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Self-Calibration of Acoustic Scalar
and Vector Sensor Arrays

Krishnaprasad Nambur Ramamohan , Student Member, IEEE, Sundeep Prabhakar Chepuri , Member, IEEE,
Daniel Fernandez Comesaña , and Geert Leus , Fellow, IEEE

Abstract—In this work, we consider the self-calibration problem
of joint calibration and direction-of-arrival (DOA) estimation using
acoustic sensor arrays. Unlike many previous iterative approaches,
we propose solvers that can be readily used for both linear and
non-linear arrays for jointly estimating the sensor gain, phase
errors, and the source DOAs. We derive these algorithms for both
the conventional element-space and covariance data models. We
focus on sparse and regular arrays formed using scalar sensors as
well as vector sensors. The developed algorithms are obtained by
transforming the underlying non-linear calibration model into a
linear model, and subsequently by using convex relaxation tech-
niques to estimate the unknown parameters. We also derive iden-
tifiability conditions for the existence of a unique solution to the
self-calibration problem. To demonstrate the effectiveness of the
developed techniques, numerical experiments, and comparisons to
the state-of-the-art methods are provided. Finally, the results from
an experiment that was performed in an anechoic chamber using
an acoustic vector sensor array are presented to demonstrate the
usefulness of the proposed self-calibration techniques.

Index Terms—Acoustic vector sensors, direction-of-arrival
estimation, self-calibration, sensor array processing.

I. INTRODUCTION

THE problem of estimating the direction-of-arrival (DOA)
of multiple far-field events impinging on an array of

spatially distributed sensors has received considerable interest
in various fields including communications, radio astronomy,
acoustics, and seismology. Usually scalar sensor arrays, such
as acoustic pressure sensor (APS) arrays, are used for DOA
estimation. In recent times, transducers that measure vector
quantities are becoming practically feasible [1], enabling new
processing capabilities. An acoustic vector sensor (AVS) is such
a device that is capable of measuring both the acoustic pressure
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and particle velocity. Unlike an APS, a single AVS can measure
the DOA of a far-field event [2] and arrays of such AVSs have
proven to have distinct advantages compared to conventional
microphone arrays [3]. In practice, all sensors and their arrays
are highly sensitive to model errors [4]. Among those model
errors, the gain and phase mismatches between sensors, known
as calibration errors are the dominant ones that degrade the DOA
estimation results. Those are the focus of this work.

Many advanced subspace based algorithms, e.g., multiple sig-
nal classification (MUSIC) [5], minimum variance distortionless
response (MVDR) [6], and estimation of signal parameters via
rotational invariance technique (ESPRIT) [7], have been devel-
oped for DOA estimation. Further sparse recovery techniques
have also been widely used, whenever only a few sources are
present [8]. These traditional algorithms require more physical
sensors than the number of sources and use the data acquired
in the element-space domain (i.e., at the output of the sensor
elements) or in the covariance (or co-array) domain. Also
nowadays, to reduce sensing and data processing costs, sparse
sensing methods are gaining attention [9]. One can resolve and
estimate DOAs of as many as O(M2) sources using only M
physical elements by smartly and irregularly placing the sensor
elements. Such sensor placements are generally referred to as
sparse arrays [10], [11], [12]. Most of the discussed algorithms
developed for APS arrays can be used directly or adapted for
equivalent AVS arrays as well [2], [3].

DOA estimates obtained from these aforementioned standard
algorithms in the presence of calibration errors are severely
degraded [4]. These errors originate from the variability in the
analog electronics and the manufacturing technology across
sensors in the array. They affect both the signal-of-interest
and the noise part of the measurement data [4], [13]. On the
other hand, it is also possible to have calibration errors that
only affect the signal part of the measurements [4], whenever
there are position or orientation errors of the sensors (chan-
nels) in the array for instance or perturbations in the sensors’
gain and phase patterns. Usually labor intensive and expensive
calibration procedures are applied to correct for these mis-
matches [14], [15], [16], which are impractical for large number
of sensors. Furthermore, such calibration errors vary with time
and changes in the environment, and as a result, the deployed
sensors require periodic re-calibration. In such scenarios, self-
calibration methods are inevitable. The term self-calibration
refers to using the information collected by the array to simulta-
neously estimate the calibration errors and source DOAs without
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any reference sources with known direction and/or pre-defined
waveform.

A. Self-Calibration Methods

Self-calibration techniques for scalar sensor arrays in the
presence of gain and phase uncertainties between sensors have
been widely studied [13], [17], [18], [19], [20], [21]. It is a
non-linear estimation problem with unknown calibration and
array manifold matrix. Specific conditions should be satisfied
such that they are independently identifiable [17], [19]. In some
cases it is impossible to independently resolve both of them [17],
[22].

Maximum likelihood (ML) and maximum a posteriori (MAP)
based gain and phase estimation algorithms have been proposed
in [23], [24] to solve the self-calibration problem. Although
both ML and MAP based estimators are asymptotically efficient,
they are computationally expensive and not suitable for practical
applications. In contrast, there are also computationally friendly
self-calibration techniques which can be broadly classified into
two categories: geometry-dependent and geometry-independent
approaches.

The first kind of self-calibration techniques are developed
for specific/regular array geometries, where spatial redundan-
cies are used to eliminate the array manifold information in
order to estimate the calibration errors. Specifically, in [13], a
self-calibration procedure for scalar sensor arrays arranged in a
uniform linear array (ULA) configuration was presented, where
the Toeplitz structure of the data covariance matrix was utilized.
Extensions and adaptations of this self-calibration approach are
presented in [18], [25], [26], [27]. A self-calibration technique
based on ESPRIT for an APS ULA is derived in [17].

The second kind of self-calibration approaches are applicable
to arbitrary array geometries where the array manifold and
calibration matrices are estimated mostly with iterative tech-
niques [19], [20], [28]. However, these approaches suffer from
the choice of the initial estimate of the calibration errors and the
algorithm might only converge to a local minimum leading to a
sub-optimal solution.

Aforementioned two categories of self-calibration approaches
are developed specifically for scenarios with more sensors than
sources. Nonetheless, with the increased attention on sparse
sensing, a self-calibration algorithm for sparse arrays was pro-
posed in [29], where a sub-optimal method was used to estimate
the phase errors.

On the other hand, apart from the DOA estimation techniques
proposed in [30], [31], [32], [33], [34], not much attention is
given to the self-calibration problem for AVS arrays. It may
seem possible to adapt the second category of aforementioned
self-calibration techniques for vector sensor arrays. However,
due to the dissimilarities in the array manifold, the conditions
for independently identifying the calibration errors and source
DOAs are different and are not yet available.

In summary, we can observe that existing self-calibration
approaches either require specific sensor placement to obtain an
optimal solution or converge to a sub-optimal solution without
geometry constrains. So in this work we try to address the
issues associated with existing techniques by proposing two

non-iterative one-step self-calibration algorithms that are array
geometry independent, and applicable to both APS and AVS
arrays. Furthermore, the proposed self-calibration technique
using the co-array measurement model is also applicable to
sparse arrays, whose preliminary results are presented in [35]. In
our work, we leverage tools from sparse recovery techniques and
draw inspiration from [21], which deals with the self-calibration
problem for linear models, to decouple the calibration param-
eters from the other unknowns. However, the model we deal
with is not linear anymore as the source directions are not
known. In essence, the main problem of interest in this work
is self-calibration with a non-linear measurement model, where
we assume that the calibration errors are mainly originating
from uncertainties in the analog electronics and sensor elements.
Additionally, we also derive the identifiablity conditions for a
unique solution to exist while using AVS and sparse APS arrays.

B. Our Contributions

This work introduces novel self-calibration methodologies
combining traditional array processing theory with sparse re-
covery techniques. The validity of the proposed self-calibration
algorithms is studied by considering the measurement model
where the calibration errors affect both the signal-of-interest
and noise. Further the adaptation of the proposed approaches to
the measurement model where the calibration errors affect only
the signal component of the data is also discussed. The main
contributions can be summarized as follows:
� We develop non-iterative novel self-calibration algorithms

that are applicable for both linear and non-linear arrays
based on both the element-space and co-array data models,
where the latter data model is even useful when there are
more sources than sparsely placed sensors.

� We derive conditions to ensure a unique solution for es-
timating the DOAs and calibration errors for both AVS
and sparse APS arrays. This important aspect is still not
considered in the existing literature.

� We demonstrate the validity of the proposed approaches
via numerical simulations as well as an experimental study.
The latter shows the effectiveness of the introduced self-
calibration techniques for an array of 4 AVSs measured in
an anechoic chamber.

C. Notation and Outline

Upper (lower) bold face letters are used for matrices (column
vectors); (·)∗ denotes conjugate, (·)T denotes transpose and (·)H
denotes conjugate transpose; ⊗ denotes the Kronecker product,
◦ denotes the Khatri-Rao product and � denotes the Schur-
Hadamard (element-wise) product;E{·}denotes the expectation
operator; tr(·) denotes the trace operator and In is the identity
matrix of dimension n.

The detailed outline for this paper is as follows. In Section II,
we present the measurement model with calibration errors, and
the problem statement of estimating both the calibration errors
and the DOAs. In Section III, we present the identifiability
conditions for uniquely estimating the calibration errors and the
source DOAs. In Sections IV and V, the proposed calibration
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algorithms based on the element-space and the co-array do-
main measurement data model are presented, respectively. The
simulation and experimental results of the proposed calibration
algorithms are discussed in Sections VI and VII, respectively.

II. PROBLEM STATEMENT

Consider a linear array ofM sensors withQ channels, where
Q =M for APS arrays and Q = 3M for AVS arrays. We are
interested in estimating the azimuth directions ofN narrow-band
sources, denoted by θ = [θ1, θ2, . . . , θN ]T with θn ∈ [0, π] for
n = 1, . . . , N , where the azimuth directions are measured with
respect to the phase reference of the array. Each of the considered
Q channels has a different receiver gain and phase response,
which are not known. We refer to the unknown receiver gains
and phases as calibration errors, and for the ith channel it is
denoted as gi = αie

jφi with αi and φi being the gain and
phase mismatch, respectively. We collect the calibration errors
in the diagonal matrix diag(g) with g = [g1, g2, . . . , gQ]

T . Let
us also define the vectors α = [α1, α2, . . . , αQ]

T and φ =
[φ1, φ2, . . . , φQ]

T .
Under the narrow-band assumption [5], the element-space

signal, x(t), can be modeled as [13]

x(t) = diag(g) [A(θ) s(t) + n(t)] ∈ C
Q×1, (1)

where

A(θ) = [a(θ1) · · · a(θN )] ∈ C
Q×N

is the array manifold matrix, the source signals of wavelength
λ are stacked in the vector s(t) ∈ C

N×1 and the receiver noise
vector is given by n(t) ∈ C

Q×1. Here, we assume that both
s(t) and n(t) are derived from an independent and identically
distributed (i.i.d.) Gaussian distribution. Let us define p =
[pT

1 ,p
T
2 , . . . ,p

T
M ]T , where pm = [pm1, pm2]

T is the position
of themth sensor in the array defined in terms of wavelength (λ)
of the observed signal. In particular for a linear array the position
vector of themth sensor is modified as pm = [pm1, 0]

T . For the
sake of simplicity, we refer themth sensor position within a lin-
ear array just as pm. Further Without loss of generality (w.l.o.g.),
we consider the first sensor with p11 = p12 = 0 as the phase
reference of the array. The spatial signature (or the array steering
vector) for thenth source in the direction described by the vector
u(θn) = [cos(θn) sin(θn)]

T with respect to the first sensor of
the APS array with M sensors is given by

aAPS(θn) =
[
ej2π(pT

1 u(θ1)), . . . , ej2π(pT
Mu(θn))

]T
∈ C

M×1,

(2)
whereas the related array steering vector of the AVS array is
given by

aAVS(θn) =
[
1 uT (θn)

]T ⊗ aAPS(θn),

= h(θn)⊗ aAPS(θn) ∈ C
3M×1. (3)

For the APS array, we have Q =M with a(θn) = aAPS(θn)
and for the AVS array we haveQ = 3M channels with a(θn) =
aAVS(θn).

Usually the signal x(t) is uniformly sampled andL snapshots
are collected in the data matrix X = [x(1),x(2), . . . ,x(L)] ∈

C
Q×L to obtain

X = diag(g) [A(θ)S+N] . (4)

Here, S = [s(1), s(2), . . . , s(L)] ∈ C
N×L and N =

[n(1),n(2), . . . ,n(L)] ∈ C
Q×L. The covariance matrix of

the signal x(t) is Rx = E{x(t)xH(t)} ∈ C
Q×Q. We assume

that the source signals s(t) are uncorrelated and have a diagonal
covariance matrix E{s(t)sH(t)} = diag(σs), which is not
known. Similarly, the noise vector has a diagonal covariance
matrix E{n(t)nH(t)} = diag(σn), which is assumed to be
known or can be estimated. Then, the covariance domain model
can be written as

Rx = diag(g)
[
A(θ)diag(σs)A

H(θ)+diag(σn)
]
diagH(g).

(5)
Here, it is assumed that s(t) and n(t) are mutually uncorrelated.
It is also useful to express (5) in vectorized form as:

rx = diag(g∗ ⊗ g) [Aco(θ)σs + σn] , (6)

where vec(Rx) = rx and Aco(θ) = A∗(θ) ◦A(θ) with the
subscript “co” indicating the co-array manifold. In practice, the
data matrix X is used to compute the sample data covariance
matrix R̂x = L−1XXH . For the sake of convenience, hence-
forth, we use Rx instead of R̂x with the knowledge that only an
estimate of the covariance matrix is available.

Based on the co-array model in (6), the sensor elements can
be smartly placed irregularly along the linear axis, such that
Aco has full column rank. Usually such configuration of linear
arrays leads to sparse array design [12] allowing one to resolve as
many asO(M2) sources usingM sensors. As seen in (1) and (6),
both g and θ are unknowns, and additionally it is a non-linear
estimation problem as θ exists in the exponential terms of the
array manifold matrix.

The main goal of this paper is to jointly estimate the Q
complex (i.e., 2Q real) receiver gains g andN directions θ given
X or rx. To do so uniquely, as will be discussed in Section III,
we will require a few reference sensors with known complex
receiver gains in the array.

III. AMBIGUITY AND IDENTIFIABILITY

Before presenting the calibration algorithms, in this section,
we discuss identifiability conditions under which a unique solu-
tion for both the calibration parameters and the source DOAs
exists. The identifiability conditions for the APS arrays by
considering the element-space model (4) is presented in [19]. We
take inspiration from [19] and derive identifiability conditions
for all the remaining measurement models relevant for both APS
and AVS arrays. It should be immediately clear that, as both
diag(g)A(θ) and S (or σs) are not known a priori, they cannot
be computed uniquely as there will be a complex (or real) scaling
ambiguity. Therefore, to fix the scaling ambiguity we perform
calibration with respect to sensor 1 at location p1 = 0, i.e., we
use g1 = 1 for the element-space data model and |g1| = α1 = 1
for the co-array data model.

After establishing the fact that the elements of g can only
be estimated relative to the reference sensor, the next important
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question that needs to be addressed is to establish the well posed-
ness of the self-calibration problem given the measurement data.
From the element-space data model (4), we have 2QL nonlinear
equations inN unknown DOAs, 2(Q− 1) unknown calibration
parameters, and 2NL unknown source signals. Hence, for well
posedness of the calibration problem, we require

2QL ≥ N + 2Q− 2 + 2NL ⇒ N + 2(Q− 1)

2(Q−N)
≤ L,

which is meaningful only for Q > N . Furthermore, from the
co-array data model (6), we have 2QN −N2 + 1 nonlinear
equations1 inN unknown DOAs,2(Q− 1)unknown calibration
parameters, and N unknown source powers. Hence, for well
posedness, we require

2QN −N2 + 1 ≥ 2N + 2Q− 2 ⇒ Q ≥ N2 + 2N − 3

2(N − 1)
.

Finally, we study under which conditions we can uniquely
estimate g and θ given the measurement data. However due
to the non-linear nature of the estimation problem, it is not
straightforward to derive the identifiability conditions based on
the element-space data model (4) or co-array data model (6).
Therefore, to begin with, for linear arrays we derive sufficient
conditions for uniquely estimating g and θ based on the assump-
tion that diag(g)A(θ) (diag(g∗ ⊗ g)Aco(θ)) is given, with the
knowledge that in practice only the column span of it is available
from the measurement data.

1) The element-space data model: For deriving the sufficient
conditions, let us define the phase of diag(g)A(θ) as

ρq(n) =
1

2π
angle

(
gq [A(θ)]qn

)
= pq cos(θn) + φq, (7)

for q = 1, . . . , Q and n = 1, . . . , N. Introducing ρn = [ρ1(n),
. . . , ρQ(n)]

T and defining pext := p for the APS array and
pext := 13 ⊗ p for the AVS array, we can write the above
equation compactly as

ρn = pext cos(θn) + φ =
[
pext IQ

] [
cos(θn)

φ

]
(8)

for n = 1, 2, . . . , N . This is an under-determined system of
Q equations, which has rank Q− 1 (with φ1 = 0), and Q
unknowns. When N = 1, it is possible to solve (8), if another
sensor/channel’s phase error is known in the array (say w.l.o.g.
φ2 = 0 in addition to φ1 = 0). However, when N ≥ 2, we can
eliminate φ by considering

ρn − ρ1 = pext [cos(θn)− cos(θ1)] ,

to obtain N − 1 linearly independent equations in N unknown
DOAs of the form

p†
ext (ρn − ρ1) = cos(θn)− cos(θ1); n = 2, . . . , N. (9)

The system in (9) is still underdetermined. Nonetheless, if
one of the DOAs is known (say w.l.o.g. θ1 is known) then we

1The covariance matrix Rx is completely characterized by N + 1 real
eigenvalues and 2QN −N2 −N real parameters related to the orthonormal
eigenvectors associated to the signal subspace.

can identify the remaining DOAs. This result for a scalar sensor
array (Q =M ) was presented in [19].

However, for an AVS array (Q = 3M ), the need of knowing
the direction of one calibrator source θ1 can be relaxed as
the direction information is available in the magnitude of the
element-space data model. This is a novel observation that is not
presented in the existing literature. It can be seen by explicitly
considering only the magnitude of diag(g)A(θ), resulting in

νq(n) =
∣∣∣gq [A(θ)]qn

∣∣∣ = αq |hq(θn)| (10)

for q = 1, . . . , 3M . Here,

hq(θn) =

⎧⎪⎨⎪⎩
1, 1 ≤ q ≤M.

cos(θn), M + 1 ≤ q ≤ 2M.

sin(θn), 2M + 1 ≤ q ≤ 3M.

(11)

Let us consider the equations related to q =M + 1, which are
given by

νM+1(n) = αq+1 cos(θn).

If we assume N ≥ 2, we can eliminate the unknown αq+1 to
obtain

cos(θ1) =
νM+1(1)

νM+1(n)
cos(θn).

Thus we can compute θ1 as

θ1 = arccos

(
νM+1(n)

νM+1(n)
cos(θn)

)
.

This value of θ1 can be used in (9), which eliminates the need
of knowing one of the DOAs for uniquely identifying all the
N DOAs for the AVS linear array. The array manifold matrix
A(θ) is known once all the N DOAs are computed. Then
using (7) and (10), respectively, the phase and gain errors can
be computed.

Now to check if the derived sufficient condition for the APS
linear array is also necessary, we need to show that the solution
of g and θ is not unique if we do not consider the calibrator
source. To do so, assume an M -element APS array, and N
far-field sources. For such configuration, due to the structure
of A(θ) and the nature of g, we can have diag(g)A(θ) =
diag(g � a(θ0))(A(θ)� a∗(θ0)) = diag(g̃)A(θ̃), where gen-
erally g 
= g̃ and θ 
= θ̃ indicating the non-uniqueness of the
solution.

In summary, with the element-space model for a linear APS
array, irrespective of the array geometry, given N ≥ 2 and
diag(g)A(θ), the requirement of a calibrator source is a suf-
ficient and necessary condition for a unique solution of g and θ
to exist. In contrast, a calibrator source is not needed for a linear
AVS array.

2) The co-array data model: In contrast to the element-space
formulation, there are many self-calibration approaches that are
developed using the co-array model [13], [19], [20]. However,
the conditions for the solution to exist are still not explored. So
in this section, we derive the conditions using the co-array data
model in (6) for uniquely estimating g and θ, given diag(g∗ ⊗
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g)Aco(θ). To do so, consider the phase of diag(g∗ ⊗ g)Aco(θ)
that is given by

ρpq(n) =
1

2π
angle

(
g∗pgq

(
[A∗(θ)]pn ◦ [A(θ)]qn

))
= (pp − pq) cos(θn)− (φp − φq) , (12)

for p, q = 1, . . . , Q with p 
= q and n = 1, . . . , N.
IfN = 1, we require two sensors/channels with known phase

errors. Suppose w.l.o.g. that φ1 = φ2 = 0, then we can compute
the DOA as

θ1 = arccos

(
ρ12(1)

p1 − p2

)
, (13)

with no specific requirements for p1 
= 0 or p2 
= 0. Defin-
ing ρn = [ρ11(n), ρ12(n), . . . , ρQQ(n)]

T , we can compactly
write (12) as

ρn = Dpext cos(θn)−Dφ =
[
Dpext −D

] [cos(θn)
φ

]
,

(14)
where D ∈ RQ2−Q is the difference matrix that we use to
compute the pairwise differences in (12). IfN ≥ 2, irrespective
of the array geometry, the phase errors φ can be eliminated by
considering

ρn − ρ1 = Dpext [cos(θn)− cos(θ1)] ; ∀n = 2, . . . , N,

which can be equivalently expressed as

θn = arccos
(
(Dpext)

† [ρn − ρ1] + cos(θ1)
)
. (15)

This is similar to the element-space version as seen in (9) and it is
underdetermined. Nonetheless for APS linear arrays, similar to
the element-space model, if one of the source DOAs is known
(say w.l.o.g. θ1 is known) then we can identify the remaining
DOAs.

For an AVS array, similar to the element-space model, the
magnitude of diag(g∗ ⊗ g)Aco(θ) also contains the direction
information. Specifically,

νpq(n) =
∣∣∣gpgq ([A∗(θ)]pn ◦ [A(θ)]qn

)∣∣∣ ,
= ψpψqhp(θn)hq(θn) (16)

for p, q = 1, . . . , 3M and n = 1, . . . , N , where we recall that
hp(θn) is as in (11). Consider w.l.o.g. the equation related to
p =M + 1 and q =M + 2, i.e.,

νM+1M+2(n) = ψM+1ψM+2 cos
2(θn).

When N ≥ 2, we can eliminate the unknown gain errors ψM+1

and ψM+2 in the above equation by computing

cos(θ1) =

[
νM+1M+2(1)

νM+1M+2(n)
cos2(θn)

]1/2
,

which can now be used in (15) to compute the DOAs. Once
the DOAs are computed, the phase errors can be computed
from (14), with respect to one of the reference sensors/channels
in the array as the rank of D is always Q− 1. The gain errors
can be computed from the amplitude relations in (16).

Thus it can be concluded that irrespective of the array geome-
try of the linear array with the co-array data model, it is sufficient
to have one phase reference sensor and one (no) calibrator
source for a linear APS (respectively, AVS) array, for uniquely
estimating g and θ when N ≥ 2 and diag(g∗ ⊗ g)Aco(θ) is
given.

Unlike for the element-space approach, the derived sufficient
condition for the APS linear array using the co-array model
is not necessary. This aspect is showcased in the subsequent
discussion, with certain assumptions on the array geometry,
where we will see that using the co-array model the solution of
g and θ can be unique even if we do not consider the calibrator
source.

3) Sparse APS array based on co-array data model: In com-
parison to (8), which is an under-determined system, it can be
observed that (14) is a tall system with (Q2 −Q) equations
and (Q+ 1) unknowns. APS linear arrays with a particular
structure in the array geometry, such as specific sparse arrays
or uniform linear arrays (ULAs) result in redundant relations
that are part of (14). Those redundancies in the structured APS
linear array allow for estimating g and subsequently θ without
the knowledge of a known calibrator source leading to another
set of sufficient conditions. This is discussed in the following
part.

From the co-array perspective of scalar sensor arrays, the
distinct elements of Dpext, as seen in (14), behave like vir-
tual sensor locations given by the difference set {pi − pj , 1 ≤
i, j ≤M}. Those virtual sensor locations increase the degrees-
of-freedom (DOF) of the array allowing for estimating more
sources than physical sensors, if they are placed strategically.
In order to look at the self-calibration problem for such array
configurations, let us reuse some definitions from [11].

Definition 1: (Difference co-array) For an M -element sen-
sor array, with pi denoting the position of the ith sensor, define
the set

D = {pi − pj}, ∀i, j = 1, 2, . . . ,M,

which allows for a repetition of its elements. We also define the
set DU , which consists of the distinct elements of the set D.
Then, the difference co-array of the given array is defined as the
array which has sensors located at positions given by the set DU .

Definition 2: (Weight function) An integer valued weight
function w : DU → N+ is defined as

w(p) = no. of occurances of p inD, p ∈ DU ,

where N+ is the set of positive integers. The weight function
w(p) denotes the number of times p occurs in D.

The cardinality of the setDU for a given array gives the degrees
of freedom (DOF) that can be obtained from the difference
co-array associated with that array. The motivation of sparse
array design, such as the minimum redundancy array (MRA),
sparse ruler array or nested array, is to maximize the number of
DOF of the co-array for a fixedM , which in other words means
the value of the weight function w(p), ∀p ∈ DU \{0} has to be
minimized. However, from the self-calibration perspective, a
value of the weight functionw(p), ∀p ∈ DU \{0} greater than 1
is beneficial as this results in redundancies in (14). By exploiting
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redundancies in those relations for the nth source and each p,
the directional terms can be eliminated resulting in an equation
with only phase terms, i.e.,

ρpq(n)− ρkl(n) = ρpqkl(n) = φp − φq − φk + φl, (17)

where pp − pq = pk − pl for p, q, k, l = 1, . . . ,M and
n = 1, . . . , N . Such relations for all p, q, k, l can be expressed
as a system of equations, i.e.,[

. . . ρpqkl(n) . . .
]T

= T
[
φ1 . . . φM

]T
, (18)

where T is a deterministic matrix, which depends on the cho-
sen array geometry and the phase errors can be estimated by
inverting it. The maximum amount of redundancies can be
found in a uniform linear array (ULA), where for M elements,
w(±d) =M − d, for d = 0, 1, . . . ,M − 1. The rank of T is
then always M − 2, indicating that the phase errors can be
estimated with respect to an arbitrary reference and within an
arbitrary progressive phase factor [13], [17]. We now look into
the rank of the T matrix for different structured sparse linear
arrays and summarize how the phase errors can be estimated for
each of those scenarios,
� To design an M -element sparse array, taking self cali-

bration into consideration, there is a trade-off between
DOF and redundancies. The maximum rank of T for an
M -element APS array is upper bounded by M − 2. The
rank of T for structured sparse arrays including the nested
array [11] and super nested array [36] is always M − 3,
whereas for the co-prime arrays [12], which enjoy more
redundancies, it is M − 2.

� If there is a provision to introduce additional sensors within
a sparse array to allow for sufficient redundancies, then the
rank of T can be increased to M − 2. For example, for an
MRA [10], with M = 5 and p = [0, 1, 4, 7, 9]T , the rank
of T is 1. However, if we introduce two phase reference
sensors with p = [0, 1,2,3, 4, 7, 9]T , then the rank of T is
5.

On the other hand, the gain errors can be estimated by
considering the redundancies in the amplitude relations of
diag(g∗ ⊗ g)Aco(θ). Irrespective of the array geometry, the
rank of the equivalent T matrix obtained by considering
|diag(g∗ ⊗ g)Aco(θ)| is alwaysM − 1, indicating that the gain
errors can be estimated with respect to the chosen reference
sensor.

Using redundancies present in the co-array data model of an
APS array with N ≥ 1 and diag(g∗ ⊗ g)Aco(θ) is given, we
can conclude that for a ULA, with two phase reference sensors in
the array, while for sparse arrays, with at least two or more phase
reference sensors in the array, it is also possible for uniquely
estimating the calibration errors and source DOAs.

Remark 1 (On the identifiability analysis of non-linear ar-
rays): The identifiability conditions for non-linear AVS arrays
can be derived along similar lines of non-linear APS arrays as
presented in [19]. It can be shown that for both APS and AVS
arrays with N ≥ 2, it is sufficient to have one reference sensor
with a known gain and phase error for uniquely estimating both
the calibration parameters and the source DOAs. In particular

for APS non-linear arrays, the need for a reference source can
be relaxed for the purpose of self-calibration due to the presence
of extra degrees-of-freedom in its spatial frequencies.

Remark 2 (On the choices to resolve the identifiability issues):
To derive the sufficient conditions based on the redundancy-
based calibration technique, we choose to have reference sensors
with known phase errors in the array to improve the rank of the
G matrix such that the phase errors can be estimated. However,
we can also have other a priori conditions on the phase errors,
such as

∑Q
q=1 φq = 0, that improve the rank of G, leading to

another set of sufficient conditions to estimate the phase errors
and subsequently the source DOAs uniquely.

IV. SELF CALIBRATION WITH THE ELEMENT-SPACE MODEL

In this section, we focus on estimating the complex-valued
receiver gains and the source DOAs, when only a few snapshots
are available. In such cases, the sample data covariance matrix
will be a very poor estimate of Rx and hence we focus on
the element-space data model. The algorithms provided in this
section, do not make any assumptions on the array geometry or
on the structure of the covariance matrix Rx.

Assuming that the true directions are from a uniform grid of

D  N points, i.e., assuming that θn ∈
{
0, π

D · · · , π(D−1)
D

}
,

for n = 1, 2, . . . , N , we can approximate (1) as

x(t) = diag(g)[AD z(t) + n(t)], (19)

where AD is a Q×D dictionary matrix with column vectors
of the form a(θ̄d), where θ̄d is the dth point of the uniform
grid of directions, i.e., θ̄d = πd

D , d = 0, 1, . . . , D − 1, and z(t)
is a length-Q vector containing the source signal related to the
corresponding discretized directions. We emphasize here that
finding the columns ofAD that correspond to non-zero elements
of z(t) amounts to finding the DOAs. As seen in (19), by
assuming that the source DOAs lie on a pre-defined uniform grid,
we transform a non-linear estimation problem into a bilinear
estimation problem with c and z(t) being the unknowns (from
which we can derive g and θ, respectively).

Defining the calibration matrix diag(c) = diag−1(g), we can
express the “calibrated” signal y(t) as

y(t) = diag(c)x(t) = diag(x(t))c = ADz(t) + n(t). (20)

Exploiting the nature of the calibration errors, which combined
with simple algebraic manipulation, the bilinear estimation
problem in (19) is further transformed into a linear estimation
problem in (20).

Leveraging the fact that the calibration parameters remain
unchanged during an observation window where we collect L
snapshots, we can obtain more equations, i.e.,⎡⎢⎣ diag(x(1)) −AD

...
. . .

diag(x(L)) −AD

⎤⎥⎦
︸ ︷︷ ︸

G

[
c
z

]
︸ ︷︷ ︸

γ

=

⎡⎢⎣ n(1)
...

n(L)

⎤⎥⎦
︸ ︷︷ ︸

n

,

(21)
where z = vec(Z) ∈ C

DL with Z = [z(1), z(2), . . . , z(L)] =
[z1, z2, . . . , zD]T . Here, z(l) ∈ C

D and zd ∈ C
L.
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Although at the outset, it seems as if there are Q+DL
unknowns in (21), the vector z is structured. Specifically, the
vectors z(l), l = 1, . . . , L are sparse, and more importantly,
they have the same sparsity pattern with the indices of the
nonzero pattern indicating the source directions. The prior
knowledge of having sparsity along the spatial domain can be
incorporated by initially considering the l2 norm of all the time
samples corresponding to a particular spatial index of Z, i.e., by
defining z(�2)d = ‖zd‖2 for d = 1, 2, . . . , D, and then by using
the sparsity promoting l1 norm penalty on the vector z(�2) =[
z
(�2)
1 , z

(�2)
2 , . . . , z

(�2)
D

]T
as f(z) = ‖z(l2)‖�1 =

∑D
d=1 z

(�2)
d .

The optimization problem to jointly estimate the calibration
parameters and DOAs with a sparsity constraint along the spatial
domain of the matrix Z can then be expressed as:

min
c,z

‖Gγ‖22 + η f(z) s. t. (c, z) ∈ C (22)

where γ = [cT zT ]T and η is the regularization parameter that
allows for a trade off between the goodness of fit of the solution
to the given data and the sparsity prior on z. The constraint set
for APS linear arrays is C := {(c, z) | c1 = 1, z1 = 1} while
for AVS linear arrays it is C := {(c, z) | c1 = 1}. Recall that
for APS arrays, we need one reference sensor and we need
to know one of the DOAs to avoid ambiguities. This is done
by setting c1 = 1 and z1 = 1, which is equivalent to having a
calibrator source at θ̄1 (w.l.o.g.). Since for AVS arrays, we do
not need any calibrator source, we only need a reference sensor
in that case. Furthermore, the constraint set for both the APS
and AVS non-linear arrays is C := {(c, z) | c1 = 1}. Recall that
for non-linear arrays, we only need a reference sensor to avoid
ambiguities. The optimization problem (22) is a convex opti-
mization problem, which can be solved using any off-the-shelf
solver. For largeL, if the number of sources can be estimated, the
complexity of the formulation in (22) can be reduced by using
the �1-SVD technique [8] on the measurement data matrix X.
Furthermore, for the choice of the regularization parameter η,
we follow the discrepancy principle discussed in [8].

Remark 3: In contrast to the considered measurement model,
the calibration errors affect only the signal component of the
data, when the errors originate due to the perturbation of the
sensors, gain and phase patterns or due to the position or orien-
tation errors of the sensors in the array [34], [37]. In such case,
(1) and (20) can be modified, respectively as,

x(t) = diag(g)A(θ) s(t) + n(t).

y(t) = diag(c)x(t) = diag(x(t))c = ADz(t) + diag(c)n(t).

The proposed calibration approach in (22) is still applicable
here with the additive noise term being modified as n̂(t) =
diag(c)n(t).

V. SELF CALIBRATION WITH THE CO-ARRAY DATA MODEL

In this approach both the calibration errors and the source
DOAs will be estimated jointly based on the covariance matrix
of the measurement data. Similar to (19), the directions are
assumed to be on a uniform grid of D  N points. Then (6)

can be approximated as

rx = diag(g∗ ⊗ g)[AcoDσz + σn], (23)

where AcoD is a Q2 ×D dictionary matrix that consists of
column vectors of the form a∗(θ̄d)⊗ a(θ̄d), with θ̄d as defined
before. Again similar to (20), defining the calibration matrix
diag(c∗ ⊗ c) = diag−1(g∗ ⊗ g), we can express (23) as

diag(c∗ ⊗ c)rx = diag(rx)(c
∗ ⊗ c) = Aco(θ)σs + σn.

(24)
Since (c∗ ⊗ c) = vec(C), with C = ccH , (23) can be com-

pactly rewritten as[
diag(rx) −AcoD

]
︸ ︷︷ ︸

Gco

[
vec(C)

σz

]
︸ ︷︷ ︸

γco

= σn. (25)

Similar to the element-space formulation, we have transformed
the non-linear estimation problem in (6) to a linear estimation
problem in (25). The above system is underdetermined with
Q2 +D unknowns in Q2 equations (note that some equations
might even be redundant). However, as vec(C) has a Kronecker
structure, the actual number of unknowns reduces to Q and σz

is a sparse vector with non-zero elements at the location of the
source DOAs. By considering the aforementioned constraints on
the calibration errors and source DOAs, the estimation problem
can be cast as

min
C,σz

‖Gcoγco − σn‖22 + η ‖σz‖0 s. t. (C, σz) ∈ Cco
(26)

where γco = [vecT (C), σT
z ]

T , η is the regularization parame-
ter, forN ≥ 2 the constraint set Cco = {(C, σz) |σz � 0, C =
ccH , c1 = 1,σz(1) = 1} for APS linear arrays and Cco =
{(C, σz) |σz � 0, C = ccH , c1 = 1} for AVS linear arrays.
For APS linear arrays, the requirement of knowing one of the
DOAs is expressed as σz(1) = 1 (w.l.o.g.). Further for APS
ULAs and some APS sparse linear arrays, the redundancies in
the co-array measurements can be used for the estimation of the
source DOAs and the calibration errors with two phase reference
sensors in the array. In such cases the constraint set even with
N ≥ 1 is Cco = {(C, σz) |σz � 0, C = ccH , c1 = c2 = 1}.
Furthermore, the constraint set for both the APS and AVS
non-linear arrays withN ≥ 2 is Cco = {(C, σz) |σz � 0, C =
ccH , c1 = 1}. Again we can recall that for non-linear arrays,
we only need a reference sensor to avoid ambiguities. The
optimization problem in (26) is non-convex due to the l0 norm
(cardinality) constraint and the rank-one equality constraint on
C. We can relax (26) by replacing the cardinality constraint with
its convex approximation ‖σz‖1 and by replacing the rank-one
equality constraint (i.e., C = ccH ) in the set Cco with a convex
inequality constraint (i.e., C � ccH ). The new set which is
same as Cco except for the rank-one convex inequality constraint
is denoted as C̃co. The relaxed optimization problem can be
expressed as,

min
C,σz

‖Gcoγco − σn‖22 + η‖σz‖1 s. t. (C, σz) ∈ C̃co.
(27)
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The convex inequality constraint, C � ccH , is equivalent to[
C c

cH 1

]
� 0 from Schur’s lemma. The resulting problem is a

semi-definite programming problem that can be solved with
any off-the-shelf solver. For the choice of the regularization
parameter η, we can use any standard method adopted in sparse
signal recovery [38]. In practice, for the finite snapshot scenario,
C obtained after solving (27) might not be rank one and the
closest estimates of the calibration parameters can be obtained
from the first dominant singular vector of C. The formulation
in (27) is also applicable to sparse arrays for estimating DOAs
(when there are more sources than sensors) and calibration
parameters jointly as presented in [35].

Remark 4: If calibration errors affect only the signal compo-
nent of the data, then (6) can be modified as

rx = diag(g∗ ⊗ g)Aco(θ)σs + σn.

The proposed calibration approach in (27) is still applicable here
with a slight modification. More specifically, (25) and (26) can
then be modified, respectively as,

[
diag(rx − σn) −AcoD

]
︸ ︷︷ ︸

Gco

[
vec(C)

σz

]
︸ ︷︷ ︸

γco

= 0,

min
C,σz

‖Gcoγco‖22 + η‖σz‖0 s. t. (C, σz) ∈ Cco.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to illustrate
the performance of all the proposed solvers for the joint esti-
mation of the source DOAs and calibration parameters. Firstly
we consider the element-space model based solver in (22) only
for AVS linear arrays. Recall that AVS arrays do not require
the presence of a reference source (see Section III). Then the
covariance model in (27) is considered for both the APS and
AVS linear array. Finally, we analyze the root mean square
error (RMSE) of the DOA estimates obtained from the presented
algorithms and compare them with existing calibration methods.
The RMSE results for scenarios with more sensors than sources
are also compared with the Cramér-Rao lower bound (CRLB)
on the DOA estimates.

A. Element-Space Model

We consider a scenario with M = 8 AVSs arranged in a
uniform linear array (ULA) configuration where the spacing
between the consecutive sensors is half a wavelength of the
considered narrowband source signals. Further, we consider a
scenario with N = 6 narrowband far-field signals impinging
on the array from distinct DOAs with an observation period
consisting ofL = 50 snapshots. The grid is chosen to be uniform
between [0◦ 180◦] with 1◦ resolution. Without loss of generality,
we assume the first channel of the first AVS in the array as the
reference channel whose gain is 1 and phase is 0◦. The gain

Fig. 1. The l1-SVD and MUSIC spectra using the element-space data model
based solver in (22) for an AVS ULA with M = 8, N = 6 and L = 50. The
true DOAs are indicated by the black solid lines.

and phase errors are chosen from a uniform distribution over the
interval [−3; 3] dB and [−20◦; 20◦], respectively.

Based on the optimization problem in (22), the results of DOA
estimation post calibration are presented in Fig. 1. In order to
verify the correctness of the formulation in (22), we initially
considered an ideal scenario without measurement noise. The
DOA spectra based on (22) are presented in Fig. 1(a). It is
seen in Fig. 1(a), that we recover the exact source DOAs after
solving (22), where as for the uncalibrated data, the source DOA
estimates based on the l1-SVD algorithm [8] are very poor.
Further, we considered the measurement data with a signal-to-
noise ratio (SNR) of 10 dB and the corresponding DOA spectra
obtained from solving (22) are presented in Fig. 1(b), where we
draw a similar inference as in Fig. 1(a).

On the other hand, the issues of a pre-defined grid on the
DOA estimates obtained after solving (22) can be minimized by
applying the MUSIC algorithm on the gain and phase compen-
sated covariance matrix. The gain and phase errors are estimated
from (22), and the corresponding MUSIC spectra are presented
in Fig. 1(c). It can be inferred that for the measurement data with
an SNR of 10 dB, MUSIC with the uncalibrated data results in
poor estimates, whereas the DOA estimates after calibration in
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Fig. 2. The l1 norm based DOA spectra for both the APS and AVS ULA based
on the co-array data model solver in (27) withL = 1000, SNR= 10 dB,M = 8
and N = 4 far-field sources. The true DOAs are indicated by the black solid
lines.

Fig. 1(c) provides similar results as in Fig. 1(b). The two-step
procedure to obtain DOA estimates from MUSIC spectrum
significantly improves results when the sources do not lie on
a pre-defined grid.

B. Co-Array Data Model

To illustrate the effectiveness of the covariance domain formu-
lation provided in (27), we consider both a conventional ULA
with less sources than sensors and a sparse linear array with
more sources than sensors, where the smallest spacing between
the consecutive sensors is half a wavelength of the considered
narrowband source signals. Here, all the far-field source DOAs
are chosen to be on the grid. In both the scenarios, without loss of
generality, for the APS arrays we considered the first two sensors
as references whereas for the AVS arrays the first channel is
considered as a reference with gain of 1 and phase of 0◦.

1) ULA With Less Sources Than Sensors: Consider a ULA
withM = 8,N = 4 far-field sources and SNR = 10 dB. Firstly,
we consider a finite sample scenario with the observation period
consisting of L = 1000 snapshots whose l1 norm based DOA
spectra upon solving (27) are plotted in Fig. 2(a) for the APS
ULA and in Fig. 2(b) for the AVS ULA. The uncalibrated
data in all the plots results in low resolution DOA spectra and
very poor DOA estimates. In Fig. 2(a), the DOA spectra upon
solving (27) show an improvement compared to the DOA spectra
computed with the uncalibrated data. However, the resulting
DOA spectra still have low resolution, as the model considered
in (27) is not exact due to the finite sample approximation of the
covariance matrix estimation. On the other hand, in Fig. 2(b),
the DOA spectra based on (27) are significantly superior with
high resolution compared to the DOA spectra computed with

Fig. 3. The MUSIC spectra for both the APS and AVS ULA based on the
co-array data model solver in (27) with L = 1000, SNR = 10 dB, M = 8 and
N = 4 far-field sources. The true DOAs are indicated by the black solid lines.

the uncalibrated data. However upon closer observation, we can
notice that the DOA estimates are slightly biased for a couple
of sources and also there are some spurious peaks in the DOA
spectra. It is observed that the model mismatches due to the finite
sample approximation of the covariance matrix estimation, has
higher impact on reducing the sparsity of the DOA spectra for
the APS ULA in comparison to an equivalent AVS ULA.

In order to overcome the discussed issues with DOA estimates
and the effects of a predefined grid, similar to the element-space
approach, a grid-free approach such as MUSIC algorithm can be
applied on the measurement data in (5), which is compensated
for the gain and phase errors obtained from (27). Those MUSIC
spectra based on the calibrated data are presented in Fig. 3. The
results in Fig. 3(b) for the AVS ULA is compared with [19] (re-
ferred to as Weiss-Friedlander approach). The results in Fig. 3(a)
for the APS ULA is compared with [13] (referred to as the
Paulraj-Kailath approach2), as the Weiss-Friedlander approach
is not effective for linear scalar sensor arrays.

In Fig. 3(a) and (b), we see that the MUSIC spectra have
a higher resolution and improved estimates compared to the
equivalent l1 norm based DOA spectra. On contrary, the spectra
based on the uncalibrated data is not able to resolve all the
sources and the resolution of the spectra is also degraded.
Further, for the APS ULA in Fig. 3(a), the proposed approach
outperforms [13], and for the AVS ULA in Fig. 3(b), it can be
observed that although [19] results in a sharper peaks compared
to the proposed approach, the estimates are highly biased. It
can be summarized that based on the formulation in (27), it is

2During the submission of this manuscript it came to the authors’ attention that
an improved version of [13] for scalar sensor arrays that considers an optimally-
weighted least squares (OWLS) approach was proposed in [27].
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Fig. 4. The spatial smoothing MUSIC (SS MUSIC) spectra for both the APS
and AVS sparse linear array based on the co-array data model solver in (27)
with L = 500, SNR = 10 dB, M = 6, p = [0 1 2 3 6 9]T and N = 8 far-field
sources. The true DOAs are indicated by the black solid lines.

possible to jointly estimate both the calibration errors as well as
the source DOAs and the estimation results are good when the
number of time snapshots are higher and the grid-mismatches
are minimal. However, when the number of time snapshots are
limited and we have a pre-defined grid, solving (27) can be
used as a pre-conditioning step to estimate the calibration errors.
Then a grid-free approach such as MUSIC can be applied on the
gain and phase errors compensated measurement data to obtain
improved and reliable DOA estimates.

2) Sparse Array With More Sources Than Sensors: Consider
a hole-free sparse linear array with M = 6, p = [0 1 2 3 6 9]T ,
N = 8 far-field sources and SNR = 10 dB. The rank of the T
matrix [cf. (18)] for the considered sparse array is 4 (i.e., M −
2). For this scenario, we present spatial smoothing MUSIC (SS
MUSIC) spectra [11] based on the gain and phase compensated
measurement data, where the calibration errors are estimated
by evaluating the proposed formulation in (27). We consider
a finite sample scenario with the observation period consisting
of L = 500 snapshots whose SS MUSIC spectra are shown in
Fig. 4(a) for the APS array and Fig. 4(b) for the AVS array.
The results of SS MUSIC for both the APS and AVS array are
compared with the sparse total least squares (STLS) calibration
approach [29].

In both Fig. 4(a) and (b), we see that post calibration, the SS
MUSIC spectra have a higher resolution and are comparable to
the scenario with no calibration errors, whereas the spectra based
on the uncalibrated data are not able to resolve all the sources
and the resolution of the spectra is also degraded. Furthermore,
for both the APS and AVS sparse array with 500 snapshots, the
performance of our proposed method is better than the STLS
calibration approach [29].

Fig. 5. The spatial smoothing MUSIC (SS MUSIC) spectra for the AVS sparse
linear array based on the co-array data model solver in (27) with M = 6,
p = [0 1 2 3 6 9]T (with smallest inter-sensor spacing equals to λ of the consid-
ered narrowband source signals), SNR = 10 dB, L = ∞ and N = 19 far-field
sources. The true DOAs are indicated by the black solid lines.

The simulation setup for the AVS sparse linear array con-
sidered in Fig. 4(b), consists of less sources (N = 8) than the
number of channels of the AVS array, (3M = 18). The proposed
calibration approach in (27) is still applicable to an AVS sparse
linear array with more sources than channels. However, because
of the aperture limitation, when many sources are closely spaced
it will be hard to discriminate them. To solve this issue, we can
further boost the aperture by spatially undersampling the AVS
array as in [39]. Such a setup is considered in Fig. 5, where the
aperture is doubled and the smallest spacing between consec-
utive sensors is unit wavelength (instead of half a wavelength)
of the considered narrowband source signals. The SS-MUSIC
spectra for an ideal scenario with M = 6, N = 19 (>3M),
SNR = 10 dB and L = ∞ are shown. Similar inferences as
from Fig. 4(b), can be made in Fig. 5, which showcases the
applicability of the proposed calibration approach in (27) with
a spatially undersampled AVS array with more sources than
channels.

C. Monte-Carlo Experiments

In this section we study the statistical behavior through the
root mean square error (RMSE) of the DOA estimator based on
the proposed calibration procedure for different scenarios. We
consider both AVSs and APSs arranged in a ULA and sparse
linear array configurations.

1) Uniform Linear Array With Less Sources Than Sensors:
Firstly, we consider M = 8 sensors arranged in a ULA con-
figuration and three far-field sources, i.e., N = 3 with θ =
[78◦, 90◦, 102◦]. The gain and phase perturbations follow a uni-
form distribution over the interval of [−2, 2] dB and [−40◦, 40◦],
respectively. For both the element-space formulation (22) and
covariance domain formulation (27), we have chosen the pre-
defined grid between 0◦ and 180◦ with 1◦ resolution. The RMSE
of the DOA estimates based on the l1 norm spectra (either by
solving (22) or (27)) as well as the MUSIC spectra are presented
for the considered scenarios.

Fixed SNR and varying snapshots: The RMSE of the DOA
estimates for the source present at 90◦ based on 500 Monte-Carlo
trials for both the APS and AVS ULA are presented in Fig. 6.
Here the calibration errors and SNR of 10 dB were fixed for all
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Fig. 6. RMSE variation of the DOA estimates for the source at 90◦ using both
the APS and AVS ULA with M = 8, N = 3 and θ = [78◦, 90◦, 102◦] for a
fixed SNR of 10 dB as the number of snapshots are varying.

the trials while the number of snapshots are varying. The RMSE
of the DOA estimates in Fig. 6 based on the l1 norm spectra by
solving (22) is referred to as “Calibrated - Element Space” and
by solving (27) is referred to as “Calibrated - Coarray”. Further,
the RMSE in the DOA estimates in Fig. 6 based on the MUSIC
spectra by solving (22) is referred to as “Calibrated - Element
Space - MUSIC” and by solving (27) is referred to as “Calibrated
- Coarray - MUSIC”.

In Fig. 6(a), we considered the AVS ULA with an SNR of
10 dB. It is seen that as the number of snapshots increases, the
RMSE of the DOA estimates for the uncalibrated case does
not decrease, whereas after calibration based on both the l1
norm spectra and the MUSIC spectra, the results approach the
ideal scenario with no calibration errors and its CRLB. For a
given number of snapshots, MUSIC based DOA estimates result
in lower RMSE values when compared with the equivalent l1
norm based DOA estimates, further emphasizing the fact that the
calibration estimates are robust to the model mismatches while
solving either (22) or (27). On the other hand, the RMSE of the
DOA estimates based on the Weiss-Friedlander approach [19] is
also presented in Fig. 6, where the calibration parameters were
initialized with a gain of 1 and a phase of 0◦. It is seen that the
RMSE of the DOA estimates decreases initially, however it tends
to saturate as the number of snapshots increases as it leads to a
sub-optimal solution depending on the initialization. Also it can
be observed that the DOA estimates based on the MUSIC spectra
with calibration parameters estimated from (27) require more
snapshots to obtain better DOA estimates with low RMSE as the
finite sample errors in the estimation of the covariance matrix are
high for a low number of snapshots and those are not modeled
in the formulation of (27). Furthermore, based on the MUSIC
spectra in Fig. 6(a), it can be observed that the performance of

Fig. 7. RMSE variation of the DOA estimates for the source at 90◦ using both
the APS and AVS ULA with M = 8, N = 3 and θ = [78◦, 90◦, 102◦] as the
SNR varies for a fixed number of snapshots of 1000.

the element-space approach is far superior than the covariance
domain approach.

Similarly in Fig. 6(b), we considered the APS ULA with an
SNR of 10 dB. For the APS ULA, only formulation in (27)
is considered and the results of the proposed methodology are
compared with the Paulraj-Kailath approach [13]. The RMSE
of the DOA estimates of the proposed methodology follows
same trend as seen for the AVS ULA in Fig. 6(a). On the other
hand, although the calibration approach in [13] achieves the
optimal solution, it requires more snapshots to achieve similar
performance as the proposed methodology.

Fixed number of snapshots and varying SNR: The varia-
tion of the RMSE in the DOA estimates with respect to a
change in SNR for a fixed number of snapshots is considered
in Fig. 7. The same setup as in Fig. 6 is considered with N = 3
(θ = [78◦, 90◦, 102◦]) where the RMSE of the source at 90◦

is presented. In Fig. 7(a) and (b), we consider the AVS and
the APS ULA, respectively, with 1000 snapshots and varying
SNR. Similar to Fig. 6, it is seen that after calibration using the
formulation in (22) as well as in (27) the RMSE of the DOA
estimates decreases as the SNR increases for both the l1 based
spectra and the MUSIC spectra. Also as expected we can observe
that the MUSIC spectra based DOA estimates outperform the
l1 based DOA estimates for a given SNR. Further, it can be
inferred that the RMSE of the DOA estimates based on the
proposed element-space model calibration technique asymptot-
ically approaches the ideal scenario with no calibration errors
and its CRLB. On the other hand, we can observe that the RMSE
in the DOA estimates using the Weiss-Friedlander approach in
Fig. 7(a) for the AVS ULA and the Paulraj-Kailath approach
in Fig. 7(b) for the APS ULA, initially decreases as the SNR
increases. However for an SNR greater than 5 dB the RMSE
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Fig. 8. RMSE variation of the gain and phase error estimates for both the APS
and AVS ULA setup considered in Figs. 6 and 7 as the snapshots varies for a
fixed SNR of 10 dB.

of the DOA estimates tends to saturate due to the finite sample
errors in the covariance matrix estimation.

Gain and Phase RMSE estimates: Finally, the RMSE in
the gain and phase error estimates for the setup considered in
Figs. 6 and 7 is considered. In Fig. 8 the norm of the difference
between the estimates and the actual values of the gain and
phase errors is presented. In Fig. 8(a) and (b), RMSE related
to the phase and gain error estimates with varying snapshots is
considered, with the SNR being 10 dB. It can be observed in
Fig. 8(a) and (c) that the RMSE related to both the phase and
gain errors tends to approach zero as the number of snapshots
increases except for the Weiss-Friedlander approach [19] as it
produces a sub-optimal solution. This trend is consistent for the
proposed calibration approach based on both the element-space
and co-array formulation. Further, in Fig. 8(a) and (b) it can be
observed that the RMSE related to the phase errors based on the
proposed calibration approach outperforms the Paulraj-Kailath
approach.

2) Sparse Linear Array With More Sources Than Sensors:
In Fig. 9, the RMSE of the DOA estimates for APS and
AVS sparse linear array based on the SS MUSIC spectra ob-
tained using gain and phase compensated measurement data
for different SNRs and for different numbers of data snap-
shots is presented. Here, we use M = 6, p = [0 1 2 3 6 9]T

and N = 2 with θ = [70◦, 90◦]. The RMSE is computed for
the source at 90◦ using 500 independent Monte-Carlo trials,
but with fixed gain and phase errors. In Fig. 9(a) and (b),
we can observe that as the number of snapshots increases,
the RMSE of the DOA estimate after calibration approaches
the ideal scenario without any sensor errors. Furthermore, the
RMSE for the STLS calibration saturates both when increas-
ing the number of snapshots, as it converges to a sub-optimal
solution.

Fig. 9. RMSE variation in the DOA estimates for the source at 90◦ based on
the SS-MUSIC spectra using both APS and AVS sparse arrays with M = 6,
p = [0 1 2 3 6 9]T , N = 2, SNR = 10 dB and θ = [70◦, 90◦] as the number
of snapshots are varying. Here the scenario with “No Calibration Errors” is
considered as the baseline reference to compare the performance of the proposed
self-calibration solver.

VII. EXPERIMENTAL RESULTS

An experimental study was conducted in order to demonstrate
the proposed joint DOA and calibration algorithm for AVS ar-
rays. As discussed, each AVS consists of a pressure microphone
and several orthogonal particle velocity transducers. A particle
velocity transducer is commonly referred to as a Microflown [1].
A reliable calibration procedure is crucial for relating the sensor
output to the physical quantity perceived. Unlike microphone
calibration, there are no standardized procedures yet defined
for characterizing the broadband response of particle velocity
sensors.

Microflown sensors were originally calibrated using a sound
pressure microphone as a reference in a standing wave tube [15],
where the ratio between sound pressure and particle velocity
(i.e., acoustic impedance) is well understood. Novel methods
were later proposed for covering a wider frequency range, such
as the “Piston-On-a-Sphere” technique (POS) [14]. This ap-
proach relies on a sound source of known impedance measured
in free field conditions and it achieves good results at mid and
high frequencies. Thereafter, the POS technique was extended to
lower frequencies by also measuring the acoustic pressure inside
the sound source [16]. As a result, a full-bandwidth calibration
procedure is now available by combining two measurement
steps. In this section, the DOA estimation results based on
the calibrated data using the POS technique (referred to as
POS calibration), the Weiss-Friedlander approach [19] and the
proposed calibration techniques (both the element-space and
co-array approaches) are presented.

A picture of the experimental setup is shown in Fig. 10,
where five AVSs are seen arranged in a linear array configuration
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Fig. 10. Picture of the experimental setup considering five AVSs and three
speakers, located at a radius of r = 3.6 m.

along with three speakers. The smallest inter-sensor spacing was
0.05 m with sensors located at positions p = [0, 1, 2, 4, 6]T and
the speakers were located along the circumference of a circle of
radius r = 3.6 m with respect to the reference AVS in the array
(the distance to the sources is more than 20 times the aperture of
the array and therefore satisfying the far-field condition). The
measurements were carried out in a fully anechoic chamber
of the Faculty of Applied Physics of TU Delft (Netherlands)
using uncorrelated white Gaussian excitations driving multiple
3 in loudspeakers (resulting in high SNRs of approximately
30 dB). An Heim DATaRec 24 channels acquisition device with a
sampling frequency of 25 kHz was used to record the data. The
acoustic pressure and particle velocity information at a given
frequency were obtained by computing a short time Fourier
transform (STFT). Each recording was fragmented into seg-
ments of 1024 samples with 50% overlap. A Hanning window
was applied to each data segment prior to the STFT.

The raw output signals from all the five AVSs at a time instant
t for a particular frequency bin were collected in a vector x(t),
similar to (1). Without loss of generality, we have considered the
first channel of the first AVS in the array as the reference channel
with known gain and phase response which is sufficient to obtain
a unique solution as seen in the identifiability conditions for
AVS arrays. The joint DOA and calibration algorithm based
on (22) and (27) were applied on the captured measurement data
x(t) consisting of L = 1000 snapshots at a frequency of f =
2000 Hz. The corresponding grid-free MUSIC spectra based on
the post-calibration measurement data are presented in Fig. 11.

In Fig. 11(a) and (b), we considered two of the three speakers
with θ = [−45◦,−90◦]T and three speakers that are closely
spaced withθ = [70◦, 90◦, 108◦]T , respectively. We can observe
that for the uncalibrated data, the resolution of MUSIC is poor.
However, improved spectra with higher resolution can be seen
after compensating with the estimated calibration parameters.
The MUSIC spectrum obtained from (27), results in a high
resolution comparable to the results that are obtained with the
reference POS calibration approach. However, the spectrum
obtained from (22), has a lower resolution (especially in the three
source case) and shows a small bias compared to the co-array

Fig. 11. MUSIC spectra based DOA estimates using an AVS array with
M = 5, N = 2 and f = 2000 Hz. The true DOAs are indicated by the black
solid lines.

domain based solver. The, Weiss-Friedlander approach results in
degraded estimates compared to the proposed approach, specif-
ically in Fig. 11(b) it can be observed that none of the sources
are resolved.

VIII. CONCLUDING REMARKS

In this paper, we proposed a self calibration technique for both
the element-space and co-array data models that is applicable to
both acoustic pressure and vector sensor arrays. Also, we derived
and discussed a number of identifiability conditions for all the
considered cases under which a unique solution for both the
calibration parameters and the source DOAs can be obtained. It
is interesting to note that for the AVS array, irrespective of the
considered geometry, it is possible to calibrate all the sensors
with respect to only one of the channels in the array.

Based on the proposed approach, we showed that it is indeed
possible to jointly estimate calibration errors and source direc-
tions using a one-step approach by exploiting the underlying
algebraic structure and convex optimization techniques. It is
shown that for infinite data records, we can in fact obtain
the optimal solution suggesting the feasibility of the convex
relaxations for both the element-space and co-array data models.
However, when the number of time snapshots are limited and we
have a pre-defined grid, we stated that the proposed methodology
can be used as a pre-conditioning step to estimate the calibration
errors. Then a grid-free approach such as MUSIC/SS-MUSIC
can be applied on the gain and phase errors compensated mea-
surement data to obtain improved and reliable DOA estimates.
Furthermore, through simulations, we showed that even for finite
data records we are able to recover all the source DOAs and
we perform better than the existing calibration techniques for
all the considered scenarios. Finally, experimental results based
on real measurement data with an AVS linear array that are
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collected in an anechoic chamber are presented to showcase the
effectiveness of the proposed calibration techniques using both
the element-space and co-array data model.

REFERENCES

[1] H.-E. De Bree, The Microflown e-Book. Arnhem, Netherlands: Microflown
Technol., 2007.

[2] J. P. Kitchens, “Acoustic vector-sensor array processing,” Ph.D. disserta-
tion, Dept. Elect. Eng. and Comput. Sci., Massachusetts Inst. of Technol.,
Cambridge, MA, USA, 2010.

[3] A. Nehorai and E. Paldi, “Acoustic vector-sensor array processing,” IEEE
Trans. Signal Process., vol. 42, no. 9, pp. 2481–2491, Sep. 1994.

[4] A. L. Swindlehurst and T. Kailath, “A performance analysis of subspace-
based methods in the presence of model errors. I. The MUSIC algo-
rithm,” IEEE Trans. Signal Process., vol. 40, no. 7, pp. 1758–1774,
Jul. 1992.

[5] H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part IV.,
Optimum Array Processing. New York, NY, USA: Wiley-Interscience,
2002.

[6] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[7] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[8] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[9] S. P. Chepuri et al., “Sparse sensing for statistical inference,” Found. Trends
Signal Process., vol. 9, pp. 233–368, 2016.

[10] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas
Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.

[11] P. Pal and P. Vaidyanathan, “Nested arrays: A novel approach to array pro-
cessing with enhanced degrees of freedom,” IEEE Trans. Signal Process.,
vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[12] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the music algorithm,”
in Proc. IEEE Digit. Signal Process. Workshop Signal Process. Educ.
Workshop, 2011, pp. 289–294.

[13] A. Paulraj and T. Kailath, “Direction of arrival estimation by eigenstructure
methods with unknown sensor gain and phase,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 1985, pp. 640–643.

[14] F. Jacobsen and V. Jaud, “A note on the calibration of pressure-velocity
sound intensity probes,” J. Acoustical Soc. America, vol. 120, no. 2,
pp. 830–837, 2006.

[15] H.-E. d. Bree, W. Druyvesteyn, and M. Elwenspoek, “Realisation and
calibration of a novel half inch pu sound intensity probe,” in Proc. Audio
Eng. Soc. Conv., 1999, Paper 4974.

[16] T. G. Basten and H.-E. de Bree, “Full bandwidth calibration procedure
for acoustic probes containing a pressure and particle velocity sensor,” J.
Acoustical Soc. Amer., vol. 127, pp. 264–270, 2010.

[17] D. Astély, A. L. Swindlehurst, and B. Ottersten, “Spatial signature es-
timation for uniform linear arrays with unknown receiver gains and
phases,” IEEE Trans. Signal Process., vol. 47, no. 8, pp. 2128–2138,
Aug. 1999.

[18] K. N. Ramamohan, S. P. Chepuri, D. F. Comesana, G. C. Pousa, and G.
Leus, “Blind calibration for acoustic vector sensor arrays,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2018, pp. 3544–3548.

[19] A. J. Weiss and B. Friedlander, “Eigenstructure methods for direction
finding with sensor gain and phase uncertainties,” Circuits, Syst. Signal
Process., vol. 9, no. 3, pp. 271–300, 1990.

[20] S. J. Wijnholds and A.-J. Van Der Veen, “Multisource self-calibration for
sensor arrays,” IEEE Trans. Signal Process., vol. 57, no. 9, pp. 3512–3522,
Sep. 2009.

[21] S. Ling and T. Strohmer, “Self-calibration and bilinear inverse prob-
lems via linear least squares,” SIAM J. Imag. Sci., vol. 11, pp. 252–292.
2018.

[22] E. K. Hung, “A critical study of a self-calibrating direction-finding method
for arrays,” IEEE Trans. Signal Process., vol. 42, no. 2, pp. 471–474,
Feb. 1994.

[23] Q. Cheng, Y. Hua, and P. Stoica, “Asymptotic performance of optimal
gain-and-phase estimators of sensor arrays,” IEEE Trans. Signal Process.,
vol. 48, no. 12, pp. 3587–3590, Dec. 2000.

[24] M. Viberg and A. L. Swindlehurst, “A Bayesian approach to auto-
calibration for parametric array signal processing,” IEEE Trans. Signal
Process., vol. 42, no. 12, pp. 3495–3507, Dec. 1994.

[25] M. P. Wylie, S. Roy, and H. Messer, “Joint DOA estimation and phase cal-
ibration of linear equispaced (LES) arrays,” IEEE Trans. Signal Process.,
vol. 42, no. 12, pp. 3449–3459, Dec. 1994.

[26] Y. Li and M. Er, “Theoretical analyses of gain and phase error calibration
with optimal implementation for linear equispaced array,” IEEE Trans.
Signal Process., vol. 54, no. 2, pp. 712–723, Feb. 2006.

[27] A. Weiss, B. Nadler, and A. Yeredor, “Asymptotically optimal blind
calibration of acoustic vector sensor uniform linear arrays,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2020, pp. 4677–4681.

[28] V. C. Soon, L. Tong, Y.-F. Huang, and R. Liu, “A subspace method for
estimating sensor gains and phases,” IEEE Trans. Signal Process., vol. 42,
no. 4, pp. 973–976, Apr. 1994.

[29] K. Han, P. Yang, and A. Nehorai, “Calibrating nested sensor arrays
with model errors,” IEEE Trans. Antennas Propag., vol. 63, no. 11,
pp. 4739–4748, Nov. 2015.

[30] P. K. Tam and K. T. Wong, “Cramer-rao bounds for direction finding by
an acoustic vector sensor under nonideal gain-phase responses, noncol-
location, or nonorthogonal orientation,” IEEE Sensors J., vol. 9, no. 8,
pp. 969–982, Aug. 2009.

[31] Y. Song and K. T. Wong, “A lower bound of direction-of-arrival estimation
for an acoustic vector sensor subject to sensor breakdown,” IEEE Trans.
Aerosp. Electron. Syst., vol. 48, no. 4, pp. 3703–3708, Oct. 2012.

[32] P. K. Tam, K. T. Wong, and Y. Song, “An hybrid cramer-rao bound in closed
form for direction-of-arrival estimation by an “acoustic vector sensor” with
gain-phase uncertainties,” IEEE Trans. Signal Process., vol. 62, no. 10,
pp. 2504–2516, May 2014.

[33] X. Yuan, “Direction-finding with a misoriented acoustic vector sensor,”
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1809–1815,
Apr. 2012.

[34] Y. Song, K. T. Wong, and F. Chen, ““Quasi-Blind” calibration of an array
of acoustic vector-sensors that are subject to gain errors/mis-location/mis-
orientation,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2330–2344,
May 2014.

[35] K. N. Ramamohan, S. P. Chepuri, D. F. Comesaña, and G. Leus, “Blind
calibration of sparse arrays for DOA estimation with analog and one-bit
measurements,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2019, pp. 4185–4189.

[36] C.-L. Liu and P. Vaidyanathan, “Super nested arrays: Linear sparse arrays
with reduced mutual coupling–Part I: Fundamentals,” IEEE Trans. Signal
Process., vol. 64, no. 15, pp. 3997–4012, Aug. 2016.

[37] Z. Ma and K. Ho, “A study on the effects of sensor position error and
the placement of calibration emitter for source localization,” IEEE Trans.
Wireless Commun., vol. 13, no. 10, pp. 5440–5452, Oct. 2014.

[38] P. Pal and P. P. Vaidyanathan, “On application of lasso for sparse support
recovery with imperfect correlation awareness,” in Proc. IEEE Conf. Rec.
46th Asilomar Conf. Signals, Syst. Comput., 2012, pp. 958–962.

[39] K. Nambur Ramamohan, M. Contino, S. P. Chepuri, D. F. Comesaña,
and G. Leus, “DOA estimation and beamforming using spatially under-
sampled AVS arrays,” in Proc. IEEE 7th Int. Workshop CAMSAP, 2017,
pp. 1–5.

Krishnaprasad Nambur Ramamohan (Student
Member, IEEE) received the M.Sc. (cum laude) and
the Ph.D. degrees in electrical engineering from the
Delft University of Technology, Delft, The Nether-
lands, in June 2016 and June 2022, respectively. Dur-
ing 2012–2014, he has held positions with Cypress
Semiconductors, Bengaluru, India. Furthermore, he
has held brief positions with Leiden Medical Univer-
sity Center, Leiden, The Netherlands during 2015,
and Microflown Technologies, Arnhem, The Nether-
lands during 2015–2016. Since September 2016, he

has been with Signal Processing Department, Microflown AVISA, Arnhem,
The Netherlands, as Signal Processing Research Scientist. His research interests
include array signal processing, audio and acoustic signal processing, convex
optimization, and numerical linear algebra.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 06,2023 at 14:56:12 UTC from IEEE Xplore.  Restrictions apply. 



RAMAMOHAN et al.: SELF-CALIBRATION OF ACOUSTIC SCALAR AND VECTOR SENSOR ARRAYS 75

Sundeep Prabhakar Chepuri (Member, IEEE) re-
ceived the M.Sc. degree (cum laude) in electrical
engineering and Ph.D. degree (cum laude) from the
Delft University of Technology, Delft, The Nether-
lands, in July 2011 and January 2016, respectively.
He was a Postdoctoral Researcher with the Delft
University of Technology, Visiting Researcher with
the University of Minnesota, Minneapolis, MN, USA,
and Visiting Lecturer with Aalto University, Espoo,
Finland. During 2007–2009, he has held positions
with Robert Bosch, India, and Holst Centre/imec-nl,

The Netherlands, during 2010–2011. He is currently an Assistant Professor
with the Department of ECE, Indian Institute of Science (IISc), Bengaluru,
India. Dr. Chepuri was the recipient of the Best Student Paper Award at the
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) in 2015, Best Student Paper Award (as co-author) at ASILOMAR
2019, and the Pratiksha Trust Young Investigator award. He was an Associate
Editor for EURASIP Journal on Advances in Signal Processing. He is also an
Elected Member of the EURASIP Technical Area Committee (TAC) on Signal
Processing for Multisensor Systems, IEEE SPS Sensor Array and Multichannel
Technical Committee (SAM-TC), IEEE SPS Signal Processing Theory and
Methods Technical Committee (SPTM-TC), and Associate Editor of IEEE
Signal Processing Letters. His research interest lies in the field of mathematical
signal processing, statistical inference, and machine learning applied to network
sciences and wireless communications.

Daniel Fernandez Comesaña received the B.Sc.
degree in telecommunication engineering from the
University of Vigo, Vigo, Spain, in 2009, the M.Sc.
degree in applied digital signal processing and the
Ph.D. degree in sound and vibration from the Institute
of Sound and Vibration Research (ISVR), University
of Southampton, Southampton, U.K. He was the re-
cipient of the prize for the best Ph.D. thesis of an
ISVR Postgraduate. He carried out his doctoral stud-
ies in collaboration with the company Microflown
Technologies, Arnhem, The Netherlands, where he

now works as the CTO. He has contributed to more than 100 technical papers,
lectured in seminars about Microflown applications, and participated in multiple
industrial projects worldwide. His current role requires leading R&D Projects,
supervising international students, teaching technical seminars, assisting cus-
tomers, performing consultancies, and developing new software solutions. His
research interest lies within the area of sound field visualization, instrumentation,
and advanced measurement techniques.

Geert Leus (Fellow, IEEE) received the M.Sc. and
Ph.D. degrees in electrical engineering from the KU
Leuven, Leuven, Belgium, in June 1996 and May
2000, respectively. he is currently the Full Professor
with the Faculty of Electrical Engineering, Mathe-
matics and Computer Science, Delft University of
Technology, Delft, The Netherlands. He was the
recipient the 2021 EURASIP Individual Technical
Achievement Award, 2005 IEEE Signal Processing
Society Best Paper Award, and 2002 IEEE Signal
Processing Society Young Author Best Paper Award.

He was also the Member-at-Large of the Board of Governors of the IEEE Signal
Processing Society, Chair of the IEEE Signal Processing for Communications
and Networking Technical Committee, Chair of the EURASIP Technical Area
Committee on Signal Processing for Multisensor Systems and the Editor in Chief
of the EURASIP Journal on Advances in Signal Processing. He is currently the
Editor in Chief of EURASIP Signal Processing. He is the Fellow of EURASIP.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 06,2023 at 14:56:12 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


