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Abstract—This paper investigates a channel estimator based
on Gaussian mixture models (GMMs) in the context of lin-
ear inverse problems with additive Gaussian noise. We fit
a GMM to given channel samples to obtain an analytic
probability density function (PDF) which approximates the true
channel PDF. Then, a conditional mean estimator (CME) cor-
responding to this approximating PDF is computed in closed
form and used as an approximation of the optimal CME
based on the true channel PDF. This optimal CME cannot be
calculated analytically because the true channel PDF is generally
unknown. We present mild conditions which allow us to prove
the convergence of the GMM-based CME to the optimal CME as
the number of GMM components is increased. Additionally, we
investigate the estimator’s computational complexity and present
simplifications based on common model-based insights. Further,
we study the estimator’s behavior in numerical experiments
including multiple-input multiple-output (MIMO) and wideband
systems.

Index Terms—asymptotic convergence, conditional mean chan-
nel estimation, Gaussian mixture models, machine learning,
spatial channel model

I. INTRODUCTION

Channel estimation plays a critical role in future

mobile communications systems, e.g., [2]–[4]. The

mean square error (MSE) minimizing channel estimator

is known as conditional mean estimator (CME). Computing

the CME in closed form requires analytic knowledge of

the channel probability density function (PDF). Even if the

PDF was known, calculating the CME might not be possible

analytically or not be tractable practically. Increasingly,

advanced channel models (e.g., [5]) or simulators (e.g.,

[6]–[8]) are used to generate large amounts of realistic

channel samples. In a real application, channel samples can,

for example, be collected at the base station to be used in

addition to or instead of the simulated data. Importantly, such

data represent the whole scenario (or environment) in which

the base station is placed. It is thus interesting to investigate

data-based algorithms to design channel estimators which are

applicable to a whole scenario. Many estimators have been

proposed in this context (cf., e.g., Section V for details). In

particular, estimators based on compressive sensing (CS) and

on machine learning have recently been proposed (see, e.g.,

[9], [10]). To our knowledge, the algorithms’ optimality has

not been studied if an arbitrary channel PDF is assumed.
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In this paper, we study a Gaussian mixture model (GMM)-

based channel estimator. The estimator itself has already been

investigated in the case where the channel PDF is given by

a GMM. One of our contributions is to provide a strong

motivation to employ the GMM-based estimator even if the

channel PDF is not a GMM. To this end, we show (in a proof

and in numerical simulations) that even if the channel is not

GMM distributed, the GMM-based estimator converges to the

optimal CME as the number of GMM components increases.

In detail, the following approach is taken in this paper.

First, channel samples are used to fit a GMM. Since GMMs

can approximate any continuous PDF [11], the fitted GMM

is a PDF which approximates the unknown true channel

PDF. Second, we analytically compute a CME for channels

distributed according to the GMM PDF. Since the GMM PDF

approximates the true channel PDF, we ask whether the GMM-

based CME approximates the true CME.

A related work is [12], where the authors assume that

the channel is GMM-distributed and study the available

closed-form CME for example in the asymptotic high

signal-to-noise ratio (SNR) regime to derive pilot signals. In

this work, we do not assume that the channel is GMM-

distributed. Instead, a GMM is used as an approximation of the

true channel PDF and we analyze whether the corresponding

CME is an approximation of the true CME. This can be viewed

as a study of the GMM estimator in the high number of GMM

components regime. A main contribution of our paper is to

prove that as the number of components increases, the GMM

CME converges to the optimal CME if the observation matrix

is invertible (cf. Theorem 2). For noninvertible observation

matrices, we make a weaker statement. Moreover, we analyze

the GMM estimator’s computational complexity and show

how the complexity can be reduced in different estimation

scenarios.

We study the GMM estimator in numer-

ical simulations where we consider both

multiple-input multiple-output (MIMO) and wideband

channel estimation scenarios with both invertible and

noninvertible observation matrices. The considered channel

data come from a 3GPP channel model [5] and from the

QuaDRiGa channel simulator [6], [7] so that they are

not GMM-distributed by construction. The generated data

represent a scenario where for example a base station covers a

certain sector with users whose positions are drawn uniformly

at random. The obtained GMM estimator is then suited for

channel estimation in the whole scenario. Already for a finite

number of GMM components, the GMM estimator shows

a performance close to the optimal CME in the numerical
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simulations. We emphasize the GMM estimator’s broad

applicability by comparing it to state-of-the-art algorithms

from the literature.

The paper is structured as follows. Section II introduces the

signal model discussed throughout the paper as well as partic-

ular instances thereof which are used in numerical simulations.

Section III reviews GMMs and channel estimation literature

which employs them. The main part is Section IV where we

investigate the GMM-based CME and study its convergence

to the optimal CME as well as its computational complexity.

Sections V and VI present state-of-the-art channel estimation

algorithms, channel models, and numerical simulations.

Notation: The supremum norm of a continuous function

f : RN → R is given by ‖f‖∞ = supx∈RN |f(x)|, and ‖x‖
is the Euclidean norm of x ∈ C

N . A real- or complex-valued

normal distribution with mean vector µ and covariance matrix

C is denoted by N (µ,C) or NC(µ,C), respectively. The

vectorization (stacking columns) of a matrix X ∈ Cm×N is

written as vec(X) ∈ CmN , and A ⊗ B ∈ Cm1m2×N1N2 is

the Kronecker product of A ∈ Cm1×N1 and B ∈ Cm2×N2 .

II. SIGNAL MODELS

We consider the generic signal model

y = Ah+ n, n ∼ NC(0,Σ) (1)

where h ∈ CN is the channel, A ∈ Cm×N is the observation

matrix, and n ∈ Cm is additive white Gaussian noise. The

technical interpretation (e.g., number of antennas or pilots) of

the dimensions m and N depends on the context. Examples

can be found in the following subsections. The observation

y ∈ Cm, the matrix A, the noise mean vector 0 ∈ Cm, and

the noise covariance matrix Σ ∈ Cm×m are given. The goal

of channel estimation is to recover h from (1).

In this paper, we study a channel estimation algorithm which

is designed using the given signal model as well as a data set

of channel samples. While the main part addresses the generic

signal model (1), we consider the following three instances of

it in numerical simulations.

A. Single-Input Multiple-Output Signal Model

The single-input multiple-output (SIMO) signal model is

for instance appropriate if a single-antenna mobile device

transmits pilot signals to a base station with N antennas which

receives

y = h+ n ∈ C
N . (2)

This model is interesting for us because the observation matrix

is the identity matrix and therefore invertible. Further, the

performance of the proposed channel estimator can be studied

without having to take into account the difficulty of choosing

a suitable observation matrix.

B. Multiple-Input Multiple-Output Signal Model

If a mobile user with Ntx antennas transmits Np pilots to

a base station with Nrx antennas, the receive signal Y ∈
CNrx×Np can be written as

Y = HP +N (3)

where H ∈ CNrx×Ntx is the channel, P ∈ CNtx×Np is the pilot,

and N ∈ C
Nrx×Np is the noise matrix. With the definitions

h = vec(H), y = vec(Y ), n = vec(N), and A = PT⊗INrx
,

the MIMO signal model (3) is an instance of (1).

C. Wideband Signal Model

If we consider a single-input single-output (SISO) trans-

mission in the spatial domain over a frequency-selective

fading channel, H ∈ C
Nc×Nt represents the time-frequency

response of the channel for Nc subcarriers and Nt time

slots. When only Np positions of the time-frequency response

are occupied with pilot symbols, then there is a selection

matrix A ∈ {0, 1}Np×NcNt which represents the pilot po-

sitions. This leads to the observations as described in (1)

with h = vec(H) ∈ CNcNt . Regarding the structure of the

pilot positions, three different arrangements are commonly

considered: block-, comb-, and lattice-type, cf. [13].

III. GAUSSIAN MIXTURE MODELS IN THE LITERATURE

In this section, we briefly explain GMMs and summarize

channel estimation literature which makes use of GMMs.

A. Gaussian Mixture Models

A GMM with K components is a PDF of the form [14]

f
(K)
h (h) =

K
∑

k=1

p(k)NC(h;µk,Ck) (4)

consisting of a weighted sum of K Gaussian PDFs. The

probabilities p(k) are called mixing coefficients, and µk ∈ CN

and Ck ∈ CN×N denote the mean vector and covariance

matrix of the kth GMM component, respectively. As explained

in [14], GMMs allow to calculate the responsibilities p(k | h)
by evaluating Gaussian likelihoods:

p(k | h) =
p(k)NC(h;µk,Ck)

∑K
i=1 p(i)NC(h;µi,Ci)

. (5)

This is an important property for our considerations.

Given data samples, an expectation-maximization (EM) al-

gorithm can be used to fit a K-components GMM [14]. The

data-based fitting process determines the mixing coefficients,

the mean vectors, and the covariance matrices. A detailed

introduction to GMMs and the corresponding well-known EM

algorithm can, e.g., be found in [14].

B. Gaussian Mixture Models in Channel Estimation Literature

In [15], channels are modeled as sparse vectors whose

non-zero coefficients are GMM-distributed. A combination of

EM and approximate message passing (AMP) is then intro-

duced for channel estimation. The algorithm simultaneously

estimates the GMM parameters. Building on this work, [16]

models the beam domain channels via GMMs in the context

of uplink channel estimation with pilot contamination. The

authors of [17] then investigate the approach further including

a new initialization technique for the algorithm. In [18], the

beam domain channel is also assumed to be GMM-distributed
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and a modification of learned AMP is proposed for sparse

channel estimation.

The authors of [19] model temporal channel variations as

GMMs, e.g., in order to predict channel states. The authors

of [20] propose to improve channel estimation techniques

by using GMMs as a better characterization of the noise in

communications environments than it is given by the additive

white Gaussian noise model. In [21], a GMM prior is used for

the unknown data symbols in semi-blind channel estimation.

GMMs are also employed for channel clustering tasks. For

example, [22] use GMMs for channel multipath clustering.

In [23], a power weighted GMM is proposed to increase the

clustering performance. Another variation of GMMs, called

rotationally invariant GMM, can be found in [24].

In [12], [25], the true channel PDF is assumed to be

equal to a GMM and the authors then investigate the corre-

sponding CME to optimize the pilot matrix. To this end, the

asymptotic high-SNR regime of the CME is studied. Further,

an information-theoretic criterion for pilot optimization is

introduced because the MSE of the estimator has no closed-

form expression and is thus not suitable as optimization

criterion [12].

In this paper, we study the same GMM-based estimator as

the authors of [12], [25]. However, we do not assume that the

true channel PDF is equal to a GMM. Instead, we take the

GMM as an approximation of the true channel PDF and we

ask whether the corresponding GMM-based estimator is then

an approximation of the true CME (based on the true channel

PDF). In this sense, we study the GMM-based estimator’s

behavior in the high number of components regime and our

work complements [12] by motivating the application of the

estimator in a wider class of channel models.

IV. MAIN PART

The MSE-optimal channel estimate for the model (1) is

given by the conditional expectation E[h | y], cf., e.g., [26].

However, the true channel PDF is generally not known and,

therefore, E[h | y] can generally not be calculated analytically.

Even if the true channel PDF was known, the CME E[h | y]
might still not have an analytic expression. In this section, we

investigate a GMM-based CME with closed-form expression

and prove that it converges to the optimal CME as the number

of GMM components is increased. Further, we discuss its

computational complexity and how the complexity can be

reduced.

A. Channel Estimator

GMMs are known to be able to approximate any continuous

PDF arbitrarily well [11]. In particular, if fh denotes the

PDF of the channel which is assumed to be continuous, then

there exists a sequence (f
(K)
h )∞K=1 of GMMs which converges

uniformly to fh. To define a GMM-based estimator, let fn and

fy be the PDFs of the noise and the observation, respectively,

and let us first observe the following:

fh|y(h | y) =
fy|h(y | h)fh(h)

fy(y)
=

fn(y −Ah)fh(h)

fy(y)
.

(6)

With this the optimal CME can be expressed as

ĥ(y) = E[h | y] =

∫

h
fn(y −Ah)fh(h)

fy(y)
dh. (7)

For every K ∈ N, we now consider the model

y(K) = Ah(K) + n (8)

where h(K) is distributed according to the GMM f
(K)
h which

has the form (4). Since we have a sequence (f
(K)
h )∞K=1 of

GMMs, the parameters p(k), µk, and Ck would also depend

on the sequence index K but we omit it for readability. Let

f
(K)
y be the PDF of y(K). We now define a GMM-based

estimator

ĥ(K)(y) := E(K)[h(K) | y] :=

∫

h
fn(y −Ah)f

(K)
h (h)

f
(K)
y (y)

dh

(9)

by replacing fh and fy in (7) with f
(K)
h and f

(K)
y , respectively,

because similar to (6) we have

f
(K)
h|y (h | y) =

fn(y −Ah)f
(K)
h (h)

f
(K)
y (y)

. (10)

The law of total expectation allows us to write

ĥ(K)(y) =
K
∑

k=1

p(k | y) E(K)[h(K) | y, k] (11)

in order to introduce the GMM mixing variable. By definition

of GMMs, conditioning on one of the mixing variables yields

a Gaussian random vector. That is, h(K) | k ∼ NC(µk,Ck)

is the kth Gaussian in the GMM f
(K)
h , see also (4). Since

h(K) | k is Gaussian, also Ah(K) | k and therefore y(K) | k
are Gaussian. The conditional mean vector and conditional

covariance matrix of y(K) | k are E[y(K) | k] = Aµk and

E[(y(K)−Aµk)(y
(K)−Aµk)

H | k] = ACkA
H+Σ, (12)

respectively. The well-known

linear minimum mean square error (LMMSE) formula

can now be used to compute

E(K)[h(K) | y, k] = CkA
H(ACkA

H+Σ)−1(y−Aµk)+µk

(13)

which can be plugged into (11).

In order to calculate p(k | y) in (11), we compute the PDF

f (K)
y (y) =

K
∑

k=1

p(k)NC(y;Aµk,ACkA
H +Σ), (14)

which is a GMM. GMMs allow to calculate the responsibilities

by evaluating Gaussian likelihoods (cf. Section III-A):

p(k | y) =
p(k)NC(y;Aµk,ACkA

H +Σ)
∑K

i=1 p(i)NC(y;Aµi,ACiAH +Σ)
. (15)

Plugging this into (11) shows that as soon as the mixing

coefficients p(k) as well as the means µk and covariances

Ck are given, the estimator ĥ(K) can be computed in closed

form by combining (11), (13), and (15), which results in (16).

As discussed next in Section IV-B, various quantities of the

GMM estimator can be precomputed at this point to save
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Algorithm 1 GMM Estimator

Offline GMM Training Phase

Require: training data {hm}Mm=1, number of components K

1: ({p(k)}Kk=1, {µk}Kk=1, {Ck}Kk=1) ← EM({hm}Mm=1,K)

{an EM-algorithm computes all parameters of f
(K)
h }

Online Channel Estimation Phase

Require: observation y, matrix A, noise matrix Σ

2: ĥ(K) ← 0

3: for k = 1 to K do

4: p(k | y)← p(k)NC(y;Aµk,ACkA
H+Σ)

∑
K
i=1

p(i)NC(y;Aµi,ACiAH+Σ)

5: h̃← CkA
H(ACkA

H +Σ)−1(y −Aµk) + µk

6: ĥ(K) ← ĥ(K) + p(k | y)h̃
7: end {many quantities in the loop can be precomputed}
8: return ĥ(K) {estimated channel, see (16)}

computational complexity: the products involving the known

observation matrix A and means µk and covariance matrices

Ck as well as the LMMSE filters including the computa-

tionally costly matrix inverse in (16). To obtain the GMM

parameters, the channel PDF fh needs to be approximated

by fitting a K-components GMM to given channel samples,

cf. Section III-A.

A possible application scenario of the GMM estimator

would be to use channel samples collected at, for example,

the base station of a cellular radio system to construct a site-

specific GMM channel estimator. In an initial (offline) training

phase, the channel samples are used to fit a K-components

GMM. Afterwards, (online) channel estimates are computed

via (16). The formula (16) can also be found, e.g., in [12].

One of the key differences to other work is that we provide a

strong motivation to use (16) even if the channel PDF fh
is not a GMM. Algorithm 1 summarizes both the offline

GMM training and the online channel estimation phases. The

necessary number M of training data depends, e.g., on the

number K of GMM components. We discuss this in more

detail in Section VI.

B. Computational Complexity

To compute ĥ(K)(y) in (16), K responsibilities p(k |
y) (15) and K LMMSE formulas (13) need to be evaluated.

Since both the matrix A and the GMM covariance matrices Ck

do not change between observations, the inverse in (13) can be

precomputed offline for various SNRs. Thus, evaluating (13)

online is dominated by matrix-vector multiplications and has

a complexity of O(mN). The responsibilities are calculated

by evaluating Gaussian densities, as can be seen from (15). A

Gaussian density with mean µ ∈ Cm and covariance matrix

C ∈ C
m×m can be written as

NC(x;µ,C) =
exp(−(x− µ)HC−1(x− µ))

πm det(C)
. (17)

Again, since the GMM covariance matrices and mean vectors

do not change between observations, the inverse and the

determinant of the densities in (15) can be precomputed offline.

Thus, the online evaluation is again dominated by matrix-

vector multiplications and has a complexity of O(m2). The

resulting overall complexity of computing ĥ(K) is O(KmN).

In some cases, as demonstrated in the following subsections,

the computational complexity can be reduced by constraining

the GMM covariance matrices Ck such that corresponding

matrix-vector multiplications are accelerated. In other cases,

the number of GMM parameters might be reduced by in-

troducing covariance matrix constraints which can enhance

the convergence of the EM algorithm, improve the resulting

estimation performance, and reduce the required amount of

channel samples. Particular choices for constraints can come

from scenario-specific insights. We demonstrate the feasibility

of the following two constraint examples in Section VI.

1) Circulant covariance matrices: A first example

is a scenario, where the base station employs a

uniform linear array (ULA) and where the channel covariance

matrix therefore is Toeplitz structured. For large numbers

of antennas, a Toeplitz matrix is well approximated by a

circulant matrix [27]. Any circulant matrix C ∈ CN×N has

an eigendecomposition of the form C = FH diag(c)F where

F ∈ C
N×N is the discrete Fourier transform (DFT) matrix

and where c ∈ CN . Consequently, thanks to fast Fourier

transforms, matrix-vector multiplications involving circulant

matrices can be performed in O(N log(N)) time. For a large

number of antennas, we therefore have a motivation to use

circulant covariance matrices Ck = FH diag(ck)F in the

GMM.

This is particularly interesting for a signal model where

A = I and Σ = σ2I = σ2FFH. In this case, the LMMSE

formula (13) simplifies to

E[h | y, k] = FH diag(dk)F (y − µk) + µk (18)

where the ith entry of the vector dk is given by [dk]i =
[ck]i

[ck]i+σ2 , such that (18) can be calculated in O(N log(N))

time. With a circulant C = FH diag(c)F , (17) reads as

NC(x;µ,F
H diag(c)F ) =

exp(−(F (x− µ))H diag(c)−1F (x− µ))

πn
∏N

i=1[c]i
. (19)

A first observation is that this can also be evaluated in

O(N log(N)) time such that computing channel estimates

ĥ(K) has a complexity of O(KN log(N)) if circulant covari-

ance matrices are used in the GMM. A second observation

is that the Gaussian density (19) has a significantly reduced

number of parameters: N+N (mean vector µ and covariance

vector c) in contrast to N + N(N+1)
2 (mean vector µ and

covariance matrix C) in (17). This simplifies the EM algorithm

iterations of the GMM fitting process and reduces the number

of required training channel samples. For this latter reason,

even if A 6= I, one might be interested in employing a GMM

with circulant covariance matrices. The relationship between

the number of channel samples and the EM algorithm’s perfor-

mance is demonstrated in Section VI. In an implementation,

instead of constraining the covariance matrices to be circulant,

all channel samples can be Fourier transformed as h̃ = Fh
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ĥ(K)(y) =

K
∑

k=1

p(k)NC(y;Aµk,ACkA
H +Σ)

∑K
i=1 p(i)NC(y;Aµi,ACiAH +Σ)

(

CkA
H(ACkA

H +Σ)−1(y −Aµk) + µk

)

(16)

and then the GMM’s covariance matrices can be constrained

to be diagonal matrices due to the relation C = FH diag(c)F .

2) Kronecker covariance matrices: Another example where

complexity can be reduced is the MIMO signal model from

Section II-B. A well-known assumption for spatial correlation

scenarios is that the scattering in the vicinity of the transmitter

and of the receiver are independent of each other, cf. [28].

In this case, every channel covariance matrix C can be

decomposed into the Kronecker product of a transmit and

receive side spatial covariance matrix: C = Ctx ⊗ Crx. Here,

we have a motivation to use a GMM with Kronecker product

covariance matrices Ck = Ctx,k ⊗Crx,k.

To this end, instead of fitting a single GMM using the

vectorized channel data of dimension N = NtxNrx, one

can fit two independent transmit and receive side GMMs of

dimensions Ntx and Nrx, respectively. This not only results

in lower offline training complexity and in the ability to

parallelize, but also in a smaller number of training channel

samples needed because the respective GMMs have much

fewer parameters. The training channel samples for these low-

dimensional GMMs are obtained by taking the rows (columns)

of the available channel matrices independently in order to fit

the transmit (receive) side GMM. In order to then obtain the

full-size covariance matrices Ck, all combinatorial Kronecker

products of transmit and receive side covariance matrices Ctx,i

and Crx,j are computed. The details are described in the

numerical simulations section.

In this example, plugging the Kronecker decomposition

Ck = Ctx,k ⊗ Crx,k into the LMMSE formula (13) does not

lead to an expression that simplifies to a Kronecker product.

This is because the inverse in (13) can generally not be written

in terms of a Kronecker product and, thus, full matrix-vector

products are necessary. However, [29] explains how (13) can

be approximated by means of a Kronecker product in the

described setting, which might be interesting if computational

complexity of (13) is an issue. Nonetheless, even if the online

computational complexity is not affected, Kronecker GMM

covariance matrices can still be beneficial, for instance, if the

number of available channel samples is small. We demonstrate

this case in the numerical simulations section.

C. Convergence of the Estimator

This subsection uses a universal approximation result of [11]

to show that if fh is continuous, then the GMM-based esti-

mator ĥ(K) in (9) can approximate the optimal CME ĥ(y)
in (7) arbitrarily well as the number K of GMM components

increases. The intuition is that if a sequence of PDFs f
(K)
h ,

which is used in (9), converges to the channel PDF fh, we

can conjecture that also f
(K)
y from (14) converges to fy and

that then ĥ(K)(y) in (9) converges to the CME ĥ(y) in (7).

Recall that the PDF of a complex random vector can be

expressed by means of a joint PDF of its real and imaginary

parts. Therefore, this subsection considers real-valued quan-

tities only and the results generalize to the complex-valued

setting by considering stacked real and imaginary parts.

To state the main result, we adopt some definitions

from [11]. Let C = {f : RN → R : f ≥ 0,
∫

f(x)dx =
1, f is contin.} denote the set of all continuous PDFs. Further,

let g denote the standard Gaussian density and define the class

of K-component location-scale finite Gaussian mixtures as

MK =

{

h : h(x) =

K
∑

k=1

ck
1

σN
k

g

(

x− µk

σk

)

}

(20)

with µk ∈ RN , σk > 0, ck ≥ 0 for all k ∈ {1, . . . ,K} and
∑K

k=1 ck = 1. Then, any continuous PDF can be approximated

arbitrarily well by means of GMMs, as [11, Theorem 5] states:

Theorem 1. Let C0 = {f ∈ C : ∀ε > 0, ∃ a compact K ⊂
RN such that supx∈RN\K |f(x)| < ε} denote the set of all

continuous PDFs which vanish at infinity. For any f ∈ C0,

there exists a sequence (f (K))∞K=1 with f (K) ∈MK with

lim
K→∞

‖f − f (K)‖∞ = 0. (21)

Note that since a PDF is integrable, it always vanishes at

infinity such that this is not a constraint for our considerations.

As mentioned, we now work with real quantities y = Ah+n

where n is a real Gaussian random vector with mean zero

and covariance matrix Σ ∈ RN×N whose PDF we denote by

fn ∈ C0. The PDF of h is fh and the PDF of y is fy. The

following theorem is proved in Appendix A.

Theorem 2. With the notation defined above, let A ∈ RN×N

be invertible and let fh ∈ C0 be arbitrary. Let (f
(K)
h )∞K=1 be

a sequence of PDFs in C0 which converges uniformly to fh.

Then, the estimator

ĥ(K)(y) = E(K)[h(K) | y] =

∫

h
fn(y −Ah)f

(K)
h (h)

f
(K)
y (y)

dh

(22)

approximates the CME

ĥ(y) = E[h | y] =

∫

h
fn(y −Ah)fh(h)

fy(y)
dh (23)

in the sense that for any radius r > 0,

lim
K→∞

‖ĥ(y) − ĥ(K)(y)‖ = 0 (24)

holds uniformly for all y in the ball Br = {y ∈ RN : ‖y‖ ≤
r}. Thus, in particular, by finding a suitable r > 0, (24) can

be seen to hold for any given y ∈ RN .

D. Discussion of Theorem 2

Both estimators ĥ(K) and ĥ are functions which map the

current observation y onto corresponding channel estimates
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ĥ(K)(y) and ĥ(y). Theorem 2 proves the pointwise conver-

gence of the function sequence (ĥ(K))∞K=1 to the function ĥ.

In detail, for any observation y, the sequence (ĥ(K)(y))∞K=1

of channel estimates converges in Euclidean norm to the

optimal channel estimate ĥ(y). To our knowledge, the point-

wise convergence of the estimators has not been investigated

yet. The work in [30] can be considered to be most related

to our result. Therein, the author assumes that the random

vectors (h(K),y(K)) converge in distribution to the random

vectors (h,y) and the question is whether the random vectors

E[h(K) | y(K)] converge in distribution to the random vector

E[h | y]. Here, the condition is still considered to be a

random vector whereas we assume to condition on the current

realization, which is given by the observation at the base

station. Thus, [30] studies a sequence of random vectors

and we study a sequence of functions. Further, [30] studies

the convergence in distribution and we study the pointwise

convergence. Therefore, the result in Theorem 2 is not a

consequence of [30].

Next, we discuss the implications of the fact that (24) holds

uniformly for all y in a ball Br. Let Br be given. If we want the

error ‖ĥ(y)− ĥ(K)(y)‖ to be smaller than a given threshold

εthr > 0, then according to Theorem 2, we can find a Kr ∈ N

such that ‖ĥ(y) − ĥ(K)(y)‖ ≤ εthr holds for all y ∈ Br and

K ≥ Kr. This does not mean that the error is always larger

than εthr for y /∈ Br. However, it can be the case, that for

certain y /∈ Br the number K of components needs to be

strictly larger than Kr in order for ‖ĥ(y) − ĥ(K)(y)‖ to fall

below the threshold.

A requirement of Theorem 2 is a sequence of PDFs which

converges uniformly to fh. By Theorem 1, such a sequence

always exists if we consider GMMs. However, as argued

in [11], there exist other mixtures with universal approximation

properties as well. It is an interesting question whether (9) can

be computed in closed form for other mixture models and to

see if they for example need fewer components for a satisfying

approximation and channel estimation.

Theorem 2 requires A to be invertible. Unfortunately, the

proof of Theorem 2 cannot be conducted as presented if A

is not invertible, which is for example the case when we

consider a wide matrix with more columns than rows. There

are multiple challenges involved. First, the proof makes use

of Lemma 1 which shows that
∫

‖h‖fn(y −Ah)dh is finite

for any y. This integral is generally not finite if A is not

invertible (see Appendix B). Second, for invertible A, we

could directly show that the sequence of PDFs corresponding

to Ah(K) converges uniformly to the PDF of Ah. This will

likely not hold for noninvertible A (see Appendix C).

While a strong statement about the convergence of the esti-

mators does not seem possible with the presented means if A

is not invertible, we can make the following observation. Since

f
(K)
h converges uniformly to fh, it converges in particular

pointwise. By Scheffe’s lemma (e.g., [31]), it follows that

the random vectors h(K) converge to h in distribution. We

also have (h(K),n)→ (h,n) in distribution. If we define the

continuous mapping

s : RN+m → R
N+m, (h,n) 7→ (h,Ah + n) (25)

then, the continuous mapping theorem (e.g., [32]) implies the

convergence of s(h(K),n) = (h(K),y(K)) to s(h,n) =
(h,y) in distribution. Given the convergence in distribution

of a sequence (h(K),y(K)) to (h,y), the author of [30]

investigates conditions which ensure the convergence of the

corresponding conditional expectations E[h(K) | y(K)] to

E[h | y]. The main result depends without limitation on the

distribution of fh which is not assumed to be known in our

setting. Reciting the main result is beyond the scope of the

current paper and we refer the interested reader to [30].

V. CHANNEL MODELS AND RELATED CHANNEL

ESTIMATORS

Before we turn to numerical simulations, we introduce

the considered channel models and discuss other channel

estimation algorithms which we use for comparison. At this

point, it should be noted that the proposed approach does

not rely on estimating a (link-based) covariance matrix based

on pilot symbols. Therefore, we do not show comparisons

with such approaches as this lies in a different field of

applications. To generate channel samples (for training and

testing purposes), we define a scenario like for example a

base station which covers a certain 120◦ sector. Afterwards, we

choose user positions uniformly at random within the scenario

and retrieve their corresponding channels. The so-obtained set

of channel samples can then be used to find estimators for the

whole scenario. These estimators (both the GMM estimator

as well as all estimators introduced in the following) are

trained/computed/defined once and then tested on the whole

scenario without further modification.

A. Channel Models

1) 3GPP: We work with a spatial channel model [5],

[33] where channels are modeled conditionally Gaussian:

h | δ ∼ N (0,Cδ). The random vector δ collects the angles

of arrival/departure and path gains of the main propagation

clusters between a mobile terminal and the base station. The

main angles are drawn independently and uniformly from the

interval [0, 2π] and the path gains are independent zero-mean

Gaussians. The base station employs a ULA for both the

transmitter and the receiver such that the transmit- and receive-

side spatial channel covariance matrix are given by

C
{rx,tx}
δ =

∫ π

−π

g{rx,tx}(θ; δ)a{rx,tx}(θ)a{rx,tx}(θ)Hdθ. (26)

Here,

a{rx,tx}(θ) = [1, ejπ sin(θ), . . . , ejπ(N{rx,tx}−1) sin(θ)]T (27)

is the array steering vector for an angle of arrival/departure

θ and g is a power density consisting of a sum of weighted

Laplace densities whose standard deviations describe the an-

gle spread of the propagation clusters [5]. The full channel

covariance matrix is constructed as Cδ = C tx
δ ⊗ C rx

δ due to

the assumption of independent scattering in the vicinity of

transmitter and receiver, see, e.g., [28]. In the SIMO case,

Cδ degenerates to the receive-side covariance matrix C rx
δ .

For every channel sample, we generate random angles and
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path gains, combined in δ, and then draw the sample as

h ∼ N (0,Cδ).
2) QuaDRiGa: Version 2.4 of the QuaDRiGa channel simu-

lator [6], [7] is used to generate channel samples. We simulate

an urban macrocell scenario at a center frequency of 2.53 GHz.

The base station’s height is 25 meters and it covers a 120◦

sector. The minimum and maximum distances between the

mobile terminals and the base station are 35 meters and 500

meters, respectively. In 80% of the cases, the mobile terminals

are located indoors at different floor levels, whereas the mobile

terminals’ height is 1.5 meters in the case of outdoor locations.

QuaDRiGa models the channel of the c-th carrier and t-
th time symbol as Hc,t =

∑L
ℓ=1 Gℓe

−2πjfcτℓ,t where ℓ
is the path number, and the number of multi-path compo-

nents L depends on whether there is line of sight (LOS),

non-line of sight (NLOS), or outdoor-to-indoor (O2I) propa-

gation: LLOS = 37, LNLOS = 61 or LO2I = 37, cf. [34]. The

frequency of the c-th carrier is denoted by fc and the ℓ-th path

delay of the t-th time symbol by τℓ,t. The coefficients matrix

Gℓ consists of one complex entry for each antenna pair, which

comprises the attenuation of a path, the antenna radiation

pattern weighting, and the polarization [34]. As described in

the QuaDRiGa manual [7], the generated channels are post-

processed to remove the path gain.

For the simulations in Section VI-A and Section VI-B,

we generate single-carrier SIMO and MIMO channels, re-

spectively. The base station is equipped with a ULA with

Nrx “3GPP-3D” antennas and the mobile terminals employ

Ntx “omni-directional” antennas. For the simulations in Sec-

tion VI-C, we consider a SISO system in the spatial domain

with Nc carriers over a bandwidth of 360 kHz and for a

time slot with 1 ms duration that is divided into Nt time

symbols. Each user moves with a certain velocity v in a

random direction.

B. State-of-the-Art Channel Estimators

A simple baseline algorithm is the least squares (LS) chan-

nel estimator which computes

ĥLS = A†y (28)

using the Moore-Penrose pseudoinverse A†. For A = I,

there is nothing to compute, and for A 6= I, we have a

complexity of O(mN) because the pseudoinverse can be

precomputed. Another immediate estimator consists of first

estimating a sample covariance matrix C = 1
M

∑M

m=1 hmhH
m

using M = 105 training channel samples drawn uniformly

from the whole scenario and then computing LMMSE channel

estimates:

ĥsample cov. = CAH(ACAH +Σ)−1y. (29)

Since C is computed in the offline phase, this estimator also

has an online complexity of O(mN). When we work with

the 3GPP channel model from Section V-A1, then the true

covariance matrix Cδ for every channel sample is available

and we can compute a genie LMMSE channel estimate:

ĥgen. LMMSE = E[h | y, δ] = CδA
H(ACδA

H+Σ)−1y (30)

which presents a lower bound for all estimators. Note that

this is not the optimal CME considered in (7) because of

the additional genie knowledge of δ. The inverse in (30)

needs to be computed for every observation because for every

observation there is a corresponding Cδ. Thus, the complexity

is O(m3 +mN).
Many modern channel estimation algorithms focus on CS

approaches, see, e.g., the surveys [9], [10]. In what follows,

we therefore consider two CS algorithms [35]–[39]. Recent

non-CS algorithms often focus on machine learning methods.

For this reason, we also compare with such methods in the

numerical simulations [33], [40]–[42].

CS approaches assume the channel to be (approximately)

sparse: h ≈ Ds. Here, D ∈ CN×L is a dictionary and

s ∈ CL is a sparse vector. A typical choice for D is an

oversampled DFT matrix (e.g., [43]). CS algorithms then

assume that y = ADs + n holds and they recover an

estimate ŝ of s and estimate the channel as ĥ = Dŝ. A well-

known CS algorithm is orthogonal matching pursuit (OMP)

[35]–[37]. OMP needs to know the sparsity order. Since order

estimation is a difficult problem, we avoid it via a genie-aided

approach: OMP gets access to the true channel to choose the

optimal sparsity order. This yields a performance bound for

OMP. As explained in [33], every iteration has a complexity

of O(N log(N)) and the number of iterations is equal to the

genie-determined sparsity order. Another algorithm, which we

use for comparison, is AMP [38], [39], which does not need

to know the sparsity order. The computational complexity of

AMP is not analyzed in [38], [39]. Since it is an iterative

algorithm, it depends without limitation on the number of

iterations. We set the number of iterations per channel estimate

to 100 in the simulations.

A convolutional neural network (CNN)-based channel esti-

mator was derived in [33] for the SIMO signal model (cf.

Section II-A). In [40], the CNN estimator has been generalized

to the MIMO signal model (cf. Section II-B). In the SIMO

case, we use the CNN estimator as described in [33]. The

activation function is the rectified linear unit and we use the

input transform based on the 2N×2N Fourier matrix, cf. [33,

Equation (43)]. In the MIMO case, we use the CNN estimator

as described in [40] where again the activation function is the

rectified linear unit. In all cases, the CNN is trained on samples

corresponding to the channel model on which it is tested later.

The computational complexity is O(N log(N)) [33], [40].

The concept of a concrete autoencoder (CAE) was intro-

duced in [44] and adapted for wideband channel estimation (cf.

Section II-C) in [41]. The CAE is an autoencoder where the

encoder is replaced by a concrete selection layer that selects

the Np ≪ NcNt most informative features of the NcNt-

dimensional input. This corresponds to designing the pilot

matrix by selecting the Np pilot positions. The decoder can

then be used to perform channel estimation. During training,

noisy channels are given as input, such that the decoder of

the CAE performs denoising and reconstruction of the full-

dimensional channels. Hence, a new CAE needs to be trained

for every different SNR. In our simulations, in contrast to [41],

no further denoising networks are applied after the CAE. The

complexity of CAEs is not analyzed in [41].
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Fig. 1. SIMO signal model (Section II-A) and 3GPP channel model
(Section V-A1) with one propagation cluster at 10 dB SNR. The performance
of the circulant GMM estimator (“circ. GMM”, , Section IV-B1) is
shown too. In both cases, K = 128 components are used.

The authors in [42] propose a deep CNN approach for 2D

wideband channel estimation. The estimator, called Channel-

Net, consists of a combination of an image super-resolution

and an image restoration network. Thus, the networks perform

interpolation and denoising of the low-dimensional observa-

tions with respect to the high-dimensional channel matrix.

The super-resolution network consists of three 2D convolution

layers, whereas the image restoration network consists of

20 2D convolution layers. Here, too, we train SNR-specific

networks. The complexity of ChannelNet is not analyzed

in [42].

VI. NUMERICAL SIMULATIONS

In all simulations, a normalized MSE (nMSE) is used as

performance measure. Specifically, we generate T = 104 N -

dimensional test channel samples {ht}Tt=1, obtain correspond-

ing channel estimates ĥt, and define nMSE = 1
NT

∑T
t=1 ‖ht−

ĥt‖2. The noise covariance matrix is Σ = σ2I. The test

samples are normalized such that E[‖h‖2] = N holds which

allows us to define an SNR as 1
σ2 . For training purposes, we

generate M = 105 channel samples unless stated otherwise.

The number of training samples is always chosen large enough

such that increasing M does not lead to a performance

improvement during the testing phase. The generated channel

samples stem from one of the scenarios described in Section V.

As explained in Section IV-A (see also Algorithm 1 there),

to obtain the GMM-based estimator, we fit one GMM using

the available training data via an EM algorithm. Afterwards,

inverses which appear in (16) are precomputed for every SNR.

In contrast to this approach, the introduced neural network-

based estimators need to be newly trained for every SNR at

which we evaluate them. This includes searching for suitable

hyperparameters for every SNR.

A. SIMO

Figs. 1 to 5 show channel estimation results for the SIMO

signal model from Section II-A. The CS algorithms OMP and

AMP are used with oversampled DFT dictionaries that have

L = 4N and L = 2N columns, respectively, because these
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Fig. 2. SIMO signal model (Section II-A) and 3GPP channel model
(Section V-A1) with one propagation cluster and N = 128 antennas.
The performance of the circulant GMM estimator (“circ. GMM”, ,
Section IV-B1) is shown too. In both cases, K = 128 components are used.
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Fig. 3. SIMO signal model (Section II-A) and 3GPP channel model
(Section V-A1) with three propagation clusters and N = 128 antennas.
The performance of the circulant GMM estimator (“circ. GMM”, ,
Section IV-B1) is shown too. In both cases, K = 128 components are used.

parameters yielded the best results. Unless stated otherwise,

the GMM fitting process uses 19 · 104 training data.

In Fig. 1, we consider the 3GPP channel model from

Section V-A1 with one propagation cluster. The SNR is 10 dB

and the number N of antennas is varied. It is interesting to

see that the GMM-based estimator performs almost as well as

the genie LMMSE estimator. As the number N of antennas

increases, the CNN estimator starts to outperform the genie

OMP estimator. The reason for this is that the assumptions

under which the CNN estimator was derived in [33] are

better fulfilled for a larger number of antennas. Generally, the

relative performance between all estimators hardly differs with

different numbers of antennas. This is an observation we have

made in all our experiments. For this reason, in what follows,

the number of antennas is fixed at N = 128.

In Fig. 2, we consider again the 3GPP channel model from

Section V-A1 with one propagation cluster. For almost all SNR

values, the GMM-based estimator performs almost as well

as the genie LMMSE estimator. In the mid-SNR range, the

two CS algorithms are approximately equally good. In Fig. 3,

we have three propagation clusters. A first observation is the
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Fig. 4. SIMO signal model (Section II-A) and QuaDRiGa channel model
(Section V-A2) with N = 128 antennas. The performance of the circulant
GMM estimator (“circ. GMM”, , Section IV-B1) is shown too. In both
cases, K = 128 components are used.

strong performance of the CNN estimator in the mid-SNR

range. Note that we can generally not expect any estimator to

reach the genie LMMSE curve because it has more channel

knowledge (the true covariance matrix for every sample). In

the higher SNR-range, the GMM-based estimator is the only

algorithm still outperforming LS estimation.

In Fig. 4, we concentrate on the QuaDRiGa channel model

described in Section V-A2 where the channel covariance

matrices and therefore the genie LMMSE curve are no longer

available. Here, the two CS algorithms behave not as similarly

as they did in the previous experiments. Additionally, their

performance is not as convincing. A reason might be that

the channels now are not sparse enough. The CNN estimator

shows again a good performance and overall the GMM-based

estimator can compete with it or is better.

In addition to the GMM estimator (16), Figs. 1 to 4 display

the performance of the reduced-complexity GMM estimator

which uses circulant covariance matrices as described in Sec-

tion IV-B1. As expected, the estimator’s performance suffers

but it is still comparable to the other algorithms. Fig. 4 is

particularly interesting where there is not much difference

between the full- and low-complexity GMM estimators.

Fig. 5 shows the behavior of the GMM-based estimator for

different numbers of components, K . We consider an SNR of

10 dB and the same situation as in Fig. 3: The 3GPP channel

model (cf. Section V-A1) with three propagation clusters and

N = 128 antennas. In addition to K , also the number of

training data used to fit the GMM is varied. Since the number

of parameters of a GMM increases when K is increased, more

training data is necessary for a good fit. This effect is clearly

visible in Fig. 5. Overall, as long as the number of training

data is high enough (M ≥ 300 in the figure), increasing K
leads to an MSE improvement, which is in accordance with

Theorem 2.

Note that we cannot expect the GMM estimator to converge

to the genie LMMSE estimator (30) (which is displayed in

Fig. 3). The genie LMMSE estimator has more knowledge

(namely the true channel covariance matrix Cδ) and is there-

fore not the CME, ĥ = E[h | y], which we want to

approximate in Theorem 2. The CME cannot be computed
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Fig. 5. SIMO signal model (Section II-A) and 3GPP channel model
(Section V-A1) with three propagation clusters and N = 128 antennas. The
SNR is 10 dB. The GMM estimator is trained using M · 103 samples.
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Fig. 6. SIMO signal model (Section II-A) and QuaDRiGa channel model
(Section V-A2) with N = 128 antennas. The training data size is 19 · 104.

in closed form in the considered scenario which is the main

motivation to study the GMM estimator in the first place.

Fig. 6 also shows the GMM estimator’s behavior for differ-

ent numbers of components, K , but now for the QuaDRiGa

channel model (cf. Section V-A2). For all displayed SNRs,

a saturation can be observed as K is increased, and already

a moderate number of components can lead to a satisfactory

estimation performance. Altogether, a smaller K tends to be

sufficient for higher SNRs. Generally, a suitable number of

components needs to be determined based on the training data

size as well as on the desired estimator complexity.

B. MIMO

For the MIMO simulations whose signal model is described

in Section II-B, we use a scaled DFT pilot matrix P . Here,

we are mainly interested in comparing the GMM estimator

in (16) to a GMM estimator which uses Kronecker product

covariance matrices as described in Section IV-B2. We gener-

ate M = 105 training channel samples {Hi}Mi=1 and use them

in two different ways. Either, we use the (vectorized) channel

matrices Hi directly to fit a single K = 32 components GMM.

Or, we view all columns and all rows of the data as separate

data sets and fit two GMMs: One transmit side GMM with

Ktx = 4 components using the rows, one receive side GMM

with Krx = 8 components using the columns. Afterwards, we
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(Section V-A2) with (Nrx, Ntx) = (32, 4). The GMM estimator (“GMM”,

) uses K = 32 components and the Kronecker GMM estimator (“Kron.
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Fig. 8. MIMO signal model (Section II-B) and QuaDRiGa channel model
(Section V-A2) with (Nrx, Ntx) = (32, 4). The SNR is 10 dB. The Kronecker
product GMM estimator (“Kron. GMM”, , Section IV-B2) has fewer
parameters than the normal GMM estimator. Both have K = 32 components.

combine the two GMMs to a single full-size GMM with K =
KtxKrx = 32 components for the whole data set of channel

matrices. To this end, the K full-size means and covariances

are directly calculated by combinatorial computation of the

Kronecker products of the transmit- and receive-side GMM

components. The corresponding mixing coefficients can be

computed by fixing the means and covariances and performing

a single E-step (cf. [14]) in the EM algorithm to obtain them.

Fig. 7 displays simulation results. A first observation is

that the two GMM estimators as well as the CNN estimator

perform very similarly, with minor differences in the lower

and higher SNR-regimes. Further, these three estimators out-

perform the sample covariance matrix-based estimator and the

genie-aided OMP algorithm, which uses a Kronecker product

of two two-times oversampled DFT matrices as dictionary.

A second observation is that there is almost no difference

between the GMM estimator with or without Kronecker

product covariance matrices. This is insofar surprising as the

normal GMM consists of K = 32 covariance matrices of

dimension N ×N with N = 32 · 4 = 128 which means that

it has K N(N+1)
2 = 264192 covariance parameters, whereas

in contrast, the Kronecker GMM has only Krx
Nrx(Nrx+1)

2 +

Ktx
Ntx(Ntx+1)

2 = 4224 + 40 = 4264 covariance parameters.

Since the Kronecker GMM has significantly fewer parameters,

it should require a smaller number M of training data. This is

confirmed in Fig. 8 where the two estimators are compared at

an SNR of 10 dB for varying M . The curves intersect between

M = 104 and M = 105.

C. Wideband

In this section, we show numerical results for the wideband

signal model described in Section II-C and with the QuaDRiGa

simulation setup described in Section V-A2. We chose a typical

5G frame structure as defined in [45] with Nc = 24 carriers

over a bandwidth of 360 kHz with 15 kHz carrier spacing

and with Nt = 14 time symbols over a time slot with 1 ms

duration. The number of pilot symbols is Np = 50, which

means that 50 out of the 24 × 14 = 336 resource elements

are occupied with pilot tones. We compare the GMM-based

estimator with the LMMSE estimator based on the sample

covariance matrix (see (29)), with the CAE approach, and with

the ChannelNet estimator (see Section V-B). The training data

for each approach consist of M = 105 channel realizations

and corresponding observations from the pilot positions.

In Fig. 9, we depict MSE results over the SNR for a scenario

where every user moves at v = 3 km/h speed, in which

the block-type pilot arrangement has shown the best results.

One can observe superior performance of the CAE over the

sample covariance LMMSE estimator and the ChannelNet,

which may be due to the fact that the CAE optimizes the pilot

pattern. However, the GMM approach is able to outperform

all baseline algorithms, where the performance gap increases

with increasing SNR. Further, the impact of more components

(from K = 8 to K = 128) is visible and results in better

performance for all SNR values.

Fig. 10 shows the same setup but now each user’s velocity is

randomly chosen between 0 - 300 km/h (in both training and

testing sets), which makes the estimation more challenging

and the lattice-type pilot arrangement superior. First, the

performance gap to the sample covariance LMMSE estimator

increases, which is a result of the more diverse setting that

cannot be captured well by a single covariance matrix. Further,

the number of GMM components seems to play a more

important role. The GMM with K = 128 components is still

able to compete with the ChannelNet and CAE approaches.

Finally, Fig. 11 shows the MSE behavior for different

numbers of components, K , and for different amounts of

training data used to fit the GMM. Similar to the results in

Fig. 5, also the wideband case shows an improving perfor-

mance for increasing numbers of components. This at least

provides numerical evaluation of the convergence of the GMM

estimator for noninvertible observation matrices.

VII. CONCLUSION AND OUTLOOK

We studied the behavior of a GMM channel estimator

when the number of GMM components is increased. The

GMM estimator is tailored for a particular communications

environment. This is the case because the underlying GMM

uses training data which stem, for example, from the coverage

area of a base station. Thereafter, the GMM estimator can be

employed for channel estimation in this environment.

In case of an invertible observation matrix, we proved the

convergence of the GMM estimator to the optimal CME.

Notably, the proof only assumes that a sequence of PDFs
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Fig. 9. Wideband signal model (Section II-C) and QuaDRiGa channel model
(Section V-A2) with Np = 50 pilot tones for Nc = 24 carriers and Nt = 14
time symbols for v = 3 km/h.
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Fig. 10. Wideband signal model (Section II-C) and QuaDRiGa channel model
(Section V-A2) with Np = 50 pilot tones for Nc = 24 carriers and Nt = 14
time symbols for v ∈ [0, 300] km/h.

exists which converges uniformly to the true channel PDF.

An example of such a sequence is given by GMMs but no

properties unique to GMMs are used in the proof. In partic-

ular, any sequence of CMEs which is based on a uniformly

convergent sequence of PDFs also converges to the optimal

CME. This invites the study of new channel estimators based

on other universal approximators.

While the theoretical results are of an asymptotic nature,

we analyzed a number of practically relevant settings (SIMO,

MIMO, and wideband) in numerical simulations. There, al-

ready with a moderate number of GMM components, the

proposed estimator outperforms various state-of-the-art ap-

proaches in all depicted scenarios. In particular, increasing the

number of GMM components lead to a performance improve-

ment even for noninvertible observation matrices. Additionally,

we demonstrated how scenario-specific insights can be used to

reduce the GMM estimator’s complexity.
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Fig. 11. Wideband signal model (Section II-C) and QuaDRiGa channel model
(Section V-A2) with Np = 50 pilot tones for Nc = 24 carriers and Nt = 14
time symbols for v = 3 km/h and block-type pilot pattern at an SNR of 20
dB. The GMM estimator is trained using M · 103 samples.

APPENDIX A

PROOF OF THEOREM 2

The proof of Theorem 2 makes use of and is presented after

the following lemma.

Lemma 1. For an arbitrary y ∈ RN , it holds

∫

‖h‖fn(y −Ah)dh ≤
√

det(A−1A−T)
√

‖A−1y‖2 + trace(A−1ΣA−T).

Proof. Recall that fn denotes a Gaussian PDF with mean zero

and covariance matrix Σ. We have

fn(y −Ah) =
exp(− 1

2 (y −Ah)TΣ−1(y −Ah))
√

(2π)N det(Σ)
(31)

=
exp(− 1

2 (A
−1y − h)TAT

Σ
−1A(A−1y − h))

√

(2π)N det(Σ)
(32)

=
exp(− 1

2 (h −A−1y)T(A−1
ΣA−T)−1(h −A−1y))

√

(2π)N det(Σ)
.

(33)

Therefore, (
√

det(A−1A−T))−1fn(y − Ah) =: f̃(h) is a

Gaussian PDF with mean vector µ̃ := A−1y and covariance

matrix Σ̃ := A−1
ΣA−T. We are interested in computing

∫

‖h‖fn(y −Ah)dh

=
√

det(A−1A−T)

∫

‖h‖
fn(y −Ah)

√

det(A−1A−T)
dh (34)

=
√

det(A−1A−T)

∫

‖h‖f̃(h)dh (35)

The integral in (35) computes the expected value of the norm

of a random vector with the PDF f̃ . Let w be a standard

Gaussian random vector (with mean 0 ∈ RN and covariance

matrix I ∈ RN×N ) and let Σ̃
1

2 be a square root of the

covariance matrix Σ̃ = Σ̃
T

2 Σ̃
1

2 . Then, µ̃+ Σ̃
1

2w is a random

vector with the PDF f̃ . Thus, we can express the integral

in (35) as:
∫

‖h‖f̃(h)dh = Ew[‖µ̃+ Σ̃
1

2w‖] (36)
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where we compute the expected value with respect to the stan-

dard Gaussian random vector w. Jensen’s inequality yields:
(

Ew[‖µ̃+ Σ̃
1

2w‖]
)2

≤ Ew[‖µ̃+ Σ̃
1

2w‖2] (37)

= ‖µ̃‖2 + 2µ̃T
Σ̃

1

2 Ew[w] + Ew[trace(wT
Σ̃

T

2 Σ̃
1

2w)] (38)

= ‖µ̃‖2 + trace(Σ̃Ew[wwT]) = ‖µ̃‖2 + trace(Σ̃) (39)

= ‖A−1y‖2 + trace(A−1
ΣA−T). (40)

Now, we take the square root on both sides and plug the result

into (36). Then, we use this in (35) to conclude.

Proof of Theorem 2. First, we show that the convergence of

f
(K)
h to fh implies the convergence of f

(K)
y to fy . The PDF

of x := Ah is

fx(x) =
1

| det(A)|
fh(A

−1x) (41)

because A is invertible. Since the random vector y = x+ n

is a sum of two stochastically independent random vectors, its

PDF can be computed via convolution:

fy(y) =

∫

fn(s)fx(y − s)ds. (42)

Similarly, f
(K)
y is obtained by replacing fx with f

(K)
x in (42).

For later reference, note that because fn is positive (fn(s) > 0

for all s ∈ RN ) and fx as well as f
(K)
x are continuous PDFs,

the convolution results f
(K)
y and fy are positive, too. We have

|fy(y)− f (K)
y (y)| (43)

=

∣

∣

∣

∣

∫

fn(s)
(

fx(y − s)− f (K)
x (y − s)

)

ds

∣

∣

∣

∣

(44)

≤

∫

∣

∣

∣

∣

∣

fn(s)
fh(A

−1(y − s))− f
(K)
h (A−1(y − s))

| det(A)|

∣

∣

∣

∣

∣

ds

(45)

≤
‖fh − f

(K)
h ‖∞

| det(A)|

∫

|fn(s)|ds =
‖fh − f

(K)
h ‖∞

| det(A)|
. (46)

The last integral is equal to one because fn is a PDF. Since

limK→∞ ‖fh − f
(K)
h ‖∞ = 0 holds by assumption, we have

lim
K→∞

‖fy − f (K)
y ‖∞ = 0. (47)

To show (24), let y ∈ Br be arbitrary. With (7) and (9) in

mind, we find the following upper bound:

‖ĥ−ĥ(K)‖ ≤

∫

‖h‖|fn(y−Ah)|

∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

dh

≤ sup
h∈RN

∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

∫

‖h‖fn(y −Ah)dh. (48)

The last integral is independent of K and by Lemma 1, it is

finite for any y ∈ RN . It is in particular bounded by
√

det(A−1A−T)
√

‖A−1‖2r2 + trace(A−1ΣA−T) <∞

for all y ∈ Br. Hence, as soon as

lim
K→∞

sup
h∈RN

∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

= 0, ∀y ∈ Br (49)

is shown, (24) is confirmed. To prove (49), we write
∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

fh(h)f
(K)
y (y)− fy(y)f

(K)
h (h)

fy(y)f
(K)
y (y)

∣

∣

∣

∣

∣

(50)

for an arbitrary h ∈ RN . Now, we add 0 = f
(K)
y (y)f

(K)
h (h)−

f
(K)
y (y)f

(K)
h (h) in the numerator on the right-hand side and

apply the triangle inequality to get
∣

∣

∣

∣

∣

fh(h)f
(K)
y (y) − fy(y)f

(K)
h (h)

fy(y)f
(K)
y (y)

∣

∣

∣

∣

∣

(51)

≤

∣

∣

∣

(

fh(h) − f
(K)
h (h)

)

f
(K)
y (y)

∣

∣

∣

fy(y)f
(K)
y (y)

+

∣

∣

∣

(

f
(K)
y (y)− fy(y)

)

f
(K)
h (h)

∣

∣

∣

fy(y)f
(K)
y (y)

(52)

≤
‖fh − f

(K)
h ‖∞‖f

(K)
y ‖∞ + ‖f

(K)
y − fy‖∞‖f

(K)
h ‖∞

fy(y)f
(K)
y (y)

.

(53)

By the compactness of Br and continuity of fy, there exists

a ymin ∈ Br at which fy attains a minimum value fy(ymin) >
0 over Br. Due to the uniform convergence (47), there exists

an index N1 ∈ N such that |fy(y) − f
(K)
y (y)| ≤ 1

2fy(ymin)
holds for all K ≥ N1 and for all y ∈ Br. The reverse triangle

inequality then shows that f
(K)
y (y) ≥ fy(y) − |fy(y) −

f
(K)
y (y)| ≥ fy(ymin)−

1
2fy(ymin) =

1
2fy(ymin) is true. Hence,

with M1 := 1
2fy(ymin) > 0, the inequality

f (K)
y (y) ≥M1 (54)

holds for all y ∈ Br and for all K ≥ N1. Further, since

‖fh − f
(K)
h ‖∞ → 0 and ‖fh‖∞ < ∞, there exist M2 > 0

and N2 ∈ N such that

‖f
(K)
h ‖∞ ≤M2 for all K ≥ N2. (55)

Analogously, there exist M3 > 0 and N3 ∈ N such that

‖f (K)
y ‖∞ ≤M3 for all K ≥ N3. (56)

Let ε > 0 be arbitrary. Due to ‖fh − f
(K)
h ‖∞ → 0, there

exists an index N4 ≥ max{N1, N3} such that

‖fh − f
(K)
h ‖∞ ≤

fy(ymin)M1

2M3
ε for all K ≥ N4. (57)

Similarly, there exists an index N5 ≥ max{N1, N2} with

‖fy − f (K)
y ‖∞ ≤

fy(ymin)M1

2M2
ε for all K ≥ N5. (58)

We can use the last five inequalities to bound (53). To this

end, fy(ymin) and (54) provide bounds on the terms in the

denominator, (57) and (56) bound the first summand in the

numerator, and (58) and (55) bound the second summand in

the numerator. In total, this yields an upper bound on (50):
∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

≤
fy(ymin)M1

2M3
ε ·

M3

fy(ymin)M1

+
fy(ymin)M1

2M2
ε ·

M2

fy(ymin)M1
. (59)
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for all K ≥ max{N4, N5} and for all y ∈ Br. We conclude

sup
h∈RN

∣

∣

∣

∣

∣

fh(h)

fy(y)
−

f
(K)
h (h)

f
(K)
y (y)

∣

∣

∣

∣

∣

≤ ε (60)

for all K ≥ max{N4, N5} and all y ∈ Br, and because ε was

arbitrary, (49) is confirmed, which finishes the proof.

APPENDIX B

INTEGRAL FOR NONINVERTIBLE MATRICES

To see why
∫

‖h‖fn(y − Ah)dh might not be finite,

consider the matrix A = [I,0] ∈ Rm×N where I ∈ Rm×m

is the identity matrix and the remaining matrix elements are

zero. Let us write h = [hT
m,hT

N−m]T ∈ Rm×RN−m. Define

the set C = {h ∈ R
N | ‖hm‖ ≥ 1, ‖hN−m‖ ≥ 1} where the

norm of both sub-vectors hm and hN−m is at least one such

that we always have ‖h‖ ≥ 1 on C. We can now compute:
∫

RN

‖h‖fn(y −Ah)dh ≥

∫

C

fn(y −Ah)dh (61)

=

∫

‖hN−m‖≥1

∫

‖hm‖≥1

fn(y − hm)dhmdhN−m. (62)

Since fn is an m-dimensional Gaussian PDF, the inner integral

is equal to some constant c with 0 < c < 1 and it follows that
∫

‖h‖fn(y −Ah)dh is not finite.

APPENDIX C

ON THE UNIFORM CONVERGENCE

Let us express the PDF of Ah. If A ∈ Rm×N is a wide

matrix with full rank m, we can assume that the first m
columns are linearly independent (otherwise we introduce a

permutation matrix). This allows us to partition A = [Ai,An]
into an invertible part Ai ∈ Rm×m and a noninvertible part

An ∈ Rm×N−m. With a corresponding partitioning of h =
[hT

i ,h
T
n ]

T ∈ Rm×RN−m, we have x = Ah = Aihi+Anhn

and we can define an invertible mapping t : RN → RN :

t : (hi,hn) 7→ (Aihi +Anhn,hn) = (x,x′) (63)

t−1 : (x,x′) 7→ (A−1
i (x−Anx

′),x′) = (hi,hn). (64)

We can now compute the joint density fx,x′ with the usual

transformation formula:

fx,x′(x,x′) =
fh(t

−1(x,x′))
∣

∣det
(

∂t
∂h

(t−1(x,x′))
)
∣

∣

. (65)

Together with
∣

∣det
(

∂t
∂h

(t−1(x,x′))
)
∣

∣ = | det(Ai)|, we can

express the PDF of x = Ah via marginalization:

fx(x) =

∫

RN−m

fx,x′(x,x′)dx′ =

∫

RN−m

fh(t
−1(x,x′))

| det(Ai)|
dx′.

(66)

Analogously, one obtains f
(K)
x for x(K) = Ah(K). Given

|f (K)
x (x)− fx(x)| =

1

| det(Ai)|
×

∣

∣

∣

∣

∫

RN−m

(

f
(K)
h (t−1(x,x′))− fh(t

−1(x,x′))
)

dx′

∣

∣

∣

∣

, (67)

we can conjecture that due to the integral over RN−m the

uniform convergence of f
(K)
h to fh alone is generally not

sufficient to infer the uniform convergence of f
(K)
x to fx.
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