
ar
X

iv
:2

11
2.

01
07

7v
2 

 [
cs

.I
T

] 
 5

 J
un

 2
02

2

Blind Super-Resolution of Point Sources via Projected Gradient

Descent

Sihan Mao and Jinchi Chen ∗†

June 7, 2022

Abstract

Blind super-resolution can be cast as a low rank matrix recovery problem by exploiting the inherent

simplicity of the signal and the low dimensional structure of point spread functions. In this paper, we

develop a simple yet efficient non-convex projected gradient descent method for this problem based on the

low rank structure of the vectorized Hankel matrix associated with the target matrix. Theoretical analysis

indicates that the proposed method exactly converges to the target matrix with a linear convergence

rate under the similar conditions as convex approaches. Numerical results show that our approach is

competitive with existing convex approaches in terms of recovery ability and efficiency.

1 Introduction

Blind super-resolution is the problem of estimating high-resolution information of a signal from its low-
resolution measurements when the point spread functions (PSFs) are unknown. Such problem arises in a
wide variety of applications, including seismic data analysis [25], nuclear magnetic resonance spectroscopy
[27], multi-user communication system [23], and 3D single-molecule microscopy [28]. In particular, when the
knowledge of PSFs is available, blind super-resolution reduces to the super-resolution problem [7, 8].

Without any additional assumptions, blind super-resolution of point sources is an ill-posed problem. To
alleviate this issue, it is common to assume that the PSFs belong to a known low-dimensional subspace.
Under this assumption and utilizing the lift technique, blind super-resolution of point sources can be formu-
lated as a matrix recovery problem. By exploiting low dimensional structures of the target matrix, a series
of works [15, 37, 21, 12, 31] theoretically studied under which conditions the target matrix can be recovered.
The author in [15] considered the setting where the PSF is shared among all point sources, and established
the recovery guarantees for the atomic norm minimization (ANM) method. Yang et al. [37] further studied
the same method, but with multiple unknown PSFs. Li et al. [21] provided robust analysis of blind 1D
super-resolution and later the work in [31] generalized [21] to 2D case. Recently, Chen et al. [12] proposed
a nuclear norm minimization method based on the vectorized Hankel lift framework, which also appears in
[38, 40] but for matrix completion. Moreover, [12] established the corresponding exact recovery guarantees.
While strong theoretical guarantees have been built for blind super-resolution based on convex methods,
these approaches are computational inefficient for the high dimensional setting. Therefore it is necessary to
design efficient and provable algorithms to deal with the large-scale regime.

In the past few years, substantial progress has been made on designing and analyzing provable fast
algorithms for applications from science and engineering via non-convex optimization [20, 13, 16], including
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matrix completion [14, 42], phase retrieval [29], blind deconvolution [22], spectrally sparse signal recovery
[5, 6], to name just a few. The goal of this work is to develop an efficient non-convex algorithm for blind
super-resolution problem.

1.1 Comparisons with Related Work and Main Contributions

Our work is closely related to [12, 5, 43]. As already mentioned, [12] proposed a convex approach called
Vectorized Hankel Lift (VHL) for blind super-resolution. Based on this framework, we develop an efficient and
provable non-convex algorithm for blind super-resolution of point sources. More precisely, we parameter the
vectorized Hankel matrix corresponding to a candidate solution in terms of the Burer–Monteiro factorization
and develop a projected gradient descent method to directly recover the low-rank factors.

Our algorithm is inspired by the method in [5], where the projected gradient descent was developed for
spectrally sparse signal recovery problem based on the low rank structure of the Hankel matrix corresponding
to the target signal. Despite this, both the structures of sensing operator and target matrix in this paper are
substantially different from that in [5]. Therefore, the convergence analysis in [5] can not be easily extended
to our model.

Recently, [43] follows our work and develops an iterative hard thresholding method based on the frame-
work of vectorzied Hankel lift to solve blind super-resolution problem. It is worth pointing out that they
directly apply our result to bound the initialization error of their method. Furthermore, their proof idea is
inspired by the guarantee analysis of low rank matrix recovery over Riemannian manifold [6, 36]. Therefore
the proof techniques are totally different with ours.

The main contributions of this work are summerized as follows. Firstly, we present a new non-convex
algorithm called projected gradient descent via vectorized Hankel lift (PGD–VHL) for blind super-resolution.
Numerical experiments show that PGD–VHL is competitive with convex recovery methods such as ANM and
VHL in terms of recovery ability, but is much more efficient. Secondly, we establish the recovery performance
of PGD–VHL. Our results show that PGD–VHL started from a spectral initialization converges linearly to
the target matrix under the similar sample complexity as convex approaches. Lastly, it is worth mentioning
that the theoretical guarantee of PGD–VHL requires a slightly milder assumption on the low-dimensional
subspace than that for VHL in [12].

1.2 Organization and Notation

The rest of this paper is organized as follows. Section 2 gives the problem setup of blind super-resolution of
point sources. Section 3 presents the PGD–VHL algorithm whose the exact recovery guarantee is provided
in Section 4. Numerical evaluations are presented to illustrate the performance of PGD–VHL in Section 5.
All proofs are deferred to Section 6. Finally, we conclude this paper and propose some future work in Section
7.

Some notations used throughout this paper are presented as follows. Symbols for vectors, matrices and
operators are in bold lowercase letters, bold uppercase letters and calligraphic letters, respectively. In this
paper, vectors and matrices are indexed starting with zero. For a complex number x, its real part is denoted
by ℜ(x). The transpose, complex conjugate, complex transpose, spectral norm and Frobenius norm of matrix
X are denoted as XT, X, XH, ‖X‖ and ‖X‖

F
, respectively. The inner product of two matrices X1 and

X2 is defined as 〈X1,X2〉 = trace(XH

1 X2). Moreover, we will refer to A⊙B and A⊗B as the Hadamard
product and Kroncker product, respectively. We use x[ℓ] to denote the ℓ-th entry of x and X(j, :) to denote
the jth row of X. Moreover, we use the MATLAB notation X(i : j, k) to denote a vector of length j− i+1,
with entries Xi,k, · · · ,Xj,k. The identity operator are denoted as I. Let H be the vectorized Hankel lift
operator which maps a matrix X ∈ Cs×n into an sn1 × n2 matrix,

H(X) =




x0 x1 · · · xn2−1

x1 x2 · · · xn2

...
...

. . .
...

xn1−1 xn1
· · · xn−1


 ∈ C

sn1×n2 , (1.1)

2



where xi ∈ Cs is the i-th column of X and n1 + n2 = n + 1. We denote the adjoint of H by H∗, which
is a linear mapping from Csn1×n2 to Cs×n. In particular, for any matrix Z ∈ Csn1×n2 , the i-th column of
H∗(Z) is given by

H∗(Z)ei =
∑

j+k=i
0≤j≤n1−1,0≤k≤n2−1

zj,k,

where zj,k is the (j, k)-th block of Z such that zj,k = Z(js : (j + 1)s− 1, k). Letting D2 = H∗H, we have

D2(X) =
[
w0x0 · · · wn−1xn−1

]
,

where the scale wi is defined as

wi = #{(j, k)|j + k = i, 0 ≤ j ≤ n1 − 1, 0 ≤ k ≤ n2 − 1}.

Moreover, we define G = HD−1. The adjoint of G denoted G∗ is given by G∗ = D−1H∗. Additionally, G and
G∗ satisfy

G∗G = I, ‖G‖ = 1, and ‖G∗‖ ≤ 1. (1.2)

We use Gi to denote the matrix defined by

Gi =
1√
wi

∑

j+k=i
0≤j≤n1−1,0≤k≤n2−1

eje
T

k . (1.3)

Then one has

G(X) =

n−1∑

i=0

G
(
xie

T

i

)
=

n−1∑

i=0

Gi ⊗ xi, (1.4)

where Gi ⊗ xi denotes the Kronecker product between Gi and xi.
Throughout this paper, c, c0, c1, · · · denote absolute positive numerical constants whose values may vary

from line to line. The notation n = O(m) means that there exists an absolute constant c > 0 such that
n ≤ cm.

2 Problem formulation

The point source signal model can be represented as a superposition of r spikes

x(t) =
r∑

k=1

dkδ(t− τk), (2.1)

where δ(·) is the Dirac function, dk ∈ C and τk ∈ [0, 1) are the amplitude and location of the k-th point
source, respectively. Let {gk(t)}rk=1 be the unknown point spread functions depending on the locations of
point sources. The observation is a convolution between x(t) and {gk(t)}rk=1, that is,

y(t) =
r∑

k=1

dkδ(t− τk) ∗ gk(t) =
r∑

k=1

dk · gk(t− τk). (2.2)

After taking the Fourier transform and sampling, we obtain the measurements as

y[j] =
r∑

k=1

dke
−2πıτk·j ĝk[j], j = 0, · · ·n− 1. (2.3)
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Let gk =
[
ĝk[0] · · · ĝk[n− 1]

]T
be a vector corresponding to the k-th unknown point spread function.

The goal is to estimate {dk, τk}rk=1 as well as {gk}rk=1 from (2.3).
Obviously, the problem of blind super-resolution is ill-posed without any additional assumptions, because

the number of unknowns in (2.3) is O(nr), which is larger than the number of samples n. To tackle this
issue, we follow the same route as that in [1, 15, 37, 12] and assume that all the Fourier samples of the
unknown PSFs {gk}rk=1 belong to a known low-dimensional subspace spanned by the columns of B ∈ C

n×s

with s < n, i.e.,

gk = Bhk, (2.4)

where hk ∈ C
s denotes the unknown directional vector of gk in the subspace. According to the subspace

assumption (2.4) and using the lift trick [1], we can easily rewrite (2.3) as a set of linear measurements with
respect to the target matrix X♮ =

∑r
k=1 dkhka

T
τk ,

y[j] =
〈
bje

T

j ,X
♮
〉
, j = 0, · · · , n− 1, (2.5)

where aτk =
[
1, e−2πιτk, · · · , e−2πιτk·(n−1)

]T
, bj ∈ Cs is the jth column vector of BH, ej is the j-th standard

basis of Rn. The measurement model (2.5) can be rewritten succinctly as

y = A(X♮), (2.6)

where A : Cs×n → Cn is the linear operator. Let A∗ be the adjoint operator of A which is given by
A∗(y) =

∑n−1
j=0 y[j]bje

T

j . Furthermore, define D = diag
(√
w0, · · · ,

√
wn−1

)
. We have DA(X) = AD(X)

for any X. The measurements can be reformulated as

Dy = AD(X♮). (2.7)

Note that once the data matrix X♮ is reconstructed, the frequencies {τk}rk=1 can be retrieved through
spatial smoothing MUSIC [18, 17, 39, 12], and the amplitudes {dk}rk=1 and coefficients {hk}rk=1 can be
estimated by solving an over-determined linear system. Therefore in this work we focus on the problem of
recovering X♮ from its linear measurements (2.6).

It has been shown that H(X♮) is a rank-r matrix [12] and thus the matrix H(X♮) admits low rank
structure when r ≪ min(sn1, n2). Equipped with the low rank structure of H(X♮), it is natural to recover
X♮ by solving the constrained least squares problem

min
X

1

2
‖Dy −AD(X)‖22 s.t. rank(H(X)) = r. (2.8)

Letting Z = H(X) = GD(X) for any X, it can be verified that (I − GG∗)(Z) = 0. To eliminate the rank
constrain in (2.8), we apply the Burer–Monteiro factorization [4] to parameterize Z as Z = LRH, where
L ∈ C

sn1×r and R ∈ C
n2×r are two rank-r matrices. Therefore, the optimization problem (2.8) can be

rewritten as

min
L,R

1

2

∥∥Dy −AG∗(LRH)
∥∥2
2 s.t. (I − GG∗)(LRH) = 0. (2.9)

Before introducing our algorithm, we make an assumption that Z♮ = H(X♮) is µ1-incoherent which is defined
below.

Assumption 2.1. Let Z♮ = UΣV H be the singular value decomposition of Z♮, where U ∈ Csn1×r,Σ ∈ Rr×r

and V ∈ Cn2×r. Denote UH =
[
UH

0 · · · UH

n1−1

]H
, where Uj = U [js : (j + 1)s − 1, :] is the j-th block of

U for j = 0, · · ·n1 − 1. The matrix Z♮ is µ1-incoherent if U and V obey that

max
0≤j≤n1−1

‖Uj‖2F ≤ µ1r

n
and max

0≤k≤n2−1

∥∥eTkV
∥∥2
2
≤ µ1r

n

for some positive constant µ1.
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Remark 2.1. Assumption 2.1 is the same as the one made in [11, 40] for low rank matrix recovery and
is used in [12] for blind super-resolution. It has been established that Assumption 2.1 is obeyed when the
minimum wrap-up distance between the locations of point sources is greater than about 2/n.

Let µ and σ be two numerical constants such µ1 ≤ µ and σ1 ≤ σ, and M be a convex set defined as
follows

M =

{[
L

R

]
: max

0≤j≤n1−1
‖Lj‖F ≤

√
µrσ

n
, ‖R‖2,∞ ≤

√
µrσ

n

}
, (2.10)

where Lj is the j-th block of L. Define

M ♮ =

[
L♮

R♮

]
=

[
UΣ1/2

V Σ1/2

]
.

Since Z♮ is µ1-incoherent, we have M ♮ ∈ M. Therefore, we consider a penalized version of (2.9) for
recovering the factorized matrices:

min
M∈M

{
f(M) :=

1

2

∥∥Dy −AG∗(LRH)
∥∥2
2
+

1

2

∥∥(I − GG∗) (LRH)
∥∥2
F
+

1

16

∥∥LHL−RHR
∥∥2
F

}
, (2.11)

where M =
[
LH RH

]H ∈ C(sn1+n2)×r, and the last term penalizes the mismatch between L and R, which
is widely used in rectangular low rank matrix recovery [34, 42, 16].

3 Algorithm: projected gradient descent

Inspired by [5], we design a projected gradient descent method for the problem (2.11), which is summarized
in Algorithm 1. The initialization involves two steps: (1) computes the best rank r approximation of HA∗(y)

Algorithm 1 PGD–VHL

Input: A,y, n, s, r
Initialization:

Ẑ0 = Û0Σ̂0V̂
H

0 = PrHA∗(y)

L̂0 = Û0Σ̂
1/2
0 , R̂0 = V̂0Σ̂

1/2
0

M̂0 =
[
L̂H

0 R̂H
0

]H

(L0,R0) = PM((L̂0, R̂0))

M0 =
[
LH

0 RH

0

]H
while not convergence do

Mt+1 = PM (Mt − η∇f(Mt)).
end while

via one step hard thresholding Pr(·), where A∗ is the adjoint ofA and Pr(Z) is the best rank r approximation
of Z; (2) projects the low-rank factors of best rank-r approximated matrix onto the convex feasible set M.

Given a matrix M =
[
L

H
R

H
]H
, the projection onto M, denoted by

[
L̂

H
R̂

H

]
H

, has a closed form solution:

L̂j =

{
Lj if ‖Lj‖F ≤

√
µrσ
n

1
‖Lj‖F

Lj ·
√µrσ

n otherwise

for 0 ≤ j ≤ n1 − 1 and

eTkR̂ =




eTkR if

∥∥eTkR
∥∥
2 ≤

√
µrσ
n

eT

kR

‖eT

k
R‖2

·
√

µrσ
n otherwise
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for 0 ≤ k ≤ n2 − 1. Let Mt be the current estimator. The algorithm updates Mt along gradient descent
direction −∇f(Mt) with step size η, followed by projection onto the set M. The gradient of f(M) is

computed with respect to Wirtinger calculus given by ∇f =
[
∇H

Lf ∇H

Rf
]H

where

∇Lf =
(
GA∗

(
AG∗(LRH)−Dy

))
R+

(
(I − GG∗)(LRH)

)
R +

1

4
L(LHL−RHR),

∇Rf =
(
GA∗

(
AG∗(LRH)−Dy

))H
L+

(
(I − GG∗)(LRH)

)H
L+

1

4
R(RHR−LHL).

Indeed PGD–VHL algorithm can be efficiently implemented. To obtain the computational cost of ∇f , we
first introduce some notations. Let Hv be the Hankel operator which maps a vector x ∈ Cn into an n1 × n2

matrix,

Hv(x) =




x0 · · · xn2−1

...
. . .

...
xn1−1 · · · xn−1


 ,

where xi is the i-th entry of x. The adjoint of Hv, denoted by H∗
v, is a linear mapping from n1 × n2 to n.

It can be seen that H∗
v

(
LvR

H

v

)
can be computed via r fast convolutions by noting that

[
H∗
v

(
LvR

H

v

)]
i
=

[
H∗
v

(
r∑

s=1

Lv[:, s]Rv[:, s]
T

)]

i

=
r∑

s=1

[
H∗
v

(
Lj [:, s]R̄[:, s]T

)]
i

=

r∑

s=1

(
Lv[:, s] ∗Rv[:, s]

)
[i],

where Lv ∈ Cn1×r andRv ∈ Cn2×r. In addition, we can compute (Hv(x))Rv by r fast Hankel matrix–vector
multiplications, that is,

(Hv(x)Rv) [j, s] =

n2−1∑

k=0

x[j + k]Rv[k, s]

=

n2−1∑

k=0

x̃[n− 1− j − k]Rv[k, s]

= (x̃ ∗Rv[:, s])[n− 1− j],

where x̃ is a vector reversing the order of x. Therefore the computational complexity of both H∗
v(LvR

H
v ) and

(Hv(x))Rv is O(rn log n) flops. Moreover, the authors in [12] show that H(X) = P H̃(X), where H̃(X) is
a matrix constructed by stacking all {Hv(e

T

ℓX)}sℓ=1 on top of one another, and P is a permutation matrix.
Therefore we can compute G∗(LRH) and GD(X)R by using O(srn log n) flops. Thus the implementation of
our algorithm is very efficient and the main computational complexity in each step is O(sr2n+ srn logn).

4 Main result

In this section, we provide a theoretical analysis of PGD–VHL under a random subspace model.

Assumption 4.1. The column vectors {bi}n−1
i=0 of BH are independently and identically drawn from a

distribution F which satisfies the following conditions:

E
[
bib

H

i

]
= Is, i = 0, · · · , n− 1, (4.1)

max
0≤ℓ≤s−1

|bi[ℓ]|2 ≤ µ0, i = 0, · · · , n− 1. (4.2)
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Remark 4.1. Assumption 4.1 is a standard assumption in RIPless compressed sensing [10] and blind super-
resolution [15, 37, 21, 30, 12]. It implies the spectral flatness over point spread functions, which is satisfied
in OFDM signals [2] and noisy radar waveforms [26]. Assumption 4.1 holds with µ0 = 1 by many common
random ensembles, for instance, when the components of b are Rademacher random variables taking the
values ±1 with equal probability or when b is uniformly sampled from the rows of a Discrete Fourier Transform
(DFT) matrix.

Now we present the main result, whose proofs are deferred to Section 6.

Theorem 4.1. Let µ ≥ µ1 and σ = σ1(Σ̂0)/(1 − ε) for 0 ≤ ε ≤ 1/3. Let η ≤ σr

9000(µ0µsrσ1)2
, β = σr

72 , and

M
♮ =

[
L

♮H
R

♮H
]H
. Suppose X♮ obeys the Assumption 2.1 and the subspace B satisfies the Assumption 4.1.

If

n ≥ c0ε
−2µ2

0µs
2r2κ2 log2(sn),

with probability at least 1− c1(sn)
−c2 , the sequence {Mt} returned by Algorithm 1 satisfies

dist2(Mt,M
♮) ≤ (1− ηβ)t · ε

2σr
µ0s

, (4.3)

where c0, c1, c2 are absolute constants, σ1 = σ1(Z
♮), σr = σr(Z

♮), κ is the condition number of Z♮, and the
distance dist(M ,M ♮) is defined as

dist(M ,M ♮) = min
QQH=QHQ=Ir

∥∥M −M ♮Q
∥∥
F
.

Remark 4.2. It is worth noting that our results require slightly milder assumptions than that in [12]. The
theoretical performance in [12] is established based on an additional assumption, which requires a lower bound
of ℓ2 norm of the row vector of B. However, the performance guarantee of PGD–VHL is independent of this
assumption.

Remark 4.3. Compared with the sample complexity established in [12] for the nuclear norm minimization
method, which is n ≥ cµ0µ1 · sr log4(sn), Theorem 4.1 implies that PGD–VHL is sub-optimal in terms of s
and r. The extra r factor is caused by the technical derivation. Since the convergence is established based on
the Frobenius norm and the Frobenius norm of the initial error is bounded by its spectral norm. Details can
be found in Section 6.1. The extra s factor is introduced to ensure the initial error to be sufficiently small,
i.e., on the order of 1/(µ0s), which helps to derive the linear convergence rate of PGD–VHL. We admit
that it is an artifact of our proof because subsequent numerical experiments indicate that there approximately
exists a linear relationship between n and s or n and r.

Remark 4.4. Theorem 4.1 implies that PGD–VHL converges to M ♮ with a linear rate. Therefore, after
T = O((µ0µsrκ)

2 log(1/ǫ)) iterations, we have dist2(MT ,M
♮) ≤ ǫ · dist2(M0,M

♮). Given the iterates MT

returned by PGD–VHL, we can estimate XT by D−1G∗(LTR
H

T ).

Remark 4.5. As already mentioned, once the data matrix X♮ is recovered, the locations {τk}rk=1 can be
computed from it by spatial smoothing MUSIC algorithm [18, 17, 39, 12] and the weights {dk,hk}rk=1 can be
estimated by solving an overdetermined linear system [12].

Remark 4.6. Though we have mainly focused on the one-dimensional (1D) blind super-resolution problem,
the model and analysis are also applicable for higher dimensional case. Due to space limitations, we omit the
theoretical results but provide numerical simulations for two-dimensional (2D) blind super-resolution problem
in Section V.B.
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Figure 1: The phase transitions of VHL, ANM and PGD-VHL when n = 64. Top: frequencies are randomly
generated; Bottom: frequencies obey the separation condition ∆ := mink 6=j |τk − τj | ≥ 1/n. The red curve
plots the hyperbola curve rs = 20.

5 Numerical simulations

In this section, a series of numerical results are provided to illustrate the performance of PGD–VHL. We
conduct simulations on 1D signals and 2D signals separately. Moreover, we implement our algorithm with
2D MUSIC [3, 41] to solve the joint delay-Doppler estimation problem, which is an important issue arising in
orthogonal frequency-division multiplexing (OFDM) signals. The numerical simulations are executed from
MATLAB R2021b on a macOS machine with multi-core Intel CPU at 2.3 GHz CPU and 16 GB RAM. Our
code is available at “https://github.com/jcchen2017/PGDVHL”.

5.1 Simulation for 1D Signals

We begin by providing the numerical results for 1D signals. The data matrix X♮ ∈ Cs×n is generated
by
∑r

k=1 dkhka
T

τk
. Here the locations {τk}rk=1 of the point sources are randomly generated from [0, 1),

the coefficients {hk}rk=1 are i.i.d. sampled from standard Gaussian with normalization, and the amplitudes
{dk}rk=1 are selected to be dk = (1+10ck)e−ıφk , where ck is uniformly sampled from [0, 1] and φk is uniformly
sampled from [0, 2π). Moreover, the columns ofB are uniformly sampled from the DFT matrix. The stepsize
of PGD–VHL is chosen via backtracking line search.

The first experiment studies the recovery ability of PGD–VHL through the framework of phase transition
and we compare it with two convex recovery methods: VHL [12] and ANM [37]. Both VHL and ANM are
solved by CVX [19]. PGD–VHL will be terminated if ‖y −A(Xt)‖2 ≤ 10−5 or a maximum number of

8



iterations is reached. The tests are conducted with n = 64 and the varied s and r. We repeat 20 random
trials and record the probability of successful recovery in our tests. A trial is declared to be successful if∥∥Xt −X♮

∥∥
F
/
∥∥X♮

∥∥
F
≤ 10−3. Figure 1(a), 1(b) and 1(c) show the phase transitions of VHL, ANM and PGD–

VHL when the locations of point sources are randomly generated, and Figure 1(d), 1(e) and 1(f) illustrate the
phase transitions of VHL, ANM and PGD–VHL when the separation condition ∆ := minj 6=k |τj − τk| ≥ 1/n
is imposed. In this figure, white color means successful recovery while black color indicates failure. It is
interesting to observe that PGD–VHL has a higher phase transition curve than VHL whether the separation
condition is satisfied or not. Moreover, by comparing Figure 1(b) with (c), we observe that PGD–VHL is
less sensitive to the separation condition than ANM.

In the second experiment, we study the phase transition of PGD–VHL when one of r and s is fixed.
Note that in this test, the separation condition is not imposed for PGD–VHL. Figure 2(a) indicates an
approximately linear relationship between s and n for the successful recovery when the number of point
sources is fixed to be r = 4. The same linear relationship between r and n can be observed when the
dimension of the subspace is fixed to be s = 4, see Figure 2(b). Therefore there exists a gap between our
theory and empirical observation and we leave it as future work.
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Figure 2: (a) The phase transition of PGD–VHL for varying n and s when r = 4. The red line plots the
straight line n = 2.5s. (b) The phase transition of PGD–VHL for varying n and r when s = 4. The red line
plots the straight line n = 2.5r.

In the third simulation, we investigate the convergence rate of PGD–VHL for n = 1024 with fixed s or r.
The results are shown in Figure 3. The y-axis denotes log

(∥∥Xt −X♮
∥∥
F
/
∥∥X♮

∥∥
F

)
and the x-axis represents

the iteration number. It can be clearly seen that PGD–VHL converges linearly as shown in our main theorem.
Also it is worth pointing out that PGD–VHL can be implemented in high dimensional regimes, where we
take n = 1024.
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Figure 3: (a) Convergence of PGD–VHL for varying s = 4, 6, 8 when n = 1024 and r = 4. (b) Convergence
of PGD–VHL for varying r = 4, 6, 8 when n = 1024 and s = 4.
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In the fourth simulation, we conduct the tests to demonstrate the robustness of PGD–VHL to additive
noise. More specifically, we collect the measurements corrupted by the noise vector e = σe · ‖y‖2 ·w/ ‖w‖2,
where y is the uncontaminated observations, w is the standard Gaussian vector with i.i.d. entries and
σe denotes the noise level. In the tests, the noise level σe is taken from 10−3 to 1, corresponding to the
signal-to-noise ratio (SNR) from 60 to 0 dB. For each σe, 10 random trials are conducted with s = r = 4.
As for the number of measurements, we choose n = 64 and n = 128 for comparison. PGD-VHL is set to
be terminated when

∥∥Xt+1 −Xt
∥∥
F
/ ‖Xt‖

F
≤ 10−7. In Figure 4, the average relative reconstruction error

is plotted with SNR. It can be clearly seen that the relationship between the relative reconstruction error
and the noise level is linear for PGD–VHL. Moreover, the relative reconstruction error decreases with the
increase of the number of measurements.

We finally compare the running time for ANM, VHL and PGD–VHL when the number of measurements
is varied, the number of spikes r is fixed to be 3 and the dimension of subspace s is also fixed to be 3. Note
that both VHL and ANM are solved by SDPT3 [32] based on CVX [19]. We repeat 10 random trials for
each test. The average computational time for each tested algorithms are shown in Table I. The symbol
“−” indicates that the algorithm was terminated due to the lack of memory. It can be seen that PGD–VHL
significantly improve the running time compared with ANM and VHL when n is large.

Table 1: Running time comparison for 1D signals when s = r = 3.
Methods n = 64 n = 128 n = 256 n = 512

ANM 1.6278s 7.2992s 67.6007s −
VHL 62.2369s 748.3695s − −

PGD–VHL 1.3254s 4.4417s 19.3004s 57.4518s
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Figure 4: Performance of PGD–VHL under different noise levels

5.2 Simulation for 2D Signals

In this part, we evaluate the performance of our algorithm for 2D signals. The data matrix is given by
X♮ =

∑r
k=1 dkhk(aτ2k ⊗ aτ1k)

T ∈ C
s×n1n2 and the samples are generated by

y[j] =
〈
bje

T

j ,X
♮
〉
, j = 0, · · · , n1n2 − 1. (5.1)

Here the two dimensional locations τk := (τ1k, τ2k) are uniformly sampled from [0, 1)× [0, 1), the amplitudes
{dk}rk=1, the coefficients {hk}rk=1 and the subspace columns {bj}n1n2−1

j=0 are generated by the same way as

the 1D case. Let X♮
ℓ =

∑r
k=1 dke

−2ıπτ2k·ℓ(hka
T

τ1k
) be an s×n1 matrix, where ℓ = 0, · · · , n2 − 1. Let H(X♮)

10



be the two-fold vectorized Hankel matrix of X♮ defined as follows:

H(X♮) =




H(X♮
0) · · · H(X♮

K2−1)
...

. . .
...

H(X♮
K1−1) · · · H(X♮

n2
)


 ∈ C

sL1K1×L2K2 ,

where H(X♮
ℓ) ∈ CsL1×L2 is the vectorized Hankel matrix defined in (1.1). Here L1 + L2 = n1 + 1 and

K1 +K2 = n2 + 1. It has been shown in [12] that H(X♮) is a rank-r matrix. Therefore, we can naturally
generalize our algorithm to the 2D case, and then use the two-dimensional PGD–VHL (PGD–VHL (2D)) to
recover X♮ from (5.1). The phase transition is shown in Figure 5 and the convergence rate of PGD–VHL
(2D) for different n1 and n2 is shown in Figure 6. Overall, the performance of PGD–VHL (2D) exhibits a
similar phenomenon to the 1D case.
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Figure 5: The phase transition of PGD–VHL (2D) for varying s and r when n1 = 13 and n2 = 9. The
locations are randomly generated. The red line plots the straight line sr = 25.
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Figure 6: Convergence of PGD–VHL (2D) for 2D signals with (n1, n2) ∈ {(23, 19), (33, 29), (53, 49)}. Here
we fix s = 3 and r = 3.

5.3 Simulation for joint delay-Doppler estimation from OFDM signals

Furthermore, we evaluate the performance of PGD–VHL (2D) for the problem of joint delay-Doppler estima-
tion from OFDM signals. In this problem, the transmitted signal is divided intoM blocks and N orthogonal
subcarriers are used in each block. Then the received samples in the n-th subcarrier and m-th block can be
formulated as [41]

ym[n] =
r∑

k=1

dke
−2ıπ(n·∆fτk+m·T̄ fk)gm[n], (5.2)

11



where r is the number of propagation paths for communication channel, {τk, fk}rk=1 are the delays and
Doppler frequencies, {dk}rk=1 ⊂ C denote the channel coefficients, ∆f is the frequency spacing of ad-
jacent subcarriers, T̄ is the duaration of each transmission block with T̄ fk ≪ 1 as stated in [41], and
{gm[n]}n=0,··· ,N−1 denote data symbols in the m-th block. For sake of simplicity, we define φk = ∆fτk ∈
[0, 1), ψk = T̄ fk ∈ [0, 1). Concatenating ym[n] in the vector ym ∈ C

N and stacking ym yield that

y =

(
r∑

k=0

dkaψk
⊗ aφk

)
⊙ g ∈ C

MN ,

where g =
[
g1 · · · gM

]T ∈ CMN and gm =
[
gm[0] · · · gm[N − 1]

]T ∈ CN . As pointed in [2, 35], since
the waveforms in OFDM have a flat spectrum, g can be approximately represented as g = Bh, where B

should obey the isotropy and incoherence properties in Assumption 4.1. Then the received samples can be
rewritten as

y[j] =

〈
bje

T

j ,

r∑

k=1

dkh(aψk
⊗ aφk

)T

〉
(5.3)

for j = 0, · · · ,MN − 1. It can be seen that (5.3) is a special case of (5.1) where h is independent to the two
dimensional locations {(ψk, φk)}rk=1.

In our numerical simulation, We set N = 13,M = 9 and s = r = 4. Each row of B is generated from the
following distribution described in [15, 35], i.e.,

bk =
[
1 e2πıfk · · · e2πı(s−1)fk

]T

for k = 0, . . . ,MN − 1, where fk is chosen uniformly at random in [0, 1]. The locations {(ψk, φk)}rk=1

are chosen uniformly at random from [0, 1)× [0, 1), and the coefficient vector h is generated from standard
Gaussian with normalization. The data matrix

∑r
k=1 dkh(aψk

⊗aφk
)T can be firstly recovered via PGD–VHL

(2D), then the locations {(ψk, φk)}rk=1 are retrieved by 2D MUSIC and the channel coefficients {dk}rk=1 are
estimated by solving an overdetermined linear system [12]. The results are presented in Figure 7. It is shown
that implementing PGD–VHL (2D) with 2D MUSIC can exactly recover delays and Doppler frequencies.

Figure 7: Performance of PGD-VHL (2D) for joint delay-Doppler estimation problem.

6 Proof of Theorem 4.1

The proof follows a well established route that has been widely used in non-convex optimization for low rank
matrix recovery [9, 42, 5]. In a nutshell, the initialization provided in Algorithm 1 will be shown to lie in
a basin of attraction where the sequence returned by Algorithm 1 converges linearly to the true solution.
Despite this, the proof details are quite involved and substantially different. We first list two useful lemmas,
whose proofs are deferred to Section 6.1 and 6.2.
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Lemma 6.1. Suppose Z♮ is µ1-incoherent and n ≥ c0ε
−2κ2µ2

0µs
2r2 log2(sn). Then one has

dist2(M0,M
♮) ≤ ε2σr

µ0s

with probability at least 1− (sn)−c1 .

Lemma 6.2. Let {Mt} be the sequence returned by Algorithm 1. Denote ∆t := Mt −M ♮Qt, where

Qt = arg min
QQH=QHQ=Ir

∥∥Mt −M ♮Q
∥∥
F
.

Let η ≤ σr

9000(µ0µsrσ1)2
, β = σr

72 . Then with probability 1− (sn)−c, one has

dist2(Mt,M
♮) ≤ (1 − ηβ)t dist2(M0,M

♮)

for t = 1, 2, · · · .

Combining Lemma 6.1 and Lemma 6.2 together, we complete the proof.

6.1 Proof of Lemma 6.1

We begin our presentation of the proof with a useful lemma whose proof is provided in Section 6.3.

Lemma 6.3. Suppose that Z♮ is µ1-incoherent. Then with probability at least 1 − (sn)−c1 , the matrix

Ẑ0 = Pr(GDA∗(y)) obeys

∥∥∥Ẑ0 −Z♮
∥∥∥ ≤ c0σ1

√
µ0µ1sr log

2(sn)

n
, (6.1)

where c0 and c1 are absolute constants.

By Lemma 6.3 and the assumption that n should be larger than c0ε
−2κ2µ2

0µs
2r2 log2(sn), the event

∥∥∥Ẑ0 −Z♮
∥∥∥ ≤ c1

√
µ0µ1sr log

2(sn)

n
σ1(Z

♮) ≤ εσ1(Z
♮)

occurs with probability at least 1− (sn)−c1 , which implies that

σ1(Z
♮) ≤ σ1(Ẑ0)

1− ε
=: σ and σ1(Ẑ0) ≤ (1 + ε)σ1 ≤ 2σ.

By the definition of M in (2.10), it can be seen that M ♮Q̂0 ∈ M, where Q̂0 = argmin
Q

∥∥∥M̂0 −M ♮Q

∥∥∥
F

.

Thus we have

dist(M0,M
♮) =min

Q

∥∥M0 −M ♮Q
∥∥
F

≤
∥∥∥M0 −M ♮Q̂0

∥∥∥
F

=
∥∥∥PM

(
M̂0 −M ♮Q̂0

)∥∥∥
F

≤
∥∥∥M̂0 −M ♮Q̂0

∥∥∥
F

=dist(M̂0,M
♮). (6.2)
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To complete the proof, it suffices to control dist(M̂0,M
♮). A straightforward computation yields that

dist2(M̂0,M
♮)

(a)

≤ 1

2(
√
2− 1)σ2

r (M
♮)

∥∥∥M̂0M̂
H

0 −M ♮M ♮H
∥∥∥
2

F

(b)
=

1

4(
√
2− 1)σr

∥∥∥M̂0M̂
H

0 −M ♮M ♮H
∥∥∥
2

F

(c)

≤ 1

4(
√
2− 1)σr

· 4
∥∥∥Ẑ0 −Z♮

∥∥∥
2

F

≤ 1

(
√
2− 1)σr

· 2r
∥∥∥Ẑ0 −Z♮

∥∥∥
2

≤ 2r

(
√
2− 1)σr

· µ0µsr log
2(sn)

n
σ2
1

≤ε
2σr
µ0s

provided that n ≥ c0ε
−2κ2µ2

0µs
2r2 log2(sn), where step (a) is due to Lemma 5.4 in [34], step (b) has used

the fact σr(M
♮) =

√
2σr, and the step (c) can be derived as follows.

Let A1,B1 ∈ Csn1×r and A2,B2 ∈ Cn2×r be four complex matrices. It is direct to obtain that

〈
A1A

H

1 ,B1B
H

1

〉
+
〈
A2A

H

2 ,B2B
H

2

〉
=
〈
AH

1B1,A
H

1B1

〉
+
〈
AH

2B2,A
H

2B2

〉

≥2ℜ
(〈
A1A

H

2 ,B1B
H

2

〉)
. (6.3)

Then a simple calculation yields that

∥∥∥M̂0M̂
H

0 −M ♮M ♮H
∥∥∥
2

F

=2
∥∥∥Û0Σ̂0V̂

H

0 −UΣV H

∥∥∥
2

F

+
∥∥∥Û0Σ̂0Û

H

0 −UΣUH

∥∥∥
2

F

+
∥∥∥V̂0Σ̂0V̂

H

0 − V ΣV H

∥∥∥
2

F

.

Denote A1 = Û0Σ̂
1/2
0 , B1 = UΣ1/2, A2 = V̂0Σ̂

1/2
0 and B2 = V Σ1/2. Applying (6.3) can be easily verified

that

∥∥∥Û0Σ̂0Û
H

0 −UΣUH

∥∥∥
2

F

+
∥∥∥V̂0Σ̂0V̂

H

0 − V ΣV H

∥∥∥
2

F

≤2
∥∥∥Û0Σ̂0V̂

H

0 −UΣV H

∥∥∥
2

F

.

Hence

∥∥∥M̂0M̂
H

0 −M ♮M ♮H
∥∥∥
2

F

≤ 4
∥∥∥Û0Σ̂0V̂

H

0 −UΣV H

∥∥∥
2

F

= 4
∥∥∥Ẑ0 −Z♮

∥∥∥
2

F

.

Thus we complete the proof of Lemma 6.1.

6.2 Proof of Lemma 6.2

We first establish a regularity condition in the following lemma whose proof is provided in Section 6.4.

Lemma 6.4. Let ∆ = M −M ♮Q, where Q = arg min
QQH=QHQ=Ir

∥∥M −M ♮Q
∥∥
F
. Then one has

ℜ (〈∇f(M),∆〉) ≥ η

2
‖∇f(M)‖2

F
+
β

2
‖∆‖2

F
(6.4)

happens with high probability for all M such that ‖∆‖2
F
≤ ε2σr

µ0s
, where η ≤ σr

9000(µ0µsrσ1)2
, and β = σr

72 .
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Let M̂t+1 = Mt − η∇f(Mt). Under the condition of (6.4), one has

dist2(Mt+1,M
♮)

(a)

≤ dist2(M̂t+1,M
♮)

≤
∥∥∥M̂t+1 −M ♮Qt

∥∥∥
2

F

= ‖∆t − η∇f(Mt)‖2F
= ‖∆t‖2F + η2 ‖∇f(Mt)‖2F − 2ηℜ (〈∆t,∇f(Mt)〉)
(b)

≤ ‖∆t‖2F + η2 ‖∇f(Mt)‖2F − η2 ‖∇f(Mt)‖2F − βη ‖∆t‖2F
=(1 − ηβ) ‖∆t‖2F ,

where step (a) follows the same argument as (6.2) and step (b) is due to (6.4). Then a little algebra yields
that

dist2(Mt+1,M
♮) ≤ (1 − ηβ)t+1 dist2(M0,M

♮)

≤ (1 − ηβ)t+1 ε
2σr
µ0s

,

which completes the proof of Lemma 6.2.

6.3 Proof of Lemma 6.3

Notice that GDA∗(y) = GA∗D(y) = GA∗AG∗(Z♮). A simple computation yields that

E
[
GA∗AG∗(Z♮)

]
= E

[
G
(
n−1∑

i=0

〈
bie

T

i ,G∗(Z♮)
〉
bie

T

i

)]

= G
(
n−1∑

i=0

E
[
bib

H

i G∗(Z♮)eie
T

i

]
)

= GG∗(Z♮) = Z♮,

where the third equality is due to the isotropy property of {bi}n−1
i=0 . Let us first bound

∥∥GA∗AG∗(Z♮)− E
[
GA∗AG∗(Z♮)

]∥∥

by the matrix Bernstein inequality (6.29). The matrix GA∗AG∗(Z♮)−E
[
GA∗AG∗(Z♮)

]
can be rewritten as

GA∗AG∗(Z♮)− E
[
GA∗AG∗(Z♮)

]
=

n−1∑

i=0

G
(
(bib

H

i − Is)G∗(Z♮)eie
T

i

)

=

n−1∑

i=0

Gi ⊗
(
(bib

H

i − Is)G∗(Z♮)ei
)

= :

n−1∑

i=0

Yi.

Notice that {Yi}n−1
i=0 are independent mean-zero random matrices with

‖Yi‖ =
∥∥Gi ⊗

(
(bib

H

i − Is)G∗(Z♮)ei
)∥∥

≤ ‖Gi‖ ·
∥∥(bibHi − Is)G∗(Z♮)ei

∥∥
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≤ 1√
ωi

·max{‖bi‖22 , 1} ·
∥∥G∗(Z♮)ei

∥∥
2

(a)

≤ sµ0 ·max
i

1√
ωi

∥∥G∗(Z♮)ei
∥∥
2

(b)

≤ sµ0 ·
µ1r

n
σ1,

where step (a) follows from (4.2) and step (b) is due to Lemma 6.6. Moreover, letting wi := (bib
H

i −
Is)G∗(Z♮)ei, we have

∥∥∥∥∥E
[
n−1∑

i=0

Y H

i Yi

]∥∥∥∥∥ =

∥∥∥∥∥
n−1∑

i=0

E
[
(Gi ⊗wi)

H(Gi ⊗wi)
]
∥∥∥∥∥

=

∥∥∥∥∥
n−1∑

i=0

(GH

i Gi) · E
[
‖wi‖22

]∥∥∥∥∥

≤
n−1∑

i=0

∥∥GH

i Gi

∥∥ · E
[
‖wi‖22

]

(a)

≤
n−1∑

i=0

1

wi
· sµ0

∥∥G∗(Z♮)ei
∥∥2
2

(b)

≤ sµ0 ·
√
µ1r log(sn)

n
σ1,

where step (a) follows from ‖Gi‖ ≤ 1/
√
wi and the fact E

[
‖wi‖22

]
≤ sµ0 ·

∥∥G∗(Z♮)ei
∥∥2
2
, and step (b) is due

to Lemma 6.6. Moreover, the fact used in step (a) can be proved as follows:

E

[
‖wi‖22

]
= E

[
eTi
(
G∗(Z♮)

)H
(bib

H

i − Is)
2G∗(Z♮)ei

]

= eTi (G∗(Z♮))HE
[
(bib

H

i − Is)
2
]
G∗(Z♮)ei

= eTi (G∗(Z♮))HE
[
‖bi‖22 bibHi − Is

]
G∗(Z♮)ei

≤ (µ0s− 1) ·
∥∥G∗(Z♮)ei

∥∥2
2

≤ µ0s
∥∥G∗(Z♮)ei

∥∥2
2
,

where the third line is due to (4.1). Similarly, one has

∥∥∥∥∥E
[
n−1∑

i=0

YiY
H

i

]∥∥∥∥∥ ≤
n−1∑

i=0

‖Gi‖2 ·
∥∥E
[
wiw

H

i

]∥∥

≤
n−1∑

i=0

‖Gi‖2 · E
[
‖wi‖22

]

≤ sµ0 ·
√
µ1r log(sn)

n
σ1.

Applying the matrix Bernstein inequality (6.29) shows that, with probability greater than 1− (sn)−c1 ,

∥∥GA∗AG∗(Z♮)− E
[
GA∗AG∗(Z♮)

]∥∥ ≤c1
√
sµ0 log(sn) ·

√
µ1r log(sn)

n
σ1 + c2sµ0 log(sn) ·

µ1r

n
σ1
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≤c3

√
µ0µ1sr log

2(sn)

n
σ1

provided n ≥ c0µ0µsr log
2(sn). Therefore, the event
∥∥∥Ẑ0 −Z♮

∥∥∥ =
∥∥Pr

(
GAA∗G∗(Z♮)

)
−Z♮

∥∥

≤
∥∥Pr

(
GAA∗G∗(Z♮)

)
− GA∗AG∗(Z♮)

∥∥

+
∥∥GA∗AG∗(Z♮)−Z♮

∥∥

≤ 2
∥∥GA∗AG∗(Z♮)−Z♮

∥∥

≤ c0

√
µ0µsr log

2(sn)

n
σ1.

occurs with probability at least 1− (sn)−c1 . Finally we complete the proof.

6.4 Proof of Lemma 6.4

The proof includes two parts. We will show that

ℜ (〈∇f(M),∆〉) ≥ 1

72
σr ‖∆‖2

F
+

1

8

∥∥∥M ♮HS∆

∥∥∥
2

F

(6.5)

and

‖∇f(M)‖2
F
≤ 125(µ0µsrσ1)

2 ‖∆‖2
F
+

1

2
σ1

∥∥∥M ♮HS∆

∥∥∥
2

F

(6.6)

provided ε ≤ 1
3 . By the assumption

η ≤ σr
9000(µ0µsrσ1)2

≤ 1

2σ1
and β =

σr
72
,

we have

η

2
‖∇f(M)‖2

F
+
β

2
‖∆‖2

F
≤
(
1

2

σr
9000(µ0µsrσ1)2

· 125(µ0µsrσ1)
2 +

1

2

σr
72

)
‖∆‖2

F
+

1

2
· 1

2σ1
· 1
2
σ1

∥∥∥M ♮HS∆

∥∥∥
2

F

≤σr
72

‖∆‖2
F
+

1

8

∥∥∥M ♮HS∆

∥∥∥
2

F

≤ℜ (〈∇f(M),∆〉) .

6.4.1 Proof of (6.5)

Let ∇f1,∇f2 and ∇f3 be the matrices given by

∇f1 =

[ (GA∗
(
AG∗(LRH)−Dy

))
R(

GA∗
(
AG∗(LRH)−Dy

))H
L

]
,

∇f2 =

[ (
(I − GG∗)(LRH)

)
R(

(I − GG∗)(LRH)
)H

L

]
,

∇f3 =
1

4

[
L(LHL−RHR)
R(RHR −LHL)

]
.

A straightforward computation yields that

ℜ (〈∇f(M),∆〉) = ℜ (〈∇f1,∆〉) + ℜ (〈∇f2,∆〉) + ℜ (〈∇f3,∆〉) .

We will bound these three terms separately. For the sake of simplification, let ∆ =
[
∆H

L ∆H

R

]H
where

∆L = L−L♮Q ∈ Csn1×r and ∆R = R−R♮Q ∈ Cn2×r.
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Bounding ℜ (〈∇f1,∆〉) By applying Dy = AG∗(Z♮), we can rewrite ℜ (〈∇f1,∆〉) as

ℜ (〈∇f1,∆〉) =ℜ
(〈

GA∗AG∗(LRH − L♮R♮H),∆LR
H +L∆H

R

〉)
. (6.7)

Notice that

LRH −L♮R♮H =
(
∆L +L♮Q

) (
∆R +R♮Q

)H −L♮R♮H

=∆L∆
H

R︸ ︷︷ ︸
:=Ψ

+∆L(R
♮Q)

H

+ (L♮Q)∆H

R︸ ︷︷ ︸
:=Φ

. (6.8)

and

∆LR
H + L∆H

R =∆L(∆R +R♮Q)H + (∆L +L♮Q)∆H

R

=2∆L∆
H

R +∆L(R
♮Q)H + (L♮Q)∆H

R

=2Ψ+Φ. (6.9)

Then ℜ (〈∇f1,∆〉) can be bounded as follows:

ℜ (〈∇f1,∆〉) =ℜ (〈AG∗ (Φ+Ψ) ,AG∗ (Φ+ 2Ψ)〉)
= ‖AG∗ (Φ)‖22 + 2 ‖AG∗ (Ψ)‖22 + 3ℜ (〈AG∗ (Φ) ,AG∗ (Ψ)〉)
≥‖AG∗ (Φ)‖22 + 2 ‖AG∗ (Ψ)‖22 − 3 |〈AG∗ (Φ) ,AG∗ (Ψ)〉|
≥ ‖AG∗ (Φ)‖22 + 2 ‖AG∗ (Ψ)‖22 − 3 ‖AG∗ (Φ)‖2 · ‖AG∗ (Ψ)‖2
≥ 3

4
‖AG∗ (Φ)‖22 − 7 ‖AG∗ (Ψ)‖22

≥ 3

4
‖AG∗ (Φ)‖22 −

7ε2

4
σr ‖∆‖2

F
, (6.10)

where the second line is due to 〈x,x〉 = ‖x‖22 and ℜ (〈x,y〉) = ℜ (〈y,x〉) for any vectors x,y ∈ Cn, the

third line is due to ℜ (〈x,y〉) ≤ | 〈x,y〉 |, and the last second line is due to a+ 2b− 3
√
ab ≥ 3

4a− 7b for any

a, b ≥ 0 and the last line is due to the fact ‖AG∗ (Ψ)‖22 ≤ ε2

4 σr ‖∆‖2
F
. Moreover the fact used in the last line

can be proved as follows:

‖AG∗ (Ψ)‖22 =
∥∥AG∗

(
∆L∆

H

R

)∥∥2
2

≤
(
‖A‖ ‖G∗‖ ·

∥∥∆L∆
H

R

∥∥
F

)2

≤ µ0s ·
1

4

(
‖∆L‖2F + ‖∆R‖2

F

)2

=
µ0s

4
‖∆‖4

F

≤ ε2

4
σr ‖∆‖2

F
, (6.11)

where the second line is due to ‖A‖ ≤ √
µ0s, ‖G∗‖ ≤ 1 and the last line is due to ‖∆‖2

F
≤ ε2σr

µ0s
. Plugging

(6.10) into (6.7) reveals that

ℜ (〈∇f1,∆〉) ≥ 3

4
‖AG∗ (Φ)‖22 −

7ε2

4
σr ‖∆‖2

F
. (6.12)

Bounding ℜ (〈∇f2,∆〉) This term can be bounded as follows:

ℜ (〈∇f2,∆〉) =ℜ
(〈
(I − GG∗)(LRH),∆LR

H +L∆H

R

〉)

18



=ℜ
(〈

(I − GG∗)(LRH −L♮R♮H),∆LR
H +L∆H

R

〉)

=ℜ (〈(I − GG∗)(Φ+Ψ), (Φ+ 2Ψ)〉)
≥‖(I − GG∗) (Φ)‖2

F
+ 2 ‖(I − GG∗) (Ψ)‖2

F

− 3 ‖(I − GG∗) (Φ)‖
F
· ‖(I − GG∗) (Ψ)‖

F

≥3

4
‖(I − GG∗) (Φ)‖2

F
− 7 ‖(I − GG∗) (Ψ)‖2

F
, (6.13)

where the second line is due to (I − GG∗)(L♮R♮H) = 0 and the last line follows from the fact that a+ 2b−
3
√
ab ≥ 3

4a− 7b for any a, b ≥ 0. Combining (6.12) and (6.13) together, one has

ℜ (〈∇f1,∆〉) + ℜ (〈∇f2,∆〉) ≥3

4
‖AG∗ (Φ)‖22 −

7ε2

4
σr ‖∆‖2

F
+

3

4
‖(I − GG∗) (Φ)‖2

F
− 7 ‖(I − GG∗) (Ψ)‖2

F

≥3

4

(
‖AG∗ (Φ)‖22 + ‖(I − GG∗) (Φ)‖2

F

)
− 7ε2

4
σr ‖∆‖2

F
− 7 ‖Ψ‖2

F
, (6.14)

where the last line follows from the fact that I − GG∗ is a projection operator. Let T be the tangent space
at Z♮ defined as follows

T := {UJH +KV H : J ∈ C
n2×r,K ∈ C

sn1×r}.

It can be seen that Φ ∈ T . Therefore a simple calculation yields that

‖AG∗ (Φ)‖22 + ‖(I − GG∗) (Φ)‖2
F
= 〈GA∗AG∗(Φ),Φ〉+ 〈Φ,Φ〉 − 〈GG∗(Φ),Φ〉
≥ ‖Φ‖2

F
− |〈G (I − A∗A)G∗(Φ),Φ〉|

= ‖Φ‖2
F
− |〈PTG (I − A∗A)G∗PT (Φ),Φ〉|

≥(1− ε) ‖Φ‖2
F
, (6.15)

where the last line follows from Lemma 6.7 and the assumption on n. In addition, we have

‖Ψ‖2
F
≤ (‖∆L‖F ‖∆R‖

F
)
2

≤1

4
‖∆‖4

F

≤ε
2σr
4

‖∆‖2
F
, (6.16)

where we use ‖∆‖2
F
≤ ε2σr(Z

♮)
sµ0

≤ ε2σr(Z
♮). Hence plugging (6.15) and (6.16) into (6.14) yields that

ℜ (〈∇f1,∆〉) + ℜ (〈∇f2,∆〉) ≥3

4
(1− ε) ‖Φ‖2

F
− 7ε2

2
σr ‖∆‖2

F

≥1

2
‖Φ‖2

F
− 7ε2

2
σr ‖∆‖2

F

=
1

2

(∥∥∆L(R
♮Q)H

∥∥2
F
+
∥∥L♮Q∆H

R

∥∥2
F

)
− 7ε2

2
σr ‖∆‖2

F

+ ℜ
(〈
∆L(R

♮Q)H, (L♮Q)∆H

R

〉)

≥
(
1

2
− 7ε2

2

)
σr ‖∆‖2

F
+ ℜ

(〈
∆H

L(L
♮Q), (R♮Q)H∆R

〉)

≥1

9
σr ‖∆‖2

F
+ ℜ

(〈
∆H

L(L
♮Q), (R♮Q)H∆R

〉)
, (6.17)

where the last line is due to ε ≤ 1
3 .

19



Bounding ℜ (〈∇f3,∆〉) Denote

S =

[
Isn1

−In2

]
.

We can bound ℜ (〈∇f3,∆〉) as follows:

4ℜ (〈∇f3,∆〉) =ℜ
(〈
SMMHSM ,∆

〉)

=ℜ
(〈
MHSM ,MHS∆

〉)

=ℜ
(〈
(∆+M ♮Q)HS(∆ +M ♮Q), (∆ +M ♮Q)HS∆

〉)

=
∥∥∆HS∆

∥∥2
F
+
∥∥(M ♮Q)HS∆

∥∥2
F
+ 3ℜ

(〈
(M ♮Q)HS∆,∆HS∆

〉)
+ ℜ

(〈
(M ♮Q)HS∆,∆HS(M ♮Q)

〉)

=
1

2

∥∥(M ♮Q)HS∆
∥∥2
F
+

1

2

∥∥(M ♮Q)HS∆+ 3∆HS∆
∥∥2
F
− 7

2

∥∥∆HS∆
∥∥2
F
+ ℜ

〈
(M ♮Q)HS∆,∆HS(M ♮Q)

〉

=
1

2

∥∥(M ♮Q)HS∆
∥∥2
F
+

1

2

∥∥(M ♮Q)HS∆+ 3∆HS∆
∥∥2
F
− 7

2

∥∥∆HS∆
∥∥2
F

+ ℜ
(〈
(M ♮Q)H∆,∆H(M ♮Q)

〉)
− 4ℜ

(〈
∆H

L(L
♮Q), (R♮Q)H∆R

〉)

≥1

2

∥∥(M ♮Q)HS∆
∥∥2
F
− 7

2

∥∥∆HS∆
∥∥2
F
− 4ℜ

(〈
∆H

L(L
♮Q), (R♮Q)H∆R

〉)
. (6.18)

The fourth equality is due to (M ♮Q)HS(M ♮Q) = 0. The last equality follows from

ℜ
(〈
∆H

L(L
♮Q), (R♮Q)H∆R

〉)
=ℜ

(〈
(R♮Q)H∆R,∆

H

L(L
♮Q)

〉)

=ℜ
(〈
(L♮Q)H∆L,∆

H

R(R♮Q)
〉)
.

Finally, combining (6.18) with (6.17) yields that

ℜ (〈∇f(M),∆〉) ≥1

9
σr ‖∆‖2

F
+

1

8

∥∥∥M ♮HS∆

∥∥∥
2

F

− 7

8

∥∥∆HS∆
∥∥2
F

≥ 1

72
σr ‖∆‖2

F
+

1

8

∥∥∥M ♮HS∆

∥∥∥
2

F

, (6.19)

where the last line follows from that
∥∥∆HS∆

∥∥2
F
≤ ‖∆‖4

F
≤ ε2σr

µ0s
‖∆‖2

F
and ε ≤ 1

3 .

6.4.2 Proof of (6.6)

Applying simple triangular inequality yields that

‖∇f(M)‖2
F
= ‖∇f1 +∇f2 +∇f3‖2F
≤ 2 ‖∇f1 +∇f2‖2F + 2 ‖∇f3‖2F
≤ 4 ‖∇f1‖2F + 4 ‖∇f2‖2F + 2 ‖∇f3‖2F . (6.20)

We will bound these three terms separately.

Bounding ‖∇f1‖2F For any

X =
[
XH

L XH

R

]H ∈ C
(sn1+n2)×r

such that ‖X‖
F
= 1, we have

|〈∇f1,X〉|2 =
∣∣〈GA∗

(
AG∗(LRH)−Dy

)
,XLR

H +LXH

R

〉∣∣2

=
∣∣∣
〈
GA∗AG∗(LRH −L♮R♮H),XLR

H +LXH

R

〉∣∣∣
2
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≤
( ∣∣〈GA∗AG∗(L∆H

R),XLR
H
〉∣∣

+
∣∣〈GA∗AG∗(∆L(R

♮Q)H),XLR
H
〉∣∣

+
∣∣〈GA∗AG∗(L∆H

R),LXH

L

〉∣∣

+
∣∣〈GA∗AG∗(∆L(R

♮Q)H),LXH

R

〉∣∣ )2. (6.21)

where we have used the fact LRH − L♮R♮H = L∆H

R + ∆L(R
♮Q)H. Apparently, the upper bounds of the

above four terms can be established similarly. We focus on the first term
∣∣〈GA∗AG∗(L∆H

R),XLR
H
〉∣∣ and

its upper bound can be obtained as follows:

∣∣〈GA∗AG∗(L∆H

R),XLR
H
〉∣∣ =

∣∣〈AG∗(L∆H

R),AG∗(XLR
H)
〉∣∣

≤
n−1∑

i=0

∣∣〈bieTi ,G∗(L∆H

R)
〉∣∣ ·
∣∣〈bieTi ,G∗(XLR

H)
〉∣∣

=

n−1∑

i=0

∣∣〈G(bieTi ),L∆H

R

〉∣∣ ·
∣∣〈G(bieTi ),XLR

H
〉∣∣

=

n−1∑

i=0

∣∣〈Gi ⊗ bi,L∆H

R

〉∣∣ ·
∣∣〈Gi ⊗ bi,XLR

H
〉∣∣ . (6.22)

To complete the proof, it suffers to control
∣∣〈Gi ⊗ bi,L∆H

R

〉∣∣ and
∣∣〈Gi ⊗ bi,XLR

H
〉∣∣. Notice that

∣∣〈Gi ⊗ bi,L∆H

R

〉∣∣ =

∣∣∣∣∣∣
1√
wi

∑

j+k=i

〈
(ej ⊗ bi)e

T

k ,L∆H

R

〉
∣∣∣∣∣∣

≤ 1√
wi

∑

j+k=i

∥∥(eTj ⊗ bHi )L
∥∥
2

∥∥eTk∆R

∥∥
2

≤
√ ∑

j+k=i

∥∥(eTj ⊗ bHi )L
∥∥2
2

∥∥eTk∆R

∥∥2
2

=

√ ∑

j+k=i

∥∥bHi Lj
∥∥2
2

∥∥eTk∆R

∥∥2
2

≤
√ ∑

j+k=i

‖bi‖22 ‖Lj‖
2
F

∥∥eTk∆R

∥∥2
2

≤√
µ0s ·

√ ∑

j+k=i

‖Lj‖2F
∥∥eTk∆R

∥∥2
2

≤√
µ0s ·

√
µrσ

n
·
√ ∑

j+k=i

∥∥eTk∆R

∥∥2
2. (6.23)

Similarly one has

∣∣〈Gi ⊗ bi,XLR
H
〉∣∣ ≤√

µ0s ·
√ ∑

j+k=i

‖[XL]j‖2F
∥∥eTkR

∥∥2
2

≤√
µ0s ·

√
µrσ

n
·
√ ∑

j+k=i

‖[XL]j‖2F. (6.24)
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Plugging (6.23) and (6.24) into (6.22) yields that

∣∣〈GA∗AG∗(L∆H

R),XLR
H
〉∣∣ ≤µ0s · µrσ

n

n−1∑

i=0

√ ∑

j+k=i

∥∥eTk∆R

∥∥2
2 ·
√ ∑

j+k=i

‖[XL]j‖2F

≤µ0s · µrσ · ‖∆R‖
F
· ‖XL‖F .

Using the same argument, one has
∣∣〈GA∗AG∗(∆L(R

♮Q)H),XLR
H
〉∣∣ ≤ µ0s · µrσ · ‖∆L‖F · ‖XL‖F ,∣∣〈GA∗AG∗(L∆H

R),LXH

L

〉∣∣ ≤ µ0s · µrσ · ‖∆R‖
F
· ‖XL‖F ,∣∣〈GA∗AG∗(∆L(R

♮Q)H),LXH

R

〉∣∣ ≤ µ0s · µrσ · ‖∆L‖F · ‖XR‖
F
.

Hence we can obtain

|〈∇f1,X〉|2 ≤
(
µ0µsrσ)

2 · (‖∆R‖F ‖XL‖F + ‖∆L‖F ‖XL‖F + ‖∆R‖F ‖XR‖F + ‖∆L‖F ‖XR‖F
)2

=(µ0µsrσ)
2 · (‖∆L‖F + ‖∆R‖F)2 · (‖XL‖F + ‖XR‖F)2

≤4(µ0µsrσ)
2 ‖∆‖2

F
,

where the last line is due to ‖X‖2
F
= ‖XL‖2F + ‖XR‖2F = 1. Thus we have

‖∇f1‖2F = sup
‖X‖

F
=1

|〈∇f1,X〉|2

≤ 4(µ0µsrσ)
2 ‖∆‖2

F
. (6.25)

Bounding ‖∇f2‖2F For any X ∈ C(sn1+n2)×r such that ‖X‖
F
= 1, one has

| 〈∇f2,X〉 | ≤
∣∣〈(I − GG∗)(LRH),XLR

H +LXH

R

〉∣∣

=
∣∣∣
〈
(I − GG∗)(LRH −L♮R♮H),XLR

H +LXH

R

〉∣∣∣

≤
∥∥∥(I − GG∗)(LRH −L♮R♮H)

∥∥∥
F

·
∥∥XLR

H +LXH

R

∥∥
F

≤
∥∥∥LRH −L♮R♮H

∥∥∥
F

·
∥∥XLR

H +LXH

R

∥∥
F
.

We bound both terms separately.

• Bounding
∥∥∥LRH −L♮R♮H

∥∥∥
F

. It can be bounded as follows:

∥∥∥LRH −L♮R♮H
∥∥∥
F

=
∥∥L∆H

R +∆L(R
♮Q)H

∥∥
F

≤ ‖L‖ ‖∆R‖
F
+
∥∥R♮

∥∥ ‖∆L‖F
≤ (1 + ε)

√
σ1 ‖∆R‖

F
+
√
σ1 ‖∆L‖F

≤ (1 + ε)
√
σ1 ·

√
2 ‖∆‖

F
,

where we have used the fact ‖L‖ ≤ ‖∆L‖ +
∥∥L♮

∥∥ ≤ ‖∆L‖F +
√
σ1 ≤ ‖∆‖

F
+
√
σ1 ≤ (1 + ε)

√
σ1.

• Bounding
∥∥XLR

H +LXH

R

∥∥
F
. It can be bounded as follows:

∥∥XLR
H +LXH

R

∥∥
F
≤ ‖R‖ ‖XL‖F + ‖L‖ ‖XR‖

F

≤ (1 + ε)
√
σ1(‖XL‖F + ‖XR‖

F
)

≤
√
2(1 + ε)

√
σ1.
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Combining together and simple computation yields that

‖∇f2‖2F = sup
‖X‖

F
=1

|〈∇f3,X〉|2

≤ 4(1 + ε)4σ2
1 · ‖∆‖2

F
. (6.26)

Bounding ‖∇f3‖2F Recall that

S =

[
Isn1

−In2

]
.

A straightforward computation yields that

‖∇f3‖2F =
1

16

(∥∥L(LHL−RHR)
∥∥2
F
+
∥∥R(RHRRHR)

∥∥2
F

)

=
1

16

∥∥SMMHSM
∥∥2
F

=
1

16

∥∥∥S(MMH −M ♮M ♮H)SM + SM ♮M ♮HSM

∥∥∥
2

F

≤1

8

∥∥∥S(MMH −M ♮M ♮H)SM
∥∥∥
2

F

+
1

8

∥∥∥SM ♮M ♮HSM

∥∥∥
2

F

≤1

8
‖M‖2 ·

∥∥∥MMH −M ♮M ♮H
∥∥∥
2

F

+
1

8

∥∥M ♮
∥∥2 ·

∥∥∥M ♮HS(M ♮ +∆)
∥∥∥
2

F

(a)
=

1

8
‖M‖2 ·

∥∥∥M ♮∆H +∆M ♮H +∆∆H

∥∥∥
2

F

+
1

8

∥∥M ♮
∥∥2 ·

∥∥∥M ♮HS∆

∥∥∥
2

F

≤3

8
‖M‖2 ·

(
2
∥∥M ♮

∥∥2 ‖∆‖2
F
+ ‖∆‖4

F

)
+

1

8

∥∥M ♮
∥∥2 ·

∥∥∥M ♮HS∆

∥∥∥
2

F

,

where step (a) follows from M ♮HSM ♮ = 0. Notice that
∥∥M ♮

∥∥ ≤
√
2σ1(Z♮) and ‖M‖ ≤

∥∥M −M ♮Q
∥∥
F
+

∥∥M ♮
∥∥ ≤

√
ε2σr

µ0s
+
√
2σ1. Thus we have

‖∇f3‖2F ≤ 3

8

(√
ε2σr
µ0s

+
√
2σ1

)2

·
(
4σ1 +

ε2σr
µ0s

)
‖∆‖2

F
+

1

4
σ1

∥∥∥M ♮HS∆

∥∥∥
2

F

≤ 3

8
· 2(ε2 + 2)σ1 · (4 + ε2)σ1 · ‖∆‖2
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+

1
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2

F

, (6.27)

where the last line is due to ε ≤ 1
3 .

Finally, plugging (6.25), (6.26) and (6.27) into (6.20), we obtain that

‖∇f(M)‖2
F
≤4 · 4(µ0µsrσ)

2 ‖∆‖2
F
+ 4 · 4(1 + ε)4σ2

1 · ‖∆‖2
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4
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4
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∥∥∥M ♮HS∆

∥∥∥
2

F

)

≤
(
64(µ0µsr)

2 + 16(1 + ε)4 +
19

2

)
σ2
1 ‖∆‖2

F
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1

2
σ1

∥∥∥M ♮HS∆
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2

F

≤125(µ0µsrσ1)
2 ‖∆‖2

F
+

1

2
σ1

∥∥∥M ♮HS∆

∥∥∥
2

F

, (6.28)

where the second line is due to σ ≤ (1+ε)σ1

1−ε ≤ 2σ1 and the last line follows from ε ≤ 1
3 < 1.
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6.5 Auxiliary Lemmas

Lemma 6.5 ([33], Theorem 6.1). Assume {Xi}ni=1 are independent random matrices of dimension n1 × n2

and obey E
[
Xi

]
= 0 and ‖Xi‖ ≤ B. Define

σ2 := max

{∥∥∥∥∥E
[

n∑

i=1

XiX
H

i

]∥∥∥∥∥ ,
∥∥∥∥∥E
[

n∑

i=1

XH

i Xi

]∥∥∥∥∥

}
.

Then the event
∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤ c
(√

σ2 log(n1 + n2) +B log(n1 + n2)
)

(6.29)

holds with probability at least 1− (n1 + n2)
−c1 , where c, c1 > 0 are absolute constants.

Lemma 6.6 ([12], Lemma III.13). Suppose Z♮ is µ1-incoherent. Then one has

√√√√
n−1∑

i=0

‖G∗(Z)ei‖22
ωi

≤ c1

√
µ1r log(sn)

n
σ1(Z

♮),

max
0≤i≤n−1

‖G∗(Z)ei‖2√
ωi

≤ µ1r

n
σ1(Z

♮).

Lemma 6.7 ([12], Corollary III.9). Under Assumption 1 and Assumption 2, let T be the tangent space of
Z♮, then the event

‖PTG(A∗A− I)G∗PT ‖ ≤ c

√
µ0µ1sr log(sn)

n

occurs with probability at least 1− (sn)−c for some universal constant c > 0.

7 Conclusion

In this paper, we propose a non-convex method called PGD–VHL for low rank vectorized Hankel matrix
recovery problem in blind super-resolution of point sources. Our theoretical analysis shows that PGD–VHL
converges to the target matrix linearly when the number of samples is larger than O(s2r2 log2(sn)). The
performance of PGD–VHL has also been demonstrated by our numerical simulations. For future work, it
is interesting to study the recovery performance of PGD–VHL in the presence of noise and the behavior of
vanilla gradient descent method for blind super-resolution.
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