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Abstract—Irregular repetition slotted aloha (IRSA) is a
distributed grant-free random access protocol where users
transmit multiple replicas of their packets to a base station
(BS). The BS recovers the packets using successive interference
cancellation. In this paper, we first derive channel estimates for
IRSA, exploiting the sparsity structure of IRSA transmissions,
when non-orthogonal pilots are employed across users to
facilitate channel estimation at the BS. Allowing for the use of
non-orthogonal pilots is important, as the length of orthogonal
pilots scales linearly with the total number of devices, leading
to prohibitive overhead as the number of devices increases.
Next, we present a novel analysis of the throughput of IRSA
under practical channel estimation errors, with the use of
multiple antennas at the BS. Finally, we theoretically characterize
the asymptotic throughput performance of IRSA using a
density evolution based analysis. Simulation results underline
the importance of accounting for channel estimation errors in
analyzing IRSA, which can even lead to 70% loss in performance
in severely interference-limited regimes. We also provide novel
insights on the effect of parameters such as pilot length, SNR,
number of antennas at the BS, etc, on the system throughput.

Index Terms—Irregular repetition slotted aloha, pilot
contamination, density evolution, channel estimation

I. INTRODUCTION

Massive machine-type communications (mMTC) is an
evolving 5G use-case, expected to serve around 106 devices
per square kilometer [2]. The users in mMTC applications
are sporadically active and transmit short packets to a central
base station (BS) [3]. Grant-free random access (GFRA)
protocols are appropriate in mMTC applications since they
incur a low control and signaling overhead [4], [5]. Typically,
in these protocols, users transmit packets (consisting of a
header containing pilot symbols followed by the data payload)
by randomly accessing resource blocks (RBs).1 Since the
length of orthogonal pilots scales linearly with the number
of users, the overhead of assigning orthogonal pilots becomes
prohibitively expensive. Thus, pilot contamination is inevitable
due to the use of non-orthogonal pilots, and has to be
accounted for while analyzing the performance of GFRA
protocols for mMTC.

One popular GFRA protocol is irregular repetition slotted
aloha (IRSA) [6], [7], which is the focus of this paper. Users
in IRSA transmit replicas of their packets on a randomly
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This work has been presented in part in [1].
1We refer to the time-frequency resource as resource blocks (RBs) in this

work since each RB can accommodate a whole data packet.

selected subset of the available RBs. The indices of the RBs
in which they transmit make up the access pattern matrix
(APM). Existing works in IRSA assume availability of perfect
channel state information (CSI) at the BS, which is difficult to
achieve, especially when non-orthogonal pilots are employed.
Channel estimation errors and pilot contamination due to
non-orthogonal pilots can erase much of the gains promised by
IRSA protocols. Thus, one of the main goals of this paper is
to understand the impact of estimated CSI on the performance
of IRSA when non-orthogonal pilots are used.

A. The IRSA protocol

The decoding in IRSA is an iterative process involving
successive interference cancellation (SIC) [8], where the users
are decoded via a combination of inter-RB and intra-RB
SIC [9]. Inter-RB SIC refers to the removal of packet replicas
from a different RB than the one the packet was decoded in,
while intra-RB SIC refers to the removal of a packet from
the same RB in which the packet was decoded, in order
to facilitate decoding additional packets that may have been
transmitted in that RB. The conventional version of IRSA used
only inter-RB SIC to decode users and assumed a collision
model, wherein only singleton RBs can be decoded [6]. Here,
a singleton RB refers to an RB where a single user’s packet is
received without collision. Since no packets can be decoded in
RBs where collisions occur, the maximum possible throughput
is one packet per RB, the same as the throughput with perfectly
coordinated multiple access. This maximum can be achieved
asymptotically as the number of users and RBs go to infinity,
when the soliton distribution is used to generate the repetition
factors of the users [10].

When the BS is equipped with multiple antennas, it can
potentially decode multiple packets in a single RB, i.e., if the
signal to interference plus noise ratios (SINRs) of the packets
are sufficiently high. Thus, using an SINR threshold model has
also been considered for IRSA, where users can be decoded
if and only if their SINR is higher than a predetermined
threshold [11]. After decoding users with sufficiently high
SINRs, with a combination of intra-RB and inter-RB SIC,
the packet replicas of the decoded users can be removed from
all the RBs in which they have transmitted packets. Then,
all the RBs can be revisited to see if further users can be
decoded from the residual signal. This procedure is continued
iteratively until no further packets can be decoded. This yields
a higher throughput compared to the collision model, and can
potentially achieve a throughput greater than one packet per
RB. Thus, a second goal of this paper is to characterize the
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performance of IRSA under estimated CSI as a function of
system parameters such as the number of antennas at the BS,
the pilot length, the SINR threshold, etc.

B. Related Works

The throughput of the IRSA family of multiple access
protocols is analyzed using the density evolution (DE)
approach, wherein two probability densities are obtained as
functions of each other [6]. This iterative recipe provides
the asymptotic performance of the system. The asymptotic
throughput has been obtained for IRSA via DE for the MAC
[10], accounting for path loss [9], for the scalar Rayleigh
fading channel [11], with multiuser detectors [12], for the
polarized MIMO channel in satellite networks [13], and other
enhanced variants of IRSA [14], [15]. We have proposed an
algorithm to detect the subset of active users in IRSA [16],
wherein we also study the effect of imperfect SIC on IRSA. In
contrast, this work focuses on the effect of channel estimation
errors on the performance of IRSA. A closely related protocol
is pattern division multiple access (PDMA) [17], where users
transmit their packets across a subset of RBs governed by a
binary APM. A difference with PDMA is that the APM is
designed in a centralized manner to maximize the so-called
constellation-constrained capacity, which is not scalable to
a massive number of users in mMTC. Thus, a theoretical
analysis of the throughput of the IRSA protocol under pilot
contamination, accounting for the effect of channel estimation
errors, path loss, fading, and multiple antennas at the BS, is
not yet available in the literature, to the best of our knowledge.

C. Contributions

Our main contributions in this paper are as follows:
1) We derive channel estimates for IRSA under three

schemes: the first one exploits the sparsity in the APM
to estimate the channels of the users, and the other two
assume knowledge of the APM and output minimum
mean square error (MMSE) estimates. (See Theorem 1
in Sec. III.)

2) We present a novel analysis of the SINR in IRSA
accounting for channel estimation errors, where estimates
are acquired via non-orthogonal pilots under the three
estimation schemes. (See Theorem 2 in Sec. IV.)

3) We theoretically analyze the throughput of IRSA via
DE, when users perform path loss inversion based power
control. The analysis reveals the asymptotic performance
of the protocols as the number of users and RBs get large.
(See Theorem 3 in Sec. V-D and also Sec. V-C.)

Through extensive simulations, we show that channel
estimation errors lead to a significant loss of throughput
compared to the ideal scenario with perfect CSI at the BS, even
resulting in up to 70% loss in severely interference-limited
regimes. In particular, in mMTC applications, since it is
not possible to assign orthogonal pilots to all users, the
resulting pilot contamination can significantly degrade the
SINR, leading to poor performance. On the positive side,
this loss in performance can be recuperated by optimizing

system parameters such as pilot length, number of antennas,
frame length, signal to noise ratio, and SINR threshold. In
particular, we show that the pilot length required to obtain
near-optimal performance is orders of magnitude lower than
the pilot length needed to assign orthogonal pilots to all users.
For example, a pilot length of τ = 12 is sufficient to obtain
optimal performance with M = 150 users, whereas the use
of orthogonal pilot sequences requires τ = 150 pilot symbols.
(See Fig. 2). This is possible because only a small fraction of
users transmit in a given RB in IRSA; exploiting this sparsity
in user access allows one to obtain accurate channel estimates
even when the pilots are non-orthogonal. (See Algorithm 1.)

Our analysis also reveals an inflection load, beyond
which the system becomes interference-limited, resulting in
a dramatic reduction of the throughput. The asymptotic
throughput obtained via DE serves as an upper bound for the
achievable throughput, and facilitates numerical optimization
of the throughput with respect to the system parameters.

Notation: The symbols a, a, A, [A]i,:, [A]:,j , 0N , 1N , and
IN denote a scalar, a vector, a matrix, the ith row of A, the jth
column of A, all-zero vector of length N , all ones vector of
length N , and an identity matrix of size N ×N , respectively.
[a]S and [A]:,S denote the elements of a and the columns of A
indexed by the set S respectively. diag(a) is a diagonal matrix
with diagonal entries given by a. The set of real and complex
matrices of size N ×M are denoted as RN×M and CN×M .
N (a,A) and CN (a,A) denote the real and complex Gaussian
distribution, respectively, with mean a and covariance A. [N ]
denotes the set {1, 2, . . . , N}. | · |, ‖ · ‖, [·]T , [·]∗, [·]H , E[·],
and Ea [·] denote the magnitude (or cardinality of a set), `2
norm, transpose, conjugate, hermitian, expectation, and the
expectation conditioned on a, respectively. The superscript
p is used as a descriptive superscript in association with a
symbol that is related to the pilots. All the other superscripts
(or subscripts) that have not been defined as above are indices.
A non-exhaustive list of symbols used in this work is presented
in Table I.

II. SYSTEM MODEL

An IRSA system is considered with M single-antenna users
communicating with a central BS equipped with N antennas.
The users are assumed to be arbitrarily located within a
cell, with the BS located at the cell center. The fading is
modeled as block-fading, quasi-static and Rayleigh distributed.
The time-frequency resource is divided into RBs, and T RBs
together constitute a frame. The RBs can be slots, subcarriers
or both. In each frame, the users contend for the channel
by randomly selecting a subset of RBs, and they transmit
replicas of their packets in the selected RBs. Each packet
replica comprises of a header containing pilot symbols and
payload containing data and error correction symbols.

The access of RBs in a given frame by all the users can
be represented by a binary access pattern matrix (APM) G ∈
{0, 1}T×M . The entries of G are denoted by gtm = [G]tm,
and gtm = 1 if the mth user transmits its packet in the tth RB,
and gtm = 0 otherwise. The mth user samples their repetition
factor dm from a preset probability distribution. They then
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Table I: Mathematical symbols used in this work.

Symbol Quantity Symbol Quantity Symbol Quantity Symbol Quantity
L Load γpr Threshold used to declare support θr Success probability P Data power
τ Pilot length γth Capture threshold T Number of RBs P p Pilot power
τc Packet length G Access pattern matrix N Number of antennas N0 Noise variance
T Throughput λ Regularization parameter M Number of users σ2

h Channel variance

choose dm RBs from a total of T RBs uniformly at random
for transmission. We note that, due to the distributed nature
of the protocol, the M columns of G are i.i.d., and G is
independently generated from one frame to the next.

At the BS, the received signal in the tth RB is a
superposition of the packets transmitted by the users that are
scheduled to transmit in the same RB. In the pilot phase, if
gtm = 1, the mth user transmits a τ -length pilot pm ∈ Cτ in
the tth RB, with each pilot symbol transmitted at an average
power P p, and thus, E[‖pm‖2] = τP p. The pilot signal
Y

p
t ∈ CN×τ received at the BS using its N antennas and

in the tth RB is given by

Yp
t =

∑M
m=1gtmhtmpHm + Np

t , (1)

where Np
t ∈ CN×τ is the complex additive Gaussian noise

at the BS with [Np
t ]nj

i.i.d.∼ CN (0, N0) ∀ n ∈ [N ], j ∈ [τ ]
and t ∈ [T ], and N0 is the noise variance. Here htm =
[htm1, . . . , htmN ]T is the uplink channel vector of the mth
user in the tth RB, with htmn

i.i.d.∼ CN (0, βmσ
2
h), ∀ t ∈

[T ], m ∈ [M ] and n ∈ [N ], where βm is the path loss
coefficient and σ2

h is the fading variance.
In the data phase, users transmit their data symbols.

Considering one of the data symbols, the mth user transmits
a data symbol xm with E[xm] = 0 and E[|xm|2] = P , i.e.,
with transmit power P . The corresponding received data signal
yt ∈ CN at the BS in the tth RB is

yt =
∑M
m=1gtmhtmxm + nt, (2)

where nt ∈ CN is the complex additive white Gaussian noise
at the BS with [nt]n

i.i.d.∼ CN (0, N0), ∀ n ∈ [N ] and t ∈ [T ].

A. SIC-based Decoding

The received data is processed iteratively at the BS. The BS
computes channel estimates for all users in all RBs using the
pilot symbols.2 It uses these channel estimates to combine the
received data signal across the BS antennas and attempts to
decode the user’s data packet, treating interference from other
users as noise. If it successfully decodes any user, which can
be verified via a cyclic redundancy check, it performs SIC in
all RBs in which that user has transmitted, with both inter-RB
and intra-RB SIC. The BS proceeds with the next iteration,
where the channels are re-estimated for the remaining users,
and this decoding process proceeds iteratively.

In this work, we abstract the decoding of a user’s packet
using an SINR threshold model. That is, if the SINR of a
packet in a given RB in any decoding iteration exceeds a

2As we will see, when the BS does not know the APM, the BS first detects
which users have transmitted in each RB, and computes the channel estimates
for the users detected to be active in each of the RBs.

threshold γth, then the packet can be decoded correctly [9],
[11]. Packet capture occurs when a packet can be decoded
correctly as per the SINR threshold model, even though it
collides with another packet, and is thus considered a good
abstraction of the decoding in the physical layer.

We now describe the performance evaluation of IRSA via
the SINR threshold model. We first compute channel estimates
and SINR achieved by all users in all RBs. If we find a user
with SINR ≥ γth in some RB, we mark the data packet as
having been decoded successfully and remove the contribution
of the user’s packet from all RBs that contain a replica of that
packet. In the next iteration, the channels are re-estimated from
the residual pilot symbols after SIC, the SINRs are recomputed
in all RBs, and the decoding of users’ packets continues. The
decoding process proceeds in iterations and stops when no
additional users are decoded in two successive iterations. The
system throughput T is calculated as the number of correctly
decoded unique packets divided by the number of RBs.

B. Overview of the Rest of the Paper

The crucial step in evaluating the performance of the above
decoding procedure is the calculation of the SINR at the
receiver, which depends on the CSI available at the BS. We
first describe the channel estimation process in Sec. III. Then
we present the derivation of the SINR in Sec. IV. Finally,
we describe the calculation of the asymptotic throughput in
Sec. V.

III. CHANNEL ESTIMATION

In this section, the channel estimates for all users are
derived under three schemes. The first scheme, termed the
sparsity-based estimation scheme, estimates both the APM
and the channels of the users. In contrast with this, the
other schemes exploit the knowledge of G and output MMSE
estimates. This is not a strong assumption and can be made
possible by using pseudo-random pattern matrices generated
from a seed that is available at the BS and the users.

Channel estimation is performed based on the received
pilot signal, which contains the pilots transmitted by all the
users who have transmitted in that RB. The estimates are
recomputed in every iteration, and hence the signals and
channel estimates are indexed by the decoding iteration k. Let
the set of users who have not yet been decoded in the first
k − 1 iterations be denoted by Sk, and for some m ∈ Sk, let
Smk , Sk \ {m}, with S1 = [M ]. The received pilot signal at
the BS, in the tth RB, and during the kth decoding iteration,
is given by

Ypk
t =

∑
i∈Skgtihtip

H
i + Np

t . (3)

We now discuss three channel estimation schemes for IRSA.
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A. Sparsity-based APM and Channel Estimation

The first scheme is the sparsity-based estimation scheme in
which we estimate the APM and the channels in each decoding
iteration. We consider the conjugate transpose of the received
pilot signal in the tth RB from (3) as Y

pk

t , YpkH
t , with

Nt , N
pH
t . Let P ∈ Cτ×M contain the known pilots of the

M users as its columns and Pk = [P]:,Sk . The signal Y
pk

t

can be factorized into the product of two matrices as follows:

Y
pk

t︸︷︷︸
τ×N

=
[
pi1 , . . . ,piMk

]
︸ ︷︷ ︸

Pk


gti1h

H
ti1

...
gti

Mk
hHti

Mk


︸ ︷︷ ︸

Zk
t

+ Nt︸︷︷︸
τ×N

, (4)

where Sk = {i1, i2, . . . , iMk}, with Mk = |Sk|. Here, Zkt ∈
CMk×N contains the tth row of the unknown APM G, and
the unknown channels. The rows of Zkt are either all-zero or
all-nonzero depending on whether the corresponding gti = 0
or 1. This results in an under-determined system of equations,
where the columns of Zkt share the same support. This
structure is called as a multiple measurement vector (MMV)
recovery problem in compressed sensing. The estimation of Zkt
from (4) can be performed using well known MMV recovery
algorithms from compressed sensing literature to recover {gti}
in the each of the T RBs.

Multiple sparse Bayesian learning3 (MSBL) [19] is an
empirical Bayesian algorithm that can recover Zkt from linear
under-determined observations Y

pk

t . In MSBL, a Gaussian
prior is imposed on the columns of Zkt as

p(Zkt ;γkt)=
∏N
n=1p([Z

k
t ]:,n;γkt)=

∏N
n=1CN (0Mt ,Γkt), (5)

where Γkt = diag(γkt) and the columns of Zkt are i.i.d. The
elements of γkt ∈ RMk

+ are unknown hyperparameters for
the undecoded users. Recovering the hyperparameters would
yield gtm since [γkt]m models the variance of the mth user’s
channel in the tth RB. The hyperparameters are estimated by
iteratively maximizing the log-likelihood log p(Y

pk

t ;γkt), with
p(Y

pk

t ;γkt) =
∏N
n=1 p([Y

pk

t ]:,n;γkt).
Let j denote the iteration index in MSBL. Stated in our

notation, the overall estimation procedure is summarized in
Algorithm 1. The MSBL algorithm converges to a saddle
point or a local maximizer of the overall log-likelihood [19].
Further, the MSBL algorithm has been empirically shown to
correctly recover the support of Zkt , provided τ and N are
large enough [19], if the signal to noise ratio is good enough.
The algorithm is run for jmax iterations in each of the T RBs.
As the iterations proceed, the hyperparameters corresponding
to users with gti = 0 converge to zero, resulting in sparse
estimates. At the end of the iterations, the estimated coefficient
ĝktm for the mth user in the tth RB in the kth decoding
iteration is obtained by thresholding [γjmax

kt ]m at a value γpr.

3Any MMV algorithm can be used to recover joint-sparse columns of Zk
t ,

but we use MSBL due to its high performance. MSBL also outputs a "plug-in"
MMSE channel estimate which can then be used to find a meaningful SINR
expression since the estimate is uncorrelated with the estimation error [18].

Algorithm 1: APM and Channel Estimation in tth RB

Input: τ,N,N0,Sk,P,Y
pk

t , γpr, jmax

1 Compute: Mk = |Sk|, Pk = [P]:,Sk
2 Initialize: γ0

kt = 1Mk

3 for j = 0, 1, 2, . . . , jmax do
4 Compute Γjkt = diag(γjkt)

5 Σj+1
kt =Γjkt−ΓjktP

kH(N0Iτ+PkΓjktP
kH)−1PkΓjkt

6 µj+1
ktn = N−1

0 Σj+1
kt PkH [Y

pk

t ]:,n, 1 ≤ n ≤ N

7 [γj+1
kt ]i =

1

N

N∑
n=1

([Σj+1
kt ]i,i + |[µj+1

ktn ]i|2), ∀ i ∈ [Mk]

8 end

9 Output: ĝktm =

{
1, [γjmax

kt ]m ≥ γpr

0, [γjmax

kt ]m < γpr
, ∀ m ∈ [Mk],

Ẑkt = [µjmax

kt1 µjmax

kt2 . . .µjmax

ktN ]

This can result in errors in estimating gti, and the errors in
APM estimation can be described by

Fkt = {i ∈ [Mk] | ĝkti(1− gti) = 1}, (6a)

Mk
t = {i ∈ [Mk] | (1− ĝkti)gti = 1}, (6b)

where Fkt is the set of false positive users, and Mk
t is the set

of false negative users. These errors affect decoding of other
users in two ways: both kinds of users contaminate the channel
estimates of other users, and users in Mk

t interfere with the
data decoding of other users as well. The effect of errors in
detection of users is described in detail in [16].

The algorithm also outputs the maximum aposteriori
probability estimates of the channels Ẑkt in each of the T

RBs. The estimate Ĥk
t = ẐkHt ∈ CN×Mk

of the channels of
the Mk users is described in Theorem 1 and can be calculated
as Ĥk

t = Y
pk
t PkΓ̂kt(P

kHPkΓ̂kt +N0IMk)−1, where Γ̂kt =
diag(γjmax

kt ). This estimate is a "plug-in" MMSE estimate and
it contains estimates for erroneously detected users as well.
An added advantage of MSBL is that the path loss coefficient
can be calculated by averaging the estimated hyperparameters
across RBs as β̂ki = (

∑T
t=1 ĝ

k
ti[γ

jmax

kt ]i)/(σ
2
h

∑T
t=1 ĝ

k
ti). Thus,

Algorithm 1 does not require any prior information about the
APM or {βi}Mi=1 to estimate the channels.

B. MMSE Channel Estimation with Known APM

We now derive the MMSE channel estimates for all users
in each RB, exploiting the knowledge of the APM G and
{βi}Mi=1. By using a common seed at the BS and the users,
the APM can be generated at the BS and thus, we can assume
that the BS has knowledge of G. Let Gt = {i ∈ [M ]|gti = 1}
be the set of users who have transmitted in the tth RB. Let
Mk
t = |Gt ∩Sk| be the number of users who have transmitted

in the tth RB and have not been decoded in the first k − 1
iterations, Hk

t ∈ CN×Mk
t denote the channel matrix which

contains the channels of the Mk
t users, Pk

t ∈ Cτ×Mk
t denote

a matrix that contains the pilot sequences of the Mk
t users

and Bk
t , σ2

hdiag(βi1 , βi2 , . . . , βiMk
t

) be a diagonal matrix
containing the path loss coefficients of the Mk

t users, with
Gt ∩ Sk = {i1, i2, . . . , iMk

t
}. Thus, the received signal from
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Table II: Channel estimates and error variances under three estimation schemes.

Sparsity-based estimation with MSBL MMSE LCMMSE
Ĥk
t Y

pk
t PkΓ̂kt(P

kHPkΓ̂kt +N0IMk)−1 Y
pk
t Pk

tB
k
t (PkH

t Pk
tB

k
t +N0IMk

t
)−1 Y

pk
t Pk

t diag(ηkti1 , . . . , η
k
ti

Mk
t

)

δkti βiσ
2
h

(
N0‖ck

ti‖
2+
∑

j∈Si
k
|rkjti|

2ĝktjgtjβjσ
2
h

N0‖ck
ti‖2+

∑
j∈Sk

|rkjti|2ĝktjgtjβjσ2
h

)
βiσ

2
h

(
N0‖ck

ti‖
2+
∑

j∈Si
k
|rkjti|

2gtjβjσ
2
h

N0‖ck
ti‖2+

∑
j∈Sk

|rkjti|2gtjβjσ2
h

)
βiσ

2
h

(
N0‖pi‖2+

∑
j∈Si

k
|pH

j pi|2gtjβjσ
2
h

N0‖pi‖2+
∑

j∈Sk
|pH

j pi|2gtjβjσ2
h

)

(3) can be written as Ypk
t = Hk

tP
kH
t + Np

t , where Pk
t =

[P]:,Gt∩Sk . The MMSE estimate Ĥk
t of Hk

t is presented in
Theorem 1, and can be written as

Ĥk
t = Y

pk
t (Pk

tB
k
tP

kH
t +N0Iτ )−1Pk

tB
k
t , (7a)

(a)
= Ypk

t Pk
tB

k
t (PkH

t Pk
tB

k
t +N0IMk

t
)−1, (7b)

where (a) follows from (AB+I)−1A = A(BA+I)−1. Here,
the estimate can be calculated via an inverse of either a τ × τ
matrix or an Mk

t ×Mk
t matrix as required. The MSBL estimate

converges to the MMSE estimate when the hyperparameters
are estimated well enough, as will be seen in Sec. VI.

C. Low Complexity MMSE with Known APM

We now describe a low complexity MMSE (LCMMSE)
estimate that does not require a matrix inversion computation.
For this purpose, the received signal in (3) is right-multiplied
by the pilot pm to obtain

ypk
tm = Ypk

t pm =
∑
i∈Skgtihti(p

H
i pm) + Np

tpm, (8)

which is used to find an MMSE estimate of the channel htm
of the mth user in the tth RB. The LCMMSE channel estimate
ĥktm is described in Theorem 1 and is calculated as

ĥktm=
gtmβm‖pm‖2σ2

h

N0‖pm‖2 +
∑
i∈Sk |p

H
i pm|2gtiβiσ2

h

y
pk
tm , η

k
tmypk

tm.

Similar to the MMSE estimate, the LCMMSE estimate uses
the knowledge of the APM and {βi}Mi=1. While the MMSE
estimator uses the signal Ypk

t to compute the estimates, and
thus exploits all the information available at the BS, the
LCMMSE estimator uses only ypk

tm, i.e., the projection of Ypk
t

onto pm, to estimate htm.
The channel estimates under the three schemes and their

error variances are given by the following theorem.

Theorem 1. The channel estimate Ĥk
t of Hk

t in the tth RB in
the kth decoding iteration, under the three estimation schemes,
namely MSBL, MMSE, and LCMMSE, is given in Table II.
Specifically, the estimate of the channel hti of the ith user
is calculated as ĥkti = [Ĥk

t ]:,i. Further, the covariance of the
estimation error h̃kti , ĥkti − hti is δktiIN , where δkti is listed
in Table II, with ckti = [Ck

t ]:,i and rkjti , pHj ckti. For MSBL,
we have Ck

t , PkDk
t (PkHPkDk

t +N0IMk)−1, where Dk
t ,

diag(dkti1 , d
k
ti2
, . . . , dkti

Mk
) with dkti = ĝktigtiβiσ

2
h . For MMSE,

we have Ck
t , Pk

tB
k
t (PkH

t Pk
tB

k
t +N0IMk

t
)−1.

Proof. See Appendix A. �

Remark: The LCMMSE estimate is composed of two
components: a scaling coefficient ηktm and the post-combined
received pilot signal ypk

tm. From (8), we see that the

received pilot signal y
pk
tm contains pilots of other users, if

pilot sequences are not orthogonal. With orthogonal pilots,
pHi pm = 0,∀i 6= m, the LCMMSE estimate is

ĥktm =
gtmβmσ

2
h

N0 + ‖pm‖2gtmβmσ2
h

(
gtmhtm‖pm‖2 + Np

tpm

)
,

and δktm = gtmβmσ
2
hN0/(N0 +gtmβmσ

2
h‖pm‖2), i.e., there is

no pilot contamination, and the LCMMSE estimate coincides
with the MMSE estimate.

Complexity: The MMSE scheme has a complexity of
O(τ2Mk

t ) floating point operations (flops) since it involves
inverting a τ×τ matrix. The MSBL scheme, with s iterations,
has a complexity of O(sτ2Mk) flops [19]. The LCMMSE
scheme has the lowest complexity of O(Mk

t ) flops since it
does not need any matrix inversion.

IV. SINR ANALYSIS

In this section, the SINR of each user in all the RBs where
it transmits data is derived, accounting for pilot contamination
and channel estimation errors. Let ρktm denote the SINR of the
mth user in the tth RB in the kth decoding iteration. Similar
to (2), the received data signal in the tth RB and kth decoding
iteration can be written as

ykt =
∑
i∈Skgtihtixi + nt. (9)

A combining vector aktm is used to decode the mth user in
the tth RB and kth decoding iteration, and thus we obtain

ỹktm = akHtm ykt = akHtm ĥktmgtmxm − akHtm h̃ktmgtmxm

+ akHtm
∑
i∈Sm

k
gtihtixi + akHtmnt, (10)

where h̃ktm is as defined in Theorem 1. From the above,
we see that the signal used to decode the mth user’s data
is composed of four terms. The term T1 , akHtm ĥktmgtmxm
is the useful signal component of the mth user; the term
T2 , akHtm h̃ktmgtmxm is contributed by the channel estimation
error h̃ktm of the mth user; the term T3 ,

∑
i∈Sm

k
akHtmhtigtixi

captures the inter-user interference from the users who have
also transmitted in the tth RB and have not yet been decoded
upto the kth decoding iteration; and the last term T4 , akHtmnt
is the additive noise component.

In order to compute the SINR, the power in the received
signal is calculated conditioned on the knowledge of the
estimates [20]. Since MMSE estimates are employed, all three
estimates are uncorrelated with the channel estimation error,
and thus T2 is uncorrelated with T1. The additive noise is
uncorrelated with the signal, and since the users’ data signals
are independent, T3 is uncorrelated with the other terms. Thus,
all four components in the received signal are uncorrelated
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and the total power is the sum of the powers of the individual
components

Ez[|ỹktm|2] =
∑4
i=1Ez[|Ti|2], (11)

where z contains the channel estimates of the users. The SINR
for all the users is now presented.

Theorem 2. The signal to interference plus noise ratio (SINR)
achieved by the mth user in the tth RB in the kth decoding
iteration can be written as

ρktm =
Gainktm

N0/P + MUIktm + Estktm
, ∀m ∈ Sk, (12)

where Gainktm represents the useful signal power of the mth
user, MUIktm represents the multi-user interference power of
other users, and Estktm represents the interference power
caused due to the channel estimation errors. Under MMSE
and LCMMSE channel estimation, these can be expressed as

Gainktm = gtm
|akHtm ĥktm|2

‖aktm‖2
, MUIktm =

∑
i∈Sm

k
gti
|akHtm ĥkti|2

‖aktm‖2
,

Estktm =
∑
i∈Skgtiδ

k
ti.

With the sparsity-based scheme, the SINR denominator
contains an additional term, FNUktm, which represents the
interference power caused due to false negative users. The
corresponding terms with MSBL can be expressed as

Gainktm= ĝktmgtm
|akHtm ĥktm|2

‖aktm‖2
, MUIktm=

∑
i∈Sm

k

ĝktigti
|akHtm ĥkti|2

‖aktm‖2
,

Estktm=
∑
i∈Sk ĝ

k
tigtiδ

k
ti, FNU

k
tm=

∑
i∈Sm

k
(1− ĝkti)gtiβiσ2

h .

Here, the estimates ĥkti = [Ĥk
t ]:,i and the error variances δkti

are obtained from Theorem 1 for all the three schemes.

Proof. See Appendix B. �

The SINR expression derived in Theorem 2 is applicable to
any arbitrary receive combining scheme given by the matrix
Ak
t , with aktm = [Ak

t ]:,m. When regularized zero forcing
(RZF) combining is used, the combining matrix is

Ak
t = Ĥk

t (ĤkH
t Ĥk

t + λIMk
t

)−1, (13)

where λ is the regularization parameter. The SINR with RZF
can be computed by substituting the columns of the above
matrix into (12). We now describe two popular combining
schemes, which are special cases of RZF, in which simpler
expressions for the SINR can be computed.4 The expressions
are written for MMSE/LCMMSE, and can be extended to
MSBL as detailed in Theorem 2.

1) Maximal Ratio Combining (MRC): MRC is obtained
from RZF as λ → ∞ and the combining matrix becomes
Ak
t = Ĥk

t . Thus aktm = ĥktm, and SINR can be computed as

ρktm =
Pgtm‖ĥktm‖2

N0 +
∑
i∈Sk Pgtiδ

k
ti +

∑
i∈Sm

k
Pgti

|ĥkH
tm ĥk

ti|2
‖ĥk

tm‖2

. (14)

4In this paper, we do not consider the MMSE combiner, which is a special
case of RZF combining [20].

Algorithm 2: Performance Evaluation of IRSA

Input: τ,N, T,M,N0,G,P, {Yp
t}Tt=1, kmax

1 Initialize: S1 = [M ], Gt = {i ∈ [M ]|gti = 1}
2 for k = 1, 2, 3, . . . , kmax do
3 for t = 1, 2, . . . , T do
4 Find Mk

t = |Gt ∩ Sk|, Pk
t = [P]:,Gt∩Sk ,Y

pk
t

5 Compute ĥkti, ∀i ∈ Sk via Theorem 1
6 Evaluate the SINR ρkti via Theorem 2
7 If ρkti ≥ γth, remove user i from Sk and

perform IC in all RBs where gti = 1
8 end
9 end

10 Output: T = (M − |Skmax
|)/T, PLR = |Skmax

|/M

2) Zero Forcing (ZF): The RZF combiner reduces to the
ZF combiner as λ→ 0. The inverse of the gram-matrix of the
channel estimates exists with probability one when N ≥Mk

t

and Ĥk
t has full column rank.5 Hence, we can compute the

combining matrix as Ak
t = Ĥk

t (ĤkH
t Ĥk

t )−1. Using the above,
it is easy to show that the SINR expression simplifies as [20]

ρktm =
Pgtm

(N0 +
∑
i∈Sk Pgtiδ

k
ti)[(Ĥ

kH
t Ĥk

t )−1]mm
. (15)

Note that the third term in the denominator of (14) has
been suppressed with ZF combining. However, due to
pilot contamination, the term [(ĤkH

t Ĥk
t )−1]mm may contain

contributions from the channels of all users. As a consequence,
the gram matrix could be ill-conditioned, and the denominator
term could be large. Thus, the pilot length, which determines
the pilot contamination incurred, is crucial in comparing the
performance obtained by the combining schemes. The system
throughput can now be calculated from the above SINR
expressions via the decoding model described in Sec. II-A,
and is described in Algorithm 2 for MMSE/LCMMSE. For
MSBL, the initial step in each RB instead consists of finding
Mk = |Sk|, and Pk = [P]:,Sk . We also estimate {gti} and
{hti} via Algorithm 1 before finding the SINR.

Before proceeding with the analysis of the throughput, we
briefly discuss the SINR in the massive MIMO regime, which
helps us in interpreting the SINR expressions. We note that
the results presented in Sec. VI hold true for any N . However,
when N is large, a simpler expression for SINR with MRC
can be obtained as follows.

Lemma 1. As the number of antennas N gets large, the SINR
with MRC converges almost surely to

ρktm =
NSigktm

εktm
(
N0/P + IntNCktm

)
+ IntCktm

, (16)

where Sigktm is the desired signal, IntNCktm represents the
non-coherent interference, and IntCktm represents the coherent
interference. Each of these can be found in Table III. Here, δktm

5We note that the condition N ≥ Mk
t is not hard to satisfy in IRSA. For

example, with L = 2, 3, 4, each RB will be occupied by 6, 9, 12 users on an
average, respectively, if the average repetition factor is d̄ = 3. Thus any N
greater than, say, 16 would be sufficient to decode the users in most RBs.
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Table III: Deterministic equivalent approximation to the SINR.

Sparsity-based estimation with MSBL MMSE LCMMSE
εktm N0‖cktm‖2 +

∑
i∈Sk gtiβiσ

2
h |ckHtmpi|2 N0‖cktm‖2 +

∑
i∈Sk gtiβiσ

2
h |ckHtmpi|2 N0‖pm‖2 +

∑
i∈Sk gtiβiσ

2
h |pHmpi|2

Sigktm ĝktmgtm(εktm)2 gtm(εktm)2 gtmβ
2
mσ

4
h‖pm‖4

IntNCktm ĝktmgtmδ
k
tm +

∑
i∈Sm

k
gtiβiσ

2
h gtmδ

k
tm +

∑
i∈Sm

k
gtiβiσ

2
h gtmδ

k
tm +

∑
i∈Sm

k
gtiβiσ

2
h

IntCktm N
∑
i∈Sm

k
gtiβ

2
i σ

4
h |ckHtmpi|2 N

∑
i∈Sm

k
gtiβ

2
i σ

4
h |ckHtmpi|2 N

∑
i∈Sm

k
gtiβ

2
i σ

4
h |pHmpi|2

and cktm are obtained from Theorems 1 and 2, respectively, for
the three estimation schemes.

Proof. See Appendix C. �

Remark: IntNCktm arises due to channel estimation errors
and is independent of N , while IntCktm is due to pilot
contamination and increases linearly with N . Further, since
ρktm is independent of the fading states of each user, it
assures successful recovery of packets with high probability
if ρktm � γth. Similarly, the packet will not be decodable
with probability close to 1 if ρktm � γth. However, it turns
out that in order to characterize the throughput of IRSA, it is
necessary to capture the statistics of the SINR when ρktm ≈ γth.
The small fluctuations in ρktm around ρktm due to fading, and
the resulting probability of packet decoding error, need to be
calculated accurately. Hence, the calculation of the statistics
of the SINR using (12) is vital to find the throughput of IRSA.
We address this in the next section.

V. THEORETICAL ANALYSIS OF THROUGHPUT

Density Evolution (DE) analysis has been applied
to characterize the asymptotic performance of message
passing-based decoding on graphs for low density parity check
codes [21] and IRSA [6]. In this section, the representation
of IRSA decoding as a bipartite graph is discussed first.
Then the graph perspective distributions are defined, the
failure probabilities are derived, and finally, the asymptotic
throughput of IRSA is characterized. It is assumed that users
perform path loss inversion-based power control. We note that
a closed form expression for the throughput cannot be derived
even for the most basic variant of IRSA due to the underlying
graph structure [6]. Hence, we need to resort to DE, which
provides an iterative recipe to compute the throughput.

SIC-based decoding can be viewed as message passing on a
bipartite graph [6], and thus IRSA, which uses SIC decoding,
can be decoded on graphs. A typical IRSA frame can be
represented as a bipartite graph, which is made up of M user
nodes (one node for each user), T RB nodes (one node for each
RB), and the edges between them. An edge connects a user
node to an RB node if and only if that user has transmitted a
packet in that corresponding RB. For example, in Fig. 1, there
will be an edge between user node u1 and RB node s1 if
and only if user u1 has transmitted a packet replica in RB s1.
During decoding, edges that connect to users whose SINR is
above a threshold are removed from each RB. Each decoding
iteration consists of several intra-RB SIC and inter-RB SIC
steps. Once an SIC step is performed, the corresponding edge
in the bipartite graph is removed. Thus, the edge between user
node u1 and RB node s1 is removed if the user u1 is decoded

Fig. 1: IRSA represented as a bipartite graph.

in any of the RBs in which the user has transmitted a packet.
Decoding is successful if, at the end of the SIC process, all
edges in the graph get removed. A decoding failure is declared
if not all edges have been removed or no new edge is removed
from the graph in two consecutive iterations.

A. Graph Perspective Degree Distributions

The total number of packets transmitted by a user in a given
frame is referred to as the repetition factor of that user. It is
equal to the degree of the user node at the start of decoding,
and is the same as the number of edges connected to that user
node in the bipartite graph representation of SIC decoding.
The node-perspective user degree distribution is defined as
the set of probabilities {φd}dmax

d=2 , where φd represents the
probability that a user has a repetition factor d with dmax being
the maximum number of RBs in which any user is allowed
to transmit. Here, φd is nonzero for d ≥ 2 since each user
transmits at least 2 packets in IRSA.

The total number of packets received in an RB is referred
to as the collision factor of that RB. It is equal to the degree
of the RB node at the start of decoding, which is the number
of edges connected to that RB node. The node-perspective
RB degree distribution is defined as the set of probabilities
{ψc}Mc=0, where ψc represents the probability that an RB has
a collision factor c. The polynomial representations of the
node-perspective user and RB degree distributions are

φ(x) =
∑dmax

d=2 φdx
d, ψ(x) =

∑M
c=0ψcx

c, (17)

respectively. The corresponding edge-perspective user and RB
degree distributions are defined as λ(x) =

∑dmax

d=2 λdx
d−1

= φ′(x)/φ′(1); ξ(x) =
∑M
c=1 ξcx

c−1 = ψ′(x)/ψ′(1),
respectively, where λd = dφd/φ

′(1) represents the probability
that an edge is connected to a user with repetition factor d
and ξc = cψc/ψ

′(1) represents the probability that an edge is
connected to an RB with collision factor c.

The input load L of the system is defined as the ratio of
the number of users to the number of RBs, L , M/T . The
average repetition factor is d̄ = φ′(1) =

∑
d dφd and the

average collision factor is c̄ = ψ′(1) =
∑
c cψc, making the
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load L = M/T = c̄/d̄. Since c̄ = Ld̄, fixing the load and the
node-perspective user degree distribution fixes the other three
degree distributions as well. The probability that a generic
user, from a total of M users, transmits within an RB is c̄/M .
Since the users transmit their packets independently of each
other, ψc follows a binomial distribution. Thus, the coefficients
of the polynomials representing the node and edge-perspective
RB degree distributions are respectively given by

ψc =

(
M

c

)(
c̄

M

)c(
1− c̄

M

)M−c
, (18a)

and ξc =

(
M − 1

c− 1

)(
c̄

M

)c−1(
1− c̄

M

)M−c
. (18b)

For a fixed L = M/T , as M,T →∞, the node-perspective
and edge-perspective RB degree distributions, which are
binomial, become Poisson distributed [22]:

ψc =
(c̄)

c
exp (−c̄)
c!

and ξc =
(c̄)

c−1
exp (−c̄)

(c− 1)!
. (19)

We now use the degree distributions defined above to find
the failure probabilities in the next subsection.

B. Failure Probabilities

In the case of a decoding failure, failure messages are
exchanged along the edges between the user and the RB nodes.
The probability that an edge carries a failure message from an
RB node to a user node in the ith iteration is denoted by pi.
The probability that an edge carries a failure message from a
user node to an RB node in the ith iteration is denoted by qi.

The failure probability qi is calculated using the
edge-perspective user degree distribution as

qi =
∑dmax

d=2 λdq
(d)
i =

∑dmax

d=2 λdp
d−1
i−1 = λ(pi−1). (20)

Here, q(d)
i is the probability that an edge carries a failure

message in the ith iteration given that it is connected to a
user node with repetition factor d. The edges carry a failure
message from a user if and only if all the other d−1 incoming
edges to that user carry failure messages in the previous
iteration, i.e., q(d)

i = pd−1
i−1 .

The failure probability pi is calculated using the
edge-perspective RB degree distribution as

pi =
∑M
c=1ξcp

(c)
i

M→∞−−−−→ pi =
∑∞
c=1ξcp

(c)
i , (21)

where p
(c)
i is the probability that an edge carries a failure

message in the ith iteration given that it is connected to an
RB node with collision factor c. DE is applicable as M and
T → ∞ with L = M/T kept fixed [6]. Hence the above
probability is computed as an infinite summation.

In the SINR threshold model, decoding failure happens at
an RB node if the SINR of all users who have transmitted in
that RB and have not yet been decoded is below the SINR
threshold. This constitutes a failure message from the RB
node [11]. In order to determine p(c)

i , any one of the c packets
is considered to be a reference packet, which can get decoded

with a combination of intra-RB and inter-RB SIC. Separating
the intra-RB and inter-RB SIC, p(c)

i can be evaluated as

p
(c)
i = 1−

∑c
r=1θr

(
c−1
r−1

)
qr−1
i (1− qi)c−r. (22)

Here, θr denotes the probability that the reference packet gets
decoded in the current decoding iteration starting from degree
r using only intra-RB SIC, and

(
c−1
r−1

)
qr−1
i (1− qi)c−r denotes

the probability that the collision factor of the RB node reduces
from c to r using only inter-RB SIC [9]. The evaluation of θr
is discussed in Sec. V-D. Substituting for p(c)

i from (22), we
obtain pi as a function of qi:

pi = 1−
∑∞
c=1

∑c
r=1ξcθr

(
c−1
r−1

)
qr−1
i (1− qi)c−r. (23)

Thus, we compute the failure probabilities pi and qi
recursively from each other, as observed in (20) and (23).

C. Evaluation of Throughput

We now describe the evaluation of the throughput.
Substituting for ξc from (19), we can simplify (23) to

pi = 1− e−c̄qi
∞∑
r=1

θr
(c̄qi)

r−1

(r − 1)!
, f(qi). (24)

Thus, qi = λ(pi−1) and pi = f(qi) are calculated alternately
as functions of each other as seen in (20) and (24). The
procedure can be initialized with either q0 = 1 or p0 = f(1).

The failure probability at the end of decoding is p∞ =
limi→∞ pi and (p∞)d is the probability that a packet
transmitted from a user with repetition factor d does not
get decoded at the receiver. Therefore, the asymptotic packet
loss rate (PLR), which is the fraction of packets that are not
decoded at the BS, is calculated as

PLR = φ(p∞) =
∑dmax

d=2 φd(p∞)d. (25)

The asymptotic throughput of the system can now be obtained
from the asymptotic PLR as6

T = L(1− PLR). (26)

The iterations pi = f(λ(pi−1)) converge asymptotically to
p∞ = 0 if the system load L < L∗ [6]. Here, L∗ is called
the inflection load of the system: for any L ≥ L∗, the system
becomes interference limited and the PLR does not converge
to 0 as L increases. Thus, for L < L∗, p∞ = 0 and therefore
the asymptotic PLR = 0, and the throughput equals L. For
L ≥ L∗, the throughput decreases monotonically with L.

The crucial step in the evaluation of the throughput lies in
the computation of θr, which we now describe.

D. Characterization of θr
We now describe a procedure to evaluate the success

probability θr, which is the probability of decoding the
reference packet in an RB with degree r via intra-RB SIC only.
There are r users whose packets have not yet been decoded in
the RB. The reference packet can get decoded in any of the

6The DE process yields an iterative recipe to obtain the asymptotic
throughput and cannot be used to analytically find a relationship between
the system parameters and the throughput.
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intra-RB SIC steps. The packets with SINR higher than that of
the reference packet get decoded first. Further, the reference
packet can only be decoded if decoding has been successful
for higher SINR packets, i.e., if they satisfied SINR ≥ γth as
well. Thus, θr is the joint probability that the reference packet
and the packets with higher SINRs all get decoded.

Clazzer et al. [11] evaluate θr as the probability "D(r)"
under a Rayleigh fading SISO channel setup with a perfect CSI
assumption. The same method cannot be applied here, since
we consider MIMO Rayleigh fading and account for imperfect
CSI due to pilot contamination and channel estimation errors.
In particular, in a MIMO setup, it is possible that multiple
users’ SINR simultaneously exceed the decoding threshold.
Further, their work is limited to the case where the decoding
threshold γth is such that only one user can be decoded in any
decoding iteration, while we make no such assumptions.

Since θr is evaluated based on the SINR of multiple users
in a single RB, we consider only one RB wherein r users
have transmitted their packets. These users are decoded via
only intra-RB iterations since there is only a single RB under
consideration. Let the set of users who have not yet been
decoded in the first k − 1 intra-RB decoding iterations be
denoted by Sk, and Smk , Sk \ {m}, with S1 = [r].7 In
each intra-RB decoding iteration, a single user with the highest
SINR is decoded if their SINR ≥ γth.

The SINR of the mth user in the kth intra-RB decoding
iteration, ρkm, is calculated as seen before in Theorem 2.
Specifically, when users are only decoded via intra-RB SIC
within one RB, we obtain the SINR as

ρkm =
|akHm ĥkm|2

‖akm‖2(N0/P +
∑
i∈Skδ

k
i ) +

∑
i∈Sm

k
|akHm ĥki |2

. (27)

Here, δki is the error variance of the ith user in the kth intra-RB
decoding iteration, ĥkm is the channel estimate of the mth
user, both obtained from Theorem 1, and akm is the combining
vector for the mth user.8 Let ρkmax denote the SINR of the user
with the highest SINR in the kth intra-RB decoding iteration,
calculated as ρkmax = maxm∈Sk ρkm. Let s be the index of
the intra-RB decoding iteration in which the reference packet
is decoded, with 1 ≤ s ≤ r. Thus, θr is calculated as

θr = Pr(ρ1
max ≥ γth, ρ

2
max ≥ γth, . . . , ρ

s
max ≥ γth). (28)

Recall that the reference packet is tagged uniformly at
random from the users. With path loss inversion based power
control, users have identical channel statistics, and thus, θr is
independent of which packet is tagged as the reference packet.

The computation of the success probability θr is involved
because there is no clear relation between the peak SINRs
across decoding iterations. Also, the channel estimates of
different users are correlated, across both the user index and
the decoding iteration index, making it difficult to use order
statistics. Further, θr is dependent on a large number of

7The set Sk as defined here is a slight abuse of notation. In Sec. III, the set
Sk consisted of users being decoded via both intra-RB and inter-RB iterations,
whereas here, Sk consists of users being decoded via only intra-RB iterations.

8Since the decoding process with intra-RB SIC involves only the RB in
consideration, the RB index and the APM are dropped in this section.

random channel vectors, the order statistics of the peak SINRs,
and the pilot sequences of all the users. As a consequence, θr
cannot be found in closed form, and needs to be empirically
evaluated. However, we present three approximations to θr,
which are valid when perfect CSI is available at the BS,
i.e., there is no pilot contamination or estimation errors. The
assumptions are made for analytical tractability. These lead
to interpretable expressions for the SINR and θr, and provide
upper bounds on the throughput with estimated CSI.

Theorem 3. When perfect CSI is available at the BS, and
MRC is used for decoding, θ1 is given by

θ1 = Γinc(N, ρ
−1
0 γth)/Γ(N), (29)

where ρ0 , Pσ2
h/N0, Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the upper

incomplete gamma function, and Γ(s) is the ordinary gamma
function. For r ≥ 2, the SINR with MRC and large N can be
computed as ρkm = N(ρ−1

0 + N
∑
i∈Sm

k
tmi)

−1, where tmi ,
|hHmhi|2/(‖hm‖2‖hi‖2). With t0 , γ−1

th − N−1ρ−1
0 , θ2 can

be calculated as

θ2 = 1{t0 ≥ 1}+ (1− (1− t0)N )1{0 ≤ t0 ≤ 1}. (30)

Three approximations to θr for r ≥ 3 and large N are
described below. Approximating ρ1

max as ρ1
1, and assuming

um as i.i.d. Gamma distributed with shape r− 1 and rate N ,
we obtain the Gamma approximation:

Gamma: θr = 1− Γinc(r − 1, Nt0)/Γ(r − 1). (31)

Approximating ρ1
max = ρ1

1 and um
i.i.d.∼ N ((r − 1)µN , (r −

1)σ2
N ), where µN , (N+1)−1, and σ2

N , N(N+1)−2(N+
2)−1, we obtain the Normal approximation:

Normal: θr = 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (32)

where Q(·) is the standard Normal Q-function. Finally, in
the Deterministic approximation, the SINR becomes ρkm =
N/(ρ−1

0 + r − k), and θr becomes

Deterministic: θr = 1{r ≤ bN/γth − ρ−1
0 + 1c}. (33)

Proof. See Appendix D. �

Remark: The above approximations provide closed form
expressions for θr and are valid when N is large [23]. The
first two approximations have SINRs that are obtained by
applying the theory of deterministic equivalents to only the
norms of the channels, and yields an SINR that is affected only
by the randomness in the multi-user interference components.
This is supported by the fact that the interference components
converge to their deterministic equivalents slower than the
norms converge to their deterministic equivalents [23]. The
deterministic approximation follows directly from Lemma 1,
where the SINR is a deterministic quantity, and hence θr is
a binary function of r. With finite number of antennas, due
to small scale fading, the SINR of the users vary around this
approximate SINR. These variations affect the value of θr,
and are not captured by the deterministic approximation, even
though we obtain simple closed form expressions for it. As a
consequence, the throughput computed using the deterministic
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approximation can be far from the actual throughput in certain
regimes and close to the actual throughput in other regimes,
as will be seen in Sec. VI-A.

VI. NUMERICAL RESULTS

In this section, the previously derived SINR analysis is used
to evaluate the throughput of IRSA with estimated channels
via Monte Carlo simulations, and provide insights into the
dependence of the system performance on the various system
parameters. In each simulation, independent realizations of the
user locations, the APM, and the fades experienced by the
users are generated. The throughput for each simulation is
calculated as described in Sec. II-A, and the effective system
throughput T is calculated by averaging over the simulations.

The results in this section are for T = 50 RBs, Ns =
103 Monte Carlo runs, λ = 10−2, α = 3.76, σ2

h = 1, SINR
threshold γth = 10, MSBL threshold γpr = 10−6, cell radius
rmax = 1000 m, and reference distance r0 = 100 m [20]. The
number of users contending for the T RBs is computed based
on the load L as M = bLT e. The soliton distribution [10]
with dmax = 27 maximum repetitions is used to generate the
repetition factor dm for the mth user, whose access pattern
is formed by uniformly randomly choosing dm RBs from T
RBs [6]. The APM is formed by stacking the pattern vectors of
all the users. The location of each user is uniformly sampled
from within a cell of radius rmax centered at the BS. The
path loss coefficient is calculated as βm = (rm/r0)−α where
rm is the radial distance of the mth user from the BS. The
signal to noise ratio (SNR) for the mth user is calculated as
Pσ2

hβm/N0. The received SNR of a user at the edge of the cell
at the BS is termed as the cell edge SNR, and is denoted by
SNRedge. The power levels of all users is chosen such that the
signal from a user at a distance rmax from the BS is received
at SNRedge. This ensures that all users’ signals are received at
an SINR that at least SNRedge on average, in singleton RBs.
If SNRedge ≥ γth, i.e., it is such that the cell edge user’s signal
is decodable, then all users’ signals are decodable with high
probability in singleton RBs. The power levels of users is set
to P = P p = 20 dBm [20] and N0 is chosen such that the
cell edge SNR is 10 dB, unless otherwise stated.9 The pilot
sequence for each user is generated as pm

i.i.d.∼ CN (0τ , P
pIτ ).

The effect of different pilot sequences is studied in [16].
Fig. 2 shows the effect of pilot length on the system

throughput at different L under the three estimation schemes,
with N = 16. MMSE scheme performs the best and reaches
the optimal throughputs of T = L for very low pilot
lengths. MSBL scheme achieves the optimal throughputs for
L = 1, 2, 3 at τ = 4, 8, 12 respectively, and beyond that,
the performance is the same as that of MMSE. This shows
that with a few additional pilot symbols, we can do away
with the assumption of knowing the APM and path loss
coefficients. LCMMSE scheme matches MMSE for L = 1
and for higher L, it needs a lot more pilot symbols. This is
because of both pilot contamination and low quality channel

9We consider equal pilot and data power for simplicity. Via simulations,
we have observed that pilot power boosting can yield good improvement in
the throughput, especially at cell edge SNRs close to 0 dB.

Fig. 2: Comparison between MMSE, MSBL, and LCMMSE schemes.

Fig. 3: Impact of pilot length τ on rate with MMSE.

estimates. Also, we note that the use of orthogonal pilots
would require τ ≥ 50, 100, 150 for L = 1, 2, 3, respectively.
The optimal throughput of T = L is achieved with far fewer
pilot symbols under all the three estimation schemes. This is
because a small subset of users transmit in any RB in IRSA.
Finally, under all the three schemes, we can achieve T ≥ 1,
which is the maximum throughput achievable under perfectly
coordinated orthogonal access, i.e., grant-based orthogonal
access. This shows the utility of using IRSA as a GFRA
protocol for mMTC, especially due to it’s high performance
at medium to high L. To summarize, the pilot length has a
significant impact on the performance of IRSA and yields
near-optimal throughputs at significantly lower pilot lengths
than that required for orthogonal pilot transmission. The drop
in T at low pilot lengths under estimated channels underscores
the importance of accounting for the effect of imperfect CSI
in analyzing the performance of IRSA.

We focus on MMSE/LCMMSE hereafter in order to avoid
clutter in the plots, since MSBL matches the performance of
MMSE with slightly higher τ . In Fig. 3, we investigate the
effect of L, τc and γth on the achievable rate R of the system
with MMSE, with N = 16. Here, the rate is obtained as
R = (1− τ/τc)T log2(1 +γth) (bps/Hz), where τc is the total
length of any user’s packet. Firstly, we look at the effect of
changing γth by fixing τc = 100. For L = 2, γth = 20 offers
a higher rate than γth = 10, provided τ ≥ 3. Thus, at low
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Fig. 4: Effect of number of antennas N with MMSE.

Fig. 5: Effect of cell edge SNR with MMSE.

loads, increasing γth (correspondingly, selecting a higher order
modulation and coding scheme) leads to better achievable
rates. In contrast, when L = 4, γth = 10 outperforms
γth = 20, because the system is highly interference limited.
Next, comparing L = 2, 3, 4 for τc = 100 and γth = 10, we
see that the rate improves with L, provided the pilot length
is large enough. Finally, decreasing τc reduces the achievable
rate, as the relative overhead due to pilots increases. Thus, at
high loads, the throughput T limits the achievable rate, while
at low loads, the SINR threshold γth is the primary factor in
determining the achievable rate.

In Fig. 4, we investigate the effect of the number of antennas
at the BS, by plotting the throughput with MMSE channel
estimation for different L and τ . Intuitively, we expect that,
to achieve the optimal throughput of L, we would require
slightly more than Ld̄ antennas at the BS, since Ld̄ users
transmit packets per RB on average. The orthogonal pilots
curve is obtained by allocating τ = M = bLT e for each
L. Under all configurations, it is observed that increasing N
has a significant impact, and the peak throughput achieved
reaches its maximum of T = L. Further, τ = 10 achieves
a very similar performance as that of orthogonal pilots, and
τ = 5 performs poorly at low N and high L. For L = 2,
the throughput reaches the peak T = 2 for N ≥ 8 for all
three values of τ . Similarly, for a high load of L = 3, the
throughput reaches the peak, T = 3, for N ≥ 16. For L =

Fig. 6: Effect of regularization parameter and τ with MMSE.

2, 3, since the average repetition factor d̄ = 3, each RB is
occupied by 6, 9 users, respectively. Thus, a slightly higher
number of antennas is sufficient to recover all the packets,
provided accurate channel estimates are available (i.e., τ is
large enough). It is observed that at L = 2, N = 4 and
L = 3, N = 8, improving τ greatly improves the throughput.
Increasing the number of antennas increases the array gain and
the decoding capability of the regularized zero forcing decoder
at the BS, which in turn leads to more users getting decoded.
This shows the effectiveness of the number of antennas in
improving the throughput. Also, when N = 12, the dramatic
drop in the throughput of T = 3.8 for τ = 200 (orthogonal
pilots) to T = 1.2 for τ = 5, which is around 70% loss in
performance, shows that it is crucial to account for estimated
CSI while analyzing the performance of IRSA systems.

Fig. 5 shows the impact of cell edge SNR on the packet
loss rate PLR with MMSE, with N = 16. For SNR <
−5 dB, the PLR is high, and in the noise-limited regime
(−5 < SNR < 0 dB), an increase in cell edge SNR sharply
decreases the PLR. For L = 4, τ = 5, the system becomes
interference-limited, and thus the performance saturates at high
SNR. This is because, at low τ , both signal and interference
powers get scaled equally, and the SINR remains roughly
constant. Increasing τ from 5 to 10 and then to orthogonal
pilots, we observe that the PLR falls from 0.5 to 10−2.5

to 10−5. The higher τ and SNR result in accurate channel
estimates, and thus very low PLR is observed. Similarly, at
L = 2, the drop of PLR from 10−1.7 to 10−2.8 to 10−3.9

for τ = 5, 10 and orthogonal pilots emphasizes the need to
account for estimated CSI when analyzing the performance of
IRSA. In summary, the overall performance can be improved
by increasing the pilot length, number of antennas, or cell edge
SNR, but these need to be increased judiciously, keeping the
other parameters in mind.

Fig. 6 shows the effect of the regularization parameter, λ,
on the throughput of the system when MMSE estimation is
employed, with L = 4. As λ is varied from 10−6 to 1, the
curves go from ZF on the left to RZF in the middle and finally
to MRC on the right. For N = 4, increasing τ from 5 to
10 to 30 only marginally improves the throughput. This is
because the system is highly interference limited, and hence
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Fig. 7: Impact of load on PLR with LCMMSE.

Fig. 8: Impact of power control on throughput.

channel inversion does not work well at low N . For τ = 5,
increasing N from 4 to 16 to 32 improves the performance
due to the interference suppression capability of RZF. Similar
observations can be made for τ = 10 as well. MRC does not
have the interference suppression capability of RZF, and thus
the performance saturates at a low value for all τ . We note
that the optimal throughput of T = 4 is obtained over a wide
range of λ, and thus precise optimization of λ is not necessary
to obtain near-optimal throughputs.

Fig. 7 studies the impact of L and τ on the system packet
loss rate, PLR, evaluated with N = 16, γth = 16, and
λ = 1. As the pilot length τ increases, better quality channel
estimates are obtained, and the corresponding SINR increases.
In particular, the system requires higher pilot lengths due to the
use of LCMMSE estimates. The loss rates reduce with increase
in τ , and gets closer to the orthogonal loss rate. The PLR of
perfectly coordinated orthogonal access is the lowest. Similar
to existing works, there is an error floor region where the PLR
is very low (upto L = 2 for orthogonal pilots) after which the
PLR increases rapidly and is called the waterfall region. Here
L = 2 marks the inflection load, where the system transitions
from the error floor to the waterfall region.

In Fig. 8, the impact of power control on the throughput
with LCMMSE is characterized. For this plot, users transmit
at powers that are dependent on their distances from the BS.
Specifically, the mth user, who is located at a distance rm

Fig. 9: Effect of T on the throughput.

from the BS transmits at a power P (rm/r0)α−ζ , making ζ
the effective path loss exponent. The cell edge SNR is fixed
to 10 dB, and the throughputs are obtained by varying ζ and
P . When ζ = 0, the signals of the users undergo pure fading,
and the system achieves a peak throughput of T = 1.52 at
L = 1.6. Further, as L is increased, the throughput drops to
0. The throughput of the system increases as ζ increases, until
ζ = 2/3. The exact ζ that yields the highest throughput is
dependent on other system parameters such as SNR, γth, and
N . As ζ is increased, the channel coefficients of the users
become more disparate, and thus offer a higher degree of
capture effect. Beyond ζ = 3, the throughput decreases as the
exponent is so high that the received signal power becomes
comparable to the noise. For higher ζ, the throughput saturates
as L is increased since a few users are always decoded due
to path loss disparity. The channel fades and the path loss
coefficients contribute to the disparity amongst the channel
coefficients of the users, and thus such a system has higher
throughputs than a system with only path loss [9] or only
fading [11]. Thus, it is useful to consider the combined effects
of fading and path loss in optimizing the performance.

A. Theoretical Validation of Throughput

The results in this subsection are presented for τ = 10, cell
edge SNR = 10 dB, N = 16, λ = 10−2, γth = 16, dmax = 8
maximum repetitions and Ns = 103 Monte Carlo runs. To
reduce clutter in the plots, we present the results for the lowest
complexity (LCMMSE) channel estimation scheme.

Fig. 9 investigates the effect of increasing the number of
RBs on the throughput. The peak throughput increases from
T = 1.52 at L = 1.6 for T = 50 to T = 1.85 at L = 1.85 for
T = 500. Since d̄ is fixed, each user has a larger number of
RBs to choose from as T is increased. Thus, the interference
reduces, and the throughput increases until it reaches a peak
and then drops off. The success probability θr is evaluated
empirically via 104 Monte Carlo runs, and this in turn yields
the asymptotic theoretical throughput, which is marked as
"DE". This can be achieved as M,T →∞ with a fixed L. It
is seen that this asymptotic throughput increases linearly with
the load until it hits a maximum at the inflection load of the
system, which occurs at L∗ = 2 in this case. The throughput
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Fig. 10: Rate for different SINR thresholds.

Fig. 11: Validation of theoretical approximations.

drops sharply beyond this load. The asymptotic throughput
provides an upper bound on the throughput achievable with
finitely many RBs for low to moderate loads. At very low
and high loads, the throughput achieved with finitely many
RBs exactly matches with the DE asymptotic throughput.
A convenient operating point would be to set the system
load to, say, 90% of the inflection load, as, in this case,
only finitely many RBs would be sufficient to achieve the
asymptotic throughput. Finally, it can be observed that the
throughput of the system can be increased by increasing T ,
but only when the system is operated at a load that is lower
than the inflection load. Beyond the inflection load, the system
is always interference-limited and increasing T does not help.

In Fig. 10, the asymptotic rate of the system is plotted versus
the system load for different SINR thresholds with τc = 100.
For a fixed γth, R increases until the inflection load and then
drops off to zero. It is observed that a high R can be achieved
at lower loads by choosing a high γth, whereas, at high loads,
in order to serve more users, γth must be kept low. The choice
of the threshold γth decides the rate of transmission, which
in turn is related to the modulation and coding scheme to be
used. In summary, the SINR threshold γth, which depends on
the modulation and coding scheme employed and determines
the data rate, can be chosen based on the system parameters
such as the number of antennas, training duration, number of
users/RBs, and the transmit power.

Fig. 12: Comparison of approximations with simulation.

We now validate the approximations derived in Theorem
3 with the simulations obtained with MRC, dmax = 27
maximum repetitions, and γth = 10. Fig. 11, reveals an
inflection SNR∗ of 0 dB and −7 dB for L = 1, N =
16 and L = 2, N = 64 respectively, which behaves
similar to the inflection load L∗. Both the normal and
the gamma approximations match well with the asymptotic
throughput obtained from the DE process. This is because
the deterministic approximation results in an SINR that is
completely deterministic and θr that is a binary function of r,
and consequently does not capture the statistics of the SINRs
very well. Further, the deterministic approximation results in
a throughput that acts as a step function since θr depends
binarily on N , γth, and SNR. As we go from L = 1, N = 16 to
L = 2, N = 64, the approximations become closer, and both
the normal and the gamma approximations match perfectly
with the asymptotic throughput. In summary, the theoretical
curves with the approximations match the simulations when
N is increased, as expected.

Fig. 12 examines the effect of T on the approximations
with L = 2 and SNR = 10 dB. With finitely many RBs,
such as T = 50, 100, 300, the throughput achieves the optimal
throughput T = 2 for N = 24, 18, 16. The asymptotic
throughput obtained with DE provide an inflection N∗ = 12,
which matches perfectly with the normal approximation. The
gamma approximation does not match as well as the normal
approximation. Here, the curves are with MRC and perfect
CSI, and the presented curves are valid upper bounds to the
throughputs with estimated CSI. These can be achieved with
high enough τ as observed in Fig. 2, and thus the derived
results provide very good approximations to the asymptotic
throughput achievable with estimated CSI.

VII. CONCLUSIONS

This paper studied the effect of estimated CSI on the
throughput of IRSA, which is a distributed medium access
protocol for mMTC involving repetition of packets across
different randomly selected RBs. Decoding the users’ packets
at the BS involves successive interference cancellation. First,
the channel estimates were derived under three schemes: a
sparsity-based scheme with MSBL, MMSE, and LCMMSE.
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The corresponding SINR of all the users were obtained under
all three schemes accounting for pilot contamination, channel
estimation errors, path loss as well as multiple antennas at
the BS. It was seen that these errors significantly reduce
the peak achievable throughput, even resulting in up to
70% loss in certain regimes. Further, a density evolution
based analysis was presented to characterize the asymptotic
performance of the protocol when users perform path loss
inversion based power control. Here, several approximations
to the success probability θr were derived and it was seen that
these approximations match well as the number of antennas
at the BS becomes large. Finally, several new insights into
the design of IRSA-based systems was discussed, namely, the
improvement of the system throughput, the evaluation of the
operating load beyond which the system becomes interference
limited, and the choice of the decoding threshold γth. The
results underscored the importance of accounting for practical
channel estimation in studying the throughput offered by the
IRSA protocol. Future work could involve using differential
evolution techniques [24] to obtain the optimal repetition
distribution that maximizes the throughput in the finite frame
length regime.

APPENDIX A: PROOF OF THEOREM 1

1) MMSE: We first vectorize the signal as

ykt , vec(Ypk
t ) = (Pk∗

t ⊗ IN )hkt + nt, (34)

where hkt , vec(Hk
t ), nt , vec(Np

t ), and ⊗ is the Kronecker
product. The MMSE estimator is ĥkt , Ez

[
hkt
]
, where

z = ykt . The error h̃kt , ĥkt − hkt is uncorrelated with z and
the estimate. The conditional statistics of a Gaussian random
vector x are

Ez [x] = E [x] + KxzK
−1
zz

(
z− E [z]

)
, (35)

Kxx|z = Kxx −KxzK
−1
zz Kzx. (36)

Here, Kxx, Kxx|z, and Kxz are the unconditional covariance
of x, the conditional covariance of x conditioned on z, and the
cross-covariance of x & z respectively. From (35), the MMSE
channel estimate ĥkt can be calculated as

ĥkt = E [hkt ] + E [hkt y
kH
t ]E[ykt y

kH
t ]−1(ykt − E [ykt ]). (37)

The terms in the above expression can be evaluated as

E [hkt y
kH
t ] = Bk

tP
kT
t ⊗ IN ,

E[ykt y
kH
t ] = (Pk∗

t Bk
tP

kT
t +N0Iτ )⊗ IN ,

ĥkt = (Bk
tP

kT
t (Pk∗

t Bk
tP

kT
t +N0Iτ )−1 ⊗ IN )ykt ,

and thus, the MMSE estimate Ĥk
t of Hk

t is

Ĥk
t = Ypk

t (Pk
tB

k
tP

kH
t +N0Iτ )−1Pk

tB
k
t , (38)

(a)
= Ypk

t Pk
tB

k
t (PkH

t Pk
tB

k
t +N0IMk

t
)−1, (39)

where (a) follows from (AB + I)−1A = A(BA + I)−1.
2) LCMMSE: The LCMMSE estimator is ĥktm , Ez [htm],

where z = ypk
tm is the received pilot signal. The error h̃ktm ,

ĥktm−htm is uncorrelated with the signal ypk
tm and the channel

estimate ĥktm. From (35), the LCMMSE channel estimate ĥktm
can be calculated

ĥktm = E [htmypkH
tm ]E[ypk

tmypkH
tm ]−1ypk

tm

=
gtmβm‖pm‖2σ2

h

N0‖pm‖2 +
∑
i∈Sk |p

H
i pm|2gtiβiσ2

h

ypk
tm , η

k
tmypk

tm.

3) MSBL: In each iteration of MSBL, two steps are
performed. The first step, termed the E-step, updates
the covariance Σj+1

kt and mean µj+1
ktn of the posterior

p([Zkt ]:,n|[Yt]:,n,γ
j
kt)

Σj+1
kt =Γjkt − ΓjktP

kH(N0Iτ+PkΓjktP
kH)−1PkΓjkt, (40)

µj+1
ktn = N−1

0 Σj+1
kt PkH [Y

pk

t ]:,n, n ∈ [N ]. (41)

The second step, termed the M-step, updates the
hyperparameter for the ith user in the tth RB as

[γj+1
kt ]i =

1

N

N∑
n=1

([Σj+1
kt ]i,i + |[µj+1

ktn ]i|2), i ∈ [Mk]. (42)

This step estimates the variance of the channel of the ith user
in the tth RB. Based on the estimate ĝkti and the true gti, the
set of users [Mk] can be divided into four disjoint subsets

Akt = {i ∈ [Mk] | ĝktigti = 1}, (43)

Fkt = {i ∈ [Mk] | ĝkti(1− gti) = 1}, (44)

Mk
t = {i ∈ [Mk] | (1− ĝkti)gti = 1}, (45)

Ikt = {i ∈ [Mk] | (1− ĝkti)(1− gti) = 1}. (46)

Akt is the set of true positive users, Fkt is the set of false
positive users,Mk

t is the set of false negative users, and Ikt is
the set of true negative users. False positive and false negative
users form the errors in APM estimation. As the decoding
iterations proceed, more users get decoded, and the errors
in APM estimation decrease. The MSBL channel estimate
Ĥk
t = Ypk

t PkΓ̂kt(P
kHPkΓ̂kt + N0IMk)−1 is output in the

E-step from Algorithm 1, where Γ̂kt = diag(γjmax

kt ). The false
negative users’ channels do not get estimated even though they
contribute towards Y

pk
t . The false positive users’ channels get

estimated even though they haven’t transmitted, and thus, an
erroneous channel estimate is output for those users. Since
[γkt]i models the variance of the ith users signal in the tth
RB, it models gtiβiσ2

h . Thus, the estimated hyperparameter
[γjmax

kt ]i would recover both ĝkti and β̂ki . Since the path loss is
same across RBs, a higher quality estimate for the path loss
can be estimated by averaging across RBs, and thus we obtain
β̂ki = (

∑T
t=1 ĝ

k
ti[γ

jmax

kt ]i)/(σ
2
h

∑T
t=1 ĝ

k
ti).

4) Error variances: The conditional covariance of hti is
calculated conditioned on z = ĥkti. In MMSE, with ckti =
[Ck

t ]:,i and Ck
t , Pk

tB
k
t (PkH

t Pk
tB

k
t +N0IMk

t
)−1, we have

Khtihti
= E[htih

H
ti ] = βiσ

2
hIN ,

Khtiz = E[htiĥ
kH
ti ] = pHi cktigtiβiσ

2
hIN ,

Kzz = (N0‖cti‖2 +
∑
j∈Sk |p

H
j ckti|2gtjβjσ2

h)IN .

Thus, the conditional covariance is

Khtihti|z = Khtihti
−KhtizK

−1
zz Kzhti
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= βiσ
2
h

N0‖ckti‖2 +
∑
j∈Si

k
|rkjti|2gtjβjσ2

h

N0‖ckti‖2 +
∑
j∈Sk |r

k
jti|2gtjβjσ2

h

 IN , δ
k
tiIN ,

where rkjti , pHj ckti and δkti accounts for pilot contamination.
The conditional autocorrelation follows as

Ez[htmhHtm] = Khtmhtm|z + Ez[htm]Ez[htm]H

= δktmIN + ĥktmĥkHtm . (47)

The unconditional and conditional means of the estimation
error are E[h̃ktm] = E[ĥktm − htm] = 0 and Ez[h̃ktm] =
Ez[ĥktm − htm] = ĥktm − ĥktm = 0. The conditional
autocovariance of the error therefore simplifies as

Kh̃k
tmh̃k

tm|z
= Ez[h̃ktmh̃kHtm ]

= Ez[htmhHtm]− ĥktmĥkHtm = δktmIN , (48)

and thus, δktm is also the variance of the estimation error.
Substituting Ck

t = Pk
t diag(ηkti1 , . . . , η

k
ti

Mk
t

), we get the error
variance for LCMMSE.

The MSBL estimate error is also uncorrelated with the
estimate and the error variance can be derived similar to
the MMSE scheme since the MSBL estimate is a “plug-in"
MMSE estimate. Since only true positive users’ channels are
estimated, the error variance is calculated only for the subset
of true positive users (users with ĝktigti = 1), and thus, each gti
is accompanied by ĝkti similar to [16]. Further, since the error
variance models the true interference from other true positive
users, the true path loss coefficient accompanies ĝktigti. Hence
we define Ck

t , PkDk
t (PkHPkDk

t + N0IMk)−1 and Dk
t ,

diag(dkti1 , d
k
ti2
, . . . , dkti

Mk
), with dkti = ĝktigtiβiσ

2
h . Substituting

for Ck
t , we get the error variance for MSBL.

APPENDIX B: PROOF OF THEOREM 2

In order to evaluate the SINR, we first calculate the
power of the received signal, which is calculated conditioned
on the knowledge of the estimates z , vec(Ĥk

t ) as
Ez[|ỹktm|2] = Ez[|

∑4
i=1 Ti|2]. Since noise is uncorrelated with

data, Ez[T1T
H
4 ] = Ez[T2T

H
4 ] = Ez[T3T

H
4 ] = 0. Since MMSE

channel estimates are uncorrelated with their errors [20],
Ez[T1T

H
2 ] = 0. Computing the remaining power components

requires the evaluation of Ez[xixj ] for i 6= j which can be
calculated as Ez[xixj ] = Ez[xi]Ez[xj ] = 0. Thus, all the four
terms are uncorrelated and the power in the received signal
is just a sum of the powers of the individual components
Ez[|ỹktm|2] =

∑4
i=1 Ez[|Ti|2]. We now compute the powers

of each of the components. The useful signal power is

Ez[|T1|2] = Ez[|akHtm ĥktmgtmxm|2] = Pg2
tm|akHtm ĥktm|2. (49)

The desired gain is written as

Gainktm ,
Ez[|T1|2]

P‖aktm‖2
= gtm

|akHtm ĥktm|2

‖aktm‖2
. (50)

The power of the estimation error is expressed as

Ez[|T2|2] = Ez[|akHtm h̃ktmgtmxm|2] = Pg2
tmδ

k
tm‖aktm‖2.

Next, the power of the inter-user interference term T3 is

Ez[|T3|2] = Ez

[∣∣∣akHtm∑i∈Sm
k
gtihtixi

∣∣∣2]
= P

∑
i∈Sm

k
g2
tia

kH
tmEz[htih

H
ti ]a

k
tm

= P
∑
i∈Sm

k
g2
tia

kH
tm (δktiIN + ĥktiĥ

kH
ti )aktm

= P
∑
i∈Sm

k
g2
ti(‖aktm‖2δkti + |akHtm ĥkti|2). (51)

Here, Ez[|T2|2] + Ez[|T3|2] represents the contribution of
estimation errors and multi-user interference components of
the other users. Since gti is binary, its powers are dropped.
We now split the normalized version of the above into the sum
of the error component Estktm and the multi-user interference
MUIktm as follows

Estktm ,
∑
i∈Skgtiδ

k
ti, MUI

k
tm ,

∑
i∈Sm

k
gti
|akH

tm ĥk
ti|

2

‖ak
tm‖2

. (52)

The noise power is calculated as

Ez[|T4|2] = Ez[|akHtmnt|2] = N0‖aktm‖2. (53)

A meaningful SINR expression can be written out by dividing
the useful signal power from (50) by the sum of the
interference and the noise powers (from (52), and (53)) [20].
Note that the interference component is comprised of the
estimation error term and the signal powers of other users who
have also transmitted in the same RB. For MMSE/LCMMSE,
the corresponding SINR can be calculated by plugging in the
channel estimates.

In MSBL, each of T1, T2, and T3 is calculated among
the subset of true positive users in the tth RB, i.e., users
in Akt = {i ∈ [Mk]|ĝktigti = 1}. Hence, each of the
powers previously derived for MMSE is accompanied by
ĝktigti. We need to account for false negative users, i.e., users
in Mk

t = {i ∈ [Mk]|(1 − ĝkti)gti = 1}. These users interfere
with the decoding of other users and the SINR for such users
is 0 since they will never get decoded. Such users’ signals are
uncorrelated with the other terms, and thus, their power is

Ez[|T5|2] = Ez[|
∑
i∈Sm

k ∩Mk
t
akHtmhtigtixi|2]

(b)
= P

∑
i∈Sm

k ∩Mk
t
g2
tia

kH
tmE[htih

H
ti ]a

k
tm

= P
∑
i∈Sm

k ∩Mk
t
g2
tia

kH
tm (βiσ

2
hIN )aktm

= P
∑
i∈Sm

k ∩Mk
t
g2
tiβiσ

2
h‖aktm‖2, (54)

where the conditional expectation is dropped in (b) since the
BS does not have the knowledge of the channel estimates of
false negative users. The normalised power of the false positive
users is FNUktm ,

∑
i∈Sm

k
(1− ĝkti)gtiβiσ2

h .

APPENDIX C: PROOF OF LEMMA 1

It is known that, as the number of antennas gets large, both
‖ĥktm‖2 and |ĥkHtm ĥkti|2 converge almost surely (a.s.) to their
deterministic equivalents [23]. Evaluating the deterministic
equivalents as in [23] and plugging into the SINR expression
instead of the original terms, we can find an approximation
to the SINR in the high antenna regime. As N gets large, the



16

SINR with MRC converges almost surely (ρktm
a.s.−→ ρktm) to

ρktm =
NSigktm

εktm
(
N0/P + IntNCktm

)
+ IntCktm

, (55)

where Sigktm is the desired gain, IntNCktm is the non-coherent
interference, and IntCktm is the coherent interference. For
LCMMSE, IntNCktm , gtmδ

k
tm +

∑
i∈Sm

k
gtiβiσ

2
h , Sigktm ,

gtmβ
2
mσ

4
h‖pm‖4, IntCktm , N

∑
i∈Sm

k
gtiβ

2
i σ

4
h |pHmpi|2,

and εktm , N0‖pm‖2 +
∑
i∈Sk gtiβiσ

2
h |pHmpi|2. For

MMSE, εktm , N0‖cktm‖2 +
∑
i∈Sk gtiβiσ

2
h |ckHtmpi|2,

Sigktm , gtm(εktm)2, IntCktm , N
∑
i∈Sm

k
gtiβ

2
i σ

4
h |ckHtmpi|2,

IntNCktm , gtmδ
k
tm +

∑
i∈Sm

k
gtiβiσ

2
h . For MSBL,

εktm , N0‖cktm‖2 +
∑
i∈Sk gtiβiσ

2
h |ckHtmpi|2, IntNCktm ,

ĝktmgtmδ
k
tm +

∑
i∈Sm

k
gtiβiσ

2
h , Sigktm , ĝktmgtm(εktm)2, and

IntCktm , N
∑
i∈Sm

k
gtiβ

2
i σ

4
h |ckHtmpi|2. Here, δktm and cktm

are obtained from Theorems 1 and 2, respectively, for the
three estimation schemes. The above expressions are obtained
by replacing each of the terms involving ĥktm in the SINR
with their respective deterministic equivalents.

APPENDIX D: PROOF OF THEOREM 3

Let k denote the intra-RB decoding iteration. When perfect
CSI is available at the BS and the users perform path loss
inversion, the SINR of the mth user in an RB is computed as

ρkm =
P‖hm‖4

N0‖hm‖2 + P
∑
i∈Sm

k
|hHmhi|2

. (56)

For r = 1, ρ1
1 = P‖hm‖2/N0, and θ1 reduces to

θ1 = Pr(ρ1
1 ≥ γth) = Γinc(N, ρ

−1
0 γth)/Γ(N), (57)

where ρ0 , Pσ2
h/N0, Γinc(s, x) =

∫∞
x
ts−1 e−t dt is the

upper incomplete gamma function and Γ(s) is the ordinary
gamma function. The interference is written as tmi =
|hHmhi|2/(‖hm‖2‖hi‖2), where tmi ∼ Beta(α = 1, β = N).
We use a.s.−→ to denote convergence in the almost surely sense.
Since ‖hi‖2/N

a.s.−→ σ2
h and ‖hi‖4/N2 a.s.−→ σ4

h as N → ∞
[23], we can approximate the SINR as

ρkm ≈ N(ρ−1
0 +N

∑
i∈Sm

k
tmi)

−1. (58)

Here, we have applied the theory of deterministic equivalents
to only the channel norms and not to the interference. This
is supported by the fact that the interference components
converge to their deterministic equivalents slower than the
norms converge to their deterministic equivalents [23].

For r = 2, since t12 = t21, ρ1
1 = ρ1

2 = N/(ρ−1
0 + Nt12).

Thus, ρ1
max = N/(ρ−1

0 +Nt12) and ρ2
max = Nρ0 with ρ1

max ≤
ρ2

max. Thus, the success probability reduces to θr = Pr(ρ1
max ≥

γth). Let t0 , γ−1
th −N−1ρ−1

0 . Hence, θ2 is calculated as

θ2 ≈ Pr(ρ1
max ≥ γth) = Pr(t12 ≤ t0)

= 1{t0 ≥ 1}+ (1− (1− t0)N )1{0 ≤ t0 ≤ 1}. (59)

For r ≥ 3, ρkm need not be a monotonically increasing function
of k as seen in (58), and thus we cannot order the SINRs
meaningfully to compute a closed form expression for θr. With
um =

∑
i∈[r]\m tmi, the maximum SINR in the first intra-RB

iteration is calculated as ρ1
max = maxm∈[r]N(ρ−1

0 +Num)−1.
Here, um is not independent across m and it is not clear which
um is the minimum. Thus, we approximate ρ1

max as ρ1
1, and

upon dropping the other SINR terms from (28), θr becomes

θr ≈ Pr(ρ1
1 ≥ γth) = Pr(u1 ≤ t0). (60)

We now discuss two approximations to um to evaluate θr,
with the assumption that um is independent across m.

Since limN→∞ Beta(α = 1, β = N) = exp(λ = N), we
approximate tmi ∼ exp(N), which is a good approximation at
high N [22]. Even with this approximation, um is identically
Gamma distributed across users but not independent. Thus,
with the independence assumption, um is i.i.d. Gamma
distributed with shape parameter r− 1 and rate parameter N ,
i.e., um

i.i.d.∼ Gamma(r − 1, N). Thus, we obtain the Gamma
approximation:

θr ≈ 1− Γinc(r − 1, Nt0)/Γ(r − 1). (61)

Similarly, when we assume tmi is Normal distributed,
um is identically Normal distributed across users but not
independent. Let µN = (N + 1)−1 and σ2

N = N(N +
1)−2(N + 2)−1. If we approximate tmi ∼ N (µN , σ

2
N ) and

um is independent across m, then um
i.i.d.∼ N ((r− 1)µN , (r−

1)σ2
N ). Thus, we obtain the Normal approximation:

θr ≈ 1−Q
(
t0 − (r − 1)µN√

r − 1σN

)
, (62)

where Q(·) is the standard Normal Q-function.
A simpler expression can be obtained for θr by applying

the theory of deterministic equivalents to not just the channel
norms but also to the interference. Thus, |hHi hm|2/N

a.s.−→ σ4
h ,

as N →∞ [23]. Thus, the SINR becomes

ρkm = N/(ρ−1
0 + r − k), (63)

which is not random and is a deterministic function of N and
ρ0. This expression for SINR follows from Lemma 1. Thus,
we obtain the deterministic approximation:

θr = Pr(ρ1
1 ≥ γth) = 1{r ≤ bN/γth − ρ−1

0 + 1c}. (64)
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