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Abstract—We consider the classical problem of missing-mass
estimation, which deals with estimating the total probability
of unseen elements in a sample. The missing-mass estimation
problem has various applications in machine learning, statistics,
language processing, ecology, sensor networks, and others. The
naive, constrained maximum likelihood (CML) estimator is
inappropriate for this problem since it tends to overestimate
the probability of the observed elements. Similarly, the con-
ventional constrained Cramér-Rao bound (CCRB), which is a
lower bound on the mean-squared-error (MSE) of unbiased
estimators of the entire probability mass function (pmf) vector,
does not provide a relevant bound on the performance for
the problem of missing-mass estimation. In this paper, we
introduce a frequentist, non-Bayesian parametric model of the
problem of missing-mass estimation. We introduce the concept of
missing-mass unbiasedness by using the Lehmann unbiasedness
definition. We derive a non-Bayesian CCRB-type lower bound
on the missing-mass MSE (mmMSE), named the missing-mass
CCRB (mmCCRB), based on the missing-mass unbiasedness. The
proposed mmCCRB can be used for system design and for the
performance evaluation of existing estimators. Moreover, based
on the new mmCCRB, we propose a new method to improve
existing estimators by an iterative missing-mass Fisher-scoring
method. Finally, we demonstrate via numerical simulations that
the biased version of the mmCCRB is a valid and informative
lower bound on the mmMSE of state-of-the-art estimators for
this problem: the CML, asymptotic profile maximum likelihood
(aPML), Good-Turing, and Laplace estimators. We also show that
the performance of the Laplace estimator is improved, in terms of
mmMSE and missing-mass bias, by using the new missing-mass
Fisher-scoring method.

Index Terms—Non-Bayesian estimation, Good-Turing estima-
tor, probability of missing mass, constrained Cramér-Rao bound,
Lehmann unbiasedness

I. INTRODUCTION

Given N samples from a population of elements belonging

to different types with unknown proportions, how should

one estimate the total probability of unseen types? This is

a classical problem in statistics, commonly referred to as

the missing-mass estimation problem [1, 2]. Missing-mass

estimation has gained significant interest in various applica-

tions, such as ecological studies [3], sensor networks [4, 5],

machine learning, and statistics. In the context of language

processing, for example, estimation of new and existing words
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in text has applications such as language modeling, spelling

correction, and word-sense disambiguation [6, 7]. Missing-

mass estimation is especially important for applied problems

where the sampling procedure is expensive, and the need

for acquiring more data is determined by the possibility of

observing new unobserved elements.

It is well known that the naive, constrained maximum like-

lihood (CML) estimator of the probability, i.e. the empirical

probability, is ineffective if there are insufficient samples [8,

9]. In particular, the CML estimator assigns a zero probability

to unseen events, which does not provide relevant information

on the missing mass. As a result, the constrained Cramér-Rao

bound (CCRB) [10-14], which is associated with the asymp-

totic performance of the CML estimator, is inappropriate as a

bound on the performance of missing-mass estimators outside

the asymptotic region. This is because the CCRB is a lower

bound on the mean-squared-error (MSE) of the entire proba-

bility mass function (pmf) and not on the functional defined

by the missing mass. Various estimators of the missing mass

have been suggested over the years [2, 8, 15-23]. However,

the analysis of these estimators is challenging and there is no

comprehensive non-Bayesian estimation theory for estimating

the missing mass. In particular, there is a need for appropriate

lower bounds on the MSE of the missing mass obtained by

any estimator. This theory and these bounds are crucial for

system design, error analysis, and performance analysis of

existing estimation methods, and for the development of new

estimation methods.

A. Summary of results

In this paper, we consider the problem of estimating the

missing mass, where it is assumed that we observe samples

that are drawn from an unknown distribution. First, we intro-

duce a non-Bayesian parametric formulation of this estimation

problem. We use the missing-mass squared-error as a cost

function and derive the associated Lehmann unbiasedness. We

develop a new non-Bayesian constrained Cramér-Rao bound

(CCRB), the missing-mass CCRB (mmCCRB), which is a

lower bound on the missing-mass MSE (mmMSE) of any

estimator with a specific Lehmann bias. The new bound is

obtained by using linear parametric constraints on the prob-

ability space and the Lehmann unbiasedness. We investigate

the properties of the mmCCRB and some special cases of

this bound. Based on the equality condition of the mmCCRB,

we propose a new method to improve existing estimators by

an iterative missing-mass Fisher-scoring method. The new

bound is examined in simulations and compared with the

performance of state-of-the-art estimators: the CML, Good-

Turing, Laplace, and asymptotic profile maximum likelihood

(aPML) estimators. We also show that the performance of the

http://arxiv.org/abs/2101.04329v2
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Laplace estimator is improved by using the new missing-mass

Fisher-scoring method.

B. Related works

Various estimators of the missing mass have been suggested

in the literature. A fundamental example is the Good-Turing

probability estimator [2], which was invented to decipher

the Enigma code during World War II. The Good-Turing

estimator, its extensions by smoothing techniques [16, 17],

and the Laplace estimator [15, 18, 19], have been shown

to be useful for the estimation of the probability of unseen

elements [8, 20], and have been implemented in many practical

applications. More recently, the profile maximum likelihood

(PML) approach has been suggested and analyzed [24-26] as

an alternative to the CML estimator. The PML estimator is

near-optimal in the MSE sense for a uniform distribution and

was shown to have impressive statistical properties.

On the theoretical side, various works analyzed the proper-

ties of specific estimators. For example, some interpretations

of the Good-Turing estimator and its performance in terms of

attenuation have been established in [8, 27]. A derivation of the

Good-Turing estimator from a Bayesian point of view with a

uniform prior was suggested in [2]. Works related to the Good-

Turing estimator include analysis of its bias [2, 28], confidence

intervals and convergence rate [29], and (un)consistency [30].

The performance of the Good-Turing estimator was analyzed

using the theory of large deviations in [4] and the pmf of its

worst-case MSE was discussed in [31].

Different performance bounds for the missing-mass esti-

mation problem have been discussed in the literature. For

example, lower and upper bounds on the expected missing

mass and inequalities on the probability of large deviations of

the missing mass are discussed in [32, 33]. Various existing

bounds are associated with the performance of a specific

estimator and are distribution-free. For example, upper bounds

on the MSE of Robbins-type estimators have been proposed

in [34]. Bounds on the worst-case MSE of the Good-Turing

estimator have been developed in [31, 35]. On the other

hand, other studies provide lower and upper bounds on the

performance of any estimator for specific distributions. For

example, in [31, 35] there are also lower and upper bounds on

the minimax MSE of any estimator for specific distributions.

It should be noted that the proposed approach in this paper

applies to all algorithms/estimators and is based on evaluating

the performance for each pmf value. However, there are no

Cramér-Rao-type lower bounds on the averaged performance

of any estimator of the missing mass. Our recent works

on estimation after selection [36-40] suggest that conditional

schemes, in which the performance criterion depends on the

observed data, require different Cramér-Rao-type bounds for

analysis and system design.

C. Organization and notation

The remainder of the paper is organized as follows: Section

II presents the non-Bayesian parametric model of missing-

mass estimation under a multinomial model, including the

conventional CCRB and constrained unbiasedness for this

model and the appropriate cost function. In Section III, we

derive a new CCRB-type lower bound on the mmMSE.

In Section IV, we describe the missing-mass Fisher-scoring

method. Numerical simulations are presented in Section V.

Finally, our conclusions can be found in Section VI.

In the rest of this paper, vectors are denoted by boldface

lowercase letters and matrices by boldface uppercase letters.

The notations 1{A} and I denote the indicator function of an

eventA and the identity matrix, respectively. The vectors 1 and

0 are column vectors of ones and zeros, respectively, and em
is the mth column of the identity matrix, all with appropriate

dimensions. The matrix diag(a) denotes the diagonal matrix

with vector a on the diagonal. The mth element of the vector

a, the (m, q)th element of the matrix A, and the (m1 :
m2 × q1 : q2) submatrix of A are denoted by am, Am,q , and

Am1:m2,q1:q2 , respectively. The trace of a matrix A ∈ R
M×M

is defined as trace(A) =
∑M

m=1 Am,m. The gradient of a

vector function, c, of θ, ∇θc, is a matrix in R
K×M , with

the (k,m)th element equal to ∂ck
∂θm

, where c = [c1, . . . , cK ]
T

and θ = [θ1, . . . , θM ]T . For a scalar function c, we denote

∇T
θ
c

△
= (∇θc)

T , and ∇2
θ
c

△
= ∇θ∇T

θ
c. The notations Eθ[·] and

Eθ[·|A] represent the expectation and conditional expectation

operators, parametrized by a deterministic vector, θ, and given

the event A. For a set X , |X | represents its cardinality.

II. NON-BAYESIAN ESTIMATION OF THE MISSING MASS

In this section, we present the problem of estimating the

missing mass as a non-Bayesain parameter estimation prob-

lem. In Subsection II-A we describe the observation model

and the relevant probability functions. In Subsection II-B we

develop the χ-unbiasedness and the CCRB for estimating the

unknown pmf under this model. Finally, in Subsection II-C we

formulate the missing-mass estimation problem, and present

the missing-mass squared-error cost function, which is used

in this paper.

A. Non-Bayesian model

Assume that there is a set of M symbols, S =
{s1, . . . , sM}, where the alphabet size, M ≥ 1, is assumed

to be finite and known. The elements in S may represent,

for example, species in the jungle [8], words in a dictionary

[6, 7], or operating sensors [4, 5]. The true probability of

observing symbol sm is denoted by θm, m = 1, . . . ,M , where

θm 6= 0 for all m = 1, . . . ,M and
∑M

m=1 θm = 1. Thus,

θ
△
= [θ1, . . . , θM ]T is a pmf vector over the discrete and finite

set of symbols, S. As a result, θ is an element of the simplex

Ωθ, i.e. θ ∈ Ωθ, where

Ωθ

△
=
{

θ ∈ [0, 1]M |f(θ) = 0
}

, (1)

in which

f(θ)
△
=

M
∑

m=1

θm − 1. (2)

In general constrained parameter estimation, the null-space

matrix that is orthogonal to the constraints plays an important
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role [10, 11]. For the considered setting, the gradient of f(θ)
w.r.t. θ is

F
△
= ∇T

θ f(θ) = 1T
M . (3)

In addition, there exists a null-space matrix U ∈ R
M×(M−1)

such that

FU = 1T
MU = 0T , UTU = I. (4)

In particular, it can be verified that UTy = 0M−1 iff y =
c1M , where c ∈ R is an arbitrary constant.

Under the independent and identically distributed (i.i.d.)

multinomial model [2], it is assumed that there are N i.i.d.

samples, {xn}Nn=1, drawn according to the pmf described by

the unknown vector, θ. We consider the problem of estimating

the missing mass of the unobserved symbols, which is a

function of θ. It can be verified that the pmf of the random

observation vector, x
△
= [x1, . . . , xN ]T ∈ SN , is a binomial

distribution:

p(x; θ) =

M
∏

m=1

θCN,m(x)
m , x ∈ SN , (5)

where

CN,m(x)
△
=

N
∑

n=1

1{xn=sm}, m = 1, . . . ,M, (6)

is the number of times that the mth element was ob-

served out of the N samples. Therefore, the vector

[CN,0(x), . . . , CN,M (x)]T has a multinomial distribution with

parameters N and θ. The pmf in (5) can also be written as

p(x; θ) =

M
∏

m=1

θ

∑N
r=0 r1{m∈GN,r(x)}

m , (7)

where GN,r(x) is the set of elements that appear exactly r

times in the N -length observation vector, x. That is, if m ∈
GN,r(x), then CN,m(x) = r. In particular, the set

GN,0(x)
△
= {m : m = 1, . . . ,M, xn 6= sm, ∀n = 0, . . . , N}

(8)

is the set of elements that do not appear in the observation

vector, x, with CN,m(x) = 0. For example, upon observing

the vector x = [a, c, c]
T

with N = 3 and S = {a, b, c},
the histogram values are C3,1(x) = 1, C3,2(x) = 0, and

C3,3(x) = 2 according to (6), and the missing mass is the

pmf of {b}, since according to (8) G3,0 = {b}.
Let us define the subspace of all observation vectors that

do not include sm as

Am
△
= {x ∈ SN : m ∈ GN,0(x)}, m = 1, . . . ,M. (9)

For a given number of measurements, N , the probability of

the mth element being unobserved in these measurements is

Pr(x ∈ Am; θ) = Eθ

[

1{m∈GN,0(x)}
]

= (1− θm)N , (10)

∀m = 1, . . . ,M . By using Bayes rule it can be seen that

p(x|x ∈ Am; θ)=

{

p(x;θ)
Pr(x∈Am;θ) if x ∈ Am

0 otherwise
, (11)

m = 1, . . . ,M . By substituting (5) and (10) in (11), we obtain

p(x|x ∈ Am; θ) =

{ ∏M
l=1 θ

CN,l(x)

l

(1−θm)N if x ∈ Am

0 otherwise
, (12)

m = 1, . . . ,M .

We denote by θ̂ : SN → Ωθ an arbitrary estimator of the

pmf vector, θ, based on the observation vector, x. The CML

estimator of θ under the parametric constraint f(θ) = 0 from

(2) is given by

θ̂CML
m =

CN,m(x)

N
, m = 1, . . . ,M. (13)

In particular, the CML estimator assigns zero probability for

unseen elements, i.e. for the missing mass. Some alternative

estimators are presented in Subsection III-D.

B. CCRB and constrained unbiasedness

In this subsection, we develop the conventional CCRB

and the unbiasedness condition for estimating θ under the

considered model. The CCRB [10, 11] provides a lower

bound on the MSE of any locally χ-unbiased estimator [13,

14, 41], which is a weaker requirement than ordinary mean

unbiasedness, and is defined as follows.

Definition 1: An estimator θ̂ : SN → Ωθ is said to be a

locally χ-unbiased estimator in the neighborhood of θ̃ ∈ Ωθ

if it satisfies

UTE
θ̃
[θ̂ − θ̃] = 0M−1 (14)

and
{

∇T
θ
Eθ[θ̂ − θ]

}∣

∣

∣

θ=θ̃

U = 0M×(M−1), (15)

where U is defined in (4).

It should be noted that in this paper the notation θ̃ represents

a specific value (or “local” value) of the unknown parameter

vector in the simplex Ωθ , while θ is used as a general

parameter in the different functions. For the CML estimator

in (13) we obtain that

Eθ

[

θ̂CML
m − θm

]

= Eθ

[

CN,m(x)

N
− θm

]

= 0, (16)

for all m = 1, . . . ,M and for any θ ∈ Ωθ , where the

last equality follows from the mean of a variable with a

multinomial distribution. Thus, (16) implies that the CML

estimator satisfies Definition 1 and that it is a locally χ-

unbiased estimator for any θ ∈ Ωθ; thus, it is a uniformly

χ-unbiased estimator. The CML estimator is also a C-unbiased

estimator in the Lehmann sense [13, 42], since the constraint

θ ∈ Ωθ is linear.

The CCRB on the MSE of any unbiased estimator in the

sense of Definition 1 at θ̃ ∈ Ωθ is given by [11, 13, 14, 41]

E
θ̃

[

(θ̂ − θ̃)(θ̂ − θ̃)T
]

� U(UT J(θ̃)U)−1UT , (17)

where the conventional Fisher information matrix (FIM) is

J(θ) = Eθ

[

∇θ log p(x; θ)∇
T
θ
log p(x; θ)

]

, θ ∈ Ωθ. (18)
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In Appendix A it is shown that the CCRB on the trace MSE

under the considered model is given by

M
∑

m=1

E
θ̃

[

(θ̂m − θ̃m)2
]

≥ BCCRB(θ̃), (19)

where

BCCRB(θ)
△
=

1

N
trace

(

(

UT (diag(θ))
−1

U
)−1

)

. (20)

However, missing-mass estimators, such as the Good-Turing

and add-constant estimators, are χ-biased. Thus, the perfor-

mance of these estimators should be assessed by the biased

CCRB [43], which is a function of the estimator’s bias gradi-

ent. Moreover, the CCRB in (20) is a lower bound on the MSE

of estimators of the entire pmf vector, and does not provide

a relevant bound on the performance for the missing-mass

estimation problem. This is similar to the mismatch of the

naive CML estimator from (13), which tends to overestimate

the probability of the observed elements. In the following

section, we develop a new CCRB-type bound on the missing-

mass estimation.

C. Non-Bayesian paradigm and mmMSE risk

In this subsection, we explain the rationale behind the con-

sidered approach, which is: 1) purely non-Bayesian estimation

of a deterministic parameter; 2) an estimation of a parameter

of interest in the presence of nuisance parameters that affect

the accuracy of estimation; 3) based on the estimation of the

entire pmf, θ; and 4) based on the mmMSE risk.

The missing mass, namely the total probability mass of the

outcomes not observed in the samples in x, is defined as

p0(x, θ) =

M
∑

m=1

θm1{m∈GN,0(x)}. (21)

The missing mass in (21) is a hybrid (mixture of random and

deterministic) scalar parameter, which is a function of both

the deterministic pmf vector, θ, and the random observation

vector, x. Thus, various papers in the literature (see, e.g.

[31, 44]) treat the estimation problem as the estimation of

the hybrid parameter, p0(x, θ), which allegedly has both

random and deterministic parts. However, since the random

observation vector, x, is known, the true unknown part in

p0(x, θ) is only the deterministic vector, θ. Therefore, in this

work we adopt the non-Bayesian approach for the estimation

of deterministic parameters. Moreover, since all the elements

of the pmf vector, θ, are unknown, we treat this estimation

problem as the estimation of the parameters of interest in (21)

that include the probabilities of unseen events, and refer to the

other (seen) parameters in θ as nuisance parameters [45, 46].

Direct calculation of the MSE of p0(x, θ) from (21),

Eθ





(

M
∑

m=1

θ̂m1{m∈GN,0(x)} −
M
∑

m=1

θm1{m∈GN,0(x)}

)2


 ,

requires the calculation of all cross-correlations of estimation

errors of any θm and θl, l,m ∈ GN,0(x). This, in turn, requires

computing the expectation of a sum of 2M possible events (that

represent the binary options that m and/or l is within/without

GN,0(x), for any x and any m, l = 1, . . . ,M ). While this

approach is feasible for calculating the MSE of specific

missing-mass estimators (see, e.g. in [31, 35]), we found it

infeasible for the calculation of the associated modified FIM

and unbiasedness, which leads to an intractable bound.

In order to capture the relevant errors both meaningfully

and in a way that can be easily computed, we use here an

alternative cost function, which is based on the missing-mass

squared-error cost function:

C(θ̂, θ)
△
=

M
∑

m=1

(θ̂m − θm)21{m∈GN,0(x)}, (22)

for any estimator θ̂ = [θ̂1, . . . , θ̂M ]T of the pmf vector,

θ = [θ1, . . . , θM ]T . The associated mmMSE risk, which is

the expected value of (22), is

Eθ

[

C(θ̂, θ)
]

=
M
∑

m=1

Eθ

[

(θ̂m − θm)21{m∈GN,0(x)}
]

=

M
∑

m=1

Eθ

[

(θ̂m − θm)2|x ∈ Am

]

Pr(x ∈ Am; θ), (23)

where the last equality is obtained by using the law of total

probability and the conditional distribution from (11).

It can be seen that in order to evaluate the mmMSE

performance of the estimator of p0(x, θ) over all possible

observation vectors x, we need to sum over the errors of all the

elements of θ (i.e. to compute M terms). This is a significant

reduction in computational cost compared with the direct

calculation of the MSE that requires computing the expectation

over 2M possible events. In addition, since we assume that M

is known and finite, the sum in (22) is finite. This cost takes

into account all possible estimation errors by summing over all

the errors in a similar manner to existing different bounds on

various cost functions (see, e.g. in [31, 35]) and to performance

evaluation of specific estimators (see, e.g. in [28, 47]). The

use of the indicator functions in the missing-mass squared-

error cost function in (22) implies that the error of the mth

parameter, θ̂m−θm, affects the mmMSE only for observations

x such that sm has not been observed. Thus, it can be seen

that the mmMSE is the sum of the MSEs of the parameters

of interest, i.e. only the estimation errors of elements with

the indices that are in GN,0(x) from (8). It should be noted

that other parametric statistical analyses of the missing-mass

estimation in the literature are based on the estimation of the

entire pmf vector, θ. For example, in [28], the full estimator

of θ is used to analyze the bias of missing-mass estimators.

Similarly, in the development of the minimax bound in [35],

a tight bound is derived by replacing the problem of missing-

mass estimation with that of distribution estimation. Further,

some missing-mass estimators are based on estimating θ and

then applying different smoothing approaches to obtain the

estimator of the missing mass (see, e.g. [8]). Finally, it should

be noted that the mmMSE is computed where the expectation

is only over the randomness in the estimator, since the pmf is

a deterministic vector in the considered model.
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III. MISSING-MASS CONSTRAINED CRAMÉR-RAO

(MMCCRB) BOUND

In this section, a CCRB-type lower bound is derived. In

Subsection III-A we develop the uniform and local unbiased-

ness in the Lehmann sense under the missing-mass squared-

error cost function and under the probability-space parametric

constraints. In Subsection III-B, we derive the proposed bound,

which is a lower bound on the mmMSE and is a function of the

Lehmann bias of the estimators. For the sake of generality, the

unbiasedness and the mmCCRB are first derived for a general

observation-model distribution, p(x; θ). Thus, the missing-

mass unbiasedness in Subsection III-A and the mmCCRB

in Subsection III-B can be used for various variations of

the missing-mass estimation problem, such as estimating an

unknown Markov chain from its sample [33, 48, 49]. Then, in

Subsection III-C, we develop the closed-form mmCCRB for

the classical i.i.d. model, given in (5), as well as the mmCCRB

for missing-mass unbiased estimators. Finally, in Subsection

III-D we present some special cases of the mmCCRB.

A. Lehmann unbiasedness

The mean-unbiasedness constraint is commonly used in

non-Bayesian parameter estimation [50]. Lehmann [42] pro-

posed a generalization of the unbiasedness concept, which is

based on the considered cost function, as follows.

Definition 2: An estimator θ̂ : SN → R
M is an unbiased

estimator of θ in the Lehmann sense [42] w.r.t. a given cost

function, C(θ̂, θ), if

Eθ[C(θ̂,η)] ≥ Eθ[C(θ̂, θ)], ∀η, θ ∈ Ωθ, (24)

where the simplex Ωθ is the parameter space.

The Lehmann unbiasedness definition implies that an estimator

is unbiased if, on average, it is “closer” to the true parameter θ

than to any other value in the parameter space (here, denoted

by an arbitrary vector, η). The measure of closeness is deter-

mined by the considered cost function, C(θ̂, θ). Examples for

Lehmann unbiasedness with different cost functions and under

parametric constraints can be found in [13, 36, 37, 42, 51, 52].

The following lemma states the Lehmann unbiasedness for

the estimation problem of missing-mass probability. To this

end, we define the elements of the missing-mass bias vector,

bN,0(θ) ∈ R
M , as follows:

[bN,0(θ)]m
△
= Eθ

[

(θ̂m − θm)1{m∈GN,0(x)}
]

= Eθ

[

θ̂m − θm|x ∈ Am

]

Pr(x ∈ Am; θ), (25)

∀m = 1, . . . ,M , where the last equality is obtained by using

the law of total probability.

Lemma 1: An estimator θ̂ : SN → Ωθ is said to be a

uniformly Lehmann-unbiased estimator of θ ∈ Ωθ w.r.t. the

missing-mass squared-error cost function from (22) if

UTbN,0(θ) = 0M−1, ∀θ ∈ Ωθ, (26)

where U and bN,0(θ) are defined in (4) and (25), respectively.

Proof: The proof appears in Appendix B.

The CCRB is a local bound, meaning that it determines the

achievable performance at a particular value of θ, denoted here

by θ̃, based on the statistics in its neighborhood. Similar to

the local χ-unbiasedness in Definition 1, we can define the

local missing-mass unbiasedness as follows.

Definition 3: An estimator θ̂ : SN → Ωθ is said to be a

locally Lehmann-unbiased estimator [42] in the neighborhood

of θ̃ ∈ Ωθ w.r.t. the missing-mass squared-error cost function

from (22) if it satisfies

UTbN,0(θ̃) = 0M−1 (27)

and
{

∇T
θ
bN,0(θ)

}∣

∣

θ=θ̃
U = 0M×(M−1). (28)

It should be noted that the condition in (26) requires a

uniform unbiasedness, for any θ ∈ Ωθ, while the conditions

in (27) and (28) are local conditions that are required to

be satisfied only at the specific θ, denoted here by θ̃, for

which the bound is developed. Both the local and the uniform

missing-mass unbiasedness definitions restrict only the values

that belong to the set of unseen symbols, i.e. elements that

belong to the set GN,0(x) from (8), in S to be unbiased. In

addition, by comparing Definition 1 and Definition 3 it can

be seen that the differences between the local χ-unbiasedness

and the local missing-mass unbiasedness follow from the

difference of the cost functions, where both definitions use

the null-space matrix, U, which is due to the parametric

constraint. However, while there exist estimators that are χ-

unbiased, such as the CML estimator as shown in (16), there

are no estimators that are missing-mass unbiased in the non-

asymptotic region, without splitting the data or taking extra

draws [44, 53, 54]. It is known that even when unbiased

methods do not exist in a particular setting, such as in the case

of various nonlinear models, meaningful biased techniques

with good performance can still be found [43, 55-57].

The uniform missing-mass unbiasedness from (26) can be

interpreted as follows. From the definition of U in (4), it can

be verified that UTy = 0M−1 iff y = c1M , where c ∈ R is an

arbitrary constant. Thus, the condition in (26) implies that for

a uniformly Lehmann unbiased estimator, the missing-mass

bias vector satisfies

bN,0(θ) = βN,0(θ)1M , ∀θ ∈ Ωθ, (29)

where βN,0(θ) ∈ R is a constant. The condition in (29) is

that the mth element of the missing-mass bias is identical for

any m. This property recalls the notion of natural estimators

[27], since it assigns the same bias requirements to all symbols

appearing with the same probability.

B. mmCCRB

Lower bounds on the mmMSE are useful for performance

analysis and system design. In this subsection, a constrained

Cramér-Rao-type lower bound on the mmMSE from (23) is

derived. The new bound is based on the missing-mass bias in

the Lehmann sense, as defined in Subsection III-A. Thus, it

is a bound on the MSE of the missing mass of all estimators

having a given bias function, bN,0(θ̃), at each point, θ̃ ∈ Ωθ .

Let us define the following missing-mass Fisher information

matrix (mmFIM) :

J(0)(θ)
△
= Eθ

[

∆(x, θ)∆T (x, θ)
]

, (30)
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∀θ ∈ Ωθ, where the mth column of the matrix ∆(x, θ) ∈
R

M×M is defined as

∆1:M,m(x, θ)
△
= ∇θ log p(x|x ∈ Am; θ)1{x∈Am}, (31)

m = 1, . . . ,M . In addition, we define the auxiliary matrix

S(θ) ∈ R
M×M , in which the mth row is defined as

Sm,1:M (θ)

△
=

(

∇T
θ

{

[bN,0(θ)]m
Pr(x ∈ Am; θ)

}

+ eTm

)

Pr(x ∈ Am; θ), (32)

∀θ ∈ Ωθ .

We define the following regularity condition:

C.1) The likelihood gradient vector, ∆1:M,m(x, θ), defined in

(31), exists and is finite ∀θ ∈ Ωθ and ∀m = 1, . . . ,M .

That is, the matrix UTJ(0)(θ)U is a well-defined, non-

singular, and non-zero matrix for any θ ∈ Ωθ .

Theorem 1: Let the regularity condition C.1 be satisfied and

θ̂ be an estimator of θ ∈ Ωθ with a local missing-mass bias

vector in the neighborhood of θ̃ ∈ Ωθ given by bN,0(θ̃), as

defined in (25). Then, the mmMSE from (23) satisfies

E
θ̃

[

C(θ̂, θ̃)
]

≥ BmmCCRB(θ̃), (33)

where the mmCCRB evaluated at the local point, θ̃, is

BmmCCRB(θ̃)
△
= trace

(

ST (θ̃)U(UT J(0)(θ̃)U)−1UTS(θ̃)
)

+

M
∑

m=1

[

bN,0(θ̃)
]2

m

Pr(x ∈ Am; θ̃)
. (34)

Moreover, equality is achieved in (34) if

θ̂m − θ̃m =
[bN,0(θ̃)]m

Pr(x ∈ Am; θ̃)

+
[

ST (θ̃)U(UT J(0)(θ̃)U)−1UT∆(x, θ̃)
]

m,m
, (35)

for any m = 1, . . . ,M such that m ∈ GN,0(x).
Proof: The proof appears in Appendix C.

Theorem 1 provides a lower bound on the MSE of missing-

mass estimators that have a specified bias function, bN,0(θ̃).
This is similar to MSE bounds on biased estimators in the

general setting [56, 57]. Biased bounds can be used to explore

the fundamental tradeoff between bias and variance, as well as

for system design. The specification of the biased mmCCRB

requires an a-priori choice of the bias gradient. The biased

mmCCRB can be used for cases where we consider an

estimator with a tractable bias gradient. For the case of the

i.i.d. model, we show in Lemma 2 that the biased mmCCRB

can be computed without the need for a bias gradient, with

simple expectation terms that make the biased mmCCRB more

tractable. It should be noted that in the following we use the

same notation, BmmCCRB(θ̃), for the mmCCRB with different

bias specifications.

It can be seen that the equality condition in (35), which is

the requirement for the achievability of the mmCCRB, only

determines the values of the missing-mass estimation errors.

In addition, it can be seen that the estimator defined in (35),

θ̂m, m = 1, . . . ,M , may assign a different value for each

element in the missing mass. That is, it is not necessarily a

natural estimator [27], in the sense that elements that appeared

the same number of times will not necessarily get the same

estimated probability. Moreover, this estimator is a function

of the (local) unknown parameter vector, θ̃, in the general

case. Only if it is independent of θ̃, then it is an efficient

estimator and its mmMSE is equal to the mmCCRB. The

equality condition of the mmCCRB in (35) is the basis for

a new estimation method developed in Section IV.

The mmFIM in (30) is a function of the entire pmf, θ. It

can be verified that J(0)(θ) is not a diagonal matrix (see also

in (39) below). This is because there is a coupling between the

different elements in θ, and the estimation of one parameter

affects the accuracy in the estimation of the others. Finally,

it has been shown in recent works that the profile likelihood,

i.e. the empirical distribution up to permutation of the lexicon,

can considered to be a sufficient statistic for the problem of

missing-mass estimation [24-26, 47]. Thus, in general, a new

bound can be developed based on the likelihood of the profile

instead of the likelihood in (31). According to the extension

of the data processing inequality for Fisher information [58],

such a lower bound may result in a tighter bound than the

mmCCRB. However, it is a valid lower bound only on profile-

based estimators. In addition, the derivation of such a bound

is not straightforward since the entire pmf, θ, cannot be

estimated based on the profile. Thus, we leave this topic for

further investigation.

C. mmCCRB for the i.i.d. model

The mmCCRB in Theorem 1 is a lower bound on the

mmMSE from (23), which has been developed for the general

observation model, p(x; θ), θ ∈ Ωθ . In this subsection, we

develop the closed-form expression of the mmCCRB for the

classical i.i.d. model, as described by (5). In addition, we

develop the mmCCRB for the special case of missing-mass

unbiased estimators for the classical model described by (5).

The following corollary describes the closed-form mmFIM

for the i.i.d. case.

Corollary 1: Let the conditions of Theorem 1 be satisfied

and assume the model described in Subsection II-A with the

observation pmf given in (5). Then, the mmCCRB for this

model is

BmmCCRB(θ̃)

=
1

N
trace

(

ST (θ̃)U(UTD(θ̃)U)−1UTS(θ̃)
)

+

M
∑

m=1

[

bN,0(θ̃)
]2

m

Pr(x ∈ Am; θ̃)
, (36)

where D(θ) is a M ×M diagonal matrix with the following

elements on its diagonal:

[D(θ)]m,m = −
(1− θm)N

(1− θm)2
+

1

θm

M
∑

l=1,l 6=m

(1− θl)N

1− θl
, (37)
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m = 1, . . . ,M . The associated equality condition is given by

θ̂m − θ̃m =
[bN,0(θ̃)]m

Pr(x ∈ Am; θ̃)

+
1

N

[

ST (θ̃)U(UTD(θ̃)U)−1UT∆(x, θ̃)
]

m,m
, (38)

for any m = 1, . . . ,M such that m ∈ GN,0(x),
Proof: In Appendix D, it is proved that the mmFIM

from (30) for the model described in Subsection II-A with

the observation pmf in (5) is:

J(0)(θ) =

M
∑

m=1

N(N − 1)

(1− θm)2
(1− θm)N1M1T

M

+

M
∑

m=1

N(1− θm)N

(1− θm)2
(

em1T
M + 1MeTm

)

+ND(θ), (39)

where D(θ) is defined in (37). By using (39) and the null-

space property of the matrix U from (4), 1T
MU = 0T , we

obtain

UTJ(0)(θ)U = NUTD(θ)U. (40)

By substituting (40) in (34), we obtain the mmCCRB for the

classical model in (36). Moreover, by substituting (40) in (35),

we obtain that the equality condition of the mmCCRB for the

classical model is given by (38).

The auxiliary matrix, S(θ), in (32) involves the gradient of

the missing-mass bias, which makes it intractable for many

estimators with implicit bias gradient function. The following

lemma presents a tractable form of the auxiliary matrix for the

i.i.d. case, which can be evaluated numerically. This tractable

form is a function of the bias of the estimator and of its

correlation with the empirical histogram of the observations.

Lemma 2: The mth row of the auxiliary matrix S(θ) from

(32) under the model described in Subsection II-A with the

observation pmf given in (5) can be calculated as

Sm,1:M (θ) = Eθ

[

(θ̂m(x) − θm)vT (x, θ)1{x∈Am}
]

+
N

1− θm
[bN,0(θ)]m(em − 1M )T , (41)

where

v(x, θ)
△
=

[

CN,1(x)

θ1
, . . . ,

CN,M (x)

θM

]T

. (42)

Proof: The proof appears in Appendix E.

By substituting the auxiliary matrix, S(θ), from Lemma 2

in (36), we obtained a tractable version of the mmCCRB

on the mmMSE of biased estimators. In contrast with the

traditional biased CRB, which requires a priori specification of

the desired bias gradient [56, 57], here, we need to specify the

expectations in (41), which enables an numerical calculation

if needed.

In the following, we describe the mmCCRB for missing-

mass unbiased estimators. For the sake of simplicity of deriva-

tion, we assume in the following that bN,0(θ) = 0. According

to Lemma 1, this condition is a sufficient condition for the

Lehmann unbiasedness in (27) and (15).

Corollary 2: Let the conditions of Theorem 1 be satisfied

and assume the model described in Subsection II-A with

bN,0(θ) = 0. Then, the mmCCRB for this model and missing-

mass unbiased estimators is:

BmmCCRB(θ̃)

=
1

N

M
∑

m=1

(1− θ̃m)2N
[

U(UTD(θ̃)U)−1UT
]

m,m
, (43)

where D(θ) is defined in (37).

Proof: By substituting bN,0(θ) = 0 in (32), we obtain

that in this case S(θ) is a diagonal matrix with the diagonal

elements

[S(θ)]m,m = Pr(x ∈ Am; θ) = (1− θm)N , (44)

m = 1, . . . ,M , where the last equality is obtained by substi-

tuting (10). By substituting bN,0(θ) = 0 and (44) in (36), we

obtain that the mmCCRB on the mmMSE of a missing-mass

unbiased estimator is

BmmCCRB(θ̃) =
1

N
trace

(

UTP(θ̃)U(UTD(θ̃)U)−1
)

, (45)

where P(θ) is a diagonal M ×M matrix with the following

elements on its diagonal:

[P(θ̃)]m,m
△
= (1− θ̃m)2N , m = 1, . . . ,M. (46)

By substituting (46) in (45) and using the trace operator

properties, the mmCCRB for this case is given by (43).

The main advantage of the mmCCRB for missing-mass

unbiased estimators in Corollary 2, is that it is only a function

of the symbol generation system via the true pmf, θ, and the

number of observations, N . While the minimax MSE is lower-

bounded by c
N

for a constant c [31, 35], the lower bound on

the mmMSE provided by the mmCCRB in (43) has a more

complicated structure as a function of N . It should be noted

also that the minimax MSE approach is derived for a specific

algorithm (e.g. Good-Turing estimator) or for the worst-case

pmf, while the proposed mmCCRB applies to all algorithms

and should be evaluated for each value of θ. Finally, it can be

seen that for each different pmf, θ, the bound in (43) requires

only the computation of the diagonal matrix D(θ), which is

defined in (37).

D. Special cases

In this subsection, we develop some important special cases

of the mmCCRB for the i.i.d. model from Subsection III-C.

1) mmCCRB on the mmMSE of the CML estimator: The

CML estimator from (13) assigns a zero probability to unseen

events:

θ̂CML
m = 0, ∀m ∈ GN,0(x). (47)

By substituting (47) in (25), one obtains that the missing-mass

bias of the CML estimator satisfies

[bCML
N,0 (θ)]m = Eθ[θ̂

CML
m − θm|x ∈ Am] Pr(x ∈ Am; θ)

= −θm Pr(x ∈ Am; θ), (48)

for any m = 1, . . . ,M . By substituting (48) in (32), we

obtain that for the CML estimator, the auxiliary matrix satisfies
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S(θ) = 0M×M . By substituting this result and (48) in (36),

we obtain that the mmCCRB on the mmMSE of the CML

estimator (or any other estimator with the same bias function

as in (48)) is

BmmCCRB(θ̃) =

M
∑

m=1

θ̃2m Pr(x ∈ Am; θ̃). (49)

On the other hand, by substituting (47) in (23), it can be seen

that the mmMSE of the CML estimator evaluated at the local

point, θ̃, is

E
θ̃

[

C(θ̂
CML

, θ̃)
]

=

M
∑

m=1

θ̃2m Pr(x ∈ Am; θ̃). (50)

Thus, in this case, the biased mmCCRB with the bias function

of the CML estimator coincides with the mmMSE of the CML

estimator. Therefore, we can conclude that there is no other

estimator with the same missing-mass bias as that of the CML

estimator, given in (48), that achieves a lower mmMSE than

the CML estimator. It should be noted that since we used

the mmCCRB from Theorem 1, which was developed for the

general observation model, p(x; θ), θ ∈ Ωθ , this result also

holds for non-i.i.d. sampling with a general structure of p(x; θ)
[33, 48, 49].

2) mmCCRB on the mmMSE of a general missing-mass

estimator: Various estimators of the missing mass have been

suggested in the literature. In this paper we consider three

estimators that are described in Section V: The Good-Turing,

Laplace, and aPML estimators. In the following, we describe

how to obtain the biased mmCCRB from Corollary 1 for a

general missing-mass estimator.

Consider an estimator p̂0(x, θ̂) for the missing mass from

(21). Under the assumption of a natural estimator [27], the

associated estimator of a specific element in GN,0(x) is

θ̂m =

{

p̂0(x,θ̂)
|GN,0(x)| if GN,0(x) 6= ∅

0 if GN,0(x) = ∅
, (51)

for any m ∈ GN,0(x). By substituting (51) in (25), one obtains

that the missing-mass bias of an arbitrary estimator p̂0(x, θ̂)
satisfies

[bN,0(θ)]m

= Eθ

[

p̂0(x, θ̂)

|GN,0(x)|
− θm|x ∈ Am

]

Pr(x ∈ Am; θ). (52)

While a closed-form expression of the missing-mass bias of an

arbitrary estimator in (52) is intractable, the proposed bound

can be used by numerically calculating the auxiliary matrix

for this case. That is, by substituting (51) in (41), one obtains

Sm,1:M (θ)

= Eθ

[(

p̂0(x, θ̂)

|GN,0(x)|
− θm

)

vT (x, θ)|x ∈ Am

]

Pr(x ∈ Am; θ)

+
N

1− θm
[bN,0(θ)]m(em − 1M )T . (53)

Then, by substituting (52) and (53) in (36), we obtain the

associated mmCCRB, which can be evaluated numerically.

In particular, a Monte Carlo approach can be applied to

approximate the expectation in (53), in a similar manner to

the empirical FIM approximation described in [59].

3) Uniform distribution: For the special case where θ =
1
M
1M , the diagonal elements of the matrix D(θ) from (37)

are given by

[D(θ)]m,m = −

(

M − 1

M

)N−2

+M2

(

M − 1

M

)N

=M(M − 2)

(

M − 1

M

)N−2

, (54)

m = 1, . . . ,M . Similarly, for this case (46) is reduced to

P(θ) =

(

M − 1

M

)2N

IM . (55)

By substituting (54) and (55) in (45) and using UTU = I from

(4), we obtain that for this case the mmCCRB missing-mass

unbiased estimator is given by

BmmCCRB(θ̃) =
1

N

(

M − 1

M

)N+3
1

M − 2
, (56)

for M > 2, where we used the cyclic property of the trace.

We can see that the mmCCRB for the uniform pmf from

(56) decreases as the number of samples, N , increases, since

we have more information. In general, the rate of decrease

is a function of M . For large values of M , the mmCCRB

has approximately the order of 1
N

, similar to the minimax

results [31, 35]. The lower bounds on the minimax MSE are

independent of M , which is assumed unknown in [31, 35].

As a function of M , the mmCCRB in (56) increases as M

increases if 1 < M ≤ N+4+
√
N2+4

2 , and decreases as M

increases otherwise. On the other hand, for this case of uniform

pmf the CCRB in (20) on the trace MSE is reduced to

BCCRB(θ) =
1

N
−

1

MN
. (57)

Thus, the CCRB is almost independent of the number of

elements, M , for large value of MN , in contrast to the

missing-mass CCRB in (56), and, thus, is less informative for

the problem of missing-mass estimation.

IV. MISSING-MASS FISHER-SCORING-TYPE ESTIMATION

Obtaining the minimum mmMSE estimator among all un-

biased estimators is usually intractable. Moreover, in most

nonlinear parameter estimation problems, such an estimator

does not exist. Therefore, in this section we describe a new

iterative algorithm, the missing-mass Fisher-scoring algorithm,

that further improves the performance of existing estimators

by using the proposed bound. Similar to the Fisher-scoring

method [60] and the constrained Fisher-scoring method [12,

61], the equality condition in (35) can be used to obtain an

iterative estimation procedure. In this case, the estimator at the

kth iteration, θ̂
(k)

, is obtained by substituting the estimator
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from the previous iteration, θ̃ = θ̂
(k−1)

, in (35) to obtain

θ̂(k)m − θ̂(k−1)
m = ψ(k)

{

[bN,0(θ̃)]m

Pr(x ∈ Am; θ̃)

+
[

ST (θ̃)U(UT J(0)(θ̃)U)−1UT∆(x, θ̃)
]

m,m

}∣

∣

∣

∣

θ̃=θ̂
(k−1)

, (58)

for any m = 1, . . . ,M such that m ∈ GN,0(x), where ψ(k)

is the step size at the kth iteration. Similarly, for the i.i.d.

model, the equality condition in (38) results in the following

kth iteration:

θ̂(k)m − θ̂(k−1)
m = ψ(k)

{

[bN,0(θ̃)]m

Pr(x ∈ Am; θ̃)

+
1

N

[

ST (θ̃)U(UTD(θ̃)U)−1UT∆(x, θ̃)
]

m,m

}∣

∣

∣

∣

θ̃=θ̂
(k−1)

, (59)

for any m = 1, . . . ,M such that m ∈ GN,0(x), where ψ(k)

is the step size at the kth iteration. An appropriate step-size

rule for ψ(k), k = 1, 2, . . ., should be chosen to guarantee

usability (such that the resulting iterate reduces the mmMSE)

and to stabilize the convergence. In comparison with the

classical method of Fisher-scoring or with the constrained

Fisher-scoring [12], the proposed iteration in (59) is essentially

a replacement of the Cramér-Rao bound (in classical Fisher-

scoring) or the CCRB (in the constrained Fisher-scoring) with

the new mmCCRB from (36) in the Fisher-scoring iteration.

The initial estimator, θ̂
(0)

, can be chosen to be any existing

estimator, such as the CML, Good-Turing, Laplace, or aPML

estimator, all described in Subsections V. In order to obtain

reasonable estimation, the initial estimator: 1) should satisfy

the constraint θ ∈ Ωθ in (1), i.e. 1T
M θ̂

(0)
= 1; and 2) should be

a natural estimator [27], i.e. θ̂
(0)

assigns the same probabilities

to symbols appearing the same number of times. Similarly,

after each iteration, we project the solution to the constraint

set and to be a natural estimator, by the following steps:

θ̂(k)m =
θ̂
(k)
m

∑M

l=1 θ̂
(k)
l

, m = 1, . . . ,M (60)

and

θ̂(k)m =
1

|GN,CN,m
(x)|

M
∑

l=1

l∈GN,CN,m
(x)

θ̂
(k)
l , (61)

m = 1, . . . ,M . For a desired tolerance υ, the algorithm exits

when the condition ||θ̂
(k)
− θ̂

(k−1)
|| < υ is met. Since the

lexicon size is assumed to be known, in a case where we

observe all symbols, GN,0(x) = ∅, we set p̂0(x, θ) = 0.

Finally, the algorithm is summarized in Algorithm 1.

V. SIMULATIONS

In this section, we evaluate the proposed bound and the

missing-mass Fisher-scoring method. In Subsection V-A, we

describe the estimators and bounds that are evaluated in the

simulations. In Subsections V-B and V-C we evaluate the

performance for uniform and Zipf distributions, respectively.

Algorithm 1: missing-mass Fisher-scoring algorithm

for improving missing-mass estimators

Input:

• M - Number of symbols

• x - Observation vector

• θ̂
(0)

- Initial estimator

• ψ(k), k = 1, . . . - step sizes

• υ - Tolerance

• Kmax - Maximum iteration number

Output: p̂0(x, θ) - Estimator of the missing mass

1 Initialize k = 0
2 if GN,0(x) = ∅ then

3 Return: p̂0(x, θ) = 0
4 else

5 Update k ← k + 1

6 Update θ̂
(k)
← θ̂

(k−1)
by (59) with step size ψ(k)

7 Correct θ̂
(k)

by the projection in (60)

8 Correct θ̂
(k)

by the projection in (61)

9 if ||θ̂
(k)
− θ̂

(k−1)
|| < υ and/or k > Kmax then

10 Return:

p̂0(x, θ) =
1

|GN,0(x)|

M
∑

m=1,m∈GN,0(x)

θ̂(k)m

(62)

.
11 else

12 Repeat to step 5.

A. Estimators and bounds

In the following simulations, we evaluate the performance

of four estimators of the missing mass:

I. CML estimator from (13).

II. Good-Turing estimator - The Good-Turing estimator [2]

of the missing mass from (21) is defined as the fraction of

symbols occurring exactly once in the observed samples di-

vided by the length of the observation vector. It is well known

that smoothing of the Good-Turing estimator may improve the

estimation performance [2, 8]. Here we use a smooth modified

version of the Good-Turing estimator, described in in [8]. This

modified Good-Turing estimator is given by

p̂GT
0 (x, θ̂) =

ϕ(|GN,1(x)|)

ζ
, (63)

where ϕ(t) = max{t, 1}, ∀t ∈ R, |GN,1(x)| is the number of

elements that appear exactly once in the N -length observation

vector, x, and

ζ
△
= ϕ(|GN,1(x)|)

+
∑

r∈{r:|GN,r(x)|>0}
|GN,r(x)|(r + 1)

ϕ(|GN,r+1(x)|)

|GN,r(x)|
(64)

is a normalization factor.

III. Laplace estimator - The add-constant estimator of the
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missing mass from (21) is defined as [16]

p̂add−c
0 (x, θ̂) =

c

N + c(M − |GN,0(x)|+ 1)
, (65)

for a positive constant c. The add-constant estimator has been

applied and studied extensively and has been shown to have

some optimality properties [8]. For c = 1, we obtain the

special case of the Laplace estimator [15, 16], used in the

simulations.

IV. aPML estimator- The PML estimator [24-26] has impres-

sive statistical properties, but is computationally challenging.

Consequently, an efficiently computable approximation for the

PML distribution was proposed in [47]. In the simulations, we

use the code from [62] for computing the aPML distributions,

where the support size is used as a given input. Then, we take

the smallest value in this distribution as the aPML estimator

of the missing mass.

The performance of these estimators is evaluated using

500, 000 Monte-Carlo simulations that are used to evaluate the

mmMSE, Eθ[C(θ̂, θ)], and the absolute value of the missing-

mass total bias, |
∑M

m=1 [bN,0(θ)]m |, as defined in (23) and

(25), respectively.

We compare the performance of these estimators with the

following bounds:

• The CCRB from (20), which is a lower bound on the

MSE of the entire pmf vector and is presented here in

order to compare its behavior with that of the proposed

mmMSE bounds.

• The mmCCRB with the bias of the CML estimator, as

given in (49).

• Three versions of the biased mmCCRB from Corollary 1

with the empirical bias and the empirical auxiliary matrix,

S(θ), as described in Subsection III-D2 for the Good-

Turing, Laplace, and aPML estimators.

• The mmCCRB on missing-mass unbiased estimators

from Corollary 2.

It can be verified that in all the simulations the regularity

condition C.1 is satisfied.

B. Example 1: Uniform distribution

In the first experiment we examine the case of a uniform

pmf with equally-likely elements, i.e. where θ = 1
M
1M ,

as described in Subsection III-D3. In Figs. 1a and 1b we

present the missing-mass bias and the mmMSE, respectively,

of the different estimators versus the number of elements,

M , for N = 30. Similarly, In Figs. 2a and 2b we present

the missing-mass bias and the mmMSE, respectively, of the

different estimators versus the number of samples, N , for

M = 15. The CCRB and the mmCCRB of unbiased estimators

are also presented in Figs. 1b and 2b. The performance of the

aPML estimator for this case is not presented since the default

of this estimator, where the observations are insufficient, is

to choose the uniform estimator. Thus, the aPML estimator

is unstable and not suitable for comparison in the uniform

distribution case. It can be seen that for this case, the Good-

Turing estimator outperforms the two other estimators in

both missing-mass bias and mmMSE terms, where the gap

is larger where M is larger and where N is smaller. The

differences between the performance of the CML and the

Laplace estimators are insignificant. In addition, it can be seen

in Fig. 2b that the mmMSE of the Good-Turing estimator

coincides with the proposed mmCCRB on the mmMSE of

unbiased estimators from Corollary 2 for small values of

N . While the unbiased mmCCRB is not a tight bound for

this case, its curve demonstrates the influence of the system

parameters, M (in Fig. 1b) and N (in Fig. 2b), on the practical

mmMSE. In contrast, the CCRB is not a useful tool for

performance analysis and system design. For example, it does

not reflect the influence of M , as also shown analytically in

Subsection III-D3.

C. Example 2: Zipf distribution

In the second experiment, we consider a Zipf’s law dis-

tribution, θm = m−s

∑
M
k=1 k−s

, m = 1, . . . ,M , where s is the

skewness parameter. The Zipf’s law distribution is a heavy-

tailed distribution that is widely used in physical and social

sciences, linguistics, economics, and other fields [63]. In Figs.

3a and 3b we present the bias and mmMSE, respectively, of

the different estimators versus the number of elements, M ,

for N = 100 and s = 1. Similarly, in Figs. 4a and 4b we

present the bias and mmMSE, respectively, versus the number

method.sof samples, N , for M = 15 and s = 1. In addition,

in Figs. 3b and 4b we also present the CCRB, unbiased

mmCCRB, and the different biased mmCCRBs associated

with the considered estimators.

It can be seen in Figs. 3-4 that the CML estimator has

the largest missing-mass bias and the largest mmMSE. Ad-

ditionally, the aPML estimator has the smallest missing-mass

bias and the smallest mmMSE for all N and M . In Figs.

3b and 4b we can see that the mmCCRB on the mmMSE

of missing-mass unbiased estimators is lower than the actual

mmMSE of theestimators, since these estimators are biased

in the Lehmann sense. However, the curve of the mmCCRB

demonstrates the influence of the system parameters, M (in

Fig. 3b) and N (in Fig. 4b), on the practical mmMSE. In

contrast, the CCRB does not reflect the influence of M also

in this case.

It can be seen that the biased mmCCRB with the CML

bias coincides with the mmMSE of the CML estimator, as

shown analytically in (49)-(50). Similarly, the biased mmC-

CRB associated with the Laplace estimator coincides with the

mmMSE of the Laplace estimator. Thus, the CML and Laplace

estimators achieve the lowest mmMSE for their associated bias

function. However, for the Good-Turing and aPML estimators

there is a gap between the associated mmCCRB and the

mmMSE. As the sample size, N , increases, the mmMSE of

these estimators achieves the associated mmCCRBs. Thus, in

this case, there can be estimators with the same bias as the

Good-Turing or aPML estimator but with a lower mmMSE.

For large values of M and small values of N , the mmMSE of

the aPML and the Good-Turing estimators coincides. These

regions can also be deduced from a comparison between the

biased mmCCRBs associated with these estimators.

In Figs. 5a and 5b, we compare the missing-mass bias and

the mmMSE of the Laplace estimator and the estimators that
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Fig. 1: Example 1 (uniform pmf): The performance of the

CML, Good-Turing, and Laplace estimators versus the number

of elements, M , in terms of missing-mass bias (a) and the

mmMSE (b). In (b) we also present the CCRB and the biased

and unbiased versions of the mmCCRB.

are obtained after 1−5 iterations of the proposed missing-mass

Fisher-scoring method in Algorithm 1 with initialization by the

Laplace estimator. We set ψ(k) = 1
N

, ∀k ≥ 1 in Algorithm 1.

It can be seen that the proposed missing-mass Fisher-scoring

method reduces the missing-mass bias and the mmMSE of

the Laplace estimator. In addition, the proposed method is

consistent in the sense that by using more iterations, we obtain

better estimators. These results demonstrate that the proposed

mmCCRB can be used to further improve the performance of

existing estimators of the missing mass.

VI. CONCLUSION

In this paper, we consider the problem of estimation of

the missing mass. Similar to the naive CML estimator, which

overestimates the probability of the observed elements, the

CCRB on the MSE of χ-unbiased estimators does not provide

a relevant bound for the missing-mass estimation problem.

Hence, we adopt a new non-Bayesian approach, which is

based on using the mmMSE risk function that only penalizes

the estimation errors of elements that belong to the missing

mass. The missing-mass unbiasedness, which is based on

Lehmann’s concept of unbiasedness and the mmMSE risk

function, is proposed. We develop a new Cramér-Rao-type

bound for this problem, the mmCCRB, which is a lower

bound on the mmMSE of any locally missing-mass unbiased

estimators. In addition, the biased mmCCRB on the mmMSE
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Fig. 2: Example 1 (uniform pmf): The performance of the

CML, Good-Turing, and Laplace estimators versus the number

of samples, N , in terms of missing-mass bias (a) and the

mmMSE (b). In (b) we also present the CCRB and the biased

and unbiased versions of the mmCCRB.

of for missing-mass biased estimators is developed. By using

the mmCCRB on the mmMSE of the CML estimator, we show

analytically that the CML estimator has the smallest mmMSE

among all estimators that have the same missing-mass bias

as the CML estimator. Based on the equality condition of the

new mmCCRB, we derive a new method to improve existing

estimators by an iterative missing-mass Fisher-scoring method.

In the simulations, we show that the unbiased mmCCRB

is not a tight bound, but it can predict the behavior of the

estimators w.r.t. the different system parameters. The biased

versions of the mmCCRB are tight for the CML and Laplace

estimators. Thus, the CML and the Laplace estimators achieve

the lowest mmMSE possible for their bias. In contrast, for

the Good-Turing and aPML estimators, there are regions in

which one can theoretically find a better estimator (in the

mmMSE sense) with the same bias. In addition, the different

biased mmCCRBs can also be useful for setting the order

relation between the different estimators and for exploring

the bias-variance tradeoff. It is also shown that the proposed

missing-mass Fisher-scoring method reduces the missing-mass

bias and the mmMSE of the Laplace estimator. Future work

should include missing-mass estimation with an unknown

and infinite alphabet size. In addition, further investigation is

needed regarding development of lower bounds based on the

profile likelihood that may be tighter than the mmCCRB.
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Fig. 3: Example 2 (Zipf distribution): The performance of the

CML, Good-Turing, Laplace, and aPML estimators versus the

number of elements, M , for N = 100 and s = 1 in terms

of missing-mass bias (a) and the mmMSE (b). In (b) we also

present the CCRB and the biased and unbiased versions of the

mmCCRB.

APPENDIX A

DERIVATION OF (20)

In this appendix, we develop the CCRB on the MSE for

pmf estimation. First, we note that taking the logarithm of (5)

yields the following log-likelihood function:

log p(x; θ) =

M
∑

m=1

CN,m(x) log θm, x ∈ SN . (66)

By substituting the derivative of (66) w.r.t. θ in (18), we obtain

that the (l,m) element of the FIM is given by

[J(θ)]l,m =
1

θlθm
Eθ [CN,l(x)CN,m(x)]

=

{

N(N − 1) m 6= l

N2 +N 1−θm
θm

m = l
, (67)

∀m, l = 1, . . . ,M , where CN,m(x), m = 1, . . . ,M , are

defined in (6) and the last equality holds by using known

results on the moments of the multinomial distributed variables

[64]. By using the elements in (67), the FIM for the probability

estimation model can be written in a matrix form as

J(θ) = N(N − 1)1M1T
M +N (diag(θ))

−1
. (68)

It should be noted that J(θ) from (68) is a well-defined,

non-singular matrix, since we assume that θm 6= 0, ∀m =
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Fig. 4: Example 2 (Zipf distribution): The performance of the

CML, Good-Turing, Laplace, and aPML estimators versus the

number of samples, N , for M = 15 and s = 1 in terms of

missing-mass bias (a) and the mmMSE (b). In (b) we also

present the CCRB and the biased and unbiased versions of

the mmCCRB.

1, . . . ,M . By substituting (68) in (17), one obtains the fol-

lowing closed-form CCRB on the MSE under the constraint

θ ∈ Ωθ:

E
θ̃

[

(θ̂ − θ̃)(θ̂ − θ̃)T
]

�
1

N(N − 1)
U(UT1M1T

MU)−1UT

+
1

N
U

(

UT
(

diag(θ̃)
)−1

U

)−1

UT

=
1

N
U

(

UT
(

diag(θ̃)
)−1

U

)−1

UT , (69)

where the last equality is obtained by substituting (4), which

implies 1T
MU = 0M−1. By applying the trace operator on the

CCRB from (69) and using UTU = I from (4) we obtain the

bound on the trace MSE in (19)-(20).

APPENDIX B

PROOF OF LEMMA 1

In this appendix, we develop the missing-mass Lehmann

unbiasedness. By substituting the missing-mass squared-error

cost function from (22) and Ωθ from (1) in (24), one obtains

that the Lehmann-unbiasedness condition for the missing-mass
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Fig. 5: Example 2 (Zipf distribution): The performance of the

Laplace estimator and its improvement by the missing-mass

Fisher-scoring method (from Algorithm 1) after 1-5 iterations

versus the number of samples, N , in terms of missing-mass

bias (a) and the mmMSE (b).

estimation problem is given by

∑M

m=1
Eθ

[

(θ̂m − ηm)21{m∈GN,0(x)}
]

≥
∑M

m=1
Eθ

[

(θ̂m − θm)21{m∈GN,0(x)}
]

, (70)

∀θ,η ∈ Ωθ. By using the definition of the constrained set

in (1) and since U from (4) is the null-space matrix of this

constrained set, then, for a given θ ∈ Ωθ, any η ∈ Ωθ can be

written as (see, e.g. Section 4.2.4 in [65])

η = θ +Uw, (71)

where w ∈ R
M−1 is an arbitrary vector. By substituting (71)

in (70), we obtain

∑M

m=1
Eθ

[

(θ̂m − θm − eTmUw))21{m∈GN,0(x)}
]

≥
∑M

m=1
Eθ

[

(θ̂m − θm)21{m∈GN,0(x)}
]

, (72)

∀θ ∈ Ωθ,w ∈ R
M−1. By using (10), the unbiasedness

condition from (72) can be rewritten as:

∑M

m=1
(eTmUw)2 Pr(x ∈ Am; θ)

≥ 2
∑M

m=1
Eθ

[

(θ̂m − eTmθ)1{m∈GN,0(x)}
]

eTmUw, (73)

∀θ ∈ Ωθ,w ∈ R
M−1. Since the condition in (73) should be

satisfied for any w ∈ R
M−1, it should be satisfied in particular

for both w = ǫek and w = −ǫek, where ǫ > 0. By summing

the separate substitution of w = ±ǫek (that is, the result of

substituting w = ǫek into (73) and the result of substituting

w = ǫek into the same equation), we obtain the following

necessary condition for (73) to hold:

M
∑

m=1

Eθ

[

(θ̂m − θm)1{m∈GN,0(x)}
]

eTmU = 0T
M−1, (74)

∀θ ∈ Ωθ. Since the l.h.s. of (73) is a quadratic term, it can be

verified that (74) is also a sufficient condition for unbiasedness

in this case. Therefore, by applying the transpose operator on

(74), one obtains that the missing-mass unbiasedness in (26)

is the Lehmann unbiasedness under the missing-mass squared

error cost function.

APPENDIX C

PROOF OF THEOREM 1

In this appendix, we develop the new mmCCRB from

Theorem 1. The proof is divided into: 1) the development of

Lemma 3 in Subsection C-A; 2) the main development of the

bound based on the covariance inequality in Subsection C-B;

and 3) derivation of the equality condition in Subsection C-C.

To this end, we define Γ(x, θ) as a diagonal M ×M matrix

with the following elements on its diagonal:

[Γ(x, θ)]m,m
△
= ǫm(θ)1{m∈GN,0(x)}, m = 1 . . . ,M, (75)

where

ǫm(θ)
△
= θ̂m − Eθ

[

θ̂m|x ∈ Am

]

, m = 1, . . . ,M. (76)

A. Lemma 3

In this subsection, we prove the following Lemma:

Lemma 3:

Eθ

[

Γ(x, θ)∆T (x, θ)
]

= S(θ), (77)

where ∆(x, θ), S(θ), and Γ(x, θ) are defined in (31), (32),

and (75), respectively.

Proof: By substituting (31), (75), and (76) in (77) one

obtains that the mth row of Eθ

[

Γ(x, θ)∆T (x, θ)
]

on the r.h.s.

of (77) satisfies

Eθ

[

ǫm(θ)∆T
1:M,m(x, θ)

]

= Eθ

[

ǫm(θ)∇θ log p(x|x ∈ Am; θ)1{x∈Am}
]

= Pr(x ∈ Am; θ)
∑

α∈Am

ǫm(θ)∇T
θ
Pr(x = α|x ∈ Am; θ), (78)

m = 1, . . . ,M , where the last equality stems from

∇θ log p(x|x ∈ Am; θ) =
∇θp(x|x ∈ Am; θ)

p(x|x ∈ Am; θ)
, ∀x ∈ Am,

in which Am is defined in (9). Then, by applying the product

rule on the r.h.s. of (78), we obtain
∑

α∈Am

ǫm(θ)∇T
θ
Pr(x = α|x ∈ Am; θ)

= ∇T
θ

{

∑

α∈Am

ǫm(θ) Pr (x = α|x ∈ Am; θ)

}

−
∑

α∈Am

∇T
θ
{ǫm(θ)}Pr(x = α|x ∈ Am(x); θ)

= ∇T
θ {Eθ [ǫm(θ)|x ∈ Am]}

−
∑

α∈Am

∇T
θ {ǫm(θ)}Pr(x = α|x ∈ Am(x); θ). (79)
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Computing the conditional expectation of (76), given the event

that m ∈ GN,0(x), results in

Eθ [ǫm(θ)|x ∈ Am] = 0, m = 1, . . . ,M. (80)

In addition, computing the gradient of (76) results in

∇T
θ
ǫm(θ) = −∇T

θ
Eθ

[

θ̂m|x ∈ Am

]

, (81)

m = 1, . . . ,M . By using the conditional expectation defini-

tion, and then substituting (80) and (81) in (79), one obtains
∑

α∈Am

ǫm(θ)∇T
θ
Pr(x = α|x ∈ Am(x); θ)

= ∇T
θ

{

Eθ

[

θ̂m|x ∈ Am

]}

∑

α∈Am

Pr(x = α|x ∈ Am; θ)

= ∇T
θ

{

Eθ

[

θ̂m|x ∈ Am

]}

, (82)

where the last equality stems from the fact that for a condi-

tional pmf we have
∑

α∈Am
Pr(x = α|m ∈ GN,0(x); θ) = 1.

By substituting the definition of the missing-mass bias vector,

bN,0(θ), from (25) in (82) and using the fact that ∇T
θ
θm =

eTm, one obtains
∑

α∈Am

ǫm(θ)∇T
θ Pr(x = α|x ∈ Am(x); θ)

= ∇T
θ

{

[bN,0(θ)]m
Pr(x ∈ Am; θ)

}

+ eTm, (83)

m = 1, . . . ,M . Substitution of (32) in (83) and then substi-

tuting the result in (78) results in (77).

B. Covariance inequality

The following part of the proof is along the path of the

proof from [11] for the CCRB on the MSE in a conventional

estimation problem. Let W ∈ R
M×M be an arbitrary matrix

and θ̃ ∈ Ωθ is a local parameter vector. Then,

0 � E
θ̃

[(

Γ(x, θ̃)−WTUUT∆(x, θ̃)
)

×
(

Γ(x, θ̃)−WTUUT∆(x, θ̃)
)T
]

= E
θ̃

[

Γ(x, θ̃)ΓT (x, θ̃)
]

− ST (θ̃)UUTW

−WTUUTS(θ̃) +WTUUTJ(0)(θ̃)UUTW, (84)

where we substitute (77) from Lemma 3 and the mmFIM

definition from (30). By rearranging (84), we obtain

0 � E
θ̃

[

Γ(x, θ̃)ΓT (x, θ̃)
]

− ST (θ̃)UUTW

−WTUUTS(θ̃) +WTUUTJ(0)(θ̃)UUTW. (85)

By applying the trace operator on (85), it can be verified that

the matrix inequality in (85) provides a family of bounds

on the mmMSE from (23), which depends on the specific

choice of the matrix W. Theorem 1 is obtained by choosing

the optimal member from this family, as described in the

following.

Since UTJ(0)(θ̃)U is a non-singular matrix under regularity

Condition C.1, then it is shown in [11] that the greatest lower

bound, i.e. the supremum of the r.h.s. of (85) over W, is

obtained by a matrix W which satisfies

WTU = ST (θ̃)U
(

UTJ(0)(θ̃)U
)−1

. (86)

By substituting (86) into (85), one obtains

E
θ̃

[

Γ(x, θ̃)ΓT (x, θ̃)
]

� ST (θ̃)U(UT J(0)(θ̃)U)−1UTS(θ̃). (87)

By applying the trace operator on (87) and substituting (75),

we obtain

M
∑

m=1

E
θ̃

[

ǫm(θ̃)21{m∈GN,0(x)}
]

≥ trace(ST (θ̃)U(UT J(0)(θ̃)U)−1UTS(θ̃)). (88)

The following equation relates the mmMSE from (23) and

the l.h.s. of (88). From (76), it can be seen that

E
θ̃

[

(θ̂m − θ̃m)2|x ∈ Am

]

= E
θ̃

[

(ǫm(θ̃) + E
θ̃

[

θ̂m|x ∈ Am

]

− θ̃m)2|x ∈ Am

]

= E
θ̃

[

ǫ2m(θ̃)|x ∈ Am

]

+ (E
θ̃

[

θ̂m|x ∈ Am

]

− θ̃m)2

= E
θ̃

[

ǫ2m(θ̃)|x ∈ Am

]

+





[

bN,0(θ̃)
]

m

Pr(x ∈ Am; θ̃)





2

, (89)

where the second equality stems from (80) and the last equality

is obtained by substituting (25). By multiplying (89) by

Pr(x ∈ Am; θ̃), then summing the result over m = 1, . . . ,M ,

and substituting the result in (88), one obtains the mmBCRB

on the mmMSE of biased estimator evaluated at the local

point, θ̃, in (33)-(34).

C. Derivation of the equality condition in (35)

According to Cauchy-Schwartz inequality properties (or

covariance inequality properties), equality in (84) for W that

satisfies (86) holds if

E
θ̃

[

(Γ(x, θ̃)− ST (θ̃)U(UT J(0)(θ̃)U)−1UT∆(x, θ̃))

×(Γ(x, θ̃)− ST (θ̃)U(UT J(0)(θ̃)U)−1UT∆(x, θ̃))T
]

= 0. (90)

The condition in (90) holds if

Γ(x, θ̃) = ST (θ̃)U(UT J(0)(θ̃)U)−1UT∆(x, θ̃) (91)

which, by using (75), implies that

ǫm(θ̃) =
[

S(θ̃)TU(UT J(0)(θ̃)U)−1UT∆(x, θ̃)
]

m,m
,

(92)

for any m = 1, . . . ,M such that m ∈ GN,0x. By substituting

(25) and (76) in (92) we get (35).
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APPENDIX D

DERIVATION OF THE FIM IN (39)

In this appendix, we develop the closed-form mmFIM,

defined in (30), for the observation model from (5). By

substituting (12) in (31), one obtains

∆1:M,m(x, θ) =

∇θ

(

M
∑

l=1

CN,l(x) log θl −N log(1− θm)

)

1{m∈GN,0(x)}

=

(

vT (x, θ)−
N

1− θm
eTm

)

1{m∈GN,0(x)}, (93)

where v(x, θ) is defined in (42). By substituting (93) in

the mmFIM definition from (30), we obtain that the (k, l)th
element of the mmFIM for our model is given by

[

J(0)(θ)
]

k,l
=

M
∑

m=1

Eθ

[

[∆(x, θ)]k,m [∆(x, θ)]l,m

]

=

M
∑

m=1

Eθ

[(

CN,k(x)

θk
+

N

1− θm
δk,m

)

×

(

CN,l(x)

θl
+

N

1− θm
δl,m

)

1{m∈GN,0(x)}

]

=

M
∑

m=1

{

1

θkθl
Eθ [CN,k(x)CN,l(x)|m ∈ GN,0(x)]

+
Nδk,m

(1 − θm)θl
Eθ [CN,l(x)|x ∈ Am]

+
Nδl,m

(1− θm)θk
Eθ [CN,k(x)|x ∈ Am]

+
N2δk,mδl,m

(1− θm)2

}

Pr(x ∈ Am; θ), (94)

where the last equality is obtained by using the law of total

probability. In the following, we compute the conditional

expectation terms from (94). First, it can be seen that

∑

α∈Am

Pr(x = α; θ) = Pr(x ∈ Am; θ) =





N
∑

n=1,n6=m

θn





N

, (95)

m = 1, . . . ,M , where Am is defined in (9) and where the

probability of the mth element to be unobserved on the r.h.s.

of (95) is an alternative way of writing the r.h.s of (10). Then,

by using (12), it can be verified that

Eθ [CN,k(x)|x ∈ Am]

=
∑

α∈Am

CN,k(α)

∏M

n=1 θ
CN,n(α)
n

(1− θm)N

=
θk

(1− θm)N

∑

α∈Am

∂

∂θk

M
∏

n=1

θCN,n(α)
n

=
θk

(1− θm)N
∂

∂θk

∑

α∈Am

Pr(x = α; θ), (96)

m, k = 1, . . . ,M . It should be noted that the last equality in

(96) is only valid if we use the probability term, Pr(x = α; θ),

as it is written in (95). By substituting (95) in (96), one obtains

Eθ [CN,k(x)|x ∈ Am]

=
θk

(1− θm)N
∂

∂θk

(

N
∑

n=1,n6=m

θn

)N

=

{

Nθk
1−θm

m 6= k

0 m = k
. (97)

Similar to the derivation of (96), by using (12), we obtain

Eθ [CN,k(x)CN,l(x)|x ∈ Am]

=
∑

α∈Am

CN,k(α)CN,l(α)

∏M

n=1 θ
CN,n(α)
n

(1− θm)N

=
∑

α∈Am

θkθl

(1− θm)N
∂2

∂θk∂θl

M
∏

n=1

θCN,n(α)
n

+
δk,l

(1− θm)N

∑

α∈Am

CN,k(α)

M
∏

n=1

θCN,n(α)
n

=
θkθl

(1− θm)N
∂2

∂θk∂θl

∑

α∈Am

Pr(x = α; θ)

+
Nδk,l

1− θm
Eθ [CN,k(x)|x ∈ Am] , (98)

where we replace the order of the derivative and the sum, and

we use (5). Again, it should be noted that the last equality in

(98) is only valid if we use the probability term, Pr(x = α; θ),
in (95). By substituting (95) and (97) in (98), one obtains

Eθ [CN,k(x)CN,l(x)|x ∈ Am] =

θkθl

(1− θm)N
∂2

∂θk∂θl

(

N
∑

n=1,n6=m

θn

)N

+
Nθkδk,l(1 − δm,k)

1− θm

=











N(N−1)θkθl
(1−θm)2 if m 6= k, l 6= m, k 6= l

N(N−1)θ2
k

(1−θm)2 + Nθk
1−θm

if k = l 6= m

0 otherwise

. (99)

Thus, by substituting (10), (97), and (99) in (94), one obtains

that the elements of the mmFIM are given by

[J(0)(θ)]k,k
M
∑

m=1,m 6=k

(

N(N − 1)

(1 − θm)2
+

N

θk(1− θm)

)

(1− θm)N

+
N2

(1− θk)2
(1 − θk)

N

=

M
∑

m=1

(

N(N − 1)

(1 − θm)2
+

N

θk(1− θm)

)

(1− θm)N

+
N

(1− θk)2
(1− θk)

N

−
N

θk(1− θk)
(1− θk)

N , (100)
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for k = 1, . . . ,M , and

[J(0)(θ)]k,l =

M
∑

m=1,m 6=k,m 6=l

N(N − 1)

(1− θm)2
(1− θm)N

+
N2

(1− θk)2
(1 − θk)

N +
N2

(1− θl)2
(1 − θl)

N

=
M
∑

m=1

N(N − 1)

(1 − θm)2
(1− θm)N

+
N

(1− θk)2
(1− θk)

N +
N

(1− θl)2
(1− θl)

N , (101)

for k, l = 1, . . . ,M , k 6= l. By rearranging the elements in

(100) and (101), and substituting (10), we obtain the closed-

form matrix J(0)(θ) in its matrix representation in (39).

Dm,m = −
(1− θm)N

(1− θm)2
+

M
∑

l=1,l 6=m

(1− θl)N

θm(1 − θl)
. (102)

APPENDIX E

PROOF OF LEMMA 2

Taking the logarithm of (12) yields the following conditional

log-likelihood function:

log p(x|x ∈ Am; θ) =

M
∑

l=1

CN,l(x) log θl −N log(1− θm),(103)

for any x ∈ Am. By substituting (76) and the derivative of

(103) w.r.t. θ in (78), we obtain

Eθ

[

ǫm(θ)∆T
1:M,m(x, θ)

]

= Eθ

[

(θ̂m − Eθ[θ̂m|x ∈ Am])

×(vT (x, θ) +NeTm
1

1− θm
)1{x∈Am}

]

= Eθ

[

(θ̂m − θm)(vT (x, θ) +NeTm
1

1− θm
)1{x∈Am}

]

−[bN,0(θ)]m

(

Eθ

[

vT (x, θ)|x ∈ Am

]

+NeTm
1

1− θm

)

,(104)

where the last equality is obtained by substituting (25). By

substituting (25) and (97) in (104), we obtain

Eθ

[

ǫm(θ)∆T
1:M,m(x, θ)

]

= Eθ

[

(θ̂m − θm)vT (x, θ)1{x∈Am}
]

+
N

1− θm
[bN,0(θ)]meTm −N

1

1− θm
[bN,0(θ)]m1T

M ,(105)

m = 1, . . . ,M . By substituting (105) in (77), we obtain (41).
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