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Ambiguities in Direction-of-Arrival Estimation

with Linear Arrays
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Abstract—In this paper, we present a novel
approach to compute ambiguities in thinned uni-
form linear arrays, i.e., sparse non-uniform linear
arrays, via a mixed-integer program. Ambiguities
arise when there exists a set of distinct directions-
of-arrival, for which the corresponding steering
matrix is rank-deficient and are associated with
nonunique parameter estimation. Our approach
uses Young tableaux for which a submatrix of
the steering matrix has a vanishing determinant,
which can be expressed through vanishing sums
of unit roots. Each of these vanishing sums then
corresponds to an ambiguous set of directions-of-
arrival. We derive a method to enumerate such
ambiguous sets using a mixed-integer program
and present results on several examples.

Index Terms—Ambiguities, uniqueness, iden-
tifiability, array processing, direction-of-arrival
estimation, sparse linear arrays, thinned linear
arrays, spark, Kruskal rank, Young tableaux.

I. Introduction

Sparse uniform linear arrays, obtained from thinning
uniform linear arrays (ULAs), are widely used in
sensor array processing due to their ability to main-
tain the aperture size of the corresponding full ULA
while reducing the number of array elements. This is
associated with as significant decrease of the array
costs including power consumption, hardware and
computational complexity [28] as well as a reduc-
tion in the mainbeam width and mutual coupling
[18], [19]. A variety of array thinning techniques
have been proposed in literature to control the side
and grating lobe levels of the array. These tech-
niques can be classified into three main areas [48]:
i) analytic thinning, e.g., based in prime number
selection, where the array is formed from a λ/2
ULA by selecting sensors at prime multiples of the
baseline as, e.g., in nested arrays, coprime arrays,
and minimum redundancy arrays [29], [49], [25],
ii) statistical thinning techniques, where sensors are
selected randomly [34], and iii) optimization based
thinning in which an appropriate error function is
minimized [50], [17], [13], [15], [33], [27].

This work was supported by the EXPRESS II project within
the DFG priority program CoSIP (DFG-SPP 1798).

Low side and grating lobe levels are impor-
tant indicators for the resolution performance for
sparse linear arrays in beamforming and Direction-
of-Arrival (DoA) estimation applications. However,
a fundamental question in the context of multi-
source DoA estimation in thinned arrays is that of
the maximum number of sources that can uniquely
be determined from an array measurement and the
characterization of ambiguities in the measurements.
Ambiguities in the array manifold arise when there
exists a set of distinct directions-of-arrivals in the
field of view, for which the corresponding steering
matrix is rank-deficient. In this case it is impossible
to uniquely determine the parameters of interest
from single snapshot measurements.

The concept and mathematical framework for the
ambiguity problem in direction finding for linear
arrays dates back to Schmidt [36], who introduced
the rank of an ambiguity based on linear dependency
in the array steering matrix and thus classified am-
biguities based on this notion of rank. In the sub-
sequent years, research focused onto specific array
geometries which have desirable properties or are
free of certain types of ambiguities [20], [44], [45],
[46]. For the popular ULA geometry it is known that
no ambiguities exist, if the intersensor spacing is at
most half wavelength [22], [39], [43], [44]. A linear
array that is not uniform is called a non-uniform
linear array.

Manikas and Proukakis [22] use tools from dif-
ferential geometry in order to analyze ambiguities
for general linear arrays. They derive a sufficient
condition for the presence of ambiguities in a linear
array. This sufficient condition implies that every
non-uniform linear array with integer positions suf-
fers from ambiguities, see [1]. Moreover, Manikas
and Proukakis derive a class of ambiguities that are
present in every non-uniform integer linear array,
see [22, Theorem 2.2]. We call these ambiguities
uniform ambiguities, since they are derived from a
uniform partitioning of the array manifold.

For symmetric linear arrays, which can be
shifted globally to positions r1, . . . , rM , such that
∑M

i=1(ri)
n = 0 holds for all odd n ∈ N, Manikas and
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Proukakis identify additional ambiguities, see [22,
Theorem 3]. This ambiguity criterion for symmetric
linear arrays is generalized in Dowlut [7, Theorem 3]
and Manikas [21, Theorem 7.1] to a whole class of so-
called non-uniform ambiguities that depend on a pa-
rameter n ∈ N. Moreover, Manikas [21, Lemma 7.1]
states that these non-uniform ambiguities converge
to a uniform ambiguity for n → ∞.

Wax and Ziskind [51] derive conditions for which
the signal model (1) has a unique solution based on
the number of sensors in the array and the spark of
the steering matrix.

In a recent paper, Achanta et al. [2] investigate
the spark of DFT matrices and use vanishing sums
in order to find rows of a DFT matrix that induce a
matrix with full spark. However, they do not draw
the connection to generalized Vandermonde matrices
and the Schur polynomial. Translated to our setting,
the results of [2] can determine which linear arrays
do not have any ambiguities within a fixed set of
certain DoAs. In contrast, our paper determines
ambiguities a fixed linear array.

Contribution: Which non-uniform integer linear
array suffers from ambiguities, besides the ones al-
ready known in the literature? In order to answer
this question, we need to find steering vectors a(θi)
(or more precisely DoAs θi) such that the steering
matrix for the position vector r has spark at most M .
This means that the M sensors cannot uniquely
localize the signal sources with directions θi. In the
following, we present a novel approach for identifying
ambiguities in (non-uniform) integer linear arrays.
This approach can in theory be used to compute
all ambiguities from which a given integer linear
array suffers, see Section III-C. However, those com-
putations are too expensive to be of practical use,
even for small arrays. By making a (small) structural
assumption, we are able to formulate a mixed-integer
problem (MIP) that is capable of enumerating am-
biguities, see Section IV. At least for non-symmetric
integer linear arrays, we show that this approach can
find all ambiguities already known in the literature
(namely those from [22, Theorem 2.2]), see Proposi-
tion IV.5. Moreover, we demonstrate the usefulness
of our approach in Section V by presenting examples
of non-symmetric integer linear arrays for which we
find many previously unknown ambiguities.

Remark I.1. Our notion of ambiguity and the
failure to uniquely resolve source signals can also
be used to characterize ambiguities in co-arrays
corresponding to non-fully augmentable arrays [1].

In this paper, the following notations are used:

matrices are denoted by boldface uppercase let-
ters A, vectors are denoted by boldface lowercase
letters a, and scalars are denoted by regular letters a.
Symbols (·)⊤ and (·)−1 denote the transpose, and
inverse of the (matrix) argument. For n ∈ N, we
define [n] := {1, . . . , n}.

II. Problem Description

Consider a sparse (thinned) uniform linear array
composed of M sensors located on the x-axis in
R2 at positions corresponding to integer multiples
r1 < r2 < · · · < rM of a common baseline
d ∈ [0, 1] measured in half wavelength. Define r =
(r1, . . . , rM ) ∈ ZM . A superposition of L narrow-
band waveforms emitted from sources at azimuth
angles Θ = (θ1, . . . , θL) is impinging on the array.
Throughout the paper, we denote the azimuth angles
θ ∈ Θ as Directions-of-Arrival (DoA). The received
signal y in a noise-free setting is expressed as

y = A(Θ) x, (1)

where x ∈ CL is the emitted signal and A(Θ) =
[a(θ1), . . . , a(θL)] ∈ CM×L the array steering matrix
with columns

a(θ) = [zr1 , . . . , zrM ]⊤, (2)

for θ ∈ Θ and z = e−jπd cos(θ). By using the electrical
angle Φ = −πd cos(θ), this simplifies to z = ejΦ. We
then denote the array steering matrix with A(Φ).

In the case of linear measurement systems, unique
recovery is assessed from the spark of the measure-
ment matrix A, which is defined as the smallest
number of linearly dependent columns in A. If
the spark is large enough, then it is possible to
uniquely recover x from its measurements Ax, even
if the linear system is underdetermined, see, e.g., the
book [9].

Uniqueness of the measurement model (1) is of
importance for DoA estimation as well and directly
related to the number of sources that can be iden-
tified from the measurements [51]. In our setting,
the steering matrix A(Θ) depends on the unknown
directions from which the signals in x impinge on the
linear array r. This leads to a generalized notion of
the spark: The ability to uniquely recover a signal x

coming from directions Θ depends on the spark
of the induced steering matrix A(Θ). If the spark
of A(Θ) for a fixed linear array r is not full, then
there exists a subset of the columns of A(Θ), i.e.,
a subset of steering vectors, which are linearly de-
pendent and thus induce a rank-deficient submatrix
of A(Θ). This is called an ambiguity, which can be
formally defined as follows.



Definition II.1 ([22]). Let r ∈ RM be a linear array
with M sensors and let Θ = [θ1, . . . , θL]⊤ be an
ordered vector of DoAs with L ≤ M . Then Θ is
called an ambiguous vector of DoAs, if

rank(A(Θ)) = rank
(
[a(θ1), . . . , a(θL)]

)
< L.

Furthermore, its rank of ambiguity is defined as ρa =
rank(A(Θ)) ∈ N.

An important question is whether the steering
matrix A(Θ) for a fixed linear array and a vector
of directions Θ has full spark, i.e., if the spark is
given by min {M, L}.

Note that more signal sources than sensor posi-
tions M always produce an ambiguity, since the rank
of the corresponding submatrix can be at most M .
Thus, we focus on the search of ambiguities with at
most M signal sources.

In order to simplify the presentation, we make
some assumptions without loss of generalization.

(A1) We assume that the first sensor of a linear array
r = (r1, . . . , rM )⊤ is located in the origin, i.e.,
r1 = 0, since a global shift of the array positions
does not change the ambiguities.

(A2) We assume that the electrical angles Φ lie in
Ω = [−πd, πd], since a(θ) = a(2π − θ) for θ ∈
[0, 2π]. For d = 1, we assume Φ ∈ [−π, π), since
in this case a(0) = a(π). This implies a one-
to-one correspondence between electrical angles
and DoAs, so that from now on, we will also use
electrical angles.

(A3) An appropriate global rotation of the DoAs
amounts to multiplying the steering ma-
trix A(Θ) with a constant diagonal matrix
with unit complex entries, which retains the
ambiguity property. Thus, we assume without
loss of generality that θ1 = 0 resulting in an
electrical angle Φ1 = −πd.

Furthermore, we assume that r ∈ NM . Recall
that r denotes the integer multiples of the common
baseline d ∈ [0, 1], measured in half wavelength. Such
sparse uniform sampling is often used in practical
systems due the simplicity of the hardware design
and several attractive features associated with it,
such as the existence of efficient search-free rooting-
based DoA estimation techniques [12], [3], [32], [16],
[41] and virtual signal decorrelation procedures [37],
[47], [30].

III. A novel approach for detecting

Ambiguities in Linear Arrays

Let Assumptions (A1)–(A3) hold and let r ∈ NM .
We first give a compact overview over our procedure

to find ambiguities that is presented in the next
sections.

1) The array steering matrix A(Φ) for r induces
ambiguities if some of its M × M submatrices
have a nonzero determinant. Therefore, we search
for M electrical angles Φ1, . . . , ΦM such that the
determinant of their induced submatrix of A(Φ)
vanishes.

2) Every submatrix of A(Φ) is a generalized Van-
dermonde determinant, see Section III-A. This
determinant is divisible by the classical Vander-
monde determinant, and this quotient is equal
to the Schur polynomial sλ(z), see Equation (4).
Thus, instead of searching for roots of the gener-
alized Vandermonde determinant, we can search
for roots of the Schur polynomial.

3) The Schur polynomial sλ(z) can be represented
using semistandard Young tableaux (SSYTs), see
Section III-B and Lemma III.1 therein.

4) In our case, zi = ejΦi for i ∈ [M ], and if Φi ∈
{2π q : q ∈ Q}, the Schur polynomial is a sum
of unit roots. This means, we search unit roots
such that their sum vanishes and the relationship
to the SSYTs due to Lemma III.1 is satisfied, see
Section III-D.

5) We construct these vanishing sums of unit roots
by adding up rotated minimal vanishing sums.
This can be formulated as a mixed-integer prob-
lem, see Section IV.

A. Generalized Vandermonde Matrix

Our goal is to determine whether there exist elec-
trical angles Φ1 < · · · < ΦM and an M × M sub-
matrix of the corresponding array steering matrix
for an integer linear array r with zero determinant.
Every M × M submatrix of A(Φ) is a generalized
Vandermonde matrix of the form

Br(z) =








zr1
1 . . . zr1

M

zr2
1 . . . zr2

M
...

. . .
...

zrM

1 . . . zrM

M








,

with zi = ejΦi , i ∈ [M ] and Φ1 < · · · < ΦM . We
define the polynomial

Vr : CM → C, Vr(z) := det(Br(z)) (3)

as the generalized Vandermonde determinant. Every
root of Vr induces an ambiguity.

If r = (0, 1, . . . , M −1)⊤, then Vr : CM → C is the
classical Vandermonde determinant

V (z) =
∏

1≤i<k≤M

(zk − zi).



In this case, we obtain that V (z) = 0 if and only
if zi = zk for indices i 6= k. This means that
ambiguities only arise if there are two equal electrical
angles Φi = Φk for i 6= k [38].

For steering matrices with a non-uniform linear
array, Br(z) is a so-called generalized Vandermonde
matrix, and its determinant Vr(z) is a generalized
Vandermonde determinant. For more information
on generalized Vandermonde matrices and determi-
nants, see, e.g., [14], [4], [8], [35] as well as [24],
[26] for results in case that z ∈ RM and that Vr

is defined over a finite field, respectively.
In the present paper, we have z ∈ CM . In this

case, it is well known that Vr(z) is divisible by
the (classical) Vandermonde determinant V (z), see,
e.g., [6]. The ratio

sλ(z) :=
Vr(z)

V (z)
(4)

with λ = r − δ, and δ = (0, 1, . . . , M − 1)⊤ is the
so-called Schur polynomial. Here, λ is sorted non-
decreasingly.

An ambiguous vector of electrical angles
[Φ1, . . . , ΦM ]⊤ induces a generalized Vandermonde
matrix with a zero determinant, and thus forms a
root of the Schur polynomial sλ(z) with zi = ejΦi ,
i ∈ [M ]. In order to find such roots, we introduce
Young tableaux in the next section, as they can be
used to represent the Schur polynomial.

B. Young Tableaux

The notations, definitions and statements in this
section are taken from [40].

Given λ = (λ1, . . . , λM )⊤, 0 ≤ λ1 ≤ · · · ≤ λM , the
Young diagram of shape λ is defined as a collection
of boxes that are arranged in M left-justified rows
such that the number of boxes in row M − i + 1
is λi. A semistandard Young tableau (SSYT) of
shape λ is obtained by filling the Young diagram
with positive integers i ∈ [M ] such that entries
increase weakly along each row and increase strictly
down each column1.

For example, if λ = (1, 3, 4)⊤, we need to fill the
Young diagram with integers from the set {1, 2, 3}
and one possible SSYT is the following:

For a given λ, we define Tλ as the set of all
SSYTs with entries in [M ]. Each tableau T ∈ Tλ de-
fines a weight vector α(T ) = (α1(T ), . . . , αM (T ))⊤,
where αi(T ) is the number of times i appears. By

1Note that in general, a Young diagram can be filled with
arbitrary positive integers i ∈ N to obtain an SSYT, but as
it will become clear later in this section, in our setting, only
integers i ∈ [M ] are allowed.

1 1 2 3

2 3 3

3

TABLE I: Number N of SSYTs for selected linear
arrays.

Array N Array N Array N Array N

(0, 2) 2 (0, 2, 3) 3 (0, 1, 2, 5) 10 (0, 3, 4, 5) 10
(0, 3) 3 (0, 2, 4) 8 (0, 1, 3, 4) 6 (0, 1, 2, 3, 5) 5
(0, 4) 4 (0, 2, 5) 15 (0, 1, 3, 5) 20 (0, 1, 2, 4, 5) 10
(0, 5) 5 (0, 3, 4) 6 (0, 1, 4, 5) 20 (0, 1, 3, 4, 5) 10
(0, 1, 3) 3 (0, 3, 5) 15 (0, 2, 3, 4) 4 (0, 2, 3, 4, 5) 5
(0, 1, 4) 6 (0, 4, 5) 10 (0, 2, 3, 5) 15
(0, 1, 5) 10 (0, 1, 2, 4) 4 (0, 2, 4, 5) 20

definition,
∑M

i=1 αi(T ) =
∑M

i=1 λi holds. In the
above example, (α1(T ), α2(T ), α3(T ))⊤ = (2, 2, 4)⊤.

SSYTs have the beautiful property that they can
be used to represent the Schur polynomial. This is
known in the literature under the term “Young’s
Rule”, and it plays a key role in our procedure, since
it yields a polynomial representation of the quotient
of the generalized Vandermonde determinant and
the classical Vandermonde determinant.

Lemma III.1 (Stanley [40]). Consider λ =
(λ1, . . . , λM )⊤ with 0 ≤ λ1 ≤ · · · ≤ λM . Then,

sλ(z) =
∑

T ∈Tλ

M∏

i=1

z
αi(T )
i .

Lemma III.1 is the reason why we only allowed in-
tegers i ∈ [M ] to appear in an SSYT in the definition
at the beginning of this section. From Lemma III.1,
we deduce that the degree of sλ is

∑M
i=1 λi. More-

over, if λ 6= 0, then sλ is homogeneous. For a
formula of the total number of SSYTs of shape λ

with entries in [M ], see [10, Theorem 6.3], which
is a simple consequence of [40, Lemma 7.21.1 and
Theorem 7.21.2]. For all linear arrays with positions
in (0, 1, 2, 3, 4, 5)⊤, Table I lists the number N of
corresponding SSYTs.

Example III.2. Consider the simple array geome-
try r = (1, 2, 5)⊤ with baseline d = 1. With r = λ+δ

and δ = (0, 1, 2)⊤, we obtain that λ = (1, 1, 3)⊤.
Then the Young tableaux in Tλ are the ones listed
in Figure 1. The associated Schur polynomial is

sλ(z) = z1 z2 z3 (z2
1 + z1z2 + z2

2 + z1z3 + z2z3 + z2
3),

whose roots are all z ∈ C3 with z1 = 1
2 (−z2 − z3 ±

√

−3z2
2 − 2z3z2 − 3z2

3) or z1 = 0 or z2 = 0 or z3 = 0.
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Fig. 1: Young tableaux for λ = (1, 1, 3)⊤

C. Algebraic root finding

Since the Schur polynomial sλ(z) is a complex
polynomial in the variables zi, we can search roots
of the Schur polynomial algebraically by splitting
each variable zi = xi + j · yi with xi = Re(zi)
and yi = Im(zi). Thus, sR

λ
(x, y) := Re(sλ(z)) and

sI
λ

(x, by) := Im(sλ(z)) are real polynomials in the
variables xi, yi. This yields a polynomial equation
system, which can be solved using, for instance,
elimination theory or multivariate resultants. For
more details, see, e.g., [42].

Thus, for very small examples, the roots of the
Schur polynomial can be derived algebraically. How-
ever, if M or |Tλ| is large, then a numerical solution
is usually difficult. Moreover, the algebraic approach
becomes computationally extremely expensive. As
an alternative, the idea in Section IV is to formu-
late a mixed-integer program (MIP) whose feasible
solutions correspond to roots of the Schur polyno-
mial. Before we state this result, we introduce the
definition of vanishing sums of unit roots in the
next section, as it turns out that these play an
important role for the detection of roots of the Schur
polynomial.

D. Vanishing Sums of Unit Roots

Let Tλ = {T1, . . . , TN } be the set of all SSYTs
of shape λ with cardinality N := |Tλ|. In our
setting, the variables zi are given by zi = ejΦi ,
Φi ∈ [−πd, πd], for i ∈ [M ]. The Schur polynomial
can be written as

sλ(z) =

N∑

ℓ=1

M∏

i=1

zαiℓ

i =

N∑

ℓ=1

M∏

i=1

ejαiℓΦi

=

N∑

ℓ=1

ej
∑

M

i=1
αiℓΦi ,

(5)

where α = (α1,ℓ, . . . , αM,ℓ)
⊤ ∈ ZM×N is the vector

α(Tℓ) defined in Section III-B. Recall that our goal
is to search for roots of the Schur polynomial, which

ω6

ω5
6

ω5
ω2

5

ω3
5

ω4
5

= −1

ω6

ω5
6

+ 1

ω5
ω2

5

ω3
5

ω4
5

Fig. 2: Example of a nontrivial sum of unit roots

means to check whether there exists a vector Φ ∈
[−πd, πd]M such that

sλ(z) =
N∑

ℓ=1

ejσℓ = 0, (6)

σℓ =
M∑

i=1

αiℓ Φi (mod 2π), ∀ℓ ∈ [N ]. (7)

Since ejσℓ = ej(σℓ+k·2π) for k ∈ N, Equation (7) only
needs to hold modulo 2π.

For m ∈ N, define ωm = ej2π/m. Then, ωv
m is

called an m-th unit root for v ∈ {0, 1, . . . , m − 1}. If
all σℓ/2π are rational, then the sum

∑N
ℓ=1 ejσℓ = 0

is called a vanishing sum of unit roots.
The most important special case of a vanishing

sum of unit roots is the sum of all m-th unit roots,
that is, ωm + ω2

m + · · · + ωm
m = 0 holds for an integer

m > 1, which can be seen using a geometric sum. In
the literature these sums are often denoted as trivial.
An example of a nontrivial vanishing sum of unit
roots is

ω6 + ω5
6 + ω5 + ω2

5 + ω3
5 + ω4

5 = 0. (8)

This sum can be written as the sum of the trivial
sum

∑5
v=1 ωv

5 = 0 and the rotated trivial sum ω6 +

ω3
6 + ω5

6 = ω1
6 · (

∑3
v=1 ωv

3) = 0, see Figure 2.

Remark III.3. An obvious way to find unit roots
ejσℓ and electrical angles Φi corresponding to an
ambiguity of a linear array would be a feasibility
problem with Constraints (6) and (7). However, the
real-valued reformulation of

∑

ℓ ejσℓ = 0, with σℓ ∈
[0, 2π) is

∑

ℓ cos(σℓ) = 0 and
∑

ℓ sin(σℓ) = 0, which
is a trigonometric constraint that is hard to handle
in most solvers. The same problem emerges, if ejσℓ

is replaced by a complex variable ωℓ for all ℓ ∈ [M ].
This would yield

∑

ℓ Re(ωℓ) =
∑

ℓ Im(ωℓ) = 0 and
Re(ωℓ)

2 + Im(ωℓ)
2 = 1. In this case, we need to

control the argument of the complex variables ωℓ to
model Equation (7), which is nonlinear.

In order to avoid the issue in Remark III.3, we
make the following additional assumption.

(A4) For every root of the Schur polynomial, the
corresponding exponential sum

∑N
ℓ=1 ejσℓ is a



vanishing sum of roots of unity, possibly rotated
by a complex number on the unit circle.

The subsequent Example III.7 demonstrates that
there exist linear arrays with ambiguities that vio-
late this assumption. However, the Assumption (A4)
will allow us to use a purely linear procedure to find
many ambiguities that are present in a linear ar-
ray. This procedure relies on the following theorem,
which reduces the case of general vanishing sums to
minimal vanishing sums, i.e., vanishing sums, such
that no proper subsum also vanishes.

Theorem III.4 (Mann [23], Corollary 1.1). Let
∑k

i=1 ai ηi = 0 be a vanishing sum with ai ∈ Z \ {0},
i ∈ [k], and unit roots ηi, i ∈ [k]. Then this sum can
be written as

k∑

i=1

ai ηi = ζ1

k1∑

i=1

ai νi + · · · + ζu

ku∑

i=ku−1+1

ai νi,

with unit roots ζ1, . . . , ζu, 0 =: k0 < k1 < · · · <
ku := k and all νi are (p1 p2 · · · ps)-th unit roots
with 0 < pt ≤ max{kj − kj−1 : j ∈ [u]}, for prime
numbers pt, t ∈ [s]. Moreover, each vanishing sum
∑kj+1

i=kj +1 ai νi = 0, j = 0, . . . , u − 1 is minimal.

Note that the upper bound for pt in Theorem III.4
does not depend on t. Moreover, the representation
in Theorem III.4 is clearly not unique.

Because of Theorem III.4, we only need to con-
sider minimal vanishing sums, as they can be rotated
and linearly combined to obtain general rotated
vanishing sums and thus ambiguities as roots of
the Schur polynomial. If we allow the linear coeffi-
cients ζi in Theorem III.4 to be complex numbers on
the unit circle, i.e, ζi = ej2πvi , vi ∈ [0, 1), instead of
roots of unity, we are also able to find slightly more
general exponential sums that sum to zero and thus
induce ambiguities.

Remark III.5. There are no (nontrivial) vanishing
sums of length 1. Furthermore, every vanishing sum
of length 4 can be written as the sum of two (rotated)
minimal vanishing sums of length 2, and thus, there
are no minimal vanishing sums of length 4, which can
be deduced from [31, Lemma 3.2 and Lemma 3.3].

Remark III.6 (Limitation of the approach). At
least for symmetric linear arrays there exist ambi-
guities which cannot be represented as a linear com-
bination of minimal vanishing sums with rotation
factors of the form ej2πv, v ∈ [0, 1) and thus violate
Assumption (A4). In this case, the approach of this
section is not able to detect these ambiguities. The

following example shows such an ambiguity, which
can be obtained by using [21, Theorem 7.1].

Example III.7. Consider the linear array r =
(0, 1, 3, 4)⊤ with baseline d = 1 and λ = (0, 0, 1, 1)⊤.
The Schur polynomial for r is given by

sλ = ej(Φ1+Φ2) + ej(Φ1+Φ3) + ej(Φ1+Φ4)

+ ej(Φ2+Φ3) + ej(Φ2+Φ4) + ej(Φ3+Φ4).

The ambiguity

Φ =
[
2 arctan(∆1) − π, 2 arctan(∆2) − π,

π − 2 arctan(∆2), π − 2 arctan(∆1)
]⊤

≈ (43.6◦, 77.35◦, 102.7◦, 136.4◦)⊤,

with ∆1 =

√

1
3

(
12 −

√
129

)
, ∆2 =

√

1
3

(
12 +

√
129

)
,

yields Φ1+Φ4 = Φ2+Φ3, whereas all other exponents
of sλ are pairwise different. This means, in order to
encode the solution Φ by summing rotated minimal
vanishing sums of roots of unity, two of the six re-
sulting roots of unity must be equal (after a possible
rotation). Since there are N = 6 SSYTs for the linear
array r, there are three ways of summing rotated
minimal vanishing sums in order to obtain a vanish-
ing sum of length 6, namely, 6 = 3 + 3 = 2 + 2 + 2.
Note that there are no minimal vanishing sums of
lengths 1 and 4, see Remark III.5. However, it is
easy to see that for all three cases, it is not possible
to find rotation factors such that two roots of unity
are equal and five are pairwise different. Thus, the
ambiguity given by Φ cannot be represented using
sums of rotated minimal vanishing sums, so that
Assumption (A4) is violated.

IV. Enumeration Using Minimal Vanishing

Sums

Recall that finding ambiguous DoAs for the linear
array r = λ + δ corresponds to finding roots of the
Schur polynomial sλ in (5). The Schur polynomial is
given by a sum of exponentials, where the exponents
need to fulfill a linear relation modulo 2π, which
originates from the SSYTs of shape λ for the linear
array r, see (6) and (7). We assumed that sλ can
be represented using linear combinations of minimal
vanishing sums with coefficients ζ = ej2πv , v ∈ [0, 1).
By that, we can find a fairly large subset of roots of
the Schur polynomial. If N is the number of SSYTs
of shape λ, then the following procedure can be used
to find ambiguities in r.

1) Choose a partition N = p1+· · ·+pk, k ∈ [N ], with
pi ∈ [N ]\{1, 4}, i.e., without using the elements 1



and 4, since there are no minimal vanishing sums
of unit roots of these lengths, see Remark III.5.

2) For each partition element pi choose a minimal
vanishing sum Si of length pi.

3) Choose an assignment of the roots of unity ap-
pearing in Si to the variables σℓ, ℓ ∈ [N ].

4) Check if there exists a solution to the linear
equation system (7), where each Si can be rotated
by an arbitrary ej2πvi , with vi ∈ [0, 1), c.f.
Theorem III.4 and the discussion thereafter.

Clearly, for this approach to work, we need to know
all possible minimal vanishing sums that can be used
to build the desired vanishing sum. For N ≤ 12, all
minimal vanishing sums (up to rotations) of length
N are characterized by Poonen and Rubinstein [31,
Table 1 and Theorem 3]2, and their construction can
be easily extended to N > 12.

A. The MIP-Formulation

The approach described above to find ambiguities
for a given linear array r can be formulated as a
mixed-integer (linear) program (MIP). Every fea-
sible solution of the MIP then corresponds to an
ambiguity for r, such that by enumerating feasible
solutions of the MIP, it is possible to obtain many
ambiguities for r. The only requirement is that all
minimal vanishing sums with length up to N need
to be known in advance. The following parameters
are used in the MIP-formulation (9) in Figure 3:

M := Number of sensors in the linear array

r = λ + δ, i.e., r ∈ ZM ,

d := common baseline of the array positions r,

N := number of SSYTs of shape λ,

P := [ 2, . . . , 2
︸ ︷︷ ︸

⌊
N
2 ⌋ many

, 3, . . . , 3
︸ ︷︷ ︸

⌊
N
3 ⌋ many

, 5, . . . , 5
︸ ︷︷ ︸

⌊
N
5 ⌋ many

, 6, . . . , 6
︸ ︷︷ ︸

⌊
N
6 ⌋ many

, . . . , n],

mi := # minimal vanishing sums of length Pi

u
(i)
t,k := k-th root of unity of t-th minimal vanishing

sum of length Pi, i ∈ [|P |], t ∈ [mi], k ∈ [Pi],

I := {(i, t, k) : i ∈ [|P|], t ∈ [mi], k ∈ [Pi]}.

The vector P is needed to model all partitions of N
that can be used in the first step of the procedure
above, where |P| denotes its number of entries.

The variables are:

• q(i) ∈ {0, 1}mi with q
(i)
t = 1 if and only if Pi

is part of the chosen partition of N and the t-th
minimal vanishing sum is selected for this Pi.

2Mann [23] already characterized all minimal vanishing
sums up to N = 7, and Conway and Jones [5] characterized
all minimal vanishing sums up to N = 9.

• b(i) ∈ {0, 1}mi×Pi×N . We have b
(i)
t,k,ℓ = 1 if and

only if σℓ is assigned to the k-th root of unity
in the t-th minimal vanishing sum chosen for the
i-th element of the partition.

• v(i) ∈ [0, 2π)mi : rotation factors for the minimal
vanishing sums of length Pi.

• w(i) ∈ [0, 2π)mi×Pi×N : auxiliary variables for

linearization: w
(i)
t,k,ℓ = v

(i)
t · b

(i)
t,k,ℓ.

• z ∈ ZN : models that a rotation is always applied
modulo 2π. Since the rotation values lie in [0, 2π),
all zℓ can be assumed to be binary.

• σ ∈ [0, 2π)N , Φ ∈ [−πd, πd]M , x ∈ ZN : model
Equations (6) and (7), where x is needed for the
modulo operation. Constraint (9i) implies that
each xℓ is bounded by − 1

2 d
∑M

m=1 αm,ℓ − 1 ≤
xℓ ≤ 1

2 d(
∑M

m=2 αm,ℓ − α1,ℓ), for ℓ ∈ [N ], see
Constraint (9k).

Constraints (9a) and (9b) ensure that a valid
partition of N together with corresponding min-
imal vanishing sums is chosen. The subsequent
Constraints (9c)–(9h) model the assignment of the
chosen roots of unity to the variables σℓ, using a
linearization of the bilinear constraint

|P |
∑

i=1

mi∑

t=1

Pi∑

k=1

b
(i)
t,k,ℓ (v

(i)
t + u

(i)
t,k) − 2π zℓ = σℓ, ∀ ℓ ∈ [N ].

Finally, Constraint (9i) models the linear equa-
tions (7). Because of Assumption (A3), we can fix
the first electrical angle Φ1 = −πd in Constraint (9j).
In terms of vanishing sums, this amounts to a global
rotation of all appearing roots of unity which does
not destroy the sum being 0, as can be seen by

N∑

ℓ=1

ej(2πv+µ) =

N∑

ℓ=1

ej2πv · ejµ. (10)

In order to remove some symmetric solutions, the
variables Φ are be ordered increasingly in Con-
straint (9j). This is justified by Theorem IV.1 in
the next section. Additionally, the strict inequalities
prevent trivial ambiguities consisting of two or more
equal electrical angles. These strict inequalities to-
gether with the upper bounds for v(i), w(i), Φ and
σ are modeled using non-strict inequalities with a
small ǫ = 0.001, so that (9) is indeed a MIP.

Note that there could exist different feasible solu-
tions that correspond to the same ambiguous vector
of electrical angles. There are different reasons for
this behavior. First, the decomposition of a vanish-
ing sum of unit roots into minimal vanishing sums
is not unique, such that different sums of (rotated)
minimal vanishing sums of unit roots can lead to the



|P |
∑

i=1

Pi ·
( mi∑

t=1

q
(i)
t

)

= N, (9a)

mi∑

t=1

q
(i)
t ≤ 1 ∀ i ∈ [|P |], (9b)

b
(i)
t,k,ℓ ≤ q

(i)
t ∀ (i, t, k, ℓ) ∈ I × [N ], (9c)

|P |
∑

i=1

mi∑

t=1

Pi∑

k=1

b
(i)
t,k,ℓ = 1, ∀ ℓ ∈ [N ], (9d)

N∑

ℓ=1

b
(i)
t,k,ℓ ≤ 1, ∀ (i, t, k) ∈ I, (9e)

|P |
∑

i=1

mi∑

t=1

Pi∑

k=1

w
(i)
t,k,ℓ + b

(i)
t,k,ℓ u

(i)
t,k − 2π zℓ = σℓ, ∀ ℓ ∈ [N ], (9f)

w
(i)
t,k,ℓ ≤ b

(i)
t,k,ℓ · 2π, ∀ (i, t, k, ℓ) ∈ I × [N ], (9g)

2π(−1 + b
(i)
t,k,ℓ) + w

(i)
t,k,ℓ ≤ v

(i)
t ≤ 2π(1 − b

(i)
t,k,ℓ) + w

(i)
t,k,ℓ, ∀ (i, t, k, ℓ) ∈ I × [N ], (9h)

M∑

m=1

αm,ℓ Φm − 2π xℓ = σℓ, ∀ ℓ ∈ [N ], (9i)

−πd = Φ1 < Φ2 < · · · < ΦM ≤ πd, (9j)

−1

2
d

M∑

m=1

αm,ℓ − 1 ≤ xℓ ≤ 1

2
d
(

M∑

m=2

αm,ℓ − α1,ℓ

)
∀ ℓ ∈ [N ], (9k)

q(i) ∈ {0, 1}mi, b(i) ∈ {0, 1}mi×Pi×N , z ∈ {0, 1}N , x ∈ ZN , w(i) ∈ [0, 2π)mi×Pi×N

v(i) ∈ [0, 2π)mi , Φ ∈ [−πd, πd]M , σ ∈ [0, 2π)N .

Fig. 3: Feasibility MIP for enumerating all ambiguities.

same vanishing sum and thus, to the same ambiguity.
Second, there can be different assignments of the
chosen unit roots to the variables σℓ that lead to
the same electrical angles Φm.

B. Analysis of the MIP formulation

Theorem IV.1. Consider a feasible solution
X = (b(i), q(i), x, z, v(i), w(i), Φ, σ) for (9)
and let τ ∈ SM be an arbitrary permuta-
tion of [M ]. Then there exists a feasible solution
X̃ = (b̃(i), q̃(i), x̃, z̃, ṽ(i), w̃(i), Φ̃, σ̃) with Φ̃ =
(Φτ(1), . . . , Φτ(M)) ∈ [−πd, πd]M .

Note that the statement is not trivial: If the gener-
alized Vandermonde determinant is 0, permuting Φ

does not change this, and it does not change the
Schur polynomial. However, it is not clear whether
there still exists a sum of rotated minimal vanishing
sums and assignment of the appearing roots of unity
so that Constraint (9i) is satisfied.

Proof. Let r = λ + δ be a linear array, and let Tλ

be the set of all SSYTs of shape λ. We first prove
the assertion that if there exists an SSYT Tℓ ∈ Tλ

with weight vector α(Tℓ) = (α1,ℓ, . . . , αM,ℓ), then
for all permutations τ ∈ SM there also exists an
SSYT Tk ∈ Tλ with α(Tk) = (α1,k, . . . , αM,k) =
(ατ −1(1),ℓ, . . . , ατ −1(M),ℓ) =: τ(α(Tℓ)).

Let β, β′ be two possible weight vectors of an
SSYT of shape λ so that β and β′ only differ by
swapping two consecutive entries. Then there exists
a bijection between the SSYTs of shape λ with
weight vector β and β′: Consider the entries βi

and βi+1 of the weight vector β, and let T be
an SSYT of shape λ with weight vector β. Select
all columns of T that contain exactly one entry
equal to i or i + 1. All other columns contain
either no or two such entries. In each row of T
replace each i appearing in these columns by i + 1
and vice versa. After reordering the rows so that



these are again sorted nondecreasingly, we obtain an
SSYT of shape λ with weight vector β′. This yields
the desired bijection, see also [40, Proof of Theo-
rem 7.10.2]. Thus, for a given weight vector α and
a given permutation τ ∈ SM we can find an SSYT
with weight vector τ(α) by decomposing τ into a
sequence of transpositions of consecutive entries and
using the compositions of the respective bijections.

Consider the solution X and permutation τ . In
order to prove the existence of solution X̃ with
Φ̃m = Φτ(m), m ∈ [M ], we show that there exists
a permutation γ ∈ SN with σ̃ℓ = σγ(ℓ):

σ̃ℓ = α1,ℓ Φ̃1 + · · · + αM,ℓ Φ̃M − 2 x̃ℓ

= α1,ℓ Φτ(1) + · · · + αM,ℓ Φτ(M) − 2 x̃ℓ

= ατ −1(1),ℓ Φ1 + · · · + ατ −1(M),ℓ ΦM − 2 x̃ℓ.

By the assertion, there exists an SSYT T with weight
vector τ(α(Tℓ)). Defining the permutation γ such
that αm,γ(ℓ) = ατ −1(m),ℓ for all m ∈ [M ], i.e., such
that the SSYT Tγ(ℓ) has weight vector τ(α(Tℓ)), and
setting

σ̃ℓ = σγ(ℓ), x̃ℓ = xγ(ℓ), z̃ℓ = zγ(ℓ), b̃
(i)
t,k,ℓ = b

(i)
t,k,γ(ℓ),

w̃
(i)
t,k,ℓ = w

(i)
t,k,γ(ℓ), q̃

(i)
t = q

(i)
t , ṽ

(i)
t = v

(i)
t ,

for all (i, t, k, ℓ) ∈ I × [N ] yields the desired feasible
solution X̃ with Φ̃ ∈ [−πd, πd]M and Φ̃m = Φτ(m)

for all m ∈ [M ].

The following two Lemmas state that for a linear
array with integer positions, the feasibility prob-
lem (9) finds all ambiguities in the array that can
be represented using a linear combination of minimal
vanishing sums with coefficients on the complex unit
circle.

Lemma IV.2. For a linear array with positions
corresponding to integer multiples r ∈ ZM of a
common baseline d ≤ 1 measured in half wavelength,
each feasible solution of the feasibility-MIP (9) cor-
responds to an ambiguous vector of electrical angles.

Proof. Let X = (b(i), q(i), x, z, v(i), w(i), Φ, σ) be
a feasible solution for (9). It is clear by construction
that the Schur polynomial sλ(z) with zi = ejΦi sat-
isfies sλ(z) = 0. By definition, this implies that the
generalized Vandermonde determinant Vr(z) van-
ishes. Thus, the array steering matrix A(Φ) is rank-
deficient, i.e., Φ1, . . . , ΦM are ambiguous.

The next Lemma is an immediate consequence
of the definition of the Schur polynomial and the
arguments above.

Lemma IV.3. Let r ∈ ZM be an arbitrary integer
linear array where the positions are multiples of a
common baseline d ≤ 1 measured in half wavelength.
Each ambiguous vector of electrical angles that forms
a root of the Schur polynomial and that can be
represented using sums of rotated minimal vanishing
sums, corresponds to at least one feasible solution of
the feasibility-MIP (9).

Let us now relate our approach to the uniform
ambiguities from [22, Theorem 2.2]. For the ease
of presentation, we restate this result in terms of
electrical angles.

Theorem IV.4 ([22]). Let r = (r1, . . . , rM )⊤ ∈ RM

be an arbitrary linear array with positions measured
in half wavelength and baseline d = 1. Define the
vector Φi,j of electrical angles as

Φi,j :=

[

− π, −π
(

1 − 2

|ri − rj |
)

, −π
(

1 − 4

|ri − rj |
)

,

. . . , −π
(

1 − 2c

|ri − rj |
)]⊤

,

where i 6= j ∈ [M ] and c ∈ N is the largest integer
satisfying c < |ri − rj |. Then, if Φi,j contains at least
M elements, any subvector of M elements from Φi,j

is an ambiguous vector.

Note that these are all ambiguities that are cur-
rently known in the literature for non-symmetric
integer linear arrays.

We can now prove our main result, namely, that
for an integer linear array, our approach is able to
identify all uniform ambiguities from Theorem IV.4.
This directly implies we can find all all ambigu-
ities previously known in the literature for non-
symmetric integer linear arrays.

Proposition IV.5. Let r ∈ ZM be an arbitrary
integer linear array where the positions are multiples
of a common baseline d ≤ 1 measured in half
wavelength. Let r̃ = d·r ∈ RM , be the array r rescaled
to a baseline d̃ = 1, such that r and r̃ are in fact two
representations (with different baselines) of the same
linear array. Then any ambiguity of the form Φi,j

as stated in Theorem IV.4 (for the representation r̃)
corresponds to at least one solution of the feasibility-
MIP (9) (for the representation r).

Proof. Let Φ ∈ RM be an ambiguity for r̃ in the
form of Theorem IV.4, and assume w.l.o.g. that the
first electrical angle is −πd, i.e., Φ1 = −πd and for
m = {2, . . . , M}:

Φm = −πd
(

1 − 2cm

|r̃i − r̃j |
)

= −πd
(

1 − 2cm

d |ri − rj |
)

,



with i 6= j ∈ [M ], cm ∈ N and cm1 6= cm2 for all
m1 6= m2 ∈ [M ]. The variables σℓ in (9) are then
given by

σℓ =

M∑

m=1

αm,ℓΦm mod 2π,

for m ∈ [M ] and ℓ ∈ [N ]. Thus,

N∑

ℓ=1

ejσℓ =

N∑

ℓ=1

exp
(

j

M∑

m=1

αm,ℓ(Φm + πd − πd)
)

= e−jπdK
N∑

ℓ=1

exp
(

j

M∑

m=1

αm,ℓ(Φm + πd)
)

, (11)

where K =
∑M

m=1 αm,ℓ is the same constant for
all ℓ ∈ [N ]. Since Φm + πd ∈ {2π w : w ∈ Q} for
all m ∈ [M ] it holds that (11) is a sum of roots of
unity, rotated by a complex number on the complex
unit circle.

Since Φ forms an ambiguous vector of electrical
angles for the linear array r, zm = exp(jΦm) form
a root of the generalized Vandermonde determinant
Vr(z) and thus of the Schur polynomial sλ(z), where
λ = r − (0, 1, . . . , M − 1). Equations (5), (6) and (7)
imply 0 = sλ(z) =

∑N
ℓ=1 exp(j σℓ), and thus (11)

is a rotated vanishing sum of roots of unity. Theo-
rem III.4 implies that (11) can be written as linear
combination of minimal vanishing sums with coeffi-
cients on the complex unit circle. By Lemma IV.3,
there is at least one feasible solution of the MIP (9)
that corresponds to the ambiguity Φ, which finishes
the proof.

Moreover, the computational results in Section V
below show that for non-symmetric integer linear
arrays, our approach finds many more ambiguities
than previously known. In general, it remains an
open question, whether there also exist ambiguities
for non-symmetric integer linear arrays which can-
not be expressed as linear combination of minimal
vanishing sums with coefficients on the complex unit
circle, or if our approach indeed finds all ambiguities
that are present in such an array.

Before presenting computational results, let us
shortly discuss some details of enumerating the fea-
sible solutions with our approach in the next section.

C. Enumerating all Feasible Solutions of the MIP

Since it is possible that the MIP (9) has infinitely
many feasible solutions, we do not count all feasible
solutions, but only all configurations of the integer
and binary variables b, q, x, z such that after fixing
all these variables the remaining problem has at least

one feasible solution. Because all integer and binary
variables are bounded, there are only finitely many
configurations that need to be checked.

After all feasible configurations of the integer and
binary variables have been found, we apply a post-
processing step in order to find the ambiguities
corresponding to each configuration. Due to the
rotations v

(i)
t of the used minimal vanishing sums,

there can exist configurations of the integer (and
binary) variables with infinitely many feasible solu-
tions for the continuous variables. These solutions
form a whole class of ambiguities with a number
of parameters, see Example V.1. Altogether, we end
up with either finitely many ambiguities, or finitely
many classes of ambiguities, each of them depending
on a number of parameters. The ambiguities can be
converted into DoAs by using −πd cos(θm) = Φm.

Remark IV.6. In order to reduce the compu-
tational effort of enumerating all feasible integer
solutions of (9), the problem can be divided into
smaller subproblems, one for each possible partition.
In each of the smaller MIPs, most of the variables
q(i) ∈ {0, 1}mi can be fixed, according to the corre-
sponding partition. Moreover, this eliminates many
symmetric solutions in terms of the variables q

(i)
j .

V. Computational Results

In this section, we use the approach of obtaining am-
biguities by enumerating the feasible solutions of (9)
to identify ambiguities for some exemplary integer
linear arrays. To enumerate all feasible solutions
we use the counting feature of SCIP 6.0.0 [11]. We
use CPLEX 12.7.1.0 as LP solver. The first Exam-
ple V.1 was enumerated using the full Problem (9),
whereas for Example V.2, we divided Problem (9)
into smaller ones, one for each possible partition
as described in Remark IV.6. In all examples, the
baseline is d = 1. The used model files can be
obtained via the website of the last author.

The computation for Example V.1 was performed
on a Linux desktop with 3.6 GHz Intel Core i7-
7700 Quad-Core CPUs having 16 GB main mem-
ory and 8 MB cache, whereas the computations
for Example V.2 were done on on a Linux cluster
with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs,
having 32 GB main memory and 10 MB cache. All
computations were performed single-threaded and,
in the case of Example V.2 with a timelimit of
450 000 s. For this Example, we also display the time
needed to enumerate all feasible solutions, the total
number of solutions that were enumerated, as well as
the number of processed nodes in the enumeration
process.



Example V.1 shows a linear array with an infinite
number of ambiguities, even after fixing the first
electrical angle to −πd.

Example V.1. Consider the linear array r = λ +
δ = (0, 1, 3, 4)⊤, where δ = (0, 1, 2, 3)⊤ and λ =
(0, 0, 1, 1)⊤. The possible Young tableaux are shown
in Figure 4.

1

2

1

3

1

4

2

3

2

4

3

4

Fig. 4: Young tableaux for λ = (0, 0, 1, 1)⊤

This results in the Schur polynomial

sλ(z) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4.

Since r has N = 6 corresponding SSYTs, there are
three possible partitions: 6 = 2 + 2 + 2 = 3 + 3 = 6.3

For the partitions 6 = 2 + 2 + 2 and 6 = 3 + 3, there
exist infinitely many valid solutions for the feasibility
problem (9), and thus infinitely many ambiguities,
which can be classified into three classes.

The partition 6 = 2 + 2 + 2 yields the two infinite
classes of electrical angles

−π ·
[
1, v, 0, −v

]⊤
, −π ·

[
1, 1 − v, 1 − 2v, −v

]⊤
,

for all v ∈ (0, 1). The partition 6 = 3 + 3 yields the
following class of electrical angles for v ∈ (−1, 1)
and γ = arccos(−πv):

−π ·
[
1, 1

3 , − 1
3 , v

]⊤ ≈ [0◦, 70.53◦, 109.47◦, γ]⊤.

Since already the steering vectors corresponding to
the electrical angles −π · [1, 1

3 , − 1
3 ]⊤ are linearly

dependent and thus induce a rank-deficient steering
matrix, an arbitrary electrical angle v ∈ (−π, π) can
be added to the three electrical angles in order to
obtain an ambiguity with four electrical angles.

For the third partition 6 = 6, there are finitely
many corresponding solutions, namely the eight am-
biguities in Table II. Note that all three ambiguities
that were already found by using the methods from
Proukakis and Manikas [22], are contained in one of
the three classes.

Some of the non-uniform ambiguities obtained
with the methods for symmetric linear arrays in [21]
are contained in −π·[1, v, 0, −v]⊤, but there also ex-
ist non-uniform ambiguities which cannot be found
with our approach, see Example III.7.

Altogether, our approach finds two new classes
of ambiguities for this particular linear array that

3Note that there are no minimal vanishing sums of length
1 or 4, see Remark III.5.

TABLE II: Unique ambiguities for Partition 6 = 6 in
the linear array r = (0, 1, 3, 4).

Electrical Angle Degree

−π [1, 14/15, 8/15, −3/15] [0◦, 21.04◦, 57.77◦, 101.54◦]
−π [1, 14/15, 2/15, −9/15] [0◦, 21.04◦, 82.34◦, 126.87◦]
−π [1, 9/15, 8/15, −4/15] [0◦, 53.13◦, 57.77◦, 105.47◦]
−π [1, 9/15, −2/15, −14/15] [0◦, 53.13◦, 97.66◦, 158.96◦]
−π [1, 4/15, −2/15, −3/15] [0◦, 74.53◦, 97.66◦, 101.54◦]
−π [1, 4/15, −8/15, −9/15] [0◦, 74.53◦, 122.23◦, 126.87◦]
−π [1, 3/15, 2/15, −4/15] [0◦, 78.46◦, 82.34◦, 105.47◦]
−π [1, 3/15, −8/15, −14/15] [0◦, 78.46◦, 122.23◦, 158.96◦]

TABLE III: Definition of fj(v) and f
(k)
6 (v) using

electrical angles.

f2 = π [v − 1, v], v ∈ (0, 1),

f3 = π [v − 1, v −
1
3

, v + 1
3

], v ∈ (0, 2
3

),

f5 = π [v − 1, v −
3
5

, v −
1
5

, v + 1
5

, v + 3
5

], v ∈ (0, 2
5

),

f
(1)
6

= π [v − 1, v −
14
15

, v −
4

15
, v −

1
5

, v + 1
5

, v + 3
5

], v ∈ (0, 2
5

),

f
(2)
6

= π [v − 1, v −
3
5

, v −
8

15
, v + 2

15
, v + 1

5
, v + 3

5
], v ∈ (0, 2

5
),

f
(3)
6

= π [v − 1, v −
3
5

, v −
1
5

, v −
2

15
, v + 8

15
, v + 3

5
], v ∈ (0, 2

5
),

f
(4)
6

= π [v − 1, v −
3
5

, v −
1
5

, v + 1
5

, v + 4
15

, v + 14
15

], v ∈ (0, 1
15

),

f
(5)
6

= π [v − 1, v −
3
5

, v −
4

15
, v + 2

15
, v + 8

15
, v + 14

15
], v ∈ (0, 1

15
),

f
(6)
6

= π [v − 1, v −
14
15

, v −
8

15
, v −

2
15

, v + 4
15

, v + 1
3

], v ∈ (0, 2
3

).

have not been known in the literature. Additionally,
all previously known ambiguities which can be ex-
pressed as sums of rotated minimal vanishing sums
are found by our approach as well.

Example V.2. Consider the linear array r =
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12), which has N = 12
SSYTs. There are 14 partitions of N = 12 not using
the numbers 1 and 4, namely

2+2+2+2+2+2=2+2+2+3+3=3+3+3+3

=2+2+3+5=2+5+5=2+2+2+6=3+3+6

=6+6=2+3+7=5+7=2+2+8=3+9=2+10=12.

The partitions 2+3+7 and 12 reached the timelimit
of 450 000 seconds, so that for these partitions we
possibly have enumerated only a subset of all feasible
solutions. For a subset of the remaining partitions all
ambiguities found by enumerating feasible solutions
of the corresponding smaller MIP are displayed in
Table IV, expressed as electrical angles. Here, fj(v)

and f
(k)
6 (v) are vectors of electrical angles depending

on a parameter, which are defined in Table III. Thus,
the (infinite) classes of ambiguities are given by com-
bining the specified vectors of electrical angles into
one large vector of 12 electrical angles depending on
a number of parameters.

In Table V the number of feasible solutions, the
time needed for enumerating the feasible solutions
and the number of processed nodes in the enu-
meration process are displayed for each partition.



TABLE IV: All found ambiguities in the linear array
r = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12), for a

subset of all possible partitions, expressed
in electrical angles.

Partition 2 + 2 + 2 + 2 + 2 + 2 — one class of infinitely many ambiguities

[f2(0), f2(v1), f2(v2), f2(v3), f2(v4), f2(v5)],

with 0 < v1 < v2 < v3 < v4 < v5 < 1
2

.

Partition 2 + 2 + 2 + 3 + 3 — two classes of infinitely many ambiguities

[f2(0), f2(v1), f2(v2), f3(w1), f3(w2)],

with 0 < v1 < v2 < 1
2

, and 0 < w1 < w2 < 1
3

.

[f3(0), f2(v1), f2(v2), f2(v3), f3(w1)],

with 0 < v1 < v2 < v3 < 1
2

, and 0 < w1 < 1
3

.

Partition 3 + 3 + 3 + 3 — one class of infinitely many ambiguities

[f3(0), f3(v1), f3(v2), f3(v3)], with 0 < v1 < v2 < v3 < 1
3

.

Partition 2 + 2 + 3 + 5 — three classes of infinitely many ambiguities

[f3(0), f2(v1), f2(v2), f5(w)], with 0 < v1 < v2 < 1
2

and 0 < w < 1
5

.

[f2(0), f2(v), f3(w), f5(u)], with 0 < v < 1
2

, 0 < w < 1
3

and 0 < u < 1
3

.

[f5(0), f2(v1), f2(v2), f3(w)], with 0 < v1 < v2 < 1
2

and 0 < w < 1
3

.

Partition 2 + 5 + 5 — two classes of infinitely many ambiguities

[f2(0), f5(v1), f5(v2)], with 0 < v1 < v2 < 1
5

.

[f5(0), f2(v), f5(w)], with 0 < v < 1
2

and 0 < w < 1
5

.

Partition 2 + 2 + 2 + 6 — twelve classes of infinitely many ambiguities

[f2(0), f2(v1), f2(v2), f
(k)
6

(w)], with 0 < v1 < v2 < 1
2

, k ∈ [6].

[f
(k)
6

(0), f2(v1), f2(v2), f2(v3)], with 0 < v1 < v2 < v3 < 1
2

, k ∈ [6].

Partition 3 + 3 + 6 — twelve classes of infinitely many ambiguities

[f3(0), f3(v), f
(k)
6

(w)], with 0 < v < 1
2

, k ∈ [6].

[f
(k)
6

(0), f3(v1), f3(v2)], with 0 < v1 < v2 < 1
3

, k ∈ [6].

Partition 6 + 6 — thirty-six classes of infinitely many ambiguities

[f
k1
6

(0), f
(k2)
6

(w)], with k1, k2 ∈ [6].

TABLE V: Number of solutions, solution times and
number of processed nodes for the MIPs

for each partition for the linear array
r = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12).

Partition # Solutions Time (s) # Nodes

2+2+2+2+2+2 160 719.43 2 204 798
2+2+2+3+3 26 664 189 691.62 74 705 045
3+3+3+3 405 5790.55 17 067 233
2+2+3+5 42 336 300 709.50 102 050 134
2+5+5 1680 20 150.43 45 847 950
2+2+2+6 9968 85 418.02 60 992 369
3+3+6 2736 26 180.16 56 723 306
6+6 130 2495.70 9 615 581
2+3+7 13 318 > 450 000.00 > 157 647 076
5+7 1289 37 766.13 68 727 902
2+2+8 8046 260 789.23 144 652 756
3+9 1188 44 698.63 60 887 227
2+10 1830 75 348.62 83 449 067
12 315 > 450 000.00 > 70 499 108

Theorem IV.4 yields one uniform ambiguity, namely

−π · [ 5
6 , 4

6 , 3
6 , 2

6 , 1
6 , 0

6 , − 1
6 , − 2

6 , − 3
6 , − 4

6 , − 5
6 ]⊤

which is contained in the class

[f2(0), f2(v1), f2(v2), f2(v3), f2(v4), f2(v5)]

of partition 2 + 2 + 2 + 2 + 2 + 2.

VI. Conclusion

We demonstrated that for several integer linear
arrays our method is able to find more ambigui-
ties than were known previously by the methods
from Manikas and Proukakis [22] (general case)
and the methods from Dowlut [7] and Manikas [21]
(symmetric case). It turns out that arrays with a
small number of SSYTs also have a small number
of (infinite) classes of ambiguities and the number
of SSYTs increases with the number of holes in the
corresponding linear array.

Example V.1 shows that at least for symmetric
linear arrays there exist non-uniform ambiguities
that cannot be found with our approach described
in Section IV. Therefore, the interesting question
arises, whether there can exist ambiguities in non-
symmetric linear arrays that cannot be represented
using sums of rotated minimal vanishing sums (c.f.
Example III.7 and the discussion thereafter).
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