
)−1sg + (∆+

Eg
α
)−

1
2z]

))

. (21)

Φg(Ξg) =− α

rg
∑

m=1

(

σ2
w

1
α
ξg,m + σ2

w

+ log

(

1

α
ξg,m + σ2

w

))

+

rg
∑

m=1

(1− ρ)λg,m

λg,m + σ2
w + 1

α
ξg,m

+

∫

Dzρ log

[

(1− ρ)

rg
∏

m=1

exp

{

−
|zm|2λg,m

σ2
w + 1

α
ξg,m

}

+ ρ

rg
∏

m=1

1
α
ξg,m + σ2

w

1
α
ξg,m + σ2

w + λg,m

]

+

∫

Dz(1 − ρ) log

[

(1− ρ)

rg
∏

m=1

exp

{

−
|zm|2λg,m

λg,m + σ2
w + 1

α
ξg,m

}

+ ρ

rg
∏

m=1

(

1
α
ξg,m + σ2

w

1
α
ξg,m + σ2

w + λ2
g,m

)]

. (22)
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Pt = 33dBm, M = 8, prediction

Pt = 18dBm, M = 2, simulation

Pt = 18dBm, M = 2, prediction

Fig. 5. Channel estimation performance prediction of AMP with different
settings of pilot length.

Then, we consider the performance analysis of joint AUD

and CE. For AUD, defining sg , UH
g ŝg and together with

(9), the detection sufficient statistic in such a scenario can be

formulated as

T(sg) =

rg
∑

m=1

λg,m|sg,m|2
(

σ2
w + 1

α
ξ⋆g,m

) (

σ2
w + 1

α
ξ⋆g,m + λg,m

) . (23)

and the involved conditional probabilities of sg are given as

p(sg|ag = 1) = CN (sg;0,Λg +∆+
1

α
Ξ

⋆
g),

p(sg|ag = 0) = CN (sg;0,∆+
1

α
Ξ

⋆
g). (24)

As a result, we can then derive the specific functional

forms of the detection performance metrics in the following

proposition.

Proposition 2: The missed detection probability with the

definition PD = Pr{T(sg) > lg|ag = 1} and the false alarm

probability with the definition PF = Pr{T(sg) > lg|ag = 0}

based on the conditional probabilities (24) and the detection

sufficient statistic (23) are given as

PD =

rg
∑

m=1

∏

j 6=m

ωg,j

ωg,j − ωg,m

exp{−ωg,mlg},

PF =

rg
∑

m=1

∏

j 6=m

ω̃g,j

ω̃g,j − ω̃g,m

exp{−ω̃g,mlg}, (25)

where

ωg,m , (σ2
w +

1

α
ξ⋆g,m)λ−1

g,m,

and

ω̃g,m , (σ2
w +

1

α
ξ⋆g,m + λg,m)λ−1

g,m.

Proof 6: Please see the appendix F.

As for the analysis for CE, according to (13), the CE error of

the user group g associated with the mth eigenvalue λg,m can

be formulated as (σ2
w + λg,m + 1

α
ξ⋆g,m)−1.

After that, we can see that the performance of joint AUD

and CE can be predicted by the local maximum point of the

free entropy function (22). The verification of such a result,

a phase transition diagram and an optimality analysis of joint

AUD and CE in the spatially correlated channel scenario will

be shown in the following Sec. V-D.

C. Discussion

Before proceeding, we provide some discussions about our

theoretical results. Multiplying U∗
g for each group by the right

of the received signal Y in the original model (1), we can

obtain G a sub-model expressed as

Y g = F gXg +W g, (26)

where Y g , Y U∗
g , Xg , XU∗

g , W g , WU∗
g and

F g is the corresponding pilot matrix for the user device

for the group g. We note that the free entropy function

of (26) reflecting its statistical performances corresponds to

(22), so that separately using model (26) for each group is

equivalent to jointly processing all the groups with (1), if the

mutually orthogonal subspaces condition holds. Such a per-

group processing (PGP) idea has been successfully adopted
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(a) α = 0.11. (b) α = 0.13. (c) α = 0.15.

Fig. 6. Free entropy as a function of MSE with Pt = 18dBm transmit power under different settings of α in spatially correlated channel scenario. (The “red
cross” denotes the MMSE point, the “red circle” denotes the predicted AMP-achievable MSE point, the “red square” denotes the unachievable local maxima
MSE point, and the “blue triangle” denotes the simulated AMP MSE point.)

in the case of downlink transmission [16] and our theoretical

results provide the theoretical foundations for the PGP strategy

in the uplink joint AUD and CE problem.

Complementally, when the mutually orthogonal condition

does not perfectly hold, by carefully designing the processing

matrix for each group, the PGP strategy can also be applied by

permitting the affordable inter-group inference. According to

the approach in [16], when the BS equipped with a uniform

linear array, the inter-group inference can be absorbed into

the additive noise matrix with independent elements. Hence,

by slightly modifying the free entropy function (22), our

framework can also be adopted to evaluate performance of

joint AUD and CE, where the mutually orthogonal condition

does not perfectly hold.

D. Verification in the Spatially Correlated Channel Scenario

In this section, we provide numerical results to verify the

analysis based on the replica method in spatially correlated

channel scenario. We consider the channel coefficients of

all user groups are in orthogonal subspaces. Without loss

of generality, we investigate the performance analysis results

for one certain user group. We consider the typical spatially

correlated channel model in [27]. For visualization, we assume

the number of BS antennas is M = 64. The path loss model of

the wireless channel, the distribution of the distance between

the BS station and the user devices, the bandwidth the power

spectral density and the total number of user devices are

considered same with that in the settings of the isotropic

channel case.

1) Phase Transition of the Free Entropy Function: We first

consider the center angle of user angle domain is set as 45◦

distributed as a normal distribution with a 1◦ AS, where most

of the power of channel coefficients is concentrated on a

two-dimensional subspace. Figs. 6(a)-6(c) shows the different

MSE performance regions of the free entropy function (22)

in different settings. We can notice that the performance

regions in the spatially correlated channel case is similar

with that in the isotropic channel case. Specifically, Fig.

6(b) demonstrates the performance gap between the AMP-

achievable MSE and the MMSE. The phase transitions appear

in both our prediction and the simulated AMP algorithm.

Differently from the isotropic channel scenario, it is observed

that although there exists a large number of antennas in the

BS, the phase transition phenomenon still exists. Fig. 6 also

shows that our analytical MSE results predicted in the large

system limit and AMP recovery MSE in practical settings, i.e.,

T = 220, 260, 300 and K = 2000 are consistent. Such results

are evidences that our analytical results are valid when the

length of pilot sequences and the number of user devices are

large but finite.

Then, we demonstrate the case where the AS is not very

small, which is more in line with the practical scenario. The

phase transition phenomenons in all the considering settings

can be observed in Fig. 7. With the transmit power increasing,

the phase transition phenomenon is becoming more and more

obvious. In addition, with the AS increases, the number of

the efficient dimensions in the subspace of the user channel

becomes larger and the total energy will be allocated to these

effective dimensions, leading that the phase transition phe-

nomenon is weakened. Such an observation matches our pre-

vious results that the spatially correlated channel is more likely

to promote a phase transition compared with the isotropic

channel. Another observation is that smaller AS is beneficial to

NMSE performance when pilot resources are abundant, while

the pilot resources are scarce, the opposite is true.

2) Performance Analysis of AUD: Fig. 8 depicts the pre-

diction of AMP-based AUD as a function of pilot length

with 1◦ AS. It is observed that the phase transition of the

detection error probabilities appears in both Pt = 13dBm and

Pt = 18dBm settings, which is different from the results in

the isotropic channel case. This is because the energy of a

large number of antennas is concentrated in a small amount

of subspace dimensions, increasing the signal-to-noise ratio in

considered dimensions.

In summary, we note that the spatially correlated channel

promotes the appearance of phase transition compared with the

isotropic channel. This is because the energy of a large number

of antennas is concentrated in a small amount of subspace

dimensions. This reduces the effective dimensions of the BS

antennas, while increasing the power on each dimension.
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Fig. 7. NMSE performance of AMP versus pilot length in different settings of transmit power and AS.

Fig. 8. Detection performance prediction.

Despite that, the pilot length required to step over the phase

transition is highly reduced in the spatially correlated channel

scenario, i.e., about α = 0.14 for the spatially correlated

channel case and about α = 0.625 for the isotropic channel

case with 5 user groups.

VI. CONCLUSION

In this paper, we have provided an analysis of joint AUD and

CE problem under massive connectivity based on the replica

method. Particularly, we have established a novel theoretical

framework under a general channel model that reduces to

multiple typical MIMO channel models. Based on the general

framework, we have analyzed two typical scenarios in massive

connectivity, i.e., the isotropic channel case and the spatially

correlated channel case. We have provided the analysis of the

Bayes-optimility, phase transition, and the predictions of the

performance of joint AUD and CE in both the two cases. In

addition, we have shown that the spatially correlated channel

is more likely to promote a phase transition compared with

the isotropic channel, due to the small number of subspace

dimensions and corresponding antenna gains. However, thanks

to the spatially correlated channel, where all the user group

can be perfectly partitioned, the pilot length required to step

over the phase transition can be significantly reduced.

Some future directions of research are also implied by this

paper. 1) Our theoretical framework was established in the

Bayes-optimal condition, if the condition is not met, what

changes will exist in the analytical results. 2) Exploiting the

potential user grouping information may bring some advan-

tages, and how to design an algorithm to achieve joint user

grouping, AUD and CE. 3) How to design the processing

matrix in the PGP-based strategy for joint AUD and CE.

APPENDIX

A. Proof of Theorem 1

According to the expression of partition function Z in (4),

we notice that Zn can be written as

Zn =

∫

∏

a

dX(a)
∏

a,g,k

(

(1− ρ)δ(x
(a)
gk ) + ρQg(x

(a)
gk )
)

×
∏

t

1

πnM |∆|n
e
−

∑

a
(yt−ftX

(a))∆−1(yt−ftX
(a))H

,

As a consequence, by considering the equation (1), the

average free entropy can be derived as

EZn =

∫

∏

a

dX(a)
∏

a,g,k

(

(1− ρ)δ(x
(a)
gk ) + ρQg(x

(a)
gk )
)

×

∫

∏

g,k

dsgk ((1− ρ)δ(sgk) + ρQg(sgk))
∏

t

1

πnM |∆|n
βt.

(27)

The expectation is taken over F , S, and W , and the quantity

βt is defined as

βt , EF ,W

(

exp(−σ−2
w

∑

a

||v
(a)
t ||2)

)

,

where we define

v
(a)
t ,

∑

g,k

ftgksgk −
∑

g,k

ftgkx
(a)
gk +wt, a = 1, . . . , n.

We note that ftgk is the corresponding element in the vector
ft, and the vector wt is the corresponding noise vector. Since
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1 =

∫

dΘ exp

(

∑

g

Tr

(

∑

a

Q̂(a)H
g

(

K

2
Q(a)

g −
1

2

∑

k

x
(a)
kg x

(a)H

kg

)

+
∑

a

Q̂(a)T
g

(

K

2
Q(a)∗

g −
1

2

∑

k

x
(a)∗
kg x

(a)T

kg

)

−
∑

a 6=b

T̂ (ab)H
g

(

K

2
T (ab)
g −

1

2

∑

k

x
(a)
kg x

(b)H

kg

)

−
∑

a 6=b

T̂ (ab)T
g

(

K

2
T (ab)∗
g −

1

2

∑

k

x
(a)∗
kg x

(b)T

kg

)

−
∑

a

M̂(a)H
g

(

KM(a)
g −

∑

k

x
(a)
kg s

H
kg

)

−
∑

a

M̂(a)T
g

(

KM(a)∗
g −

∑

k

x
(a)∗
kg s

T
kg

)))

, (30)

EZ
n =

∫

dΘ exp

(

Kn
∑

g

Tr

(

1

2

(

Q̂H
g Qg + Q̂T

g Q
∗
g

)

−
1

2
(n− 1)

(

T̂ H
g Tg + T̂ T

g T ∗
g

)

−
(

M̂H
g Mg + M̂T

g M
∗
g

))

)

×
∏

t

βt

πMn|∆|n

∏

g

(∫

dsg((1− ρ)δ(sg) + ρQg(sg))

∫

Dz

(∫

(dxg((1− ρ)δ(xg) + ρQg(xg)))

× exp

(

−
1

2
x

H
g (Q̂H

g + Q̂g + T̂ H
g + T̂g)xg + x

H
g

(( T̂ H
g + T̂g

2

) 1
2
z + M̂gsg

)

+
(

z
H
( T̂ H

g + T̂g

2

) 1
2 + s

H
g M̂H

g

)

xg

))n)K

. (32)

βt =
∣

∣IMn + σ
−2
w G

∣

∣

−1

=

∣

∣

∣

∣

∣

n

(

∆+
K

T

∑

g

(Qg − Tg)

)−1(

K

T

(

∑

g

ρCg −Mg −MH
g + Tg

)

+∆

)

+ IM

∣

∣

∣

∣

∣

−1

×

∣

∣

∣

∣

∣

IM + σ
−2
w

K

T

∑

g

(Qg − Tg)

∣

∣

∣

∣

∣

−n

≈ exp

(

− nTr

((

∆+
K

T

∑

g

(

Qg − Tg

))−1(
K

T

(

∑

g

ρCg −Mg −MH
g + Tg

)

+∆

))

− n log

∣

∣

∣

∣

∣

IM + σ
−2
w

K

T

∑

g

(Qg − Tg)

∣

∣

∣

∣

∣

)

. (33)

Φ̃(Q,T ,M, Q̂, T̂ ,M̂) =
∑

g

Tr

(

1

2

(

Q̂H
g Qg + Q̂T

g Q
∗
g

)

+
1

2

(

T̂ H
g Tg + T̂ T

g T ∗
g

)

−
(

M̂H
g Mg + M̂T

g M
∗
g

)

)

− αTr

((

∆+
1

α

∑

g

(

Qg − Tg

))−1(
1

α

(

∑

g

ρCg −Mg −MH
g + Tg

)

+∆

))

− α log

∣

∣

∣

∣

∣

∆+
1

α

∑

g

(Qg − Tg)

∣

∣

∣

∣

∣

+
∑

g

(
∫

dsg((1− ρ)δ(sg) + ρQg(sg))

∫

Dz log

(
∫

(dxg((1− ρ)δ(xg) + ρQg(xg))) exp

(

−
1

2
x

H
g (Q̂H

g + Q̂g

+ T̂ H
g + T̂g)xg + x

H
g

(( T̂ H
g + T̂g

2

) 1
2
z + M̂gsg

)

+
(

z
H
( T̂ H

g + T̂g

2

) 1
2 + s

H
g M̂H

g

)

xg

)))

− α log πM
. (35)

we consider a Gaussian random pilot matrix with zero mean,

v
(a)
t is still a Gaussian vector with zero mean. The covariance

matrices are calculated as follow.

EF ,W (v
(a)
t v

(a)H
t ) =

1

T

∑

g,k

(skg − x
(a)
kg )(skg − x

(a)
kg )

H +∆,

EF ,W (v
(a)
t v

(b)H
t ) =

1

T

∑

g,k

(skg − x
(a)
kg )(skg − x

(b)
kg )

H +∆.

We further define a vector ṽt , [v
(1)
t , . . . ,v

(n)
t ]T , which is

a stitched vector of v
(a)
t . It is obvious that the vector ṽt is

a Gaussian vector with zero mean, and we define G as its

covariance matrix. Then, the term βt can be rewritten as

EF ,W

(

exp(−σ−2
w

∑

a

||v
(a)
t ||2)

)

= |IMn + σ−2
w G|−1.

We notice that the matrix G can be separated into n×n blocks

of size M ×M , and the block in the ath row and bth column

satisfies Gab = EF ,W (v
(a)
t v

(b)H
t ). Giving the overlaps

ρCg =
1

K

K
∑

k=1

skgs
H
kg, M(a)

g =
1

K

K
∑

k=1

x
(a)
kg s

H
kg,

Q(a)
g =

1

K

K
∑

k=1

x
(a)
kg x

(a)H

kg , T (ab)
g =

1

K

K
∑

k=1

x
(a)
kg x

(b)H
kg , (28)

we have

Gaa =
K

T

(

G
∑

g=1

ρCg −M(a)
g −M(a)H

g +Q(a)
g

)

+∆,

Gab =
K

T

(

G
∑

g=1

ρCg −M(a)
g −M(b)H

g + T (ab)
g

)

+∆. (29)

We note that the term βt is completely determined by the

overlaps in (28). For further simplifying the equation (27), we
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introduce an identity seen in (30), which is similarly provided

in [11], [28]. For concise, we use the notation

dΘ

=
∏

g,a

dQ̂(a)
g dQ̂(a)∗

g dM̂(a)
g dM̂(a)∗

g dQ(a)
g dQ(a)∗

g dM(a)
g dM(a)∗

g

×
∏

g,a,b

dT̂ (ab)
g dT̂ (ab)∗

g dT (ab)
g dT (ab)∗

g .

Note that we have introduced the conjugated parameters

{Q̂
(a)
g ,M̂

(a)
g , T̂

(ab)
g } to enforce the consistency conditions

(28). We then consider the replica-symmetry assumption,

which is a general consideration in the replica analysis. Under

this, we have the following equations.

M̂(a)
g = M̂g, Q̂(a)

g = Q̂g, T̂ (ab)
g = T̂g,

M(a)
g = Mg, Q(a)

g = Qg, T (ab)
g = Tg. (31)

Further combining the Hubbard-Stratonovich transform [14]

e
1
2

∑

a6=b

x(a)H
g (T̂g+T̂ H

g )x(b)
g + 1

2

∑

a
x(a)H

g (T̂g+T̂ H
g )x(a)

g

=

∫

Dze

∑

a
x(a)H

g (
T̂g+T̂ H

g
2 )1/2z+zH ∑

a
(
T̂g+T̂ H

g
2 )1/2x(a)

g
,

the equation (27) can be re-formulated as (32).

We now turn to consider the n → 0 limit. Recall the

expression of βt in (32). By combining the equations in (29),

the matrix G can be rewritten as

G = ∐n ⊗

(

K

T
(
∑

g

ρCg −Mg −MH
g + Tg) +∆

)

+ In ⊗

(

K

T

∑

g

(Qg − Tg)

)

,

where ∐n stands for the n×n matrix with elements all equal

to one. The eigenvalue set of G consists of the M eigenvalues

of matrix K

T
(
∑

g
ρCg−Mg−MH

g +Tg)+∆, and (n−1) groups

of M eigenvalues with each group consisting the eigenvalues

of K

T

∑

g
(Qg−Tg). As a consequence, βt can be rewritten and

further approximated in (33).

Combining the final expression in (33) and with the approx-

imation
∫

Dzf(z)n = 1+n

∫

Dz log f(z) ≈ exp

(

n

∫

Dz log f(z)

)

in the n → 0 limit, we then obtain

EZn =

∫

dΘ exp
(

KnΦ̃(Q,T ,M, Q̂, T̂ ,M̂)
)

, (34)

where we have denoted Q , {{Qg}Gg=1, {Q
∗
g}

G
g=1}, T ,

{{Tg}Gg=1, {T
∗
g }

G
g=1}, M , {{Mg}Gg=1, {M

∗
g}

G
g=1}, Q̂ ,

{{Q̂g}
G
g=1, {Q̂

∗
g}

G
g=1}, T̂ , {{T̂g}

G
g=1, {T̂

∗
g }

G
g=1}, M̂ ,

{{M̂g}Gg=1, {M̂
∗
g}

G
g=1} as the collections of the involved

variables, and the function Φ̃ is specified in the equation (35).

The saddle point method [28] is performed by taking the

extremum of the (35) with respect to the free parameters.

Accordingly, we have

Φ = extr
(

Φ̃(Q,T ,M, Q̂, T̂ ,M̂)
)

,

where extr(·) returns the extremum of the involved function

with respect to its arguments. Setting derivatives of Φ̃ with

respect to Mg , Tg , Qg − Tg , ∀g and all their conjugations

into zero, then we can obtain the self-consistent equations as

follow.

∀g,M̂H
g =αWg , Q̂H

g + T̂ H
g = αWg.

∀g, T̂ H
g =αWg(

T

K
∆+

∑

g

(ρCg −Mg −MH
g + Tg))Wg,

where we denote

Wg , (
T

K
∆+

∑

g
(Qg − Tg))

−1.

Under Bayes-optimal condition, we have Qg = ρCg and

Mg = Tg = MH
g , resulting in M̂H

g = T̂ H
g = αWg and

Q̂H
g = 0, ∀g. By further considering the Nishimori identity

introduced in the Sec. II-B of [11], we have the relation EG =
∑

g Eg =
∑

g Qg − Tg . As a consequence, after ignoring the

irrelevant constant, the expression of the free entropy function

with respect to E can be obtained as (7).

B. Proof of Theorem 2

Substituting E = τG−1
I into the general free en-

tropy equation (7) in Sec. III-A, we can get the equa-

tion (36). Do some math, we further get Φ(τ) =

−αM
(

σ2
w

1
α τ+σ2

w
+ log(σ2

w + 1
α
τ)
)

+
∑

g Ĩ
(1)
g +

∑

g Ĩ
(2)
g , where

the quantities Ĩ
(1)
g and Ĩ

(2)
g are shown in (37)-(38). We note

that the derivation of Ĩ
(2)
g utilizes the fact that sg and z is

independent. As a consequence, we get (14) in the Sec. IV-A

of the paper.

C. Proof of Proposition 1

By adopting the fact that expx ≤ x+ 1 for x > 0, we get

following inequalities

exp

(

−
σ2
g

σ2
w + 1

α
τ

)

<
1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

,

exp

(

−
σ2
g

σ2
g + σ2

w + 1
α
τ

)

>
1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

.

Using the law of large numbers, the term ||z||2 → M . As a

consequence, as M → ∞, we have

(1− ρ) exp

(

−
||z||2σ2

g

σ2
w + 1

α
τ

)

+ ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M

≈ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M

,

(1− ρ) exp

(

−
||z||2σ2

g

σ2
g + σ2

w + 1
α
τ

)

+ ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M

≈(1− ρ) exp

(

−
σ2
g

σ2
g + σ2

w + 1
α
τ

)M

.
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Φ(τ) = −Tr

(

∑

g ρσ
2
g − τ

σ2
w + τ

α

)

− αM − αM log
(

σ2
w +

τ

α

)

+
∑

g

∫

dsg((1 − ρ)δ(sg) + ρQg(sg))

∫

Dz

× log

(∫

dxg((1 − ρ)δ(xg) + ρQg(xg)) exp
(

−xH
g (σ2

w +
τ

α
)−1xg + 2R

(

xH
g

(

(σ2
w +

τ

α
)−1sg + (σ2

w +
τ

α
)−

1
2z
))))

.

(36)

Ĩ(1)
g = (1− ρ)

∫

Dz log

(

(1− ρ) + ρ

∫

dxgQg(xg) exp
(

−xH
g (σ2

w +
τ

α
)−1xg + 2R

(

xH
g (σ2

w +
τ

α
)−

1
2z
))

)

= (1− ρ)

∫

Dz log









(1− ρ) + ρ

exp

(

||z||2
(

σ2
w + τ

α

)−1
(

σ−2
g +

(

σ2
w + τ

α

)−1
)−1

)

σ−2M
g

(

σ−2
g +

(

σ2
w + τ

α

)−1
)M









= (1− ρ)

∫

Dz log



(1− ρ) + ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M

exp

(

||z||2σ2
g

σ2
g + σ2

w + 1
α
τ

)



 . (37)

Ĩ(2)
g =ρ

∫

DzdsgQg(sg) log

(

(1− ρ) + ρ

∫

dxgQg(xg) exp
(

−xH
g (σ2

w +
τ

α
)−1xg +2R

(

xH
g

(

(σ2
w +

τ

α
)−1sg + (σ2

w +
τ

α
)−

1
2 z
))))

=ρ

∫

Dz log

(

(1 − ρ) + ρ

∫

dxgQg(xg) exp

(

xH
g (σ2

w +
τ

α
)−1xg + 2R

(√

σ2
g + σ2

w + τ
α

(

σ2
w + τ

α

)2 xH
g z

)))

=ρ

∫

Dz log



(1 − ρ) + ρ

(

1
α
τ + σ2

w

1
α
τ + σ2

w + σ2
g

)M

exp

(

σ2
g

σ2
w + τ

α

||z||2

)



 . (38)

Φ(E) =− Tr

(

(

∆+
EG

α

)−1
(

∑

g

ρCg − EG

))

− αM − α log

∣

∣

∣

∣

∆+
EG

α

∣

∣

∣

∣

+
∑

g

∫

dsg((1 − ρ)δ(sg) + ρQg(sg))

∫

Dz log

(

(1− ρ) + ρ
|Vg|

|Cg|
exp{µH

g V −1
g µg}

)

. (39)

Vg =UgΛgU
H
g −UgΛgU

H
g (UgΛgU

H
g +∆+

1

α
Ũ Ξ̃ŨH)−1UgΛgU

H
g

=UgΛgU
H
g −UgΛgU

H
g (Ug(Λg + σ2

wIg +
1

α
Ξg)U

H
g +

∑

j 6=g

Uj(σ
2
wIj +

1

α
Ξj)U

H
j )−1UgΛgU

H
g

=UgΛgU
H
g −UgΛgU

H
g (Ug(Λg + σ2

wIg +
1

α
Ξg)

−1UH
g +

∑

j 6=g

Uj(σ
2
wIj +

1

α
Ξj)

−1UH
j )UgΛgU

H
g

=UgΛgU
H
g −UgΛgU

H
g (Ug(Λg + σ2

wIg +
1

α
Ξg)

−1UH
g +

∑

j 6=g

Uj(σ
2
wIj)

−1UH
j )UgΛgU

H
g

=UgΛgU
H
g −UgΛgU

H
g (UgΛgU

H
g +∆+

1

α
UgΞgU

H
g )−1UgΛgU

H
g = Cg − Cg(Cg +∆+

1

α
Eg)

−1Cg. (40)

As a consequence, the free entropy function (14) is reduced

to (15), as we can see in the Sec. IV-A of the paper. The

first order derivative of function (15) is given by ∂Φ
∂τ

=
1

τ+ασ2
w
(ρ
∑

g

σ2
g

1
α τ+σ2

w+σ2
g
− τ

1
α τ+σ2

w
), and we can prove the

term ρ
∑

g

σ2
g

1
α τ+σ2

w+σ2
g

is a monotonically decreasing with

respect to τ , and the term τ
1
α τ+σ2

w
is monotonically increasing

with respect to τ . Since there exists interaction in the regions

of such two terms, there has and only has one point that

fulfills the equation ρ
∑

g

σ2
g

1
α τ+σ2

w+σ2
g
= τ

1
ατ+σ2

w
, and the point

corresponds to the global maximum of the function (15).

D. Proof of Lemma 1

We note that the stationary point of the free energy function

(7) in the Sec. III-A with respect to every E
(s)
g for each user

group fulfills the following equation

E(s)
g =Esg ,z

[(

ηg

(

sg +Σ
(s) 1

2z
)

− sg

)

×

(

ηg

(

sg +Σ
(s) 1

2z
)

− sg

)H
]

,
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where we define Σ
(s) , ∆ + E(s)G

α
. Further denoting ŝ

(s)
g ,

sg +Σ
(s) 1

2z, we have

E(s)
g =E

sg,ŝ
(s)
g

(

(

ηg

(

ŝ(s)
g

)

− sg

)(

ηg

(

ŝ(s)
g

)

− sg

)H
)

=E
ŝ
(s)
g

(

E
sg |ŝ

(s)
g

(

(

ηg

(

ŝ(s)
g

)

− sg

)(

ηg

(

ŝ(s)
g

)

− sg

)H
))

.

Combining the channel model in Sec. V, we have

p(sg|ŝ
(s)
g ) = (1− ρ̂)δ(sg)

+ρ̂CN
(

sg; (Σ
(s)−1 + C−1

g )−1
Σ

(s)−1ŝ(s)
g , (Σ(s)−1 + C−1

g )−1
)

,

where

ρ̂ ,
ρCN (ŝ

(s)
g ;0, Cg +Σ

(s))

ρCN (ŝ
(s)
g ;0, Cg +Σ(s)) + (1 − ρ)CN (ŝg;0,Σ(s))

.

We further use the matrix inversion lemma, and we obtain

(C−1
g +Σ

(s)−1)−1 = Cg − Cg(Cg +Σ
(s))−1Cg. Together with

Cg = UgΛgU
H
g , we finally have E

(s)
g = UgΞ

(s)
g UH

g , with

Ξ
(s)
g = Eŝg

[

ρ̂(1− ρ̂)
(

ΛgU
H
g −ΛgU

H
g (Cg +Σ

(s))−1Cg
)

×Σ
(s)−1ŝg ŝ

H
g Σ

(s)−1
(

UgΛg − Cg(Cg +Σ
(s))−1UgΛg

)

+ρ̂
(

Λg −ΛgU
H
g (Cg +Σ

(s))−1UgΛg

)]

.

E. Proof of Theorem 3

Note that by considering the specific functional form of

Qg(sg) = ρCN (sg;0,UgΛgU
H
g ), the free entropy function

(7) can be rewritten as shown in the equation (39), where we

define

Vg =Cg − Cg(Cg +∆+
1

α
GE)−1Cg,

µg =Vg

(

(

∆+
GE

α

)−1

sg +

(

∆+
GE

α

)− 1
2

z

)

.

Using the matrix inversion lemma together with the condition

E =
∑

g UgΞgU
H
g , we obtain the derivations in (40), where

the quantity Ũ , [U1, . . . ,UG] is a tall unitary matrix and Ξ̃

is a
∑

g rg square block diagonal matrix with Ξg as the gth

block. Similarly, we have µg = Vg((∆ +
Eg

α
)−1sg + (∆ +

Eg

α
)−

1
2z). As a result, we get Φ(E) =

∑G

g=0 Φg(Eg), with

Φg(Eg) in the form of (21) in the Sec. V-A of the paper.

F. Proof of Proposition 2

The definition of the detection probability is PD =
Pr{T(sg) > lg|ag = 1} with threshold lg. To specify the

expression of PD, we define a random variable Cg,m with

one realization

cg,m = 2|sg,m|2
(

σ2
w +

1

α
ξ⋆g,m + λg,m

)−1

,

and as a result, we have Cg,m ∼ χ2(2), i.e., p(cg,m) =
1
2 exp(−

1
2cg,m). Similarly, we further define a random variable

Dg,m with one realization

dg,m =
1

2
λg,mcg,m

(

σ2
w +

1

α
ξ⋆g,m

)−1

.

Then, we get the PDF of random variable Dg,m as

pDg,m(dg,m) =(σ2
w +

1

α
ξ⋆g,m)λ−1

g,m

exp(−(σ2
w +

1

α
ξ⋆g,m)λ−1

g,mdg,m)I(dg,m > 0),

where I(dg,m > 0) is the indicator function. Note that

pDg,m(dg,m;ωg,m) is an exponential distribution with param-

eter ωg,m , (σ2
w + 1

α
ξ⋆g,m)λ−1

g,m. We further assume ωg,m are

all distinct for each m which is common in spatially corre-

lated channel. Based on the theorem of sum of independent

exponentially distributed random variables in [29], the PDF of

the sufficient statistic with condition ag = 1 can be written

as

p(T(sg)|ag = 1) =

rg
∑

m=1

∏

j 6=m

ωg,jpDg,m(T(sg);ωg,m)

ωg,j − ωg,m

, (41)

Combining the definition, the missed detection probability PD

can be then obtained via the cumulative distribution function

(CDF) of (41). Similarly, the sufficient statistic with condition

ag = 0 can be formulated as

p(T(sg)|ag = 0) =

rg
∑

m=1

∏

j 6=m

ω̃g,jpDg,m(T(sg); ω̃g,m)

ω̃g,j − ω̃g,j

, (42)

where ω̃g,m , (σ2
w + 1

α
ξ⋆g,m + λg,m)λ−1

g,m. As a consequence,

based on the CDF of (41), the expression of false alarm

probability with definition PF = Pr{T(sg) > lg|ag = 0}
can be then specified, as shown in (25) in the Sec.V-B of the

paper.
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