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Federated Learning under Importance Sampling
Elsa Rizk, Stefan Vlaski, Member, IEEE, and Ali H. Sayed, Fellow, IEEE.

Abstract—Federated learning encapsulates distributed learning
strategies that are managed by a central unit. Since it relies
on using a selected number of agents at each iteration, and
since each agent, in turn, taps into its local data, it is only
natural to study optimal sampling policies for selecting agents
and their data in federated learning implementations. Usually,
only uniform sampling schemes are used. However, in this
work, we examine the effect of importance sampling and devise
schemes for sampling agents and data non-uniformly guided
by a performance measure. We find that in schemes involving
sampling without replacement, the performance of the resulting
architecture is controlled by two factors related to data variability
at each agent, and model variability across agents. We illustrate
the theoretical findings with experiments on simulated and real
data and show the improvement in performance that results from
the proposed strategies.

Index Terms—federated learning, distributed learning, impor-
tance sampling, asynchronous SGD, non-IID data, heterogeneous
agents

I. INTRODUCTION

IN this work, we focus on algorithms that fall into the broad
class of stochastic gradient descent (SGD). We consider a

collection of K heterogeneous agents that may have different
computational powers. Each agent k has locally Nk data
points, which we denote by {xk,n}; the subscript k refers
to the agent, while the subscript n denotes the sample index
within agent k’s dataset. The goal of the agents is to find an
optimizer for the aggregate risk function:

wo
∆
= argmin

w∈RM

1

K

K∑
k=1

Pk(w), (1)

where each Pk(·) is an empirical risk defined in terms of a
loss function Qk(·):

Pk(w)
∆
=

1

Nk

Nk∑
n=1

Qk(w;xk,n). (2)

Multiple strategies exist for solving such problems. They
can be categorized into two main classes: a) partially decen-
tralized strategies, which include a central process with access
to all data and which controls the distribution of the data into
the nodes for processing [2]–[4]; and b) fully decentralized
strategies, which consist of multiple agents connected by a
graph topology and operating locally without oversight by a
central processor [5]–[8]. Federated learning [9]–[21] offers a
midterm solution, which consists of several agents collecting

The authors are with the School of Engineering, École Polytechnique
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and processing local data that are then aggregated at the central
processor.

When implementing SGD, most strategies choose the sam-
ples according to a uniform distribution. In this work, we shall
consider more general non-uniform sampling schemes, where
the agents are sampled according to some distribution πk and
the local data at agent k are in turn sampled according to some
other distribution π

(k)
n . In this setting, the central processor

selects the subset of agents for processing according to πk
and, once selected, an agent k will sample its data according to
π

(k)
n . The importance sampling process in this article therefore

involves two layers. We use the superscript (k) to denote the
sampling distribution of the data at agent k. The sampling
distributions {πk, π(k)

n } are not fixed; instead we will show
how to adapt them in order to enhance performance. At the
same time, we will provide a detailed convergence analysis
and establish performance limits.

A. Related Work

Several works studied the convergence of the federated
learning algorithm or distributed SGD under differing assump-
tions. These assumptions usually relate to the nature of the
data (IID or non-IID), nature of the cost function (convex or
non-convex), agent participation (full or partial), and operation
(synchronous or asynchronous) [10], [11], [22]–[32]. Other
works examine the convergence behavior of variations of the
traditional FedAvg algorithm, such as FedProx [10], hierarchi-
cal version of FedAvg [32], multi-task federated learning [11],
and dynamic FedAvg [1] – see Table 1.

By contrast, not much work has been done on selection
schemes for agents and data in federated learning. Given the
architecture of a federated learning solution, this is a natural
and important question to consider. The existing works in this
domain can be split into two categories: those seeking better
accuracy, and those seeking fairness. Of the works pertaining
to the first category, reference [33] develops a new client selec-
tion scheme, called FedCS, where the goal of the central server
is to choose as many agents as possible that can complete an
iteration by a required deadline, after acquiring information
about the agents’ resources. Reference [34] builds on this
previous work to deal with non-IID data, and allows the server
to collect some of the data from the agents and participate in
the training of the model. The authors of [35] consider non-
uniform sampling of agents and suggest approximate sampling
probabilities that maximize the average inner product of the
local gradient with the global gradient. References [36], [37]
fall under the second category; in agnostic federated learning
[36], the data distribution is assumed to be a mixture of the
local distributions, and a minimax problem for agent selection
is solved. Reference [37] generalizes the previous work by
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TABLE I
LIST OF REFERENCES ON THE CONVERGENCE ANALYSIS OF FEDERATED LEARNING UNDER DIFFERENT ASSUMPTIONS. THIS WORK ALONG WITH OUR

PREVIOUS WORK [1] ARE THE ONLY ONES TO TACKLE THE 3 CHALLENGES OF FEDERATED LEARNING(NON-IID DATA, ASYNCHRONOUS MODE OF
OPERATION, PARTIAL AGENT PARTICIPATION).

References Algorithm Function Type Data Heterogeneity Operation Agent Participation Other Assumptions
[23] dist. gradient descent convex non-IID synchronous full smooth
[24] dist. SGD convex IID synchronous full smooth

[25], [26] dist. SGD non-convex IID synchronous full smooth

[27] dist. SGD non-convex non-IID
IID

synchronous
asynchronous full -

[28] dist. SGD convex non-IID synchronous full bounded gradients
[29] dist. momentum SGD non-convex non-IID synchronous full -

[30] FedAvg convex
some non-convex non-IID asynchronous full -

[31] FedAvg convex non-IID synchronous partial bounded gradients
[10] FedProx non-convex non-IID asynchronous partial -

[32] HierFAVG convex
non-convex non-IID synchronous full -

[11] MOCHA convex non-IID synchronous full -
[1] Dynamic FedAvg convex non-IID asynchronous partial model drift

this work ISFedAvg convex non-IID asynchronous partial importance sampling

reweighting the cost function and assigning higher weights to
agents with higher loss.

While there exist works that study the effect of importance
sampling in distributed learning [38]–[42], all of these works
apply importance sampling to the data at each agent. To our
knowledge, there are no works that examine the combined
effect of two hierarchical layers of sampling: one for the
nodes and another for their data. By introducing a two-
layer importance sampling scheme to the federated learning
paradigm, we can tackle the problem of importance sampling
both in relation to agents and also in relation to data.

B. Sampling and Inclusion Probabilities

Before describing the problem setting, we need to clarify the
difference between two notions: (a) sampling probability and
(b) inclusion probability. Consider the following illustrative
example. Consider N = 4 balls of which we wish to choose
B = 2 balls non-uniformly and without replacement. Let
the sampling probabilities be πn = {1/3, 1/6, 1/3, 1/6}.
This means that, initially, balls 1 and 3 are twice as likely
to be selected compared to balls 2 and 4. For the first
trial, all the inclusion probabilities are equal to the sampling
probabilities, i.e., P(n chosen on 1st trial) = πn. However,
since we are sampling without replacement, the inclusion
probabilities for the second trial depend on the outcome of
the first trial, i.e., P(n chosen on 2nd trial|m chosen on 1st

trial) = πn/(1 − πm). Using the sampling probabilities, we
can evaluate the likelihood that each ball will end up belonging
to the selected set of 2 balls. In particular, the probability that
ball 1 is chosen either in the first or second trial is given by:

P(1 chosen)

=

4∑
n=2

P
(
1 chosen on 1st trial & n chosen on 2nd trial)

+ P
(
n chosen on 1st trial & 1 chosen on 2nd trial)

=

4∑
n=2

π1
πn

1− π1
+ πn

π1

1− πn
. (3)

Thus, the sampling probability is the working probability. It is
the probability used to actually choose the samples, while the
inclusion probability is a descriptive probability that indicates
the likelihood of a ball being included in the final selected
subset. Observe that the inclusion probabilities depend on the
sampling scheme, while the sampling probabilities do not.
When considering uniform sampling without replacement, the
inclusion probability is a multiple of the sampling probability.
For example, sampling B numbers from {1, 2, · · · , N} with
sampling probabilities 1/N , the inclusion probability is found
to be P(n ∈ B) = B/N . Note further that while the sampling
probabilities sum to 1 over all the sampling space, the inclu-
sion probabilities P(n ∈ B) sum to B. In our derivations, we
will be relying frequently on the inclusion probabilities.

Next, we consider a total number of K agents. At each
iteration i of the algorithm, a subset of agents Li of size
L is chosen randomly without replacement. We denote the
probability that agent k is included in the sample by Lpk
[43], i.e.,

pk
∆
=

P
(
k ∈ Li

)
L

. (4)

In addition, each sampled agent k will run a mini-batch SGD
by sampling Bk data points Bk,i without replacement from its
local data. We denote the probability of inclusion of data point
n by Bkp

(k)
n , i.e.,

p(k)
n

∆
=

P
(
n ∈ Bk,i

)
Bk

. (5)

We refer to pk and p(k)
n as the normalized inclusion probabil-

ities. They sum to 1 over the sampling space; pk sums to 1

over all agents and p(k)
n over the data at each agent.

II. ALGORITHM DERIVATION

The goal of the federated learning algorithm is to ap-
proximate the centralized solution wo while dealing with the
constraint of distributed data. The goal is achieved by using
an unbiased estimate of the gradient of the cost function,
1
K

∑K
k=1∇wTPk(w). As explained in [1] for the case of

uniform sampling, if we assume each agent k runs Ek epochs
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per iteration i (with each epoch using Bk samples in Bk,i,e),
then we can construct an unbiased estimate for the true
gradient by considering the following estimator:

1

L

∑
k∈Li

1

EkBk

Ek∑
e=1

∑
b∈Bk,i,e

∇wTQk(w;xk,b), (6)

as opposed to the original estimator from [9], where the main
difference is the scaling by the epoch size Ek. This correction
is important for the performance of the averaged model. Since
the number of epochs Ek can be non-uniform across the
agents, then, without correction, agents with large epoch sizes
will bias the solution by driving it towards their local model
and away from wo.

Expression (6) is still not sufficient for our purposes in this
article, since agents and data are allowed to be sampled non-
uniformly without replacement. In this case, we need to adjust
(6) by including the inclusion probabilities [38]. The inclusion
probabilities are necessary to ensure the estimate is unbiased,
as will later be seen in Lemma 1. The local estimate of the
gradient at agent k becomes 1

Kpk
∇̂wTPk(w), with:

∇̂wTPk(w)
∆
=

1

EkBk

Ek∑
e=1

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(w;xk,b).

(7)
Motivated by (7), we can write down a stochastic gradient
update at each agent k at epoch e, and at the central processor
at iteration i:

wk,e = wk,e−1

− µ

KpkEkBk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b),

(8)

wi =
1

L

∑
k∈Li

wk,Ek
, (9)

where at each iteration i, step (8) is repeated for e =
1, 2, · · · , Ek. We arrive at the Algorithm 1, which we refer
to as Importance Sampling Federated Averaging (ISFedAvg).

III. CONVERGENCE ANALYSIS

A. Modeling Conditions

To facilitate the analysis of the algorithm, we list some com-
mon assumptions on the nature of the local risk functions and
their respective minimizers. Specifically, we assume convex
cost functions with smooth gradients.

Assumption 1. The functions Pk(·) are ν−strongly convex,
and Qk(·;xk,n) are convex, namely:

Pk(w2) ≥ Pk(w1) +∇wTPk(w1)(w2 − w1) +
ν

2
‖w2 − w1‖2,

(10)
Qk(w2;xk,n) ≥ Qk(w1;xk,n) +∇wTQk(w1;xk,n)(w2 − w1).

(11)

Also, the functions Qk(·;xk,n) have δ−Lipschitz gradients:

‖∇wTQk(w2;xk,n)−∇wTQk(w1;xk,n)‖ ≤ δ‖w2 − w1‖.
(12)

Algorithm 1 (Importance Sampling Federated Averaging)
initialize w0

for each iteration i = 1, 2, · · · do
Select the set of participating agents Li by sampling L
times from {1, . . . ,K} without replacement according to
the sampling probabilities πk.
for each agent k ∈ Li do

initialize wk,0 = wi−1

for each epoch e = 1, 2, · · ·Ek do
Find indices of the mini-batch sample Bk,i,e by
sampling Bk times from {1, . . . , Nk} without re-
placement according to the sampling probabilities
π

(k)
n .

g =
1

Bk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)

wk,e = wk,e−1 − µ
1

EkKpk
g

end for
end for
wi =

1

L

∑
k∈Li

wk,Ek

end for

We further assume that the individual minimizers wok =
argminw∈RM Pk(w) do not drift too far away from wo.

Assumption 2. The distance of each local model wok to the
global model wo is uniformly bounded, ‖wok − wo‖ ≤ ξ.

B. Error Recursion

Iterating the local update (8) over multiple epochs and
combining according to (9), we obtain the following update
for the central iterate:

wi = wi−1 − µ
1

L

∑
k∈Li

1

KpkEkBk

Ek∑
e=1

∑
b∈Bk,i,e

1

Nkp
(k)
b

×∇wTQk(wk,e−1;xk,b). (13)

To simplify the notation, we introduce the error terms:

si
∆
=

1

L

∑
`∈Li

1

Kp`
∇̂wTP`(wi−1)− 1

K

K∑
k=1

∇wTPk(wi−1),

(14)

qi
∆
=

1

L

∑
`∈Li

1

Kp`E`B`

E∑̀
e=1

∑
b∈B`,i,e

1

N`p
(`)
b

×
(
∇wTQk(w`,e−1;x`,b)−∇wTQk(wi−1;x`,b)

)
.

(15)

The first error term si, which we call gradient error, captures
the error from approximating the true gradient by using subsets
of agents and data; while, the second error term qi, which
we call incremental error, captures the error resulting from
the incremental implementation, where at each epoch during
one iteration, the gradient is calculated at the local iterate
wk,e−1. Note that this second error evaluates the loss function
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at the local and global iterates. As we will show later, the
incremental error will fade away, and the dominant factor
will be the gradient error. Before establishing the main result
in Theorem 1 on the convergence of ISFedAvg algorithm,
we present preliminary results that will lead to it. Thus, to
show the convergence of the algorithm, we must assure the
gradient noise si has zero mean and bounded variance, and
the incremental noise qi has bounded variance. Furthermore,
since we split the noise due to the stochastic gradient into
incremental and gradient noise, we can split the analysis into
that of the centralized steps and the local epochs. By proving
that both the centralized and local steps converge, we show
the global algorithm converges too.

Replacing the two error terms (14) and (15) into recursion
(13) and subtracting wo from both sides of the equation, we
get the following error recursion:

w̃i = w̃i−1 + µ
1

K

K∑
k=1

∇wTPk(wi−1) + µsi + µqi. (16)

To bound the `2−norm of the error, we split it into two terms,
centralized and incremental, using Jensen’s inequality with
some constant α ∈ (0, 1) to be defined later:

‖w̃i‖2 ≤
1

α

∥∥∥∥∥w̃i−1 + µ
1

K

K∑
k=1

∇wTPk(wi−1) + µsi

∥∥∥∥∥
2

+
1

1− α
µ2‖qi‖2. (17)

We start with the first term that represents the centralized
solution. We need to show that it converges. To do so, we
start with the gradient noise, and we establish in Lemma 1
that it remains bounded. We bound the gradient noise si under
two constructions: sampling with replacement, and sampling
without replacement.

Lemma 1 (Estimation of first and second order moments
of the gradient noise). The gradient noise defined in (14) has
zero mean:

E{si|wi−1} = 0, (18)

with bounded variance, regardless of the sampling scheme.
More specifically, sampling agents and data with replacement,
results in the following bound:

E{‖si‖2|wi−1} ≤β2
s‖w̃i−1‖2 + σ2

s , (19)

where w̃i−1 = wo −wi−1 and the constants:

β2
s

∆
=

3δ2

L
+

1

LK2

K∑
k=1

1

pk

(
β2
s,k + 3δ2

)
, (20)

σ2
s

∆
=

1

LK2

K∑
k=1

1

pk

{
σ2
s,k +

(
3 +

6

EkBk

)
‖∇wTPk(wo)‖2

}
,

(21)

β2
s,k

∆
=

3δ2

EkBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
, (22)

σ2
s,k

∆
=

6

EkBkN2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wo;xk,n)‖2. (23)

On the other hand, sampling agents and data without replace-
ment results in the same bound but without the scaling by L
in the constants β2

s and σ2
s .

Proof. See Appendix B.

The term σ2
s,k in the bound captures what we call data

variability. It is controlled by the mini-batch size Bk; as
the mini-batch increases the effect of this term is reduced.
The ‖∇wTPk(wo)‖ term quantifies the suboptimality of the
global model locally; we call its effect model variability. It
is reduced when the data and agents are more heterogeneous.
From Assumption 2, we can bound it uniformly.

Now that we have identified the mean and variance of
the gradient noise, we can proceed to establish the important
conclusion that the following centralized solution:

wi = wi−1 − µ
1

L

∑
`∈Li

̂∇wTP`(wi−1), (24)

converges exponentially to an O(µ)−neighbourhood of the
optimizer. In this implementation, the center processor aggre-
gates the approximate gradients of the selected agents. We will
subsequently call upon this result to examine the convergence
behavior of the proposed federated learning solution.

Lemma 2 (Mean-square-error convergence of the central-
ized solution). Consider the centralized recursion (24) where
the cost functions satisfy Assumption 1, and where the first and
second order moments of the gradient noise process satisfy the
conditions in Lemma 1. Also, the samples are chosen without
replacement. For step-size values satisfying µ < 2ν/(δ2+β2

s ),
it holds that E‖w̃i‖2 converges exponentially fast according to
the recursion (25), where λ = 1−2µν+µ2(δ2 +β2

s ) ∈ [0, 1).

E‖w̃i‖2 ≤ λE‖w̃i−1‖2 + µ2σ2
s (25)

It follows from (25) that, for sufficiently small step-sizes:

E‖w̃i‖2 ≤ λiE‖w̃0‖2 +
1− λi

1− λ
µ2σ2

s . (26)

Proof. see Appendix C.

We next bound the incremental noise qi. To do so, we
introduce the local terms:

qk,i,e
∆
=

1

Kpk

(
1

Bk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)

−∇wTPk(wk,e−1)

)
. (27)

We show in the next lemma that the local gradient noise qk,i,e
has zero mean and bounded variance. This result is useful for
showing that the local SGD steps converge in the mean-square-
error sense towards their local models wok.

Lemma 3 (Estimation of first and second order moments
of the local gradient noise). The local gradient noise defined
in (27) has zero mean:

E
{
qk,i,e

∣∣Fe−1,Li
}

= 0, (28)
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and bounded variance, regardless of the sampling scheme:

E
{
‖qk,i,e‖2

∣∣Fe−1,Li
}
≤ Ek
K2p2

k

βs,k‖w̃k,e−1‖2 +
1

K2p2
k

σ2
q,k,

(29)

where Fe−1 = {wk,0, wk,1, · · · , wk,e−1} is the filtration
describing all sources of randomness due to the previous
iterates, w̃k,e = wok −wk,e, and the constants are as defined
in (22) and:

σ2
q,k =

3

BkN2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wok;xk,n)‖2. (30)

Proof. see Appendix D.

Now that we have showed that the local gradient noise of
the incremental step has bounded variance, we can study the
mean square deviation of the local SGD.

Lemma 4 (Mean-square-error convergence of the local
incremental step). For every agent k, consider the local
stochastic gradient recursion (8) where the cost function is
subject to Assumption 1, and where the first and second order
moments of the gradient noise process satisfy the conditions
in Lemma 3. For step-size values satisfying:

µ <
2ν

δ2 + Ek

K2p2k
β2
s,k

, (31)

it holds that E‖w̃k,e‖2 converges exponentially fast according
to the recursion:

E‖w̃k,e‖2 ≤ λkE‖w̃k,e−1‖2 + µ2σ2
q,k, (32)

where:

λk = 1− 2νµ+ µ2

(
δ2 +

Ek
K2p2

k

β2
s,k

)
∈ [0, 1). (33)

It follows from (32) that, for sufficiently small step-sizes:

E‖w̃k,e‖2 ≤ λekE‖w̃k,0‖2 +
1− λek
1− λk

µ2σ2
q,k. (34)

Proof. see Appendix E

We can finally bound the incremental noise in the following
lemma.

Lemma 5 (Estimation of the second order moments of the
incremental noise). The incremental noise defined in (15) has
bounded variance:

E‖qi‖2 ≤ O(µ)E‖w̃i−1‖2 +O(µ)ξ2 +O(µ2)
1

K

K∑
k=1

σ2
q,k,

(35)

where the O(·) terms depend on epoch sizes, local conver-
gence rates, total number of data samples, number of agents,
Lipschitz constant, and data and agent normalized inclusion
probabilities. Thus, E‖qi‖2 = O(µ).

Proof. see Appendix F.

We observe an average data variability term across agents σ2
q,k,

and a model variability term ξ2. However, the effect of the
latter dominates since it is multiplied by an O(µ) term as
opposed to O(µ2).

C. Main Theorem
Now that we have bounded each term of (17) and using

Lemma 2 and 5, we find:

E‖w̃i‖2

≤ 1

α

(
λE‖w̃i−1‖2 + µ2σ2

s

)
+
O(µ3)

1− α
(
E‖w̃i−1‖2 + ξ2

)
+
O(µ4)

1− α
1

K

K∑
k=1

σ2
q,k,

= λ′E‖w̃i−1‖2 +
µ2σ2

s

α
+
O(µ3)

1− α
ξ2 +

O(µ4)

1− α
1

K

K∑
k=1

σ2
q,k,

(36)

where:

λ′
∆
=

λ

α
+
O(µ3)

1− α
,

=
1− 2µν + µ2(δ2 + β2

s )

α
+
O(µ3)

1− α

= O

(
1

α

)
+O

(µ
α

)
+O

(
µ2

α

)
+O

(
µ3

1− α

)
. (37)

Applying this bound recursively we obtain:

E‖w̃i‖2 ≤ (λ′)
i E‖w̃0‖2 +

1− (λ′)
i

1− λ′

(
µ2σ2

s

α
+
O(µ3)

1− α
ξ2

+
O(µ4)

1− α
1

K

K∑
k=1

σ2
q,k

)
, (38)

and then taking the limit i→∞:

lim
i→∞

E‖w̃i‖2

≤ 1

1− λ′

(
µ2σ2

s

α
+
O(µ3)

1− α
ξ2 +

O(µ4)

1− α
1

K

K∑
k=1

σ2
q,k

)
. (39)

for λ′ < 1, which for α =
√
λ is achieved when:

µ < min

{
2ν

δ2 + β2
s

,
2ν

δ2 + Ek

K2p2k
β2
s,k

}
, (40)

O(µ3) < (1−
√
λ)2. (41)

Thus, since α = O(1), 1− α = O(µ) and 1− λ′ = O(µ):

lim
i→∞

E‖w̃i‖2 ≤ O(µ)σ2
s +O(µ)ξ2 +O(µ2)

1

K

K∑
k=1

σ2
q,k.

(42)

The result is summarized in the theorem.

Theorem 1 (Mean-square-error convergence of federated
learning under importance sampling). Consider the iterates
wi generated by the importance sampling federated averaging
algorithm. For sufficiently small step-size µ, it holds that the
mean-square-error converges exponentially fast:

E‖w̃i‖2 ≤O
(
(λ′)i

)
+O(µ)

(
σ2
s + ξ2

)
+O(µ2)

1

K

K∑
k=1

σ2
q,k,

(43)

where λ′ = 1−O(µ) +O(µ2) ∈ [0, 1).
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IV. IMPORTANCE SAMPLING

Due to the heterogeneity of nodes which arise from their
data and computational capabilities, it is important to guide
the algorithm based on the potential contribution that each
agent can have on the overall performance. By allowing asyn-
chronicity, i.e., different epoch sizes among agents, we can
take advantage of the varying computational capabilities. From
[38], we know that the choice of samples at each iteration
affects the solution. Therefore, instead of choosing the samples
uniformly, we consider importance sampling where samples
are chosen according to some distribution to be determined.
A similar scheme can be enforced on the participating agents.
In what follows, we show that using importance sampling
enhances the overall performance.

A. Agent Level: Importance Sampling of Data

Every agent k at each epoch must select a mini-batch of
data based on the normalized inclusion probabilities p

(k)
n .

To find the optimal probabilities, we minimize the bound
on the variance of the local gradient noise σ2

s,k. We solve
the problem for both cases when sampling is done with
replacement and without replacement. The results are the same
for both sampling schemes.

Lemma 6 (Optimal local data inclusion probabilities). The
optimal local data normalized inclusion probabilities are given
by:

p(k),o
n

∆
=

‖∇wTQk(wo;xk,n)‖∑Nk

m=1 ‖∇wTQk(wo;xk,m)‖
. (44)

Proof. By introducing a Lagrange multiplier λ, the optimiza-
tion problem can be reformulated as:

min
p
(k)
n ,λ

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wo;xk,n)‖2 + λ

(
Nk∑
n=1

p(k)
n − 1

)
.

(45)
Then, taking the derivative with respect to p(k)

n and setting it to
zero we get (46). Next, substituting p(k),o

n into the condition,
we find (47).

p(k),o
n =

‖∇wTQk(wo;xk,n)‖√
λ

(46)

√
λ =

Nk∑
m=1

‖∇wTQk(wo;xk,m)‖ (47)

As seen in Lemma 6, more weight is given to a data point
that has a greater gradient norm, thus increasing its chances
of being sampled and resulting in a faster convergence rate.
In addition, we observe that the more homogeneous the data
is the more uniform the inclusion probability is.

B. Cloud Level: Importance Sampling of Agents

At each iteration, the cloud must select a subset of agents
to participate. The agents are selected in accordance with
the normalized inclusion probabilities pk. To find the optimal
probabilities, we minimize the bound on the variance of the
gradient noise σ2

s The following result holds for sampling with

and without replacement, since the gradient noise only differ
by a multiplicative factor.

Lemma 7 (Optimal agent inclusion probabilities for
sampling with replacement). The optimal agent normal-
ized inclusion probabilities are given by (48), where αk =(

3 + 6
EkBk

)
:

pok
∆
=

√
σ2
s,k + αk‖∇wTPk(wo)‖2∑K

`=1

√
σ2
s,` + α`‖∇wTP`(wo)‖2

. (48)

Proof. The proof follows similarly to that of Lemma 6.

We observe that the normalized inclusion probabilities will be
closer to a uniform distribution the more the data and model
variability terms are similar across agents.

C. Practical Issues

In the previous subsections, we focused on finding the op-
timal inclusion probabilities for the agents and data. However,
several practical issues arise. The first is that all probabilities
are calculated based on the optimal model wo, which we do
not have access to. To overcome this issue, we estimate the
probabilities at each iteration by calculating them according
to the current model wi−1. Thus,

p̂(k),o
n =

‖∇wTQk(wi−1;xk,n)‖∑Nk

m=1 ‖∇wTQk(wi−1;xm)‖
, (49)

p̂ok =

√
σ2
s,k + αk‖∇wTPk(wi−1)‖2∑K

`=1

√
σ2
s,` + α`‖∇wTP`(wi−1)‖2

. (50)

In addition, since calculating the true gradient of the local
loss function is costly, we replace it with the mini-batch
approximation when calculating pok:

p̂ok =

√
σ2
s,k + αk

∥∥∥∇̂wTPk(wi−1)
∥∥∥2

∑K
`=1

√
σ2
s,` + α`

∥∥∥∇̂wTP`(wi−1)
∥∥∥2
. (51)

Furthermore, every agent has access to all of its data and
consequently to all of the gradients. However, the cloud does
not have access to the gradients of all agents, and in turn
cannot calculate the denominator of pk. Instead, we propose
the following solution: at iteration 0, all probabilities are set to
pk = 1

K ; then, during the ith iteration, after the participating
agents ` ∈ Li send the cloud their stochastic gradients
∇̂wTP`(wi−1), the probabilities are updated as follows:

p̂ok =

√
σ2
s,k + αk

∥∥∥∇̂wTPk(wi−1)
∥∥∥2

∑
`∈Li

√
σ2
s,` + α`

∥∥∥∇̂wTP`(wi−1)
∥∥∥2

1−
∑
`∈Lc

i

p̂o`

 ,

(52)

where the multiplicative factor follows from ensuring all the
probabilities p̂ok sum to 1. Similarly for the local probabilities,
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since we are implementing mini-batch SGD, we only update
the probabilities of the data points that were sampled:

p̂(k),o
n =

‖∇wTQk(wi−1;xk,n)‖∑
b∈Bk,i,e

‖∇wTQk(wi−1;xb)‖

1−
∑

b∈Bc
k,i,e

p̂
(k),o
b

 .

(53)

Finally, the last problem arises when sampling without
replacement. We have found the optimal inclusion probabilities
and not the optimal sampling probabilities, and moving from
the former to the latter is not trivial. Thus, we rely on the
literature under sampling without replacement with unequal
probabilities. Multiple sampling schemes exist such that the
sampling probabilities do not need to be calculated explicitly.
In general, there are multiple non-uniform sampling with-
out replacement schemes that guarantee the same inclusion
probabilities. We choose to implement the sampling scheme
proposed in [44], which ensures the inclusion probabilities
are pok and p

(k),o
n for the agents and data, respectively. More

explicitly, we first calculate the progressive totals of the
inclusion probabilities Πk =

∑k
`=1 Lpk, for k = 1, 2, · · · ,K,

and we set Π0 = 0. Then, we select uniformly at random a
uniform variate d ∈ [0, 1). Then, we select the L agents that
satisfy Πk−1 ≤ q + ` < Πk, for some ` = 0, 1, · · · , L− 1.

V. EXPERIMENTAL SECTION

To validate the theoretical results, we devise two experi-
ments. The first consists of simulated data with quadratic risk
functions, and the second consists of a real dataset with logistic
risk functions.

A. Regression

We first validate the theory on a regression problem. We
consider K = 300 agents, for which we generate Nk = 100
data points for each agent k as follow: Let uk,n denote
an independent streaming sequence of two-dimensional ran-
dom vectors with zero mean and covariance matrix Ruk

=
Euk,iu

T
k,i. Let dk(n) denote a streaming sequence of random

variables that have zero mean and variance σ2
dk

= Ed2
k(n). Let

rdkuk
= E dk(n)uk,n be the cross-variance vector. The data

{dk(n),uk,n} are related by the following linear regression
model:

dk(n) = uk,nw
? + vk(n), (54)

for some randomly generated parameter vector w? and where
vk(n) is a zero mean white noise process with variance σ2

vk
=

Ev2
k(n), independent of uk,n. The local risk is given by:

Pk(w) =
1

Nk

Nk∑
n=1

‖dk(n)− uT
k,nw‖2 + ρ‖w‖2. (55)

We set ρ = 0.001, while the batch sizes Bk and the epoch
sizes Ek are chosen uniformly at random from the range [1, 10]
and [1, 5], respectively. During each iteration, there are L = 6
active agents. To test the performance of the algorithm, we
calculate at each iteration the mean-square-deviation (MSD)
of the parameter vector wi with respect to the true model wo:

MSDi = ‖wi − wo‖2. (56)

The optimization problem has the closed form expression:

wo =
(
R̂u + ρI

)−1

R̂uw
? +

(
R̂u + ρI

)−1

r̂uv, (57)

where:

R̂u
∆
=

1

K

K∑
k=1

1

Nk

Nk∑
n=1

uT
k,nuk,n, (58)

r̂uv
∆
=

1

K

K∑
k=1

1

Nk

Nk∑
n=1

vk(n)uk,n. (59)

We run four tests: we first run the standard FedAvg al-
gorithm where the mini-batches are chosen uniformly with
replacement. We then run Algorithm 1, once with the op-
timal probabilities p(k)

n and pk in (44)–(48), once with the
approximate probabilities (49)–(50), and once with (52)–(53).
We implement the sampling scheme from [44]. We set the
step-size µ = 0.01. Each test is repeated 100 times, and the
resulting MSD is averaged. We get the curves as shown in
Figure 1. We see that the importance sampling scheme does
better than the standard sampling algorithm. This comes as no
surprise, since the probabilities were chosen to minimize the
bound on the MSD. The importance sampling scheme (green
curve) improved the MSD bound by 23.1 dB compared to the
standard federated learning scheme (blue curve). Furthermore,
we observe that approximate probabilities do not degrade
the performance of the algorithm. Our proposed approximate
solution (52)–(53) (purple curve) performs just as well as using
the true probabilities. In fact, we observe that the approximate
probabilities converge to the true ones, ‖pok− p̂ok‖ = 1.22e−2

and 1
K

∑K
k=1 ‖p

(k),o
n − p̂

(k),o
n ‖ = 1.54e − 2. Similarly, the

approximate probabilities (50)–(49) do not degrade the overall
performance. They, in fact, outperform the other solutions and
converge faster (red curve). This is not surprising, since, at
each iteration, we are attributing higher probabilities to agents
and data points that have greater gradients. We are increasing
their chances of being selected and thus taking steeper steps
towards the true model.

0 200 400 600 800 1000
i

40

30

20

10

0

M
SD

 (d
B)

Mini-batch w/ uniform sampling
Mini-batch w/ optimal IS
Mini-batch w/ approximated IS (49)-(50)
Mini-batch w/ approximated IS (52)-(53)

Fig. 1. MSD plots of the regression problem: blue curve is the standard mini-
batch implementation, green curve is the importance sampling implementation
with the true probabilities, red curve is the importance sampling implementa-
tion with approximate probabilities (49)–(50), purple curve is the importance
sampling implementation with approximate probabilities (52)–(53).
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B. Classification

We next study the theory in a classification context. We
consider the ijcnn1 dataset [45]. The dataset consists of 35000
training samples and 91701 testing samples of M = 22
attributes. We distribute the data randomly in a non-IID fashion
to K = 100 agents. Each agent receives a random number
Nk of data points, where Nk ranges from 79 to 688. We run
the two algorithms FedAvg and ISFedAvg. We set µ = 0.25,
ρ = 0.0001, L = 10, Bk = 1, and Ek = 1. We plot the
testing error in Figure 2. We observe that importance sampling
improves the testing error from 22.45% to 18.46%. This is
because importance sampling is more sample efficient.

0 100 200 300 400 500
i

20

40

60

80

Te
st
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g 

Er
ro

r (
%

)

FedAvg
ISFedAvg

Fig. 2. Testing error plots of the classification problem.

VI. CONCLUSION

This work incorporates two levels of importance sampling
into the operation of federated learning: one for selecting
agents and another for selecting data batches at the agents.
Optimal dynamical choices for the sampling probabilities are
derived, and a detailed convergence analysis is performed.
We also provided approximate expressions for the optimal
sampling policies and illustrate the theoretical findings and
the performance enhancement by means of simulations.

APPENDIX A
RESULT ON THE VARIANCE OF THE MINI-BATCH ESTIMATE

We introduce the following auxiliary result that is a gener-
alization of [46]. Let {S = xn ∈ RM}Nn=1 denote a set of
N independent random variables, each with mean Exn = xn
and variance σ2

n = E‖xn − Exn‖2. We consider the problem
of estimating the expected value of the sample mean:

x , E

(
1

N

N∑
n=1

xn

)
(60)

We consider two estimators for x, both constructed by con-
sidering a mini-batch of samples, where xr

b is constructed by
sampling from S with replacement, and xnr

b is sampled from
S without replacement. Let pn be the normalized inclusion
probability of xn. We then define the two estimators (61)
and (62), and we would like to quantify the efficacy of these
estimators in estimating x.

x̂r ,
1

B

B∑
b=1

1

Npb
xr
b (61)

x̂nr ,
1

B

B∑
b=1

1

Npb
xnr
b (62)

Lemma 8 (Variance of the mini-batch mean with and
without replacement). Both estimators are unbiased and it
holds that:

Ex̂r = Ex̂nr = x, (63)

E‖x̂r − x‖2 =
1

B

N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
,

(64)

E‖x̂nr − x‖2 =
1

B

N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

+
1

B2

∑
n1 6=n2

P(In1
= 1, In2

= 1)

×
(

1

Npn1

xn1 − x
)(

1

Npn2

xn2 − x
)
, (65)

where the notation In evaluates to one if xn ∈ Bnr and is
zero otherwise.

Proof. We begin with the with-replacement setting. The ran-
domness of the samples introduces some intricacies that need
to be accounted for in the notation. For the mean, we have:

Ex̂r =
1

B

B∑
b=1

E
(

1

Npb
xr
b

)
=

1

B

B∑
b=1

E
{
E
{

1

Npb
xr
b

∣∣∣∣S}}

=
1

B

B∑
b=1

E

{
N∑
n=1

pn
1

Npn
xn

}
=

1

B

B∑
b=1

x = x. (66)

For the variance we find:

E‖x̂r − x‖2

= E

∥∥∥∥∥ 1

B

B∑
b=1

1

Npb
xr
b − x

∥∥∥∥∥
2

,

= E

∥∥∥∥∥ 1

B

B∑
b=1

(
1

Npb
xr
b − x

)∥∥∥∥∥
2

,

=
1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2

+
1

B2

∑
b1 6=b2

E
{(

1

Npb1
xb1 − x

)(
1

Npb2
xb2 − x

)}
,

(a)
=

1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2

+
1

B2

∑
b1 6=b2

E
{

1

Npb1
xb1 − x

}
E
{

1

Npb2
xb2 − x

}
,

(b)
=

1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2

, (67)
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where (a) is a result of the fact that the elements of S are
independent and xr

b is sampled from S independently, and
hence xb1 and xb2 are independent. Step (b) then follows
from:

E
(

1

Npb
xb

)
= E

(
1

N

N∑
n=1

xn

)
= x. (68)

Then,

E‖x̂r − x‖2

=
1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2

,

=
1

B2

B∑
b=1

E

{
E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2∣∣∣∣S
}
,

=
1

B2

B∑
b=1

E

{
N∑
n=1

pn

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
}
,

=
1

B2

B∑
b=1

N∑
n=1

pnE
∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2

,

=
1

B

N∑
n=1

pnE
∥∥∥∥ 1

Npn
xn −

1

Npn
xn +

1

Npn
xn − x

∥∥∥∥2

,

=
1

B

N∑
n=1

pn

(
E
∥∥∥∥ 1

Npn
xn −

1

Npn
xn

∥∥∥∥2

+

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
,

=
1

B

N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
. (69)

We now proceed to study the efficiency of the without re-
placement mini-batch mean. The fact that the xb are sampled
from S without replacement causes pairs xb1 ,xb2 to no longer
be independent. We denote the set of points sampled from
S without replacement by Bnr and introduce the activation
function by:

In ,

{
1, if xn ∈ Bnr,

0, if xn /∈ Bnr.
(70)

Then, the estimator x̂nr can be written equivalently as:

x̂nr =
1

B

N∑
n=1

In
1

Npn
xn. (71)

For the mean, we have:

Ex̂nr =
1

B

N∑
n=1

E
{
In

1

Npn
xn

}
=

1

B

N∑
n=1

EIn × E
1

Npn
xn

=
1

B

N∑
n=1

Bpn ×
1

Npn
xn =

1

N

N∑
n=1

xn = x. (72)

For the variance, we have:

E ‖x̂nr − x‖2 = E

∥∥∥∥∥ 1

B

N∑
n=1

In
(

1

Npn
xn − x

)∥∥∥∥∥
2

,

=
1

B2

N∑
n=1

E
∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2

+
1

B2

∑
n1 6=n2

E

{
In1

(
1

Npn1

xn1 − x
)
In2

×
(

1

Npn2

xn2
− x
)}

.

(73)

We begin with:

E
∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2

= E

{∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2 ∣∣∣∣In = 1

}
× P (In = 1)

+ E

{∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2 ∣∣∣∣In = 0

}
× P (In = 0) ,

=Bpn

(
E
∥∥∥∥ 1

Npn
xn −

1

Npn
xn +

1

Npn
xn − x

∥∥∥∥2
)
,

=Bpn

(
1

N2p2
n

E‖xn − xn‖2 +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
,

=Bpn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
. (74)

For the cross-term we have:

E
{
In1

(
1

Npn1

xn1
− x
)
In2

(
1

Npn2

xn2
− x
)}

= E
{(

1

Npn1

xn1 − x
)(

1

Npn2

xn2 − x
) ∣∣∣∣In1 = 1, In2 = 1

}
× P (In1 = 1, In2 = 1) ,

= P (In2
= 1, In1

= 1)

(
1

Npn1

Exn1
− x
)(

1

Npn2

Exn2
− x
)
,

= P (In2
= 1, In1

= 1)

(
1

Npn1

xn1
− x
)(

1

Npn2

xn2
− x
)
.

(75)

We then get the desired result.

We note the following bound on the variance of sampling
without replacement estimator. Using Jensen’s inequality, we
can get rid of the cross-term, and deduce from (26) the
following inequality:

E ‖x̂nr − x‖2 ≤
N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
.

(76)
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APPENDIX B
PROOF OF LEMMA 1

Proof. We start with the sampling with-replacement construc-
tion. We have K agents from which we sample L. Thus, N
and B in Lemma 8 are K and L, respectively. Also:

xk = ∇̂wTPk(wi−1), (77)
xk = ∇wTPk(wi−1), (78)

x =
1

K

K∑
k=1

∇wTPk(wi−1). (79)

Then σ2
k, which quantifies the second order moment of the

local gradient noise, becomes:

σ2
k = E

{∥∥∥∇̂wTPk(wi−1)−∇wTPk(wi−1)
∥∥∥2
∣∣∣∣wi−1

}
,

=
1

E2
kB

2
k

Ek∑
e=1

∑
b∈Bk,i,e

E

{∥∥∥∥ 1

Nkp
(k)
b

∇wTQk(wi−1;xk,b)

−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1

}
,

=
1

EkB2
k

∑
b∈Bk,i,e

E

{∥∥∥∥ 1

Nkp
(k)
b

∇wTQk(wi−1;xk,b)

− 1

Nkp
(k)
b

∇wTQk(wo;xk,b) +
1

Nkp
(k)
b

∇wTQk(wo;xk,b)

−∇wTPk(wo) +∇wTPk(wo)−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1

}
,

(a)

≤ 3

EkB2
k

∑
b∈Bk,i,e

{
E

{∥∥∥∥ 1

Nkp
(k)
b

∇wTQk(wi−1;xk,b)

− 1

Nkp
(k)
b

∇wTQk(wo;xk,b)

∥∥∥∥2∣∣∣∣wi−1

}

+ E


∥∥∥∥∥ 1

Nkp
(k)
b

∇wTQk(wo;xk,b)−∇wTPk(wo)

∥∥∥∥∥
2 ∣∣∣∣wi−1


+ E

{
‖∇wTPk(wo)−∇wTPk(wi−1)‖2

∣∣∣∣wi−1

}}
,

=
3

EkB2
k

∑
b∈Bk,i,e

{
Nk∑
n=1

p(k)
n

∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wi−1;xk,n)

− 1

Nkp
(k)
n

∇wTQk(wo;xk,n)

∥∥∥∥2

+

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wo;xk,n)−∇wTPk(wo)

∥∥∥∥∥
2

+ ‖∇wTPk(wo)−∇wTPk(wi−1)‖2
}
,

(b)

≤ 3

EkB2
k

∑
b∈Bk,i,e

{(
1 +

Nk∑
n=1

1

N2
kp

(k)
n

)
δ2‖w̃i−1‖2

+

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wo;xk,n)−∇wTPk(wo)

∥∥∥∥∥
2}

,

(c)

≤ 3δ2

EkBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
‖w̃i−1‖2

+
6

EkBkN2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wo;xk,n)‖2

+
6

EkBk
‖∇wTPk(wo)‖2

= β2
s,k‖w̃i−1‖2 + σ2

s,k +
6

EkBk
‖∇wTPk(wo)‖2 , (80)

where (a) and (c) follow from using Jensen’s inequality,
and (b) follows from using the δ−Lipschitz property of the
gradients. Thus, using Lemma 8, we bound the stochastic noise
variance as follows:

E
{
‖si‖2|wi−1

}
=

1

L

K∑
k=1

pk

{
1

K2p2
k

σ2
k

+

∥∥∥∥ 1

Kpk
∇wTPk(wi−1)− 1

K

K∑
`=1

∇wTP`(wi−1)

∥∥∥∥2
}
. (81)

We focus on the second term since the first term has already
been bounded. Using Jensen’s inequality in (a) and Lipschitz
condition of the gradients in (b), we get:

∥∥∥∥∥ 1

Kpk
∇wTPk(wi−1)− 1

K

K∑
`=1

∇wTP`(wi−1)

∥∥∥∥∥
2

=
1

K2

∥∥∥∥ 1

pk
∇wTPk(wi−1)− 1

pk
∇wTPk(wo) +

1

pk
∇wTPk(wo)

+

K∑
`=1

∇wTP`(w
o)−

K∑
`=1

∇wTP`(wi−1)

∥∥∥∥2

,

(a)

≤ 3

K2p2
k

‖∇wTPk(wi−1)−∇wTPk(wo)‖2

+
3

K2p2
k

‖∇wTPk(wo)‖2

+
3

K

K∑
`=1

‖∇wTP`(w
o)−∇wTP`(wi−1)‖2 ,

(b)

≤ 3δ2

(
1 +

1

K2p2
k

)
‖w̃i−1‖2 +

3

K2p2
k

‖∇wTPk(wo)‖2 .

(82)

Then, putting things together, we get:
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E
{
‖si‖2|wi−1

}
≤ 1

L

K∑
k=1

pk

{
β2
s,k

K2p2
k

‖w̃i−1‖2 +
1

K2p2
k

σ2
s,k

6

K2p2
kEkBk

‖∇wTPk(wo)‖2 +
3

K2p2
k

‖∇wTPk(wo)‖2

+ 3δ2

(
1 +

1

K2p2
k

)
‖w̃i−1‖2

}
,

=
1

L

K∑
k=1

(
β2
s,k

K2pk
+ 3δ2pk +

3δ2

K2pk

)
‖w̃i−1‖2

+
1

LK2

K∑
k=1

1

pk

{
σ2
s,k +

(
3 +

6

EkBk

)
‖∇wTPk(wo)‖2

}
,

=

(
3δ2

L
+

1

LK2

K∑
k=1

1

pk

(
β2
s,k + 3δ2

))
‖w̃i−1‖2

+
1

LK2

K∑
k=1

1

pk

{
σ2
s,k +

(
3 +

6

EkBk

)
‖∇wTPk(wo)‖2

}
,

= β2
s‖w̃i−1‖2 + σ2

s . (83)

Next, we move to the sampling without replacement con-
struction. The variance σ2

k becomes:

σ2
k = E

{∥∥∥∇̂wTPk(wi−1)−∇wTPk(wi−1)
∥∥∥2
∣∣∣∣wi−1

}
,

= E

{∥∥∥∥ 1

EkBk

Ek∑
e=1

Nk∑
n=1

In
1

Nkp
(k)
n

∇wTQk(wi−1;xn)

−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1

}
,

=
1

E2
k

Ek∑
e=1

E

{∥∥∥∥ 1

Bk

Nk∑
n=1

In
1

Nkp
(k)
n

∇wTQk(wi−1;xn)

−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1

}
,

=
1

EkB2
k

Nk∑
n=1

E

{∥∥∥∥In 1

Nkp
(k)
n

∇wTQk(wi−1;xn)

−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1

}
,

+
1

EkB2
k

∑
n1 6=n2

E

{
In1

(
1

Nkp
(k)
n1

∇wTQk(wi−1;xn1)

−∇wTPk(wi−1)

)
In2

(
1

Nkp
(k)
n2

∇wTQk(wi−1;xn2)

−∇wTPk(wi−1)

)∣∣∣∣wi−1

}
. (84)

Starting with the first term, we use Jensen’s inequality in (a)
and (c) and the Lipschitz condition in (b) to get:

1

EkB2
k

Nk∑
n=1

P(In = 1)E

{∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wi−1;xk,n)

−∇wTPk(wi−1)

∥∥∥∥2∣∣∣∣wi−1, In = 1

}
,

=
1

EkBk

Nk∑
n=1

p(k)
n

∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wi−1;xk,n)

−∇wTPk(wi−1)

∥∥∥∥2

,

=
1

EkBk

Nk∑
n=1

p(k)
n

∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wi−1;xk,n)

− 1

Nkp
(k)
n

∇wTQk(wo;xk,n) +
1

Nkp
(k)
n

∇wTQk(wo;xk,n)

−∇wTPk(wo) +∇wTPk(wo)−∇wTPk(wi−1)

∥∥∥∥2

,

(a)

≤ 3

EkBk

Nk∑
n=1

1

N2
kp

(k)
n

‖∇wTQk(wi−1;xk,n)

−∇wTQk(wo;xk,n)‖2

+ p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wo;xk,n)−∇wTPk(wo)

∥∥∥∥∥
2

+ p(k)
n ‖∇wTPk(wo)−∇wTPk(wi−1)‖2 ,

=
3

EkBk

Nk∑
n=1

{
1

N2
kp

(k)
n

‖∇wTQk(wi−1;xk,n)

−∇wTQk(wo;xk,n)‖2

+ p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wo;xk,n)−∇wTPk(wo)

∥∥∥∥∥
2}

+
3

EkBk
‖∇wTPk(wo)−∇wTPk(wi−1)‖2 ,

(b)

≤ 3δ2

EkBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
‖w̃i−1‖2

+
3

EkBk

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wo;xk,n)−∇wTPk(wo)

∥∥∥∥∥
2

,

(c)

≤ 3δ2

EkBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
‖w̃i−1‖2

+
6

EkBk

Nk∑
n=1

1

N2
kp

(k)
n

‖∇wTQk(wo;xk,n)‖2

+
6

EkBk
‖∇wTPk(wo)‖2,

= β2
s,k‖w̃i−1‖2 + σ2

s,k +
6

EkBk
‖∇wTPk(wo)‖2, (85)

The cross-term reduces to 0 by first conditionig over In1
=

1, In2
= 1 and then splittinng the expectation. Each of the two

terms are zero. Thus, putting everything together, we get:

σ2
k ≤ β2

s,k‖w̃i−1‖2 + σ2
s,k +

6

EkBk
‖∇wTPk(wo)‖2. (86)
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Next, to bound the second order moment of the gradient noise,
we use (76):

E
{
‖si‖2|wi−1

}
≤

K∑
k=1

pk

(
1

K2p2
k

σ2
k

+

∥∥∥∥ 1

Kpk
∇wTPk(wi−1)− 1

K

K∑
`=1

∇wTP`(wi−1)

∥∥∥∥2
)
. (87)

The first term is of the same form as for sampling with
replacement, and thus can be bounded similarly:

E{‖si‖2|wi−1} ≤
K∑
k=1

pk

{
β2
s,k

K2p2
k

‖w̃i−1‖2 +
1

K2p2
k

σ2
s,k

+
6

K2p2
kEkBk

‖∇wTPk(wo)‖2 +
3

K2p2
k

‖∇wTPk(wo)‖2

+ 3δ2

(
1 +

1

K2p2
k

)
‖w̃i−1‖2

}
= β2

s‖w̃i−1‖2 + σ2
s . (88)

APPENDIX C
PROOF OF LEMMA 2

Proof. We first note the following result by using
1
K

∑K
k=1∇wTPk(wo) = 0:∥∥∥∥∥w̃i−1 + µ

1

K

K∑
k=1

∇wTPk(wi−1)

∥∥∥∥∥
2

= ‖w̃i−1‖2 + µ2

∥∥∥∥∥ 1

K

K∑
k=1

∇wTPk(wo)−∇wTPk(wi−1)

∥∥∥∥∥
2

+ 2µw̃T
i−1

1

K

K∑
k=1

∇wTPk(wi−1),

(a)

≤ ‖w̃i−1‖2 + µ2 1

K

K∑
k=1

‖∇wTPk(wo)−∇wTPk(wi−1)‖2

+ 2µw̃T
i−1

1

K

K∑
k=1

∇wTPk(wi−1),

(b)

≤ (1 + µ2δ2)‖w̃i−1‖2 + 2µw̃T
i−1

1

K

K∑
k=1

∇wTPk(wi−1),

(c)

≤ (1 + µ2δ2)‖w̃i−1‖2

+ 2µ
1

K

K∑
k=1

(
Pk(wo)− Pk(wi−1)− ν

2
‖w̃i−1‖2

)
,

(d)

≤ (1 + µ2δ2)‖w̃i−1‖2 − 2µ
1

K

K∑
k=1

ν‖w̃i−1‖2,

= (1− 2µν + µ2δ2)‖w̃i−1‖2, (89)

where (a) follows from Jensen’s inequality, (b) from the
Lipschitz condition, and (c) and (d) from strong convexity
condition.

Returning to the main expression:

w̃i−1 + µ
1

K

K∑
k=1

∇wTPk(wi−1) + µsi, (90)

and taking conditional expectations, we obtain:

E


∥∥∥∥∥w̃i−1 + µ

1

K

K∑
k=1

∇wTPk(wi−1) + µsi

∥∥∥∥∥
2 ∣∣∣∣∣wi−1

 ,

(a)
= E


∥∥∥∥∥w̃i−1 + µ

1

K

K∑
k=1

∇wTPk(wi−1)

∥∥∥∥∥
2 ∣∣wi−1


+ µ2E

{
‖si‖2

∣∣wi−1

}
,

(b)

≤ (1− 2µν + µ2δ2)‖w̃i−1‖2

+ µ2
(
β2
s‖w̃i−1‖2 + ηs‖w̃i−1‖+ σ2

s

)
, (91)

where the cross-term in (a) is zero because of the zero mean
property of the gradient noise, and (b) follows from (89) and
using the bound on the second order moment of the gradient
noise.

Next, taking expectation again to remove the conditioning
we get:

E

∥∥∥∥∥w̃i−1 + µ
1

K

K∑
k=1

∇wTPk(wi−1) + µsi

∥∥∥∥∥
2

≤
(
1− 2µν + µ2(δ2 + β2

s )
)
E‖w̃i−1‖2 + µ2ηsE‖w̃i−1‖

+ µ2σ2
s . (92)

APPENDIX D
PROOF OF LEMMA 3

Proof. To show the mean is zero, it is enough to calculate
the mean of the approximate gradient. We start with the
sampling with replacement scheme where the samples are
chosen independently from each other:

E

 1

Bk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣Fe−1,Li


=

1

Bk

∑
b∈Bk,i,e

E

{
1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣Fe−1,Li

}
,

=
1

Bk

∑
b∈Bk,i,e

Nk∑
n=1

1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n),

=
1

Nk

Nk∑
n=1

∇wTQk(wk,e−1;xk,n). (93)
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As for the sampling without replacement scheme, since the
samples are now dependent, we introduce the indicator func-
tion In and the derivation goes as follows:

E

 1

Bk

∑
b∈Bk,i,e

1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣Fe−1,Li


= E

{
1

Bk

Nk∑
n=1

In
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)
∣∣Fe−1,Li

}
,

=
1

Bk

Nk∑
n=1

P(In = 1)

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n),

=
1

Nk

Nk∑
n=1

∇wTQk(wk,e−1;xk,n). (94)

Next, to bound the second order moment, we start with an
intermediate step and bound the second order moment of the
individual gradient noise of one sample. The derivation below
holds regardless of the sampling scheme. By adding and sub-
tracting 1

Nkp
(k)
n

∇wTQk(wok;xk,n), adding ∇wTPk(wok) = 0,
and then using Jensen’s inequality and Lipschitz condition,
we get:∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n)−∇wTPk(wk,e−1)

∥∥∥∥∥
2

≤ 3

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n)

− 1

Nkp
(k)
n

∇wTQk(wok;xk,n)

∥∥∥∥∥
2

+ 3

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wok;xk,n)

∥∥∥∥∥
2

+ 3δ2‖w̃k,e−1‖2. (95)

Then, taking the conditional expectation and using the Lips-
chitz property, we get:

E

{∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n)

−∇wTPk(wk,e−1)

∥∥∥∥∥
2∣∣∣∣∣Fe−1,Li

}

≤
Nk∑
n=1

3p
(k)
n

N2
k

(
p

(k)
n

)2

(
‖∇wTQk(wk,e−1;xk,n)

−∇wTQk(wok;xk,n)‖2 + ‖∇wTQk(wok;xk,n)‖2
)

+ 3δ2‖w̃k,e−1‖2,

≤
Nk∑
n=1

3

N2
kp

(k)
n

(
δ2‖w̃k,e−1‖2 + ‖∇wTQk(wok;xk,n)‖2

)
+ 3δ2‖w̃k,e−1‖2. (96)

Now going back to calculating the second order moment of
the local incremental gradient noise, we first start with the

sampling with replacement. Using the fact that the samples
are independent we get:

E
{
‖qk,i,e‖2

∣∣Fe−1,Li
}

=
1

K2p2
kB

2
k

∑
b∈Bk,i,e

E

{∥∥∥∥∥ 1

Nkp
(k)
b

∇wTQk(wk,e−1;xk,b)

−∇wTPk(wk,e−1)

∥∥∥∥∥
2∣∣∣∣∣Fe−1,Li

}

≤ 3δ2

K2p2
kBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
‖w̃k,e−1‖2

+
3

K2p2
kBkN

2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wok;xk,n)‖2. (97)

As for the sampling without replacement, we also introduce
the indicator function and write out the square of sums. The
cross-terms disappear since each term has zero mean. The
derivation then follows similarly to that of the sampling with
replacement. More formally:

E
{
‖qk,i,e‖2

∣∣Fe−1,Li
}

=
1

K2p2
kB

2
k

Nk∑
n=1

P(In = 1)E

{∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n)

−∇wTPk(wk,e−1)

∥∥∥∥∥
2∣∣∣∣∣In = 1,Fe−1,Li

}

=
1

K2p2
kBk

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1

Nkp
(k)
n

∇wTQk(wk,e−1;xk,n)

−∇wTPk(wk,e−1)

∥∥∥∥∥
2

≤ 3δ2

K2p2
kBk

(
1 +

1

N2
k

Nk∑
n=1

1

p
(k)
n

)
‖w̃k,e−1‖2

+
3

K2p2
kBkN

2
k

Nk∑
n=1

1

p
(k)
n

‖∇wTQk(wok;xk,n)‖2. (98)

APPENDIX E
PROOF OF LEMMA 4

Proof. We subtract wok from both sides of (8) and use (27) to
get:

w̃k,e = w̃k,e−1 + µ∇wTPk(wk,e−1) + µqk,i,e. (99)

We bound the first two terms and use the fact that
∇wTPk(wok) = 0, Lipschitz condition, and the convexity of
the cost function:

‖w̃k,e−1 + µ∇wTPk(wk,e−1)‖2

+ µ2‖∇wTPk(wk,e−1)‖2,
= ‖w̃k,e−1‖2 + 2µw̃T

k,e−1∇wTPk(wk,e−1)

+ µ2‖∇wTPk(wok)−∇wTPk(wk,e−1)‖2,
≤ (1 + µ2δ2)‖w̃k,e−1‖2 + 2µw̃T

k,e−1∇wTPk(wk,e−1),

≤ (1− 2νµ+ µ2δ2)‖w̃k,e−1‖2. (100)
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Returning to (99), squaring both sides, conditioning on the
filtration Fe−1, and taking expectations we obtain:

E
{
‖w̃k,e‖2

∣∣Fe−1

}
(a)
= E

{
‖w̃k,e−1 + µ∇wTPk(wk,e−1)‖2

∣∣Fe−1

}
+ µ2E

{
‖q2
k,i,e‖2

∣∣Fe−1

}
,

≤
(

1− 2νµ+ µ2

(
δ2 +

Ek
K2p2

k

β2
s,k

))
‖w̃k,e−1‖2

+ µ2 1

K2p2
k

σ2
q,k, (101)

where the cross term in (a) is zero because of the zero
mean property of the local incremental gradient noise. Taking
expectations on both sides again removes the condition on the
filtration and leads to the desired result. By further iterating
recursion (32) we obtain:

E‖w̃k,e‖2 ≤ λekE‖w̃k,0‖2 +
1− λek
1− λk

µ2σ2
q,k. (102)

APPENDIX F
PROOF OF LEMMA 5

Proof. First, using Jensen’s inequality (a) and Lipschitz con-
tinuity (b), we obtain:

‖qi‖2
(a)

≤ 1

L

∑
`∈Li

1

K2p2
`E`B`

E∑̀
e=1

∑
b∈B`,i,e

1

N2
`

(
p

(`)
b

)2

× ‖∇wTQ`(w`,e−1;x`,b)−∇wTQ`(wi−1;x`,b)‖2 ,
(b)

≤ δ2

L

∑
`∈Li

1

K2p2
`E`B`

E∑̀
e=1

∑
b∈B`,i,e

‖wi−1 −w`,e−1‖2

N2
`

(
p

(`)
b

)2 .

(103)

Next, we focus on ‖wi−1−w`,e−1‖2, and by applying Jensen’s
inequality in (a) and (b) and Lipschitz condition in (c) we
obtain:

‖wi−1 −w`,e−1‖2

= µ2

∥∥∥∥∥∥ 1

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N`p
(`)
b

∇wTQ`(w`,f ;x`,b)

∥∥∥∥∥∥
2

,

(a)

≤ µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2 ‖∇wTQ`(w`,f ;x`,b)

−∇wTQ`(w
o
` ;x`,b) +∇wTQ`(w

o
` ;x`,b)‖2,

(b)

≤ 2µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

(
‖∇wTQ`(w`,f ;x`,b)

−∇wTQ`(w
o
` ;x`,b)‖2 + ‖∇wTQ`(w

o
` ;x`,b)‖2

)
,

(c)

≤ 2µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

(
δ2‖w̃`,f‖2

+ ‖∇wTQ`(w
o
` ;x`,b)‖2

)
.

Then, taking the expectation given the previous filtration Fe−2

and the participating agents Li, we see that:

E
{
‖wi−1 −w`,e−1‖2

∣∣Fe−2,Li
}

≤ 2µ2δ2

E`B`

e−2∑
f=0

‖w̃`,f‖2E


∑

b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

∣∣∣∣∣Fe−2,Li


+

2µ2

E`B`

e−2∑
f=0

E


∑

b∈B`,i,f

‖∇wTQ`(w
o
` ;x`,b)‖2

N2
`

(
p

(`)
b

)2

∣∣∣∣∣Fe−2,Li


(104)

=
2µ2δ2

E`B`

e−2∑
f=0

‖w̃`,f‖2
N∑̀
n=1

P(In = 1)

N2
`

(
p

(`)
n

)2

+
2µ2

E`B`

e−2∑
f=0

N∑̀
n=1

P(In = 1)

N2
`

(
p

(`)
n

)2 ‖∇wTQ`(w
o
` ;x`,n)‖2,

=
2µ2δ2

E`

e−2∑
f=0

‖w̃`,f‖2
N∑̀
n=1

1

N2
` p

(`)
n

+
2µ2(e− 1)

3E`
σ2
q,`.

(105)

Then, taking expectation again over the filtration, we obtain:

E
{
‖wi−1 −w`,e−1‖2

∣∣Li}
≤ 2µ2δ2

E`

e−1∑
f=0

E
{
‖w̃`,f‖2

∣∣Li} N∑̀
n=1

1

N2
` p

(`)
n

+
2µ2(e− 1)

3E`
σ2
q,`,

(a)
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E`

N∑̀
n=1

1

N2
` p

(`)
n
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(
λf`E

{
‖w̃`,0‖2

∣∣Li}
+

µ2

K2p2
`
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1− λ`

σ2
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)
+

2µ2(e− 1)

3E`
σ2
q,`,

=
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1

N2
` p
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(
1− λe`
1− λ`

E
{
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+

µ2

K2p2
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e(1− λ`)− 1 + λe`
(1− λ`)2

σ2
q,`

)
+

2µ2(e− 1)

3E`
σ2
q,`,

(b)

≤ 2µ2δ2

E`

N∑̀
n=1

1

N2
` p
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n

(
2

1− λe`
1− λ`

E
{
‖w̃i−1‖2

∣∣Li}
+ 2

1− λe`
1− λ`

E
{
‖wo − wo`‖2
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+

µ2

K2p2
k

e(1− λ`)− 1 + λe`
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σ2
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)
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2µ2(e− 1)

3E`
σ2
q,`,

(106)

where we used Lemma 4 in (a), and in (b) we added and
subtracted wo and used Jensen’s inequality. Then, summing
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over e results in:

1

E`

E∑̀
e=1

E
{
‖wi−1 −w`,e−1‖2

∣∣Li}
≤ 2µ2δ2

E2
`

N∑̀
n=1

1

N2
` p
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n

(
2

(E` + 1)(1− λ`)− 1 + λE`+1
`
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×
(
E
{
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∣∣Li}+ E
{
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E`(E` + 1)(1− λ`)2 − 2E`(1− λ`) + 2λ` − 2λE`+1

`

(1− λ`)3

× µ2

K2p2
k

σ2
q,`

)
+
E`(E` − 1)µ2

3E2
`

σ2
q,`. (107)

Taking the expectation of (103) given the choice of the agents
and plugging the above expression, we get:

E
{
‖qi‖2

∣∣Li}
≤ δ2

L

∑
`∈Li

1

K2p2
`

(
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{
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p
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b
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∣∣∣∣∣Li
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δ2

L

∑
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1

K2p2
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(
aµ2E

{
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∣∣Li}
+ aµ2E

{
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∣∣Li}+ (bµ4 + cµ2)σ2
q,`

) N∑̀
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1

N2
` p

(`)
n

,

(108)

where we introduced constants a, b, c to make the notation
simpler. Then, taking again the expectation to remove the
conditioning and using Assumption 2:

E‖qi‖2 ≤ δ2
K∑
k=1

1

K2pk

Nk∑
n=1

1

N2
kp

(k)
n

(
aµ2E‖w̃i−1‖2

+ aµ2‖wo − wok‖2 + (bµ4 + cµ2)σ2
q,k

)
≤ δ2

K∑
k=1

1

K2pk

Nk∑
n=1

1

N2
kp

(k)
n

(
aµ2E‖w̃i−1‖2 + aµ2ξ2

+ (bµ4 + cµ2)σ2
q,k

)
. (109)

Further simplifying the notation gives us the desired result.
Thus, since a = O(µ−1), b = O(µ−2) and c = O(1), we get
E‖qi‖2 = O(µ).

REFERENCES

[1] E. Rizk, S. Vlaski, and A. H. Sayed, “Dynamic federated learning,” in
Proc. IEEE SPAWC, Atlanta, Georgia, USA, 26–29 May 2020, pp. 1–5.

[2] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic opti-
mization,” in Advances in Neural Information Processing Systems 24,
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2011, pp. 873–881.

[3] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Proc. Advances in Neural Information
Processing Systems, 2010, pp. 2595–2603.

[4] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim, vol. 7, pp. 913–926, 1996.

[5] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends® in Machine Learning, vol. 7, no. 4-5, pp.
311–801, 2014.

[6] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks
— part i: Transient analysis,” IEEE Trans. Information Theory, vol. 61,
no. 6, pp. 3487–3517, June 2015.

[7] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan 2009.

[8] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
2012.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” Proc. International Conference on Artificial Intelligence and
Statistics, vol. 54, pp. 1273–1282, 20–22 April 2017.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in ICML 2019
Workshop AMTL Workshop, Long Beach, CA, USA, June 2019, pp.
1–28.

[11] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proc. Advances in Neural Information Processing
Systems, Long Beach, California, December 2017, pp. 4424–4434.
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