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Abstract—The present paper proposes a data-driven sensor se-
lection method for a high-dimensional nondynamical system with
strongly correlated measurement noise. The proposed method is
based on proximal optimization and determines sensor locations
by minimizing the trace of the inverse of the Fisher information
matrix under a block-sparsity hard constraint. The proposed
method can avoid the difficulty of sensor selection with strongly
correlated measurement noise, in which the possible sensor
locations must be known in advance for calculating the precision
matrix for selecting sensor locations. The problem can be effi-
ciently solved by the alternating direction method of multipliers,
and the computational complexity of the proposed method is
proportional to the number of potential sensor locations when
it is used in combination with a low-rank expression of the
measurement noise model. The advantage of the proposed method
over existing sensor selection methods is demonstrated through
experiments using artificial and real datasets.

Index Terms—Alternating direction method of multipliers,
optimal design of experiment, sensor selection, sparse observation

I. Introduction

MEASUREMENTS of physical quantities are essential
in various fields. Typically, measurements are made at

specific points using discretely installed sensors. Therefore,
it is necessary to maximize the information obtained with as
few sensors as possible. This kind of situation can be seen
in various types of measurements, such as global positioning
system [1], [2], acoustic measurements [3], [4], structural
health monitoring [5], [6], environment monitoring [7], brain
source localization [8], etc.

The problem that optimizes sensor locations is called the
sensor selection/placement problem and is formulated as a
combinatorial optimization problem, which is known as an
NP-hard problem. Table. I shows typical methods used in
a sensor selection problem. Global optimization techniques,
such as branch and bound [9], [10], can obtain an exact solu-
tion to the sensor selection problem. However, because their
computational costs are high, global optimization techniques
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can only be used for small (choosing a small number of sensors
from a small number of potential sensor locations) problems.
Therefore, convex relaxation and greedy methods, which can
obtain a suboptimal solution with less computational time,
have been studied.

Joshi and Boyd proposed [11] a sensor optimization method
based on convex optimization. Their method can obtain a
global optimal solution to the relaxed problem. The com-
putational complexity of their method is proportional to the
cube of the number of potential sensor locations, and thus,
the computational cost is much lower than that of global
optimization techniques. The accelerated randomized convex
relaxation method was recently proposed [12], but the com-
putational cost is still high for high-dimensional data, such as
surface measurement or volume measurement data. A convex
optimization method based on a proximal splitting algorithm
is another sensor selection method. The sparsity-promoting
framework was introduced by Fardad et al. [13] and Lin et
al. [14]. Their framework allows us to obtain block-sparse
feedback and observer gains, as well as select actuators and
sensors in dynamical systems, and Dhingra et al. [15] and
Zare and Jovanović [16] extended those methods. Masazade
et al. [17] proposed the method for selecting sparse sensors
that minimize the estimation using an extended Kalman filter.
Their method obtains the sparse Kalman gain matrix using
the sparsity-promoting penalty function. In addition, sensor
selection methods for a field estimation on a nondynamical
system based on convex or nonconvex proximal optimization
are available [18], [19].

Greedy methods provide a suboptimal solution to sensor
selection problems at a low computational cost. Manohar et al.
[20] proposed a greedy method based on QR decomposition.
Their method is related to the discrete empirical interpolation
method [21] and the QR-based discrete empirical interpolation
method [22] in the framework of the Galerkin projection [23].
Saito et al. [24] proposed a greedy method based on the D-
optimal design of experiments. They also constructed a sensor
selection framework for multicomponent measurements [25],
[26]. Nakai et al. [27] formulated a greedy method based on
the E- and A-optimal design of experiments and investigated
the influence of the objective function on the performance of
the selected sensor subset. Greedy methods are extended to a
further generalized form [25]–[37]. However, it is difficult to
apply the greedy method to complex objective functions and
constraints.
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TABLE I
Characteristics of practical algorithms for sensor selection problems.

Method Global optimization Convex relaxation Greedy method
Solution Exact Global optimum Local optimum
Cost Very expensive Expensive Cheap
Obj. func. - Flexible Inflexible

In most cases, including the methods mentioned above, the
observed noise is assumed to be white noise, but the measured
data are often corrupted by correlated noise. Therefore, the
development of a sensor selection method for correlated mea-
surements is a critical task. Several researchers have studied
sensor selection in the presence of correlated measurement
noise. Liu et al. [38] and Yamada et al. [30] modified the
formulations of the sensor selection problem by weighting the
value of each sensor based on prior noise information. They
employed a Bayesian estimation framework and also used
prior information in the estimation. Ucinski et al. [39] and
O’Connor et al. [40] employed a similar formulation, which
includes a weighting term based on prior noise information.
In their framework, an ordinary least-squares estimation was
used. The difficulty of treating correlated noise in the sensor
selection problem is that the influence of noise cannot be
evaluated unless the sensor location is determined. The pre-
vious methods considering the correlated measurement noise
require the calculation of the precision matrix (inverse of the
noise covariance matrix) which should be constructed by the
noise information over only selected sensors. Particularly, the
method based on convex relaxation requires higher calculation
cost or a complicated formulation with limitations. There is
no published method based on the continuous optimization
problem for sensor selection that can be solved by a method
with a computational complexity less than a cubic order of the
number of potential sensor locations. Hence, it is difficult to
employ the previously proposed methods for large-scale sensor
selection problems including such correlated measurement
noise.

In the present study, we consider a sensor selection prob-
lem involving selecting p sensors from n potential sensors
in a high-dimensional nondynamical system with correlated
measurement noise. The sensor subset gives an observation
vector of a linear function of latent variables superimposed
with spatially correlated measurement noise. We extended
the sensor selection method based on the proximal splitting
algorithm [19] to a problem including correlated measurement
noise. Our goal is to choose a suboptimal sensor subset based
on the optimal design of experiments considering the influence
of correlated measurement noise. The main contributions of
the present study are as follows:

• Sensor selection based on the proximal splitting algorithm
for nondynamical systems with strongly correlated mea-
surement noise is proposed.

• The proposed method can avoid the difficulty (described
in Section II-D) of sensor selection with strongly corre-
lated measurement noise in which the sensor locations
must be known in advance for selecting the sensor
locations. The problem can be efficiently solved by the

TABLE II
Variables and operators

Symbol Description
C Measurement matrix
H Sensor location matrix
I Identity matrix
K, X Gain matrix
R, Q Noise covariance matrix
Rd Diagonal matrix with the diagonal entries of R
U Sensor candidate matrix
x Snapshot of full state
y Observation vector
z Latent variables
Symbol Description
A† Moore–Penrose pseudo inverse of A

Â Normalized A by noise weighting term R−
1
2

d , i.e., Â = R−
1
2

d A
tr(A) Trace norm of A, i.e., tr(A) = Σidiagi (A)
AT Transposition
Ab:c Truncated matrix of A from b-th column/row to c-th col-

umn/row

‖A‖F Frobenius norm of A, i.e., ‖A‖F =

√
ΣiΣ j‖ai j‖2

‖A‖0 Group `0 pseudo-norm A, i.e., ‖A‖g,0 :=
‖ (‖a1‖2, · · · , ‖an‖2) ‖0

‖a‖1 Manhattan (`1) norm of a, i.e., ‖a‖1 = Σi |ai |

‖a‖2 Euclidean (`2) norm of a, i.e., ‖a‖2 =

√
Σia2

i
ai i-th row or column vector of A
ã Estimated a

alternating direction method of multipliers (ADMM) [41],
[42], and the computational complexity of the proposed
method is O (n) using a low-rank expression of the
measurement noise model [30], [31].

• The proposed method is applied to artificial and practical
datasets, the National Oceanic and Atmospheric Admin-
istration Optimum Interpolation Sea Surface Temperature
(NOAA-OISST) dataset. The optimization results are
compared with those of the greedy method.

• Although the computational time of the proposed method
is longer than that of the greedy method, the proposed
method is better than the previously proposed greedy
methods in terms of objective value and reconstruction
error.

We laid the groundwork for further extension to
complex objective functions, including constraints.
MATLAB code for our algorithm can be found at
https://github.com/Aerodynamics-Lab/Proximal-Optimization-
based-Sensor-Selection-Algorithm-with-Correlated-
Measurement-Noise [43].

II. Sensor Selection Problem
A mathematical description of the problem and the proposed

method is shown in this section. The notation table that sum-
marizes the main mathematical symbols and their definitions
is shown in Table II.

A. Problem Formulation

A snapshot measurement of the full state x ∈ Rn including
a noise signal v ∼ N(0, σ2I) ∈ Rp through sparse sensors can
be expressed as follows:

y = Hx + v, (1)
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where y ∈ Rp and H ∈ Rp×n are the observation vector
and the sensor location matrix, respectively. Here, n and p
are the numbers of potential sensors and activated sensors,
respectively. The sensor location matrix H is a sparse matrix,
and each row vector of H is a unit vector. Unity locations in the
row vectors correspond to the activated sensor locations chosen
from n potential sensor locations. Equation (1) can be rewritten
as follows using the sensor candidate matrix U ∈ Rn×r and the
latent variables z ∈ Rr:

y ≈ HUz + v
= Cz + v. (2)

This system represents the problem of choosing p sensors for
the observation of signals generated by r latent variables. The
matrix C ∈ Rp×r is the measurement matrix, which is the
product of the sensor location matrix and the sensor candidate
matrix. Because n corresponds to the degrees of freedom in the
spatial direction of the full state, the sensor candidate matrix U
is usually a tall-and-skinny matrix (i.e., n >> r) in a practical
problem. The latent variables at p > r can be estimated using
the least-squares method using a pseudo-inverse operation,

z̃ = C†y

=
(
CTC

)−1
CTy, (3)

where z̃ is the set of estimated latent variables. The formulation
in p < r is not introduced due to the constraint used in the
present formulation. Descriptions of the estimation of latent
variables in p < r are presented in [31].

In the case of measured signal including correlated measure-
ment noise E

[
vcvT

c

]
= Rp, “whitening” of the measurement y

is required before conducting the least-squares estimation as
follows [31]:

R−
1
2

p y = R−
1
2

p Cz + R−
1
2

p vc

⇒ yn = Cnz + vn, (4)

where subscript ◦n indicates the values corrected by the noise
weighting term of the activated sensors R−

1
2

p ∈ Rp×p, and
vn is white noise. Therefore, E

[
vnvT

n

]
= σ is a constant,

and thus, the least-squares estimation of z̃ with the whitened
measurement vector yn at p > r is obtained as follows:

z̃ = C†nyn =
(
CT

n Cn

)−1
CT

n yn

=
(
CTR−1

p C
)−1

CTR−1
p y. (5)

B. A-optimality Criterion

A-optimality criterion is the trace of the inverse of the Fisher
information matrix (FIM). The A-optimal design minimizes
the mean squared error in the estimation of the latent variables
z̃. Here, we consider the correlated measurement noise vc in
the observed signal of x.

z̃ =
(
CTR−1

p C
)−1

CTR−1
p y

=
(
CTR−1

p C
)−1

CTR−1
p Cz +

(
CTR−1

p C
)−1

CTR−1
p vc (6)

Therefore, the estimation error can be computed as follows:

z̃ − z =
(
CTR−1

p C
)−1

CTR−1
p vc. (7)

To consider the average variance of the estimation, the trace
norm of the error covariance matrix is calculated as follows:

tr
(
E

[
(z̃ − z) (z̃ − z)T

])
= tr

(
E

[(
CTR−1

p C
)−1

CTR−1
p vcvT

c R−1
p C

(
CTR−1

p C
)−1

])
. (8)

Thus, the sensor selection problem based on the A-optimality
criterion can be expressed as a minimization problem of a
following objective function:

f = tr
((

CTR−1
p C

)−1
)
. (p ≥ r) (9)

C. Noise Covariance
There is a situation in which the data include not only

Gaussian noise but also correlated measurement noise. In
data-driven sensor selection, the reduced-order modeling of
a data matrix, which is given as the r-rank approximation
[44] obtained by the singular value decomposition (SVD)
Xdata ≈ U1:r1 S1:r1 VT

1:r1
, is used. Here, Xdata ∈ R

n×m is training
data matrix containing snapshots Xdata = [x1 · · · xm]. The
measurement noise consists of the truncated modes of from
(r1+1)th to mth modes because those components are included
in the measurement but not in the reduced-order model. In
the present study, the spatial covariance derived from the
truncated SVD modes of the training data matrix is used as
the noise model, as in previous work based on the greedy
method of Yamada et al. [30], [31]. The snapshot with full-
state observation x and noise covariance matrix R ∈ Rn×n

become

x = Uz + w, (10)

where w is the correlated noise on the full-state observation
and its covarionce is given by R as follows:

E
[
wwT

]
=:R. (11)

The observations through the sensors and noise covariance
are

y = HUz + Hw, (12)

and

E
[
HwwTHT

]
= HE

[
wwT

]
HT

=HRHT=:Rp, (13)

respectively. The matrix Rp ∈ R
p×p is the noise covariance

matrix for selected sensors. The noise covariance is assumed
to be represented by the truncated SVD modes from r1 + 1 to
m of the training data matrix as follows:

R = E
(
wwT

)
(14)

= E
((

x − U1:r1 z
) (

x − U1:r1 z
)T

)
≈

(
USVT − U1:r1 S1:r1 VT

1:r1

) (
USVT − U1:r1 S1:r1 VT

1:r1

)T
(15)

=
(
U(r1+1):mS(r1+1):mVT

(r1+1):m

) (
U(r1+1):mS(r1+1):mVT

(r1+1):m

)T

= U(r1+1):mS2
(r1+1):mUT

(r1+1):m. (16)
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When higher-order modes can be ignored because their con-
tributions are small, (16) can be truncated, and a further
low-dimensional form of the noise covariance matrix can be
obtained as

R ≈ U(r1+1):r2 S2
(r1+1):r2

UT
(r1+1):r2

, (17)

where r2 ≤ m. In the present study, the diagonal matrix with
the difference between the original noise covariance matrix and
the low-rank noise covariance matrix ∆S ∈ Rn×n is computed
as follows:

∆S = diag
(
diag (R) − diag

(
U(r1+1):r2 S2

(r1+1):r2
UT

(r1+1):r2

))
. (18)

By adding this diagonal matrix, the approximation accuracy
of the noise covariance matrix was improved.

R ≈ U(r1+1):r2 S2
(r1+1):r2

UT
(r1+1):r2

+ ∆S (19)

D. Difficulty in Treatment of Correlated Noise in Sensor
Selection

The difficulty of treating correlated noise in sensor selection
problems is that the influence of noise cannot be evalu-
ated unless the sensor location is determined. The previous
methods considering the correlated measurement noise require
the calculation of the precision matrix (inverse of the noise
covariance matrix) which should be constructed by the noise
information over only selected sensors. As shown in (9) and
(13), the matrix Rp constructed as HRHT is required for
evaluation of the objective function when selecting the sensor
locations H. Thus, the sensor location matrix H is required for
determining the sensor locations. Therefore, consideration of
the correlated measurement noise in the conventional convex
relaxation method [11] is difficult. Previous studies [45]–[47]
considered weakly correlated noise and approximated the FIM
in the following form:

CTR−1
p C ≈ F = UT

(
ssT ◦ R−1

)
U, (20)

where the variable s ∈ Rn is the solution vector for the convex
relaxation method with constraints 1Ts = p and si ∈ (0, 1),
which correspond to the weights for the sensor candidates.
The problem is solved by semidefinite programming. The
inverse of the noise covariance matrix (the precision matrix
for observations) in this FIM is clearly affected by the noise
information for the sensors that are not selected when taking
the inverse of R. This is because all the noise information
can be observed, even though the signal can only be observed
by the activated sensors in the system corresponding to this
FIM. Therefore, this formulation can only be used for weakly
correlated noise, as mentioned in [38].

Liu et al. [38] avoided this difficulty by splitting the noise
covariance matrix into a diagonal matrix aI and a matrix B as
follows:

R = aI + B, (21)

where a is chosen such that the matrix B is positive definite.
In this case, the noise covariance matrix for selected sensors
Rp can be obtained as follows:

Rp = H (aI + B) HT

= aI + HBHT, (22)

and the approximated FIM F (20) becomes

F = UTHTR−1HU

= UTB−1U − UTB−1
(
B−1 + a−1diag (s)

)−1
B−1U, (23)

where again the variable s ∈ Rn is the solution vector for
the convex relaxation method with constraints 1Ts = p and
si ∈ (0, 1), which corresponds to the weights of the sensor
candidates. This operation of separating nondiagonal compo-
nents in R results in an objective function whose covariance
in measurement noise is properly evaluated. The objective
function based on (23) can be solved by semidefinite program-
ming. However, there is no published method to formulate the
continuous optimization problem for sensor selection that can
be solved by a method with a computational complexity less
than O

(
n3

)
. We will introduce a formulation that can consider

correlated noise without computing the precision matrix and
that can solve the problem with a computational cost of O (n)
in the following section.

III. ProposedMethod

A. Mathematical Formulation

The mathematics of the present method is based on [19].
The difference between the previous and present methods is
whether to consider independent or correlated noise. Consider
a matrix Kp ∈ R

r1×p that recovers z from the observation y in
(3)

z̃ = Kpy
= KUz + Kw. (24)

The gain matrix K ∈ Rr1×n is a sparse matrix, which has p
nonzero column vectors. The locations of activated sensors are
indicated by that of nonzero column vectors in the gain matrix
K. As in the previous study [19], the gain matrix K is only
used to construct the sensor matrix H in the polishing step (see
Section III-E) and is not used directly for the estimation of z̃.
In addition, z̃ is assumed to be an unbiased approximation of
z. In this case,

KU = I (25)

should be satisfied. This constraint is important for the present
algorithm, and the optimization problem of the objective func-
tion with several constraints should be solved. Although the
faster algorithm of the proximal gradient method, such as the
fast iterative shrinkage thresholding algorithm [48] potentially
seems to be a candidate, it cannot be applied to problems with
a nondifferentiable objective function with constraints. Thus,
ADMM that can handle the constraint with proximal operator
is employed, as described in III-C. The average error in z̃ can
be explained in the same way as described in (6).

tr
(
E

[
(z̃ − z) (z̃ − z)T

])
= tr

(
E

[
KwwTKT

])
= tr

(
KRKT

)
(26)

To obtain the sparse gain matrix K, the group-sparsity
paradigm [49] is introduced, and (26) is augmented with a
sparsity-promoting term. When the group `1-norm penalty is
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used as a sparsity-promoting term, the objective function of
the sensor selection problem can be obtained as follows:

minimize
K

tr
(
KRKT

)
+ λ

n∑
i=1

||ki||2 subject to KU = I, (27)

where ki ∈ R
n is the ith column vector of K, and λ > 0

is the regularization parameter that adjusts the sparsity of
the solution. The sparsity-promoting term penalizes a greater
number of nonzero columns in K, which corresponds to the
number of selected sensors. The advantage of the present
method is the flexibility of the objective function. In the
case of the conventional method considering correlated noise,
the covariance matrix constructed based on selected sensors,
as discussed in Section II-D, is required for evaluating the
objective function for sensor selection. In contrast, the present
method can minimize the objective function (27) directly.

However, when sensor selection is performed using the
objective function of (27), the number of sensors to be selected
cannot be determined in advance due to the nature of the
sparsity-promoting term. In the present study, therefore, a
group `0 pseudo-norm constraint is used to obtain p sensors
that determined by users in advance:

minimize
K

tr
(
KRKT

)
subject to ||(||k1||2 , · · · , ||kn||2)||0 ≤ p and KU = I. (28)

The operator || · ||0 indicates the `0 pseudo-norm, which returns
the total number of nonzero entries, and the operator || · ||2
indicates the `2 norm of a vector. Although it does not lead
to essential changes in the equations, a simple expression
consistent with the standard problems adopted in ADMM can
be obtained by taking the transpose of this formulation and
the variable transformation:

X = KT

A = UT
1:r1

∆SQ = ∆S
UQ = U(r1+1):r2

SQ = S(r1+1):r2

Q = UQSQUQ
T + ∆SQ.

(29)

Then, the objective function can be written as follows:

minimize
X

tr
(
XTQX

)
subject to ||(||x1||2 , · · · , ||xn||2)||0 ≤ p and AX = I, (30)

where xi ∈ R
n is the ith row vector of X. The matrix Q is the

noise covariance matrix described by a low-rank expression,
as given in (19).

B. Consideration of Noise Intensity in Thresholding Opera-
tions

In the present study, the sensor candidate matrix U was
normalized according to the noise weighting term R−

1
2

d where
Rd ∈ R

n×n is a diagonal matrix with diagonal entries of the
noise covariance matrix R. The normalized sensor candidate
matrix Û is generated as follows:

Û = R−
1
2

d U. (31)

Therefore, the gain matrix K is

K̂ = KR
1
2
d , (32)

and the objective function of (28) becomes

minimize
K̂

tr
(
K̂R−

1
2

d RR−
1
2

d K̂T
)

subject to
∣∣∣∣∣∣∣∣(∣∣∣∣∣∣k̂1

∣∣∣∣∣∣
2 , · · · ,

∣∣∣∣∣∣k̂n

∣∣∣∣∣∣
2

)∣∣∣∣∣∣∣∣
0
≤ p and K̂Û = I. (33)

The objective function, which has the same form as (30), can
be obtained using the following variables:

Q = ∆S + U(r1+1):r2 S(r1+1):r2 UT
(r1+1):r2

Rd = diag(Q)

∆SQ = R−
1
2

d ∆SR−
1
2

d

X = K̂T(= KR
1
2
d )

A = ÛT
1:r1

(= R−
1
2

d U)

UQ = R−
1
2

d U(r1+1):r2

SQ = S(r1+1):r2 .

(34)

Then, the problem can be solved by the same procedure
as described in Section III-D. It should be noted that the
solution of the problem, the gain matrix K, is obtained by
denormalizing the solution matrix X as follows:

K = XTR−
1
2

d . (35)

Normalization is required to consider the intensity of the
noise in the proximal operator used in ADMM. In the case
of the objective function (28), the noise covariance matrix is
considered in the first term of the objective function, but it is
not considered in the sparsity-promoting term. This is because
the effect of the correlated noise cannot be accurately evaluated
unless the sensor locations are determined, as discussed in
Section II-D. Therefore, it is difficult to consider the correlated
measurement noise in the sparsity-prompting term. In the
present method, the sensor candidate matrix U was normalized
based on the diagonal entries of the noise covariance matrix,
but off-diagonal entries cannot be considered. By normal-
ization of the sensor candidate matrix based on the noise
weighting term, the diagonal entries of the noise covariance
matrix are considered in the computation of the sparsity-
promoting term, even though the influence of the off-diagonal
entries is still not considered. It should be noted that the noise
considered in the present study has a structure of a certain size
because the noise model consists of truncated modes. Hence,
not only uncorrelated noise but also a part of the component
of correlated noise will be considered by normalization using
the noise weighting term, even if only the diagonal component
of the noise covariance matrix is considered.

C. Alternating Direction Method of Multipliers

In the present study, the optimization problem is solved
by ADMM. When the sparsity-promoting term is the simple
group `1-norm penalty, (27) has the following form:

minimize
X,Z

g(X) + h(Z) subject to Z = GX. (36)
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For arbitrarily chosen Z(0), Y(0), and γ > 0, ADMM iterates
the following steps:

X(k+1) = argmin
X

g (X) + 1
2γ

∣∣∣∣∣∣Z(k) −GX − Y(k)
∣∣∣∣∣∣2

2

Z(k+1) = argmin
Z

h (Z) + 1
2γ

∣∣∣∣∣∣Z −GX(k+1) − Y(k)
∣∣∣∣∣∣2

2

Y(k+1) = Y + GX(k+1) − Z(k+1).

(37)

In the present formulation with the simple group `1-norm
penalty, g(X), h(Z), Z, and G correspond to

g (X) := tr
(
XTQX

)
, h (Z) := λ

∑
i

||xi||2 , (38)

Z =

[
Z1
Z2

]
, and G =

[
I
A

]
,

respectively.

D. Sensor Selection With Group `0 Pseudo-Norm Constraint

1) Reformulation of Objective Function (30): The first con-
straint in (30), which is the sparsity-promoting term, was com-
puted by an `0-constrained block hard thresholding (L0BHT)
operator. This operator can determine the group `0 pseudo-
norm of the solution matrix beforehand that corresponds to the
number of sensors to be activated. To establish the algorithm
for solving the problem (30), we first reformulate the objective
function (30) into an ADMM-applicable form defined in (36).
We also define the group `0 pseudo-norm used in L0BHT as
follows:

Definition 1 (Group `0 pseudo-norm): The activated sensor
locations correspond to the locations of nonzero row vectors
of X, and thus, the group `0 pseudo-norm of X used in (30)
as the constraint is defined as

‖X‖g, 0 := ‖ (‖x1‖2, · · · , ‖xn‖2) ‖0. (39)

Then, the objective function (30) becomes

minimize
X

tr
(
XTQX

)
subject to ‖X‖g, 0 ≤ p and AX = I.

(40)

In addition, we define the indicator function of the inequality
constraint on the group `0 pseudo-norm:

l{‖·‖g, 0 ≤ p} (X) :=
{

0, ‖X‖g, 0 ≤ p,
∞, otherwise. (41)

Then, the objective function (40) can be reformulated as

minimize
X

tr
(
XTQX

)
+ l{‖·‖g, 0 ≤ p} (X) subject to AX = I.

(42)

2) Algorithm: The form of (42) is the same as that of (36)

g (X) := tr
(
XTQX

)
, h (Z) := l‖·‖g, 0 ≤ p (Z) , (43)

Z =

[
Z1
Z2

]
and G =

[
I
A

]
.

This can be solved by ADMM as described in (37). For
arbitrarily chosen Z(0), Y(0), and γ > 0, the proposed algorithm
iterates following subproblems:

X(k+1) = argmin
X

tr
(
XTQX

)
+ 1

2γ

∣∣∣∣∣∣Z(k) −GX − Y(k)
∣∣∣∣∣∣2

2

Z(k+1) = argmin
Z

l{‖·‖g, 0 ≤ p} (Z) + 1
2γ

∣∣∣∣∣∣Z −GX(k+1) − Y(k)
∣∣∣∣∣∣2

2

Y(k+1) = Y + GX(k+1) − Z(k+1).
(44)

The first subproblem is differentiable and convex, and thus,
the solution can be characterized as follows:

d
dX

{
tr

(
XTQX

)
+

1
2γ

∣∣∣∣∣∣Z(k) −GX − Y(k)
∣∣∣∣∣∣2

2

}
= 0

2QX +
1
γ

GTGX +
1
γ

GT
(
Y(k) − Z(k)

)
= 0, (45)

and the solution of the first subproblem can be obtained.

X =

(
2Q +

1
γ

GTG
)−1 1

γ
GT

(
Z(k) − Y(k)

)
=

(
2Q +

1
γ

I +
1
γ

ATA
)−1 1

γ

{
(Z1 − Y1) + AT (Z1 − Y1)

}
(46)

Here, the covariance matrix Q can be approximated using a
low-rank form as described in (19). In addition, the computa-
tional cost of the least-squares solution of the first subproblem
can be reduced by adopting the inverse matrix lemma given
below, when the number of latent variables is small:

(
2Q +

1
γ

I +
1
γ

ATA
)−1

=

2UQS2
QUT

Q + 2∆S +
1
γ

I +
1
γ

ATA︸                  ︷︷                  ︸
J


−1

= J−1 − J−1U
{(

2S2
)−1

+ UTJ−1U
}−1

UTJ−1,

(47)

where

J−1 =

(
2∆S +

1
γ

I +
1
γ

ATA
)−1

=
(
2∆S+ 1

γ I
)−1
−
(
2∆S+ 1

γ I
)−1 1

γ AT
(
I+A

(
2∆S+ 1

γ I
)−1 1

γ AT
)−1

A
(
2∆S+ 1

γ I
)−1

. (48)

The present method reduces the computational cost using
a low-rank expression of the correlated measurement noise
[31]. Therefore, when a more general noise model in which
the correlated measurement noise is inversely proportional to
the distance between sensors is used, the computational cost
becomes large.

By noticing the definition of the indicator function (41),
the second subproblem, the update of Z can be rewritten as
follows:

Z(k+1) = argmin
Z

1
2γ

∣∣∣∣∣∣Z −GX(k+1) − Y(k)
∣∣∣∣∣∣2

2

subject to ‖Z‖g, 0 ≤ p, (49)

and this update can be rewritten by the proximal operator for
the group `0 pseudo-norm constraint,

Z(k+1) = proxl
{‖·‖g, 0 ≤ p}

(
GX(k+1) + Y(k)

)
. (50)
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The proximal operator of the indicator function l{‖·‖g, 0 ≤ p}
corresponds to metric projection onto the set satisfying the
constraint ‖Z‖g, 0 ≤ p [50],

proxl
{‖·‖g, 0 ≤ p}

(V) = argmin
W

n∑
i=1

||vi − wi||
2
2 (51)

subject to ‖W‖g, 0 ≤ p

=: P{‖·‖g, 0 ≤ p} (V) , (52)

where vectors vi and wi are row vectors of the matrices V and
W, respectively. The operation for this projection is almost
the same as the block hard thresholding, but the threshold is(
‖v j‖2

)
p
, which is the pth largest value of ||vi||2:

P{‖·‖g, 0 ≤ p} (V) :=

 vi, ‖vi‖2 ≥
(
‖v j‖2

)
p
,

0, ‖vi‖2 <
(
‖v j‖2

)
p
.

(53)

The procedures of the proposed algorithm are summarized
in Algorithm 1. Because the problem is nonconvex when
the hard thresholding operator is used, convergence is not
guaranteed. ADMM may converge to a just local optimum,
but it is expected that it will possibly have better convergence
properties (e.g., faster convergence or convergence to a point
with better objective value) than other local optimization
methods. There is ample experimental evidence in the lit-
erature that supports the empirical convergence of ADMM,
especially when the nonconvex problem at hand exhibits a
“favorable” structure [51]. The present problem consists of
the convex function and the nonconvex function. In general,
this is hard to compute, but the nonconvex function of the
present problem is the cardinality constraint, which keeps the
p largest magnitude elements and zeros out the rest. This is
one of the special cases that can be exactly carried out. In
addition, a decreasing γ strategy was employed and ADMM
was stabilized for nonconvex optimization. A scalar η is intro-
duced to gradually decrease the value of γ. Similar strategies
were adopted in existing methods using `0-type norms [50],
[52]–[55]. This technique is supported by recent convergence
analyses of ADMM for nonconvex cases (e.g., [56], [57]).
In these studies, the sequence generated by ADMM under
appropriate conditions with sufficiently small γ converges to
a stationary point. Although these theoretical analyses employ
overly strict assumptions and cover the problem formulations
in many applications, including the present study, they provide
insight into parameter settings.

The convergence and error bound of the nonconvex problem
in the present study might be provided based on the Kurdyka-
Lojasiewicz (KL) property, etc. The convergence of ADMM in
nonconvex problems with certain properties has been analyzed
by several researchers [58], [59]. However, we were unable
to provide proof that our nonconvex problem satisfies the
conditions that are required for convergence at present. The
objective of the present paper is to provide the result that better
sensor selection can be performed practically by the present
ADMM-based method than the previous methods. Therefore,
the theoretical analysis of convergence and the error bound
are left for future researches.

Algorithm 1 Proposed Algorithm for Sensor Selection With
Group `0 Pseudo-Norm Constraint (MATLAB code available
online [43])
Input: X(0) = A−1, Y(0) = Z(0) = 0, p > 0, γ > 0, and

0 < η < 1
Output: X(k)

while ‖X(k) − X(k−1)‖F > ε do
X(k+1) =(
J−1 − J−1U

{(
2S2

)−1
+ UTJ−1U

}−1
UTJ−1

)
1
γ

{
(Z1 − Y1) + AT (Z1 − Y1)

}
;

Z(k+1) = proxl
{‖·‖g, 0 ≤ p}

(
GX(k+1) + Y(k)

)
;

Y(k+1) = Y + GX(k+1) − Z(k+1);
γ ← ηγ;
k ← k + 1;

end while

E. Polishing Step

Although latent variables z can be estimated directly by
the gain matrix K, the accuracy of the estimation is degraded
to some extent by the sparsity-promoting terms. Therefore,
the sensor location matrix H is constructed based on the gain
matrix K, and the gain is recalculated using (5) rather than the
gain matrix K directly. The corresponding entry in H is set
to unity (which activates the corresponding sensor) when the
`2 norm of the corresponding column vector of K is nonzero
(e.g., greater than 10−4). The latent variables z̃ is estimated
using (5) after constructing H.

IV. Results and Discussion

The performance of the proposed method was evaluated by
applying it to an artificial dataset used in a previous study
[30]. The obtained results were compared to those obtained
by the greedy methods considering white noise or correlated
noise and the ADMM-based method considering white noise.
Random data matrices, Xdata = USVT (Xdata ∈ R

n×m), were
generated, where U ∈ Rn×m and V ∈ Rm×m consist of m-
orthogonal column vectors that were generated by QR de-
composition of normally distributed [N(0, 1)] random matrix
and diagonal entries of the diagonal matrix S ∈ Rm×m were
diag (S) =

[
1, 1/

√
2, 1/

√
3, ..., 1/

√
m
]
, respectively.

The leading-r1(= 10) modes were retained for the con-
struction of a reduced-order model of Xdata, and a certain
number of subsequent modes up to the r2th mode (from
the 11th to the 40th modes in the present study) were
retained for the construction of the noise covariance ma-
trix. The objective function is the A-optimality criterion for
all methods. The greedy method considering white noise
[Greedy(WN)] [27], the greedy method considering corre-
lated noise [Greedy(CN)], the ADMM-based method con-
sidering white noise [ADMM(WN)] [19], and the ADMM-
based method considering correlated noise [ADMM(CN)]
were tested. Here, Greedy(CN) selects sensor locations by
minimizing the objective function (9) in each single-sensor
subproblem. This method is the same as the reference [31],
except for the point that the objective function is based on
the D-optimality criterion. In the case of Greedy(WN) [27],
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Fig. 1. Iteration behavior for a certain case of ADMM(CN) for different γinit
for p = 30.

it is the same as Greedy(CN), except for the noise covariance
matrix Rd in the objective function (9) is the identity matrix. In
the case of ADMM(WN) [19], it is the same as ADMM(CN),
except for the noise covariance matrix Q in the objective
function of ADMM(CN) is the identity matrix.

In addition, ADMM(CNw/oN), which is the ADMM-based
method without normalization by the noise weighting term
described in Section III-B, was also tested to investigate
the effectiveness of normalization. The difference between
ADMM(CN) and ADMM(CNw/oN) is described by the dif-
ference in their objective functions (33) and (28). The com-
putations using the ADMM-based methods were conducted
with the `0-constrained block hard thresholding (L0BHT).
Because the problem is nonconvex when the hard thresholding
operator is used, convergence is not guaranteed. Therefore, the
decreasing γ strategy was used. The step size γ is initially set
to be γ = γinit, and it was gradually reduced by multiplying by
η = 0.99 [50] every 5000 iterations. The iteration behavior of
the present method [ADMM(CN)] for a certain case is shown
in Figure 1. The size of dataset was Xdata ∈ R

10,000×100. The
objective values obtained for γinit = 0.7, 1.0, and 1.3 were
tr

(
XTRX

)
= 0.1526, 0.1526, and 0.1517, respectively.

In the following experiments, the value of γ for ADMM-
based methods was initially set at γinit = 1.0. Each calculation
in the numerical experiments was carried out 100 times with
different datasets, and the computational time, the averaged
objective value, and the reconstruction error were calculated.

A. Computational Complexity and Computational Time

The computational complexities of the previously proposed
methods and the present method are summarized in Table. III.
Here, SDP(CN) indicates the method based on semidefinite
programming (SDP) proposed by Liu et al. [38]. This method
selects sensors while considering the influence of correlated
measurement noise. Although prior knowledge (the matrix Σ
in reference [38]) can be considered when selecting sensor
locations, it was not included in the present numerical exper-
iment for a fair comparison.

TABLE III
Comparison of Computational Complexity

Method Computational complexity
Convex relaxation method(WN) [11] O

(
n3

)
per iteration

SDP(CN) [38] O
(
n4.5

)
per iteration

Greedy(WN) [27] O
(
pnr2

1

)
Greedy(CN) O

(
pn(r1 − r2)2

)
ADMM(WN) [19] O

(
nr2

1

)
per iteration

ADMM(CN) O
(
n(r1 − r2)2

)
per iteration

The number of operations in matrix multiplication and
addition was evaluated based on the size of the matrices,
whereas the matrix operations were accounted based on the
Matlab code implementation. The largest complexity among
each term was taken as the computational complexity of the
algorithms. Here, the problem considered in the present study
was r1 ≤ p ≈ (r1 − r2) � n.

The computational complexities of Greedy(WN) and
ADMM(WN) are O

(
pnr2

1

)
and O

(
nr2

1

)
(per iteration), respec-

tively, where p is the number of sensors to be activated, n
is the number of potential sensor locations, and r1 is the
number of latent variables. The computational complexity
increases for methods that consider correlated noise. The
computational complexities of Greedy(CN) and ADMM(CN)
are O

(
pn (r1 − r2)2

)
and O

(
n (r1 − r2)2

)
(per iteration), respec-

tively. Regarding the computational complexity of each sub-
problem of the proposed method (Algorithm 1), the complexity
of the first subproblem is dominant, and it is O

(
n (r1 − r2)2

)
.

The complexities of the second and third subproblems are
O (pn) and O

(
nr2

1

)
, respectively. Although the computational

cost of ADMM-based methods is independent of p, these
methods require iterative computation, and thus, the charac-
teristics of the dataset also have an influence on the total
computation time.

Fig. 2 shows the comparison of computational time. The
numerical test was carried out on a desktop personal computer
(Intel Xeon W-2295 3.0 GHz CPU with 256 GB RAM). The
size of dataset was Xdata ∈ R

n×50. The number of potential
sensor locations n was changed from 102 to 5 × 104, and
the average computational time and objective value of 100
times computations with different datasets were compared. The
number of selected sensors was fixed at p = 30.

The computational time for all methods increases as n
increases. The computational time of Greedy(CN) is much less
than that of SDP(CN) and ADMM(CN). Although the compu-
tational time of SDP(CN) is less than that of ADMM(CN) at
n = 102, it rapidly increases as n increases. The computational
complexity of SDP(CN) is roughly given by O

(
n4.5

)
[38], [60],

if the number of latent variables is much less than that of
potential sensor locations. Consequently, approximately 104 s
is required even if the potential sensor location was n = 500
when SDP(CN) is used. In addition, approximately 200 GB
of random access memory is required for the problem with
500 sensor candidates. On the other hand, an increase in the
computational time with respect to n of ADMM(CN) is less
than that of SDP(CN) and is at the same level as that of
Greedy(CN), and problems with n = 5 × 104 can be treated.
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Fig. 2. Computational time with respect to the number of potential sensor
locations for p = 30.

It should be noted that the present method assumes that
the noise covariance matrix can be approximated by a low-
rank form based on the framework proposed by Yamada et
al. [30], [31]. Therefore, an additional computational cost
might be required when using a more general noise model,
e.g. an inverse-distance noise model in which the correlated
measurement noise is inversely proportional to the distance
between sensors.

B. A-optimality Criterion and Reconstruction Error
Fig. 3 shows the trace of the inverse of the FIM with respect

to the number of potential sensor locations for p = 30. The
size of the dataset was Xdata ∈ R

10,000×100. The objective value
was normalized by that obtained by Greedy(CN). Although
SDP(CN) [38] is quite general, the objective value obtained
by SDP(CN) is larger, thus, worse than that obtained by
Greedy(CN) and ADMM(CN). In addition, obtained objective
value using SDP(CN) gets worse as the number of poten-
tial sensor locations increases. The computational time of
ADMM(CN) is longer than that of Greedy(CN), as illustrated
in Fig. 3, but the objective value obtained is superior to that
obtained by Greedy(CN) under the tested conditions.

Fig. 4 shows the trace of the inverse of the FIM with respect
to the number of selected sensors. Here, the size of dataset
was Xdata ∈ R

10,000×100. This figure illustrates that the objec-
tive values obtained by the methods that consider correlated
measurement noise are smaller than those obtained by the
methods that consider only white noise, which is an expected
result. The objective value obtained by ADMM(CN) is better
than that obtained by Greedy(CN) and is the best among the
compared methods, except for p = 10. The objective values
obtained by Greedy(WN) and ADMM(WN) are larger because
the noise covariance matrix R is not considered in the sensor
selection. The objective value obtained by ADMM(CNw/oN)
is larger than that obtained by the method that does not
consider correlated noise, even though the method considers
correlated noise in the sensor selection.

As described in Section III-B, the difference between
ADMM(CN) and ADMM(CNw/oN) is described by the dif-
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Fig. 3. Objective value with respect to the number of potential sensor locations
for p = 30.

ference in their objective functions (33) and (28). In the
case of ADMM(CNw/oN), the noise covariance matrix is
considered in the first term of the objective function, but it is
not considered in the sparsity-promoting term. In the case of
ADMM(CN), on the other hand, the sensor candidate matrix
U is normalized by the noise weighting term Rd, which is
the diagonal matrix with the diagonal entries of the noise
covariance matrix R. Therefore, the noise intensity is con-
sidered in the computation of the sparsity-promoting term for
ADMM(CN). The consideration of off-diagonal entries is more
difficult because the effect of correlated noise cannot be accu-
rately evaluated unless the sensor locations are determined, as
discussed in Section II-D. Therefore, it is difficult to consider
the correlated measurement noise in the sparsity-prompting
term, and the off-diagonal entries are not fully considered even
in ADMM(CN). It should be noted that the noise considered
in the present study has a certain size structure because the
noise model consists of truncated modes. Hence, not only
the uncorrelated noise but also part of the component of
correlated noise will be considered by normalization using the
noise weighting term, even if only the diagonal component
of the noise covariance matrix is considered. The result of
this numerical experiment indicates that the normalization of
the sensor candidate matrix by the noise weighting term is
effective and suggests that consideration of the intensity of
noise in the thresholding process is important for optimization
using proximal methods.

Fig. 5 shows the reconstruction error, which is the differ-
ence between the reconstructed and original data, defined as
follows:

εreconst =
||Xdata − UZ̃||F
||Xdata||F

, (54)

where Z̃ is the estimated coefficients of modes obtained by
(5). The notation || · ||F indicates the Frobenius norm of a
matrix. The reconstruction error is reduced by considering the
correlated measurement noise, and the smallest reconstruction
error is obtained for ADMM(CN). As pointed out with regard
to Fig. 4, the performance of ADMM(CNw/oN) is the worst,
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Fig. 4. Comparison of objective values obtained in the experiment using the
artificial dataset.

even though correlated noise is considered. The trends of the
reconstruction error are the same as those of the objective
value because it is an ideal problem setting.

The greedy algorithm can only provide a sensor subset
consisting of p sensors only by adding a new sensor that
gives the largest increment of the objective to the sensor subset
consisting of p−1 sensors. The influence of this constraint on
greedy strategy is relatively small at p < r due to the nature
of the undersampling condition, but the constraint tends to
degrade the performance of the sensor subset obtained under
oversampling conditions. On the other hand, the ADMM-based
method can obtain different suboptimal solutions for each
number of sensors, similar to the convex relaxation method.
Hence, the performance of the sensor subset obtained by
ADMM(CN) is higher than that obtained by Greedy(CN) at
larger p. However, the difference in the objective value and
reconstruction error depending on the method decreases as
the number of selected sensors p increases. This is because as
the number of sensors p increases, the importance of location
and combination of each selected sensor becomes smaller
than when the number of selected sensors is small. On the
other hand, the condition on p = 10 is on the constraint
of the ADMM-based method, and thus, the optimization can
be severe and the quality of the solution deteriorates. Hence,
the difference in the performance between ADMM(CN) and
Greedy(CN) is the largest at around p = 25.

V. Application to Data-driven Sensor Selection

The proposed method was applied to a data-driven sensor
selection problem, and comparisons with the previously pro-
posed method were conducted. The adopted dataset was the
NOAA-OISST V2 dataset, which comprises weekly global sea
surface temperature measurements between 1990 and 2000
[61]. The dataset used consisted of 520 snapshots with 44,219
points of a spatial grid. The temperature data for 10 years were
split into training data Xtrain (80% of the dataset) and the test
data Xtest (20% of the dataset), and five-fold cross-validation
was conducted.
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Fig. 5. Reconstruction error for an artificial dataset.

The data matrix Xdata ∈ R
n×m, which consisted of m snap-

shots with a spatial dimension of n, was decomposed into a
left singular matrix U ∈ Rn×m, which shows the spatial modes;
a diagonal matrix of singular values S ∈ Rm×m; and a right
singular matrix V ∈ Rm×m, which shows the temporal modes.
Here, the spatial dimension and the number of snapshots for
this dataset were n = 44, 219 and m = 416, respectively.
The dimensional reduction was conducted by the truncated
SVD, and the rank-r reduced-order modeling of a data matrix
is given as the r-rank approximation Xdata ≈ U1:r1 S1:r1 VT

1:r1

[44]. The reduced-order model was constructed by retaining
the leading-r1 singular values and vectors, where r1 = 10
in the present experiment. The noise covariance matrix was
constructed using truncated modes up to r2 = 40 modes based
on (17). The objective value (9) and the reconstruction error
(54) were evaluated. The initial values of γinit for ADMM(WN)
and ADMM(CN) were set at 0.7 and 1.2, respectively, and
the value was multiplied by η = 0.99 every 5000 iterations,
similar to the numerical experiments in Section IV. The
latent variables Z1:r(= S1:r1 VT

1:r1
) in this problem are mode

coefficients of the spatial modes of the time variation in the
temperature field U1:r. The mode coefficients Z1:r indicate the
time variation in the strength of each mode.

Fig. 6 illustrates the locations of the 30 sensors selected
by the greedy and ADMM-based methods. The white open
circles represent sensor locations. There is a clear difference
in the locations of the selected sensors obtained by the methods
considering white noise and correlated noise. The sensors
selected by the methods assuming white noise are aggregated
into several regions. In contrast, the location of sensors is
dispersed by considering the correlated measurement noise.
Observations using the latter sensor subset can be more
informative than observations with the former subset.

The objective values are shown in Fig. 7. As dis-
cussed in Section IV, the objective values obtained by
Greedy(CN) and ADMM(CN) are smaller than those ob-
tained by Greedy(WN) and ADMM(WN). The objective value
obtained by ADMM(CN) is better than that obtained by
Greedy(CN) at around 15 ≤ p ≤ 40 and is worse at smaller
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Fig. 7. Comparison of objective values obtained in experiment using practical
dataset.

and larger values of p. For p = 10, the condition is on
the constraint of the ADMM-based method, and thus, the
optimization can be severe and the quality of the solution
deteriorates. A similar trend for the ADMM-based method has
been reported in a previous study [19] and can also be seen
in the convex relaxation method [11] (see [19], [24], [27]).

Fig. 8 shows that the reconstruction error is reduced by
considering the correlated measurement noise, as was seen for
the numerical experiment with the artificial dataset. ADMM
(CN) achieved the smallest reconstruction error in the range
15 ≤ p ≤ 40. As discussed in the numerical experiment using
the artificial dataset, the importance of the location and com-
bination of each activated sensor gradually decreases as the
number of sensors p increases. Therefore, the difference in the
reconstruction error between ADMM(CN) and Greedy(CN)
decreases for larger p. In addition, the performance of the
ADMM-based methods deteriorates at p = 10 compared to
greedy methods.
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Fig. 8. Reconstruction error for the NOAA-OISST dataset.

VI. Conclusions

The present paper proposes a data-driven sensor selection
method for high-dimensional nondynamical systems with cor-
related measurement noise. The proposed method is based
on the proximal splitting algorithm and the A-optimal de-
sign of experiments. The sensor locations are determined
by minimizing the trace of the inverse of the FIM with
group `0 pseudo-norm constraint. The proposed method can
avoid the difficulty of sensor selection with strongly correlated
measurement noise, namely, that the sensor locations must
be known in advance for selecting the sensor locations, as
described in Section II-D. The problem can be efficiently
solved with ADMM, and the computational complexity is
O (n) when the method is combined with a low-rank expression
of the measurement noise model [30], [31]. Therefore, the
proposed method can treat large-scale problems that have more
than 10,000 potential sensor locations, such as data-driven
sensor selection problems.

The performance of the proposed method was compared
with those of the previously proposed methods by the nu-
merical experiments using artificial and practical datasets.
The adopted practical dataset was NOAA-OISST V2, which
contains weekly mean sea surface temperatures.

The results of numerical experiments using the artificial
dataset and NOAA-OISST dataset showed that the perfor-
mance of ADMM(CN) is the best among the compared
methods in terms of the objective value and reconstruction
error. The ADMM-based method without normalization by
the noise weighting term [ADMM(CNw/oN)] was also tested
to investigate the effectiveness of noise normalization in the
thresholding process. Although ADMM(CNw/oN) considers
correlated noise, the obtained objective value was larger than
those obtained by methods that do not consider correlated
noise. This indicates that the normalization of the sensor
candidate matrix by the noise weighting term is effective
and suggests that consideration of the noise intensity in
the thresholding process is essential for optimization using
proximal methods.

The previous methods considering the correlated measure-
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ment noise require the calculation of the precision matrix
(inverse of the noise covariance matrix) which should be con-
structed by the noise information over only selected sensors.
In particularly, the method based on convex relaxation requires
much larger calculation cost or a complicated formulation
with limitations. There was no published method to formulate
the continuous optimization problem for sensor selection that
can be solved by a method with a computational complexity
less than a cubic order of the number of potential sensor
locations. Hence, it was difficult to employ the previously
proposed methods for high-dimensional data including such
correlated measurement noise. Although the computational
cost becomes quite large when using a more general noise
model, the proposed method can achieve low-cost nonconvex
sensor optimization considering correlated measurement noise
by means of a low-rank expression of correlated measurement
noise [30]. Further extension of the complex objective function
and its constraints is expected using the framework proposed
in the present study.
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[15] N. K. Dhingra, M. R. Jovanović, and Z.-Q. Luo, “An ADMM algorithm
for optimal sensor and actuator selection,” in 53rd IEEE Conference on
Decision and Control. IEEE, 2014, pp. 4039–4044.
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