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Abstract—This paper studies a distributed online constrained
optimization problem over time-varying unbalanced digraphs
without explicit subgradients. In sharp contrast to the existing
algorithms, we design a novel consensus-based distributed online
algorithm with a local randomized zeroth-order oracle and then
rescale the oracle by constructing row-stochastic matrices, which
aims to address the unbalancedness of time-varying digraphs.
Under mild conditions, the average dynamic regret over a time
horizon is shown to asymptotically converge at a sublinear rate
provided that the accumulated variation grows sublinearly with
a specific order. Moreover, the counterpart of the proposed
algorithm when subgradients are available is also provided,
along with its dynamic regret bound, which reflects that the
convergence of our algorithm is essentially not affected by the
zeroth-order oracle. Simulations on distributed targets tracking
problem and dynamic sparse signal recovery problem in sensor
networks are employed to demonstrate the effectiveness of the
proposed algorithm.

Index Terms—Distributed algorithm, online constrained opti-
mization, dynamic regret, time-varying networks.

I. INTRODUCTION

D ISTRIBUTED optimization has been undoubtedly at-
tracting a surge of attentions in recent years with the

rapid development of large-scale networks. Many practical
issues can be solved within the framework of distributed
optimization problems, such as privacy preserving [1], [2],
resource allocation [3]–[5], sensor fusion [6], just to mention
a few. These applications promote the design of distributed
algorithms such that a group of nodes cooperatively optimize
the sum of their local cost functions via local communications.
See [7]–[9] and the references therein.

Despite that distributed optimization algorithms has been
studied extensively, the dynamic aspect of the problem has not
been fully addressed where the cost functions may vary with
time in an uncertain and even adversarial fashion. For example,
time-varying cost functions frequently appear in machine
learning, where data samples are observed in a sequential
manner and the newly observed data samples result in new cost
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functions. This inspires us to extend the distributed optimiza-
tion algorithms to an online setting, in which the local cost
functions vary with time and are only revealed to individuals
after each node has made a decision. Amongst the existing
distributed online optimization algorithms, the subgradient
descent methods gain considerable attention [10]–[13]. More
recently, the authors of [14]–[17] developed distributed online
algorithms on the basis of primal-dual method, gradient track-
ing, mirror descent approach, and proximal gradient algorithm,
respectively. The authors of [18] further introduced a primal-
dual mirror descent algorithm to address distributed online
problems with time-varying coupled inequality constraints
over weight-balanced digraphs. Specifically, the algorithms
in [10]–[15] focused on static regret, which can be used
to measure the performance of estimating a static target in
sensor networks. While the authors of [16]–[18] concentrated
on dynamic regret, which is a more stringent metric than
static regret since it allows the best decision in handsignht
varies with time. Therefore, the dynamic regret can reflect the
performance of tracking moving targets.

However, the aforementioned online algorithms highly rely
on the assumption of doubly stochastic weight matrices,
which is quite stringent and even deemed impracticable in
applications, e.g., computer networks intrinsically operate with
directionality and it is difficult to construct doubly stochastic
weight matrices in a distributed manner. Extending distributed
algorithms from weight balanced networks to general directed
networks is non-trivial [19]–[26]. The authors of [27], [28]
proposed distributed online optimization algorithms inspired
by the push-sum based algorithm [19] and the surplus-based
method [24], respectively. However, the former is incapable
of tackling constrained optimization problems by combining
with projected-based methods directly, and the latter involves a
global parameter depending on weight matrices which should
be known a priori.

In addition, the closed-form expression of cost function or
gradient information may be not available in some scenarios,
e.g., online source localization, online routing in data networks
[29]. To relieve this bottleneck, zeroth-order algorithms have
gained renewed interests in recent years [30]–[34], and been
studied under distributed setting by combining the surplus-
based method [35], the primal-dual method [36], the gradient
tracking method [37], etc. The intuition of these distributed
algorithms is constructing gradient estimators from function
values and then substituting them for the true gradient under
the assumption of doubly stochastic weight matrices or fixed
networks. Though some efforts have been made to extend
zeroth-order distributed algorithms to the online setting [11],
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TABLE I
A COMPARISON OF OUR WORK WITH THE RELEVANT DISTRIBUTED ONLINE OPTIMIZATION ALGORITHMS

References Time-Varying Networks Unbalancedness Constraint Set Gradient-Free Dynamic Regret

[10] 3 7 7 7 7
[13], [14] 3 7 3 7 7
[27] 3 3 7 7 7
[11], [12] 7 7 3 3 7
[28] 7 3 3 3 7
[42] 3 3 3 7 7
[44] 7 7 7 7 3
[29] 3 7 3 3 3
[40] 3 3 3 7 3
[16] 7 7 3 7 3
[15], [17], [18], [39] 3 7 3 7 3

Our work 3 3 3 3 3

[12], [28], they can only be applicable to fixed networks.
All the above motivate us to further explore an algorithm

that has stronger adaptability. In this work, we study the
distributed online optimization problem over time-varying
unbalanced digraphs, under the settings where the decisions of
nodes are constrained in a convex set and only the local cost
function values are revealed to nodes. We compare this work
with the state-of-the-art on distributed online optimization in
Table I, and summarize our main contributions as follows:

(1) We propose a novel distributed online constrained op-
timization algorithm over time-varying digraphs with
a local randomized zeroth-order oracle. We rigorously
analyze the dynamic regret of the algorithm. Our results
show that the average dynamic regret over a time horizon
converges to zero at a sublinear rate if the accumulated
variation grows sublinearly with a specific order.

(2) Inspired by the static push-sum protocols developed in
[19], [20], [38], we present a novel methodology that
provides a new perspective on the push-sum based dis-
tributed online algorithm [27]. Specifically, by dynami-
cally constructing row-stochastic matrices and rescaling
the zeroth-order oracle, our algorithm can be applicable
to constrained distributed online optimization problems,
while the push-sum based online algorithm in [27] is
only feasible in the unconstrained case.

(3) In comparison with the distributed online optimization
algorithms [10], [16], [18], [39] relying highly on double
stochastic weight matrices, our algorithm can be ap-
plicable to unbalanced networks with column-stochastic
weight matrices, and allow nodes to utilize zeroth-order
information in lieu of subgradients as well. In addition,
compared with the fixed networks and static regret
considered in [28], our algorithm can be applicable to
time-varying networks with dynamic regret guarantees.

The rest of this paper is organized as follows. Section II
describes the problem of interest. Section III presents the
proposed algorithm. Section IV includes our main results on
dynamic regret. Simulations are provided in Section V. We
conclude this paper in Section VI.

Notations. The superscript ‘T’ denotes vector transposition;
We use [T ] = {1, ..., T} to denote a set of integers for
T ∈ N+; The notation [A]ij or Aij denotes the i, j-th element
of matrix A; 1n represents a column vector with its all

components equaling to one. We use PΩ(x) to denote the
projection operation of a point x onto the set Ω ⊂ Rm, i.e.,
PΩ(x) = arg minw∈Ω ‖w − x‖2. A subgradient of convex
function f at x is represented by g(x) ∈ ∂f(x), which satisfies
f(y) ≥ f(x) + gT(x)(y − x). For two functions f and h, the
notation f = O(h) means that there exists a positive constant
% < ∞ such that f ≤ %h. Bm = {x ∈ Rm|‖x‖ ≤ 1} and
Sm = {x ∈ Rm|‖x‖ = 1} denote the unit ball and sphere,
respectively. We denote by E(x) the expectation of x.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

We consider a network containing n nodes. A sequence of
digraphs {Gt(V, Et)}t∈[T ] is utilized to model the interactions
among the nodes, where V = {1, ..., n} represents the set
of nodes and Et denotes the set of interaction links at t.
(i, j) ∈ Et implies that node j can receive information from
node i at t. We denote N+

i,t = {j : (j, i) ∈ Et} ∪ {i}
and N−i,t = {j : (i, j) ∈ Et} ∪ {i} as the in-neighbor and
out-neighbor sets of node i, respectively. The digraph Gt is
strongly connected if there exists a path between any pair
of distinct nodes. In addition, At = [aij,t] ∈ Rn×n is the
weight matrix induced by Gt, where aij,t > 0 if and only
if (j, i) ∈ Et, and aij,t = 0 otherwise. Moreover, we say
matrix At is row-stochastic if At1n = 1n, column-stochastic
if AT

t 1n = 1n, and doubly stochastic if At1n = 1n and
AT
t 1n = 1n hold simultaneously. The following assumption

is common in distributed optimization [19], [27], [40].
Assumption 1: The digraph Gt, for t ∈ [T ], satisfies:

(a) Lower Bounds: There exists a positive constant γ ∈
(0, 1) that lower bounds all nonzero weights.

(b) Column-Stochasticity: At is column-stochastic.
(c) Uniformly Jointly Strongly Connected: The digraphs
{Gt}∞t=1 are uniformly jointly strongly connected, i.e.,
there exists a positive integer B such that the union
digraph G(V,∪l=0,...,B−1Et+l) is strongly connected.

B. Problem Formulation
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Consider a network of n nodes, which aim to collaboratively
solve the following constrained optimization problem over a
time horizon T :

minimize
xt∈Ω

T∑
t=0

Ft(xt), Ft(x) ,
n∑
i=1

fi,t(x) (1)

where fi,t(x) is the local cost function of node i ∈ V at round
t ∈ [T ]. We consider the online and bandit feedback scenario
wherein each node is only allowed to query the values of
its local cost function after it has made its decision at each
round. Since the global function Ft is not accessible to any
node, each node needs to interact with its neighbors and make
sequential decisions based on what it “thinks” the decisions
that the whole network would make.

The dynamic regret is commonly adopted in the literature
as a performance metric for the online algorithms (see e.g.,
[39]), which is defined as follows for node j ∈ V

Rdj (T ) =

T∑
t=0

Ft(xj,t)−
T∑
t=0

Ft(x
?
t ), (2)

where x?t ∈ arg minx∈Ω Ft(x). The dynamic regret (2) mea-
sures the difference between the cost incurred by node j’s
decisions {xj,t}t∈[T ] against that of a time-varying clairvoy-
ant. It is different from that of [29], [40], where the decisions
of nodes are not required to reach consensus since the global
cost function at round t is defined as Ft(X) =

∑n
i=1 fi,t(xi)

with X , col(x1, ..., xn) and X?
t , col(x?1,t, ..., x

?
n,t).

In contrast to the static regret [10] with fixed benchmark
x? = arg minx∈Ω

∑T
t=0 Ft(x), the dynamic regret (2) allows

the best decision varies with time, and thus can encompass
the former as a special case. However, node i ∈ V can not
access to fi,t when making decision xi,t, which implies that
the online algorithm is not able to track x?t well if x?t deviates
from the past significantly. Therefore, a regularity measure
named “path variation” [39] needs to be introduced to reflect
the changes of successive minimizers

CT =

T∑
t=0

‖x?t+1 − x?t ‖. (3)

The main objective of this work is to design a zeroth-
order distributed online optimization algorithm over Gt such
that the dynamic regret (2) is upper bounded sublinearly with
respect to T . We impose the following standard assumption in
(distributed) bandit online optimization [13], [29], [32].

Assumption 2: For i ∈ V and t ∈ [T ], it satisfies

(a) Ω ⊆ Rm is a non-empty, convex and closed set.
Moreover, there exist r,R > 0 such that

rBm ⊆ Ω ⊆ RBm, (4)

and r is known a priopri.
(b) The subgradient of fi,t is bounded over Ω, i.e., there

exists a constant G > 0 such that ‖gi,t(x)‖ ≤ G holds
for x ∈ Ω, where gi,t(x) ∈ ∂fi,t(x).

III. ALGORITHM DEVELOPMENT

To develop the zeroth-order algorithm, we first define a
smoothed version of fi,t(x), i ∈ V , as follows

f̂i,t(x) , Eζ∈Bm [fi,t(x+ µζi,t)], x ∈ (1− ξ)Ω, (5)

where ζi,t is a vector selected uniformly at random from Bm,
ξ ∈ (0, 1) is a shrinkage parameter, µ ∈ (0, rξ], and (1−ξ)Ω is
shorthand for {(1− ξ)x : x ∈ Ω}. Under these settings, it can
be seen that x+µζi,t ∈ Ω for any x ∈ (1−ξ)Ω and ζi,t ∈ Sm.
In this paper, we adopt the following local zeroth-order oracle
to avoid explicit subgradient calculations

ĝi,t(x) =
m

µ
(fi,t(x+ µζi,t)− fi,t(x)) ζi,t, (6)

where x ∈ (1 − ξ)Ω, ζi,t ∈ Sm. In fact, ĝi,t(x) is an unbi-
ased gradient estimator of f̂i,t(x). Notably, Gaussian random
variables are used to construct zeroth-order oracles in [28],
[35], [41], which cannot be applied in our setting. The reason
is that Gaussian random variables do not have finite support
such that the perturbation x+ µζi,t may lie outside of Ω.

In our algorithm, each node i ∈ V maintains a vector xi,t ∈
Rm as well as a scalar φi,t ∈ R at per round t ∈ N, which are
initialized with xi,0 ∈ (1− ξ)Ω and φi,0 = 1, respectively. At
per round t, each node i sends its decision xi,t and the scalar
φi,t to its out-neighbors on the basis of Gt, and then performs
the following updates:

φi,t+1 =

n∑
j=1

aij,tφj,t, (7)

xi,t+1 = P(1−ξ)Ω

 n∑
j=1

bij,txj,t −
1

φi,t+1
αtĝi,t(xi,t)

 ,(8)

where αt is the step size that will be specified later,
bij,t, 1

φi,t+1
aij,tφj,t is the entry at i-th row and j-th column

of matrix Bt. Under Assumption 1(b), it is straightforward to
verify that Bt, ∀t ≥ 0, now becomes a row stochastic matrix
by recalling (7) and the definition of bij,t. By this means, the
term

∑n
j=1 bij,txj,t in (8) is designed for consensus since our

setting requires that each node can make sequential decisions
to minimize the dynamic regret. The intuition of φi,t+1 in (7)
is that it is designed to rescale the zeroth-order oracle ĝi,t(xi,t)
in (8), which aims to address the unbalancedness issue of
time-varying digraphs. In addition, the projection operation
P(1−ξ)Ω(·) is used to guarantee the feasibility of the quarry
points, i.e., xi,t + µζi,t ∈ Ω always holds for all i ∈ V and
t ∈ [T ]. Our algorithm is fully distributed that each node only
requires the knowledge of itself as well as information from
its immediate neighbors to carry out the above updates. The
proposed algorithm is summarized in Algorithm 1.

Several features distinguish our algorithm from the relevant
distributed (online) optimization methods over unbalanced
digraphs. We summarize their connections as follows:

(a) The AB/push-pull algorithms [25], [26] and our algo-
rithm all utilize row stochastic and column stochastic
weight matrices simultaneously. Different from [25],
[26] that the weight matrices are constructed indepen-
dently, our algorithm only invokes a sequence of column
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Algorithm 1 Zeroth-order Distributed Online Optimization
Algorithm —from the view of node i

1: Initialize: Set xi,0 ∈ (1− ξ)Ω and φi,0 = 1, i ∈ V .
2: for t = 0, 1, 2, ..., T do
3: Broadcast xi,t and φi,t to nodes j ∈ N−i,t.
4: Calculate ĝi,t(xi,t) via (6).
5: Update auxiliary variable φi,t via (7).
6: Update node’s decision xi,t via (8).
7: end for

stochastic matrices At, and we obtain Bt by performing
the designated transformation on At.

(b) The push-sum based distributed online optimization al-
gorithm in [27] will be invalid when it comes to prob-
lems with constraint set. The reason is that the balance
properties guaranteed by taking specific ratios will be
violated if we incorporate the projection operation into
push-sum algorithms [19], [20], [38] directly. In con-
trast, our algorithm can deal with set constraint and be
applicable to scenarios where the explicit subgradients
of the cost functions are not available.

(c) The static distributed algorithm in [22] also adjusts the
gradient by a designed vector, which is essentially the
estimate of left eigenvector of the weight matrix. How-
ever, it is not clear how to extend the algorithm to time-
varying digraphs, since it is unrealistic to estimate the
time-varying Perron vectors in a distributed manner. Our
algorithm can be applicable to time-varying digraphs.
Furthermore, each node i transmits the scalar φi,t at
t instead of a vector, which considerably lightens the
communication burden when compared with [22].

IV. CONVERGENCE ANALYSIS

In this section, we provide the theoretical analysis for the
proposed algorithm. The main challenge in the convergence
analysis lies in the combined effects of the projection opera-
tors, the time-varying unbalanced networks, and the embedded
randomized zeroth-order oracles. In addition, the considered
dynamic regret makes our analysis more challenging than that
of the static regret scenario, since the cost functions and the
minimizers are allowed to drift over time simultaneously in
our setting. We begin with a few preliminary results, followed
by the detailed analysis on dynamic regret of the proposed
algorithm.

A. Preliminary results

Let Ft denote the σ-field generated by the entire his-
tory of the random variables up to round t, i.e., Ft ,
σ(ζ1,0, ..., ζn,0, ..., ζ1,t, ..., ζn,t). The following Lemma col-
lected from [29] outlines some important properties of f̂i,t(x)
and ĝi,t(x).

Lemma 1: [29] Suppose Assumption 2 holds. For i ∈ V ,
and t ≥ 0, the following properties hold:

(a) f̂i,t(x) is convex and G-Lipschitz continuous on (1 −
ξ)Ω. Moreover,

fi,t(x) ≤ f̂i,t(x) ≤ fi,t(x) + µiG. (9)

for any x ∈ (1− ξ)Ω.
(b) f̂i,t(x) is differentiable on (1 − ξ)Ω even if fi,t(x) is

not, and it satisfies

∇f̂i,t(x) = Eζi,t∈Sm [ĝi,t(x)], x ∈ (1− ξ)Ω. (10)

Moreover, ∇f̂i,t(x) is Lipschitz continuous on (1−ξ)Ω
with Li , mG/µi.

(c) ‖ĝi,t(x)‖ ≤ mG holds for any x ∈ (1− ξ)Ω.
Recalling that Bt is a row stochastic matrix for any t ≥ 0,

and it thus enjoys the following properties.
Lemma 2: [23] Suppose Assumptions 1 holds. For s ≥ t,

define B(s : t) := Bs−1 · · · Bt with the convention B(t :
t) = I and bij(s : t) being the entries of B(s : t).
Then, there is a sequence of normalized vectors {πt}t≥0 with
πt = [π1,t, ..., πn,t]

T and 1T
nπt = 1, such that

(a) There exists constants C > 0 and λ ∈ (0, 1), such that
|bij(s : t)− πj,t| ≤ Cλs−t holds for i, j ∈ V;

(b) There exists a constant β ≥ b
(n−1)B
min such that

πi,t ≥ β for i ∈ V and t ≥ 0, where bmin =
mini,j∈V,t≥0{bij,t|j ∈ N+

i,t ∪ {i}};
(c) πT

t = πT
t+1Bt.

The following lemma is collected from [20], which reveals
that the scalar φi,t is bounded for i ∈ V , t ≥ 0.

Lemma 3: [20] Suppose Assumption 1 holds. Let {φi,t}t≥0,
∀i ∈ V , be the sequence generated by (7). Then, there exists
constants θ > 0 and $ > 0 such that

θ−1 ≤ φi,t ≤ $. (11)

Remark 1: In fact, θ and $ in Lemma 3 can be precisely
represented by γ−2(n−1)B and n − γ2(n−1)B , respectively,
where γ and B are constants defined in Assumption 1.

Furthermore, the following lemma establishes a relationship
between φi,t+1 and πi,t+1, which plays a critical role in the
dynamic regret analysis in the sequel.

Lemma 4: Let {φi,t+1}t≥0, ∀i ∈ V , be the sequence
generated by (7), and πi,t+1 be the i-th component of πt+1

clarified in Lemma 2. Then, for a given time horizon T , the
following inequality holds∣∣∣∣ 1nφi,t+1 − πi,t+1

∣∣∣∣ ≤ CλT−t−1. (12)

Proof: See Appendix A. �

B. Dynamic Regret Analysis

As detailed in the previous sections, the combination of
projection operation and time-varying unbalanced networks
brings new challenges in the dynamic regret analysis compared
to the existing works. Particularly, we cannot concentrate on
the evolution of the average process 1

n

∑n
i=1 xi,t as many

distributed algorithms [19], [27], [39] did. To cope with this
challenge, we construct time-varying row-stochastic matrices
Bt, which enables us to turn attention from the average process
to an auxiliary vector defined as

x̄t ,
n∑
i=1

πi,txi,t (13)
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with πt = [π1,t, ..., πn,t] defined in Lemma 2. The following
lemma establishes an upper bound on the expected disagree-
ment between x̄t and xi,t for i ∈ V .

Lemma 5: Suppose Assumptions 1-2 hold. Let {xi,t}t∈[T ]

be the sequence generated by Algorithm 1. Then, for i ∈ V ,
t ∈ [T ],

E [‖xi,t+1 − x̄t+1‖]

≤ nmθCG
t+1∑
l=1

λt+1−lαl−1 + Cλt+1
n∑
j=1

‖xj,0‖.(14)

Proof: See Appendix B. �
Remark 2: Note that the first term on the right side of (14)

can be calculated as follows
t+1∑
l=1

λt+1−lαl−1 =

bt/2c∑
l=1

λt−l+1αl−1 +

t+1∑
l=bt/2c+1

λt−l+1αl−1

= λdt/2e
bt/2c∑
l=1

λbt/2c−l+1αl−1 +

t+1∑
l=bt/2c+1

λt−l+1αl−1

≤ ξdt/2e λ

1− λ
sup
t≥0

αl +
λ

1− λ
sup

l≥bt/2c
αl,

where b·c and d·e denote the floor function and ceiling func-
tion, respectively. If the step size αt tends to zero, e.g., αt =
O( 1√

t+1
), then the two terms in the above inequality both tend

to zero since ξdt/2e → 0 and supl≥bt/2c αl → 0 when t→∞.
Thus we can obtain limt→∞ E[‖xi,t+1 − xj,t+1‖] = 0, which
implies that all nodes can achieve consensus in expectation
when t→∞.

To obtain the desired regret bound, it suffices to derive an
upper bound on the expected optimality gap. However, x?t may
lie outside of (1 − ξ)Ω, which bring new challenge to our
analysis. To resolve this issue, we first establish a relation
on E[fi,t(x̄t) − fi,t((1 − ξ)x?t )], and then the desired result
can be obtained by bounding the difference between fi,t((1−
ξ)x?t ) − fi,t(x

?
t ). The following result provides a bound on

the weighted sum of the terms E[fi,t(x̄t)− fi,t(x?t )], which is
pivotal to our dynamic regret analysis.

Theorem 1: Suppose Assumptions 1-2 hold. Let {xi,t}t∈[T ]

be the sequence generated by Algorithm 1 with positive and
non-increasing step size αt. Then,

T∑
t=0

n∑
i=1

πi,t+1

φi,t+1
E [fi,t(x̄t)− fi,t(x?t )]

≤ 2nmθ2RLCG

T∑
t=0

t∑
l=1

λt−lαl−1 +
m2θ2G2

2

T∑
t=0

αt

+ 2nm2θ2CG2
T∑
t=0

t+1∑
l=1

λt+1−lαl−1 +
2R2

αT

+ 2 (RL+mGλ) θC

n∑
j=1

‖xj,0‖
T∑
t=0

λt +
2R

αT
CT

+ µθG(T + 1) + θξGR(T + 1). (15)

Proof: See Appendix C. �

Albeit Theorem 1 has established a relation on the term
E[fi,t(x̄t) − fi,t(x?t )], it should be noted here that this term
is scaled by πi,t+1

φi,t+1
and we cannot determine the sign of the

difference (i.e., fi,t(x̄t)− fi,t(x?t )) for particular i ∈ V since
x?t is the minimizer of the global cost function rather than each
local cost function, which bring new challenge in deriving the
dynamic regret. Fortunately, we will soon find that the scalar
1
nφi,t+1 plays an important role in counteracting the impact of
unbalancedness, and hence we can establish an upper bound
of the dynamic regret (2) in the following theorem.

Theorem 2 (Dynamic Regret Bound): Suppose Assumptions
1-2 hold. For a given time horizon T , set µ = r√

T+1
and ξ =

1√
T+1

. Let {xi,t}t∈[T ] be the sequence generated by Algorithm
1 with αt = 1

m
√
t+1

. Then,

Rdj (T ) ≤ K1 +K2

√
T + 1 (16)

where

K1 =
nC(2RLθ + 2mθλG+G)

1− λ

n∑
i=1

‖xi,0‖+
2n2θCGR

λ(1− λ)
,

K2 =
2n2θCG

1− λ
(2θRL+ 2mθG+G) + nmθ2G2

+2nmR2 + nrθG+ nθGR+ 2nmRCT . (17)

Proof: See Appendix D. �
Theorem 2 shows that if CT is bounded, then the average

dynamic regret over T asymptotically converges zero at the
rate of O(T−

1
2 ), which matches the best static regret that can

be achieved in literature for convex cost functions [10]–[13],
[27], [42]. In fact, CT is not necessary to be bounded. If CT
increases sublinearly with the rate ranged from zero to O(T

1
2 ),

then we have limT→∞
CT
√
T+1
T = 0, which implies that the

average dynamic regret over T asymptotically converges to
zero at a sublinear rate.

Remark 3: Zeroth order optimization algorithms usually
suffer from deterioration in convergence as the problem di-
mension increases, which is a typical limitation of these
algorithms in high dimension problems. From Lemma 1(c), it
is readily seen that the upper bound of ‖ĝi,t(x)‖ depends on
the dimension m, which is essentially the penalty incurred by
the use of zeroth-order oracle instead of the real subgradient.
The dimension dependency of our algorithm is O(m), which
is identical to that of [43], and better than O(m2) in [11],
[12], [28], [31], [32], [41]. The optimal dimension dependency
O(
√
m) is obtained in [33]. However, the algorithm in [33] is

centralized, and the author only considered static regret rather
than dynamic regret.

C. Discussion

In this section, we discuss about the counterpart of Algo-
rithm 1 when subgradients of local cost functions are available.
In this scenario, a new algorithm can be directly obtained by
utilizing the subgradient in lieu of the local randomized zeroth-
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Algorithm 2 Distributed Online Optimization Algorithm —
from the view of node i

1: Input: time horizon T ; for all i ∈ V , set xi,0 ∈ Ω and
φi,0 = 1.

2: for t = 0, 1, 2, ..., T do
3: Broadcast xi,t and φi,t to nodes j ∈ N−i,t.
4: Update auxiliary variable φi,t via (18).
5: Update node’s decision xi,t via (19).
6: end for
7: Output: {xi,t}ni=1.

order oracle ĝi,t(xi,t) in (8). Then, each node i ∈ V performs
the following updates1:

φi,t+1 =

n∑
j=1

aij,tφj,t, (18)

xi,t+1 = PΩ

 n∑
j=1

bij,txj,t −
1

φi,t+1
αtgi,t(xi,t)

 , (19)

where gi,t(xi,t) denotes the subgradient of fi,t(x) evaluated
at xi,t. This algorithm is summarized in Algorithm 2.

Accordingly, the determined form of the dynamic regret (2)
can be represented by R̃dj (T ) as follows

R̃dj (T ) =

T∑
t=0

ft(xj,t)−
T∑
t=0

ft(x
?
t ), (20)

Now we provide an upper bound of the dynamic regret (20)
under Algorithm 2. The following theorem reveals that the
average dynamic regret over time horizon T asymptotically
converges to zero at a sublinear rate for convex cost functions
provided that the accumulated variation grows sublinearly with
the rate ranged from zero to O(T

1
2 ), which reflects that the

convergence of Algorithm 1 is essentially not affected by the
incorporated zeroth-order oracle.

Theorem 3: Suppose Assumptions 1-2 hold. Let {xi,t}t≥0

be the sequence generated by Algorithm 2 with αt = 1√
t+1

.
Then, for a given time horizon T , the dynamic regret defined
in (20) satisfies

R̃dj (T ) ≤ K3 +K4

√
T , (21)

where

K3 =
(2θλ+ θ + 2)nCG

1− λ

n∑
i=1

‖xi,0‖+
2n2θCGR

λ(1− λ)
,

K4 =
2(3θ + 2)n2θCG2

1− λ
+ nθ2G2 + 2nRCT + 2nR2.

Proof: The proof follows the similar line of Theorem 1-2,
we thus omit it. �

1In this paper, the notation of xi,t and φi,t, will be kept the same across
different algorithms to avoid notational clutter, and it is clear from context
which method is in question.

V. NUMERICAL EXAMPLES

In this section, we numerically demonstrate the performance
of the proposed algorithms. First, motivated by [39], we
validate our theoretical findings by a numerical example. After
that, we apply the proposed algorithms to a distributed target
tracking problem, which has been widely investigated in litera-
ture, e.g., [16], [44]. Finally, we investigate the dynamic sparse
signal recovery problem [17] and compare our algorithm with
the existing ones.

A. Example I

Consider a group of six agents modeled by the time-varying
digraphs Gt depicted in Fig. 1. The dynamic local cost function
at time t is given by fi,t(x) = i

84x
4
1+ i−1

15 (x2
1+x2

2)+ 2i+1
4 x1−

2(i−3)
3 ~(t)x2, i ∈ V and x = (x1, x2)T is constrained in a box

set Ω = {−3 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3}. Thus, the global cost
function at time t can be described as ft(x) = 1

4x
4
1 + x2

1 +
x2

2 +12x1−2~(t)x2 with x ∈ Ω. We let ~(t) = arctan(t/10).
It is easy to verify that x?t = (−2, arctan(t/10)), t ≥ 0. In
our simulations, we set µ = 10−3 and ξ = 0.02. The graph
Gt changes by the order G1 → G2 → G1 → · · · throughout
the whole process. For the weight matrix At, we set aij,t =
1/|N−j,t| if aij,t > 0, and aii,t = 1−

∑n
j=1 aji,t, where |N−j,t|

denotes the number of elements in N−j,t. Under these settings,
all assumptions in this paper evidently hold. We run Algorithm
1 with αt = 1

2
√
t+1

. The trajectories of the optimal solution
x?t and the decision variables xi,t, i ∈ V , are shown in Fig. 2
with xij,t being the j-th entry of the decision variable made
by agent i at round t. It can be seen that all agents’s decision
variables approach the optimal solution x?t .

Moreover, we compare the convergence performance be-
tween Algorithm 1 and Algorithm 2 under the same settings,
except that Algorithm 1 adopts the local zeroth-order oracle
(6) with µ = 10−3 and Algorithm 2 uses the explicit gra-
dient of local cost functions. The maximum and minimum
average dynamic regrets over time horizon T , defined as
i.e., maxj∈V Rj(T )/T and minj∈V Rj(T )/T , are depicted in
Fig. 3. The result is consistent with our theoretical results
established in Theorem 2 and Theorem 3, and further verifies
the effectiveness of our zeroth-order algorithm since the Algo-
rithm 1 can achieve comparable performance with Algorithm
2 where explicit gradient information is used.

3 4

5 6

3 4

5 6

1 2 1 2

1 2

Fig. 1. The time-varying unbalanced digraphs.
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Fig. 2. Trajectories of the optimal solution x?t and the decisions xi,t, i ∈ V ,
generated by Algorithm 1.

0 200 400 600 800 1000
10-1

100
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Fig. 3. Comparisons of the maximum and minimum dynamic regret over
time horizon T between Algorithm 1 and Algorithm 2.

B. Example II: Targets Tracking

In this example, we consider a tracking problem where
sensors collaborate to track moving targets. It is of practical
significance to study distributed online algorithms over un-
balanced networks as communications between sensors are
usually directed. Moreover, dynamic regret is qualified to
measure the tracking performance in contrast to static regret.

We consider a network consisting of n = 6 nodes, and
the information sharing among the nodes is depicted in Fig.
1. All nodes aim to collaboratively track three time-varying
signals via local communication. Specifically, each signal
x?i,t = [x?i1,t, x

?
i2,t]

T, i ∈ {1, 2, 3} is described as follows

x?i,t =

[
x?i1,t
ẋ?i1,t

]
=

[
κi sin(ωit+ νi)
ωiκi cos(ωit+ νi)

]
(22)

where x?i1,t is the position of target i, ẋ?i1,t denotes the velocity
of target i at time t, κi is the amplitude, ωi represents the
angular frequency, and νi is the phase of the target i. At time
step t, each node i ∈ V observes yi,t via the measurement

model yi,t = Cix
?
t , where x?t = [(x?1,t)

T, (x?2,t)
T, (x?3,t)

T]T

and Ci ∈ R1×6 is the measurement matrix that is generated
randomly. To track the moving targets, each node communi-
cates with its neighbors aiming to minimize the global cost
function ft(x) = 1

2

∑6
i=1 ‖Cix− yi,t‖2.

In our simulations, the amplitude κi and the phase νi, for
i ∈ V , are random variables drawn from uniform distribution
in [0, 3] and [0, π], respectively. We let the sampling frequency
be 100Hz. Similar to the previous example, we verify the
performance of Algorithm 1 with αt = 1

2
√
t+1

and µ = 10−3.
As shown in Fig. 4, the average dynamic regret over T cal-
culated via any sequence of {xi,t}Tt=0, i ∈ V , asymptotically
converges at a sublinear rate, which is consistent with our
results established in Theorem 2. Furthermore, we show the
trajectories of the targets x?i1,t, i ∈ {1, 2, 3}, and the decisions
x3j,t and x4j,t, j ∈ {1, 3, 5}, in Fig. 5 with xij,t being the j-th
entry of the decision made by agent i at t. It can be observed
that node 3 and node 4 both can track the three moving
targets within the targets’ small neighborhood. In fact, the
tracking performance can be further improved by tuning the
sampling frequency. However, utilizing the diminishing step-
size prevents our algorithms from tracking quickly moving
targets. It is thus of interest to develop distributed online
optimization algorithms in time-varying unbalanced networks
that admits more aggressive step sizes to obtain better tracking
performance, which remains to be considered in our future
work.

0 2000 4000 6000 8000 10000
10-1

100

101

102

103

Fig. 4. Trajectories of the average dynamic regret over time horizon T of
Algorithm 1.

C. Example III: The Dynamic Sparse Recovery Problem

In this example, we consider the dynamic sparse signal
recovery problem with the goal of estimating a time-varying
sparse parameter in a distributed manner. This problem has
been widely investigated in signal processing literature. Specif-
ically, we compare our algorithm with the ones in [16],
[39], [44]. Note that all of the algorithms in these works
can be only applicable to (fixed or time-varying) balanced
networks. To investigate these algorithms within a unified
framework, we consider a network with n sensors, which can
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Fig. 5. Trajectories of the targets x?i1,t, i ∈ {1, 2, 3}, and the decision
variables x3j,t and x4j,t, j ∈ {1, 3, 5}, generated by Algorithm 1.

be represented by a complete graph. All sensors collectively
solve the following optimization problem:

x?t = arg min
x
ft(x) (23)

with

ft(x) =
1

n

n∑
i=1

(
‖zi,t − Ci,tx‖22 + γ‖x‖22 + σ‖x‖1

)
,(24)

where x ∈ Rm, Ci,t ∈ Rd×m is the observation matrix
of sensor i at round t, γ and σ are constant regularization
parameters used to prevent overfitting, and zi,t ∈ Rd is the
measurement given by

zi,t = Ci,t$t + ϑi,t (25)

with $t ∈ Rm being the time-varying sparse signal of interest
and ϑi,t ∈ Rd being the noise. In this example, we set n = 40,
d = 3, m = 8, γ = 1

100d2n and σ = 1
20d . The initial state of

$t is chosen to be a sparse vector with 2 entries of value 1,
and all other entries equal to zero. Let St = {κ|[$t]κ > 0}
be the support of $t, which is updated as follows:

St+1 =

{
St, with probability 1− 1/t

{St\{τt}} ∪ {τ ′t}, with probability 1/t
(26)

where τt and τ ′t are randomly chosen from St and the set
{1, 2, ...,m}\St, respectively. We add noise ςt to $t and then
normalize the obtained vector so that

$t+1 =
$t + ςt
‖$t + ςt‖

(27)

where [ςt]κ ∼ N (0, 1/t2) for κ ∈ St+1 and [ςt]κ = 0
otherwise. By this means, the non-zero entries of $t are
time-varying and their variations decay over time. The related
parameters are properly selected such that the minimizer
sequence {x?t }Tt=1 varies slowly. We verify the performance
of Algorithm 1 with αt = 1√

t+1
and µ = 10−3. We

run Algorithm 1 for 100 trials. As shown in Fig. 6, the
average maximum and minimum dynamic regrets over T both
converge sublinearly, which are consistent with our theoretical
results.

0 100 200 300 400 500
100

101

102

103

Fig. 6. Trajectories of the maximum and minimum dynamic regret over time
horizon T of Algorithm 1.

We further compare our algorithm against the ones in [16],
[39], [44]. For fair comparison, we adopt the average of
Rd

j (T )

T over all nodes j ∈ V as the performance metric of
the whole network. The results are depicted in Fig. 7, which
reflect that the proposed Algorithm 1 can achieve comparable
performance with the existing algorithms despite the presence
of gradient estimate errors. Note that our algorithm can be
applied to a broader family of networks since it does not
require networks to be fixed or balanced in contrast to [16],
[39], [44].

0 100 200 300 400 500
100

101

102

103

Our algorithm 1
[16]
[39]
[44]

Fig. 7. Comparison of the time-average dynamic regret averaged over all
nodes between our algorithms and the existing ones.

Finally, considering the fact that zeroth-order optimization
algorithms usually suffer from deterioration in performance as
the problem dimension increases, we investigate the influence
of the problem dimension on the average dynamic regret of
our algorithm. We run our algorithm for three different choices
of the problem dimension m, i.e., m = 6, m = 8 and m = 10,
respectively. The results are depicted in Fig. 8. It can be seen
that the proposed zeroth-order optimization algorithm indeed
achieves better performance with smaller problem dimension.
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Fig. 8. The influence of the problem dimension m on the performance of
Algorithm 1.

VI. CONCLUSIONS

In this paper, we have investigated the distributed online
constrained optimization problems over time-varying unbal-
anced digraphs without explicit subgradients. To cope with the
problem, a novel consensus-based distributed online optimiza-
tion algorithm with a local randomized zeroth-order oracle has
been proposed. The dynamic regret bound of the algorithm has
been characterized under mild conditions, which showed that
the algorithm can achieve comparable performance with its
counterpart subgradient-based algorithm. Finally, simulations
on distributed target tracking problem and dynamic sparse
signal recovery problem in sensor networks have been con-
ducted to verify the effectiveness of proposed algorithms.
Future works can focus on deriving a tighter dynamic regret
bound, and considering the scenario where inequalities con-
straints are involved in the problem. It is also of interest to
develop dimension-insensitive zeroth-order distributed online
optimization algorithms under mild assumptions.

APPENDIX A

Proof of Lemma 4. Recalling φi,t+1 =
∑n
j=1 aij,tφj,t and

bij,t = 1
φi,t+1

aij,tφj,t, along with the fact that At is a column
matrix for t ≥ 0, it is not hard to verify that φT

t+1Bt = φT
t .

Then, conducting the mathematical induction for φt yields that

φT
t+1 = φT

TB(T : t+ 1) (28)

On the other hand, by exploiting the column stochasticity of
At, we have

1T
nφt+1 = 1T

nAtφt = ... =

n∑
i=1

φi,0 = n (29)

Therefore, we can further obtain that∣∣∣∣ 1nφi,t+1 − πi,t+1

∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
l=1

φl,T bli(T : t+ 1)− πi,t+1

n

n∑
l=1

φl,T

∣∣∣∣∣

≤ 1

n

n∑
l=1

φl,T |bli(T : t+ 1)− πi,t+1|

≤ CλT−t−1 (30)

where Lemma 2(a) has been utilized to obtain the last inequal-
ity. The proof is thus completed. �

APPENDIX B

Proof of Lemma 5. Define

vi,t ,
n∑
j=1

bij,txj,t

wi,t , P(1−ξ)Ω

(
vi,t −

1

φi,t+1
αtĝi,t(xi,t)

)
− vi,t.

Then (8) can be rewritten as the following perturbed form:

xi,t+1 =

n∑
j=1

bij,txj,t + wi,t. (31)

Conducting the mathematical induction for (31) yields that

xi,t+1 =

n∑
j=1

[B(t+ 1 : 0)]ijxj,0

+

t+1∑
l=1

n∑
j=1

[B(t+ 1 : l)]ijwj,l−1. (32)

On the other hand, multiplying both sides of (31) by πi,t+1

and then summing the obtained equality over i ∈ V yields that

x̄t+1 = x̄t +

n∑
i=1

πi,t+1wi,t, (33)

where Lemma 2(c) has been exploited to obtain this equality.
Performing summations on (33) over t ∈ N leads to

x̄t+1 = x̄0 +

t+1∑
l=1

n∑
i=1

πi,lwi,l−1. (34)

Then, combining (32) and (34) along with Lemma 2(a), it
gives that

‖xi,t+1 − x̄t+1‖

=

n∑
j=1

|[B(t+ 1 : 0)]ij − πj,0| ‖xj,0‖

+

t+1∑
l=1

n∑
j=1

|[B(t+ 1 : l)]ij − πj,l| ‖wj,l−1‖

≤ Cλt+1
n∑
j=1

‖xj,0‖+ C

t+1∑
l=1

λt+1−l
n∑
j=1

‖wj,l−1‖ (35)

Now, it remains to bound ‖wi,t‖. Note that vi,t ∈ Ω is a
convex combination of xi,t ∈ Ω, it thus follows that

‖wi,t‖ ≤
∥∥∥∥vi,t − αtĝi,t(xi,t)

φi,t+1
− vi,t

∥∥∥∥
≤ θαt‖ĝi,t(xi,t)‖
≤ mθGαt (36)
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where the non-expansive projection property (see e.g., [45])
has been exploited to obtain the first inequality, and the
last two inequalities follows from Lemma 3 and Lemma 1,
respectively. It is straightforward to obtain (14) by combining
(35) and (36). �

APPENDIX C

Proof of Theorem 1. Define x̃?t , (1 − ξ)x?t . Obviously,
x̃?t ∈ (1 − ξ)Ω, and x̄t ∈ (1 − ξ)Ω. We further define an
auxiliary function Dt as

Dt ,
1

2
(x̄t − x̃?t )

T
(x̄t − x̃?t ) (37)

Where x̄t has been defined in (13). Then, we consider the
variation of Dt as follows

∆Dt , Dt+1 −Dt

= −1

2
‖x̄t+1 − x̄t‖2 +

1

2
〈x̃?t+1 + x̃?t − 2x̄t+1,

x̃?t+1 − x̃?t 〉+ 〈x̄t+1 − x̄t, x̄t+1 − x̃?t 〉

≤ −1

2
‖x̄t+1 − x̄t‖2 + 2R‖x̃?t+1 − x̃?t ‖

+〈x̄t+1 − x̄t, x̄t+1 − x̃?t 〉 (38)

where the inequality follows from the boundedness of the
constraint set. According to (33), the last term in (38) can
be further expanded as follows

〈x̄t+1 − x̄t, x̄t+1 − x̃?t 〉

=

〈
n∑
i=1

πi,t+1wi,t, x̄t+1 − x̃?t

〉

=

n∑
i=1

πi,t+1 〈wi,t, x̄t+1 − xi,t+1〉

+

n∑
i=1

πi,t+1 〈wi,t, xi,t+1 − x̃?t 〉 (39)

For the first term on the right side of (39), we have
n∑
i=1

πi,t+1 〈wi,t, x̄t+1 − xi,t+1〉

≤
n∑
i=1

πi,t+1‖wi,t‖‖x̄t+1 − xi,t+1‖ (40)

Recalling (35)-(36), and taking expectation on both sides of
(40), we can obtain

E

[
n∑
i=1

πi,t+1 〈wi,t, x̄t+1 − xi,t+1〉

]

≤ mθCGαtλt+1
n∑
j=1

‖xj,0‖

+ nm2θ2CG2αt

t+1∑
l=1

λt+1−lαl−1 (41)

where the fact that
∑n
i=1 πi,t+1 = 1 has also been exploited

to obtain the above inequality.

For the last term on the right side of (39), we have
n∑
i=1

πi,t+1 〈wi,t, xi,t+1 − x̃?t 〉

=

n∑
i=1

πi,t+1

〈
wi,t +

αtĝi,t(xi,t)

φi,t+1
, xi,t+1 − x̃?t

〉
+

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − xi,t+1

〉
(42)

From Lemma 1 in [45], we know (P(1−ξ)Ω(x) −
x)T(P(1−ξ)Ω(x)− y) ≤ 0, for all x ∈ Rm and y ∈ (1− ξ)Ω.
Hence, it can be observed that〈

wi,t +
αtĝi,t(xi,t)

φi,t+1
, xi,t+1 − x̃?t

〉
≤ 0 (43)

That is to say, the first term on the right side of (42) is
nonpositive. Now, we turn to the last term on the right side of
(42), which can be calculated as follows

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − xi,t+1

〉
=

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − x̄t

〉
+

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t − x̄t+1

〉
+

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t+1 − xi,t+1

〉
(44)

For the first term on the right side of (44), it can be calculated
as follows

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − x̄t

〉

=

n∑
i=1

πi,t+1αt

〈
ĝi,t(xi,t)−∇f̂i,t(x̄t)

φi,t+1
, x̃?t − x̄t

〉

+
n∑
i=1

πi,t+1αt

〈
∇f̂i,t(x̄t)
φi,t+1

, x̃?t − x̄t

〉
(45)

Taking expectation on the above equality with respect to Ft−1,
we can obtain

E

[
n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − x̄t

〉 ∣∣Ft−1

]

=

n∑
i=1

πi,t+1αt

〈
∇f̂i,t(xi,t)−∇f̂i,t(x̄t)

φi,t+1
, x̃?t − x̄t

〉

+

n∑
i=1

πi,t+1αt

〈
∇f̂i,t(x̄t)
φi,t+1

, x̃?t − x̄t

〉

≤ θαt
n∑
i=1

πi,t+1

∥∥∥∇f̂i,t(xi,t)−∇f̂i,t(x̄t)∥∥∥ ‖x̃?t − x̄t‖
+

n∑
i=1

πi,t+1αt

〈
∇f̂i,t(x̄t)
φi,t+1

, x̃?t − x̄t

〉
(46)

where Lemma 1(b) has been employed to obtain the equal-
ity, while the inequality follows from Lemma 3. Note that
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‖x̃?t − x̄t‖ ≤ 2R. In addition, Lemma 1 implies that
‖∇f̂i,t(xi,t)−∇f̂i,t(x̄t)‖ ≤ L‖xi,t − x̄t‖. Thus, (46) can be
further manipulated as

E

[
n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̃?t − x̄t

〉 ∣∣Ft−1

]

≤ 2θRLαt

n∑
i=1

πi,t+1‖xi,t − x̄t‖

+ αt

n∑
i=1

πi,t+1

φi,t+1

(
f̂i,t(x̃

?
t )− fi,t(x̄t)

)
(47)

where the convexity of f̂i,t(x) and the fact that fi,t(x) ≤
f̂i,t(x) for all i ∈ V and t ≥ 0 in Lemma 1 (a) have been
exploited to obtain the inequality. By recalling (33), the second
term on the right side of (44) can be bounded as

n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t − x̄t+1

〉

≤ 1

2

∥∥∥∥∥
n∑
i=1

πi,t+1
αtĝi,t(xi,t)

φi,t+1

∥∥∥∥∥
2

+
1

2
‖x̄t − x̄t+1‖2

≤ 1

2
θ2α2

t

n∑
i=1

πi,t+1‖ĝi,t(xi,t)‖2 +
1

2
‖x̄t − x̄t+1‖2 (48)

where the last inequality follows from Lemma 3, along with
the fact that ‖

∑n
i=1 πi,txi‖2 ≤

∑n
i=1 πi,t‖xi‖2 for all xi ∈

Rm. Taking expectation on both sides of (48) yields that

E

[
n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t − x̄t+1

〉]
≤ 1

2
m2θ2G2α2

t +
1

2
E
[
‖x̄t − x̄t+1‖2

]
(49)

The third term on the right side of (44) can be bounded as
n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t+1 − xi,t+1

〉
≤ θαt

n∑
i=1

πi,t+1‖ĝi,t(xi,t)‖‖xi,t+1 − x̄t+1‖ (50)

Recalling (35)-(36), and taking expectation on both sides of
(50), we obtain

E

[
n∑
i=1

πi,t+1

〈
αtĝi,t(xi,t)

φi,t+1
, x̄t+1 − xi,t+1

〉]

≤ nm2θ2CG2αt

t+1∑
l=1

λt+1−lαl−1

+mθCGαtλ
t+1

n∑
j=1

‖xj,0‖. (51)

Now, taking expectation on both sides of (38) and applying
the above relations, we can obtain

E[∆Dt]

≤ αt
n∑
i=1

πi,t+1

φi,t+1
E
[
f̂i,t(x̃

?
t )− fi,t(x̄t)

]

+ 2nmθ2RLCGαt

t∑
l=1

λt−lαl−1 + 2R‖x?t+1 − x?t ‖

+ 2nm2θ2CG2αt

t+1∑
l=1

λt+1−lαl−1 +
1

2
m2θ2G2α2

t

+ 2 (RL+mGλ) θCαtλ
t
n∑
j=1

‖xj,0‖ (52)

Note that

−
T∑
t=0

E[∆Dt]

αt
=

T∑
t=0

E[Dt]− E[Dt+1]

αt

≤ E[D0]

α0
+

T∑
t=1

(
1

αt
− 1

αt−1

)
E[Dt]

≤ 2

αT
R2 (53)

where the positivity of Dt, t ≥ 0, has been utilized to
obtain the first inequality, and the last inequality follows from
Assumption 2. Then, dividing both sides of (52) by αt and
summing the new inequality over t ∈ [T ], we obtain

T∑
t=0

n∑
i=1

πi,t+1

φi,t+1
E [fi,t(x̄t)− fi,t(x̃?t )]

≤ 2nmθ2RLCG

T∑
t=0

t∑
l=1

λt−lαl−1 +
m2θ2G2

2

T∑
t=0

αt +
2R2

αT

+ 2nm2θ2CG2
T∑
t=0

t+1∑
l=1

λt+1−lαl−1 + µθG(1 + T )

+ 2 (RL+mGλ) θC

n∑
j=1

‖xj,0‖
T∑
t=0

λt +
2R

αT
CT (54)

Recalling the definition of x̃?t , we have

fi,t(x̄t)− fi,t(x?t )
= fi,t(x̄t)− fi,t(x̃?t ) + fi,t(x̃

?
t )− fi,t(x?t )

≤ fi,t(x̄t)− fi,t(x̃?t ) +G‖x̃?t − x?t ‖
≤ fi,t(x̄t)− fi,t(x̃?t ) + ξGR (55)

Finally, (15) can be obtained by combining (54) and (55).
�

APPENDIX D

Proof of Theorem 2. Recalling (2), we have

Rdj (T ) =

T∑
t=0

E [ft(xj,t)]−
T∑
t=0

ft(x
?
t )

=

T∑
t=0

n∑
i=1

E [fi,t(xj,t)− fi,t(x̄t)]

+

T∑
t=0

n∑
i=1

E [fi,t(x̄t)− fi,t(x?t )] (56)

For the first term on the right side of (56), we have

fi,t(xj,t)− fi,t(x̄t) ≤ gT
i,t(xj,t)(xj,t − x̄t)
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≤ G‖xj,t − x̄t‖ (57)

where Assumption 2(b) has been utilized to obtain the last
inequality. Recalling (35)-(36) and taking expectation on both
sides of (57), then the first term on the right side of (56) can
be bounded as follows

T∑
t=0

n∑
i=1

E [fi,t(xj,t)− fi,t(x̄t)]

≤ n2mθCG2
T∑
t=0

t∑
l=1

λt−lαl−1

+ nCG

n∑
i=1

‖xi,0‖
T∑
t=0

λt. (58)

To establish the desired dynamic regret bound, we now only
need to bound the last term on the right side of (56). Note that
the term E[fi,t(x̄t)−fi,t(x?t )] is scaled by πi,t+1

φi,t+1
in Theorem 1

and we cannot determine the sign of this term for particular i ∈
V . Now, we calculate −πi,t+1

φi,t+1
(fi,t(x̄t)− fi,t(x?t )) as follows

−πi,t+1

φi,t+1
(fi,t(x̄t)− fi,t(x?t ))

= −
1
nφi,t+1 + πi,t+1 − 1

nφi,t+1

φi,t+1
(fi,t(x̄t)− fi,t(x?t ))

≤
| 1nφi,t+1 − πi,t+1|

φi,t+1

∣∣fi,t(x̄t)− fi,t(x?t )∣∣
− 1

n
(fi,t(x̄t)− fi,t(x?t ))

≤ θCλT−t−1G‖x̄t − x?t ‖ −
1

n
(fi,t(x̄t)− fi,t(x?t ))(59)

where the last inequality follows from Lemma 3-4 and As-
sumption 2(b). Thus, we can further obtain

fi,t(x̄t)− fi,t(x?t )
≤ nπi,t+1

φi,t+1
(fi,t(x̄t)− fi,t(x?t )) + 2nθCGRλT−t−1.(60)

Taking expectation on both sides of (60) and combining
Theorem 1, we obtain

Rdj (T ) ≤ n2mθCG(2θRL+G)

T∑
t=0

t∑
l=1

λt−lαl−1

+2n2m2θ2CG2
T∑
t=0

t+1∑
l=1

λt+1−lαl−1 +
2nR2

αT

+(2RLθ + 2mθλG+G)nC

n∑
i=1

‖xi,0‖
T∑
t=0

λt

+2n2θCGR

T∑
t=0

λT−t−1 +
1

2
nm2θ2G2

T∑
t=0

αt

+
2nR

αT
CT + nθµG(T + 1)+nθξGR(T + 1).(61)

Now we turn to calculate the terms on the right side of (61),
respectively. For the first term, we have

T∑
t=0

t∑
l=1

λt−lαl−1 =

T−1∑
t=0

λt
T−t−1∑
l=0

αl ≤
1

1− λ

T−1∑
l=0

αl (62)

Analogously, we obtain
∑T
t=0

∑t+1
l=1 λ

t+1−lαl−1 ≤
1

1−λ
∑T
l=0 αl. Note that

∑T
t=0 αt ≤ 1 +

∫ T+1

0
(t+ 1)−

1
2 dt ≤

2
√
T + 1. Then, (16) can be obtained, which completes the

proof. �
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