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Abstract—In this paper, we address the problem of conducting
statistical inference in settings involving large-scale data that
may be high-dimensional and contaminated by outliers. The
high volume and dimensionality of the data require distributed
processing and storage solutions. We propose a two-stage dis-
tributed and robust statistical inference procedures coping with
high-dimensional models by promoting sparsity. In the first stage,
known as model selection, relevant predictors are locally selected
by applying robust Lasso estimators to the distinct subsets of
data. The variable selections from each computation node are
then fused by a voting scheme to find the sparse basis for the
complete data set. It identifies the relevant variables in a robust
manner. In the second stage, the developed statistically robust and
computationally efficient bootstrap methods are employed. The
actual inference constructs confidence intervals, finds parameter
estimates and quantifies standard deviation. Similar to stage 1,
the results of local inference are communicated to the fusion cen-
ter and combined there. By using analytical methods, we establish
the favorable statistical properties of the robust and computa-
tionally efficient bootstrap methods including consistency for a
fixed number of predictors, and robustness. The proposed two-
stage robust and distributed inference procedures demonstrate
reliable performance and robustness in variable selection, finding
confidence intervals and bootstrap approximations of standard
deviations even when data is high-dimensional and contaminated
by outliers.

Index Terms—High-dimensional, large-scale data, big data,
sparsity, robust estimator, Lasso, distributed computation and
storage, fixed-point equations, information fusion.

I. INTRODUCTION

MASSIVE quantities of ubiquitous and heterogeneous
data are generated by social media, smart phones, IoT,

environmental monitoring, astronomical imaging devices and
financial markets. Harnessing information from such large-
scale data provides enterprises with meaningful insights into
their performance and offers tremendous business opportuni-
ties. However, these benefits come with formidable challenges
in handling storage, processing, acquisition and privacy con-
cerns of high-speed and high volume data [1]. In order to rem-
edy the storage and processing issues, distributed computation
and storage solutions are preferred. In a variety of statistical
inference applications, one is dealing with high-dimensional
data where the number of explaining variables p may be
comparable or much larger than the number of observations n.
Often, high-dimensional problems exhibit a lower dimensional
structure such as sparsity or low-rank. Regularization may be
necessary to address the ill-posed high-dimensional problems
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and capture the parsimonious representation. In the context
of linear regression, regularization by `1-norm is known as
the celebrated Lasso and performs simultaneous parameter
estimation and model selection [2]. It improves the predic-
tion accuracy by introducing some bias while reducing the
variance. There are certain scenarios where regularization
by `1-norm may cause significant bias in estimated coeffi-
cients. Moreover, the exact characterization of the limiting
distribution for the Lasso estimator is a challenging task. In
recent years, several valid statistical inference procedures have
been introduced to characterize the construction of confidence
intervals and hypothesis testing for high-dimensional problems
[3], [4], [5]. In general, the state-of-art procedures to address
the uncertainty associated with parameter estimates belong
to three main categories. First category concerns inference
procedures based on bootstrapping. However, the conventional
bootstrap methods fail to provide a reliable approximation to
the distribution of Lasso estimator. In order to address this
issue, Chatterjee and Lahiri [3], [6] proposed two alterna-
tive solutions, modified residual bootstrap Lasso and residual
bootstrap adaptive Lasso. These solutions consistently estimate
their limiting distributions and provide valid approximation
of confidence intervals. The second category includes post-
Lasso inference methods where the first stage involves model
selection using Lasso and the actual inference is made in
the second stage using the selected variables. This category
includes sample splitting [7], bootstrap Lasso-OLS [5], boot-
strap Lasso-partial Ridge [8] and post-selection inference [9],
[10] methods. Herein, we extend the concept of Post-Lasso
estimator to conduct statistical inference for large-scale data
sets using distributed computation and storage. The third
category is based on the debiased-Lasso method [4], [11]
where the key idea is to remove the bias introduced by
regularization from Lasso solution. These methods offer a
concrete and general framework to quantify the uncertainty
associated with parameters in high-dimensional settings, e.g.
hypothesis testing and construction of confidence intervals.
Other alternatives are covariance test [12], knockoff filter [13],
the ridge projection and bias correction [14].

Another challenge in dealing with large-scale data is that the
probability of observing outliers may increase as the dimen-
sionality (p) and sample size (n) grows larger. Outliers may
become masked and hence difficult to detect. Outliers may
severely deteriorate the performance of ordinary least square
and regularized least square estimators. Robust multivariate
statistical procedures are required to cope with outlying ob-
servations and ensure the veracity of estimation, classification
and decision making. In the context of linear regression, robust
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regularized estimators are employed to ensure robustness and
find sparse solutions simultaneously [15], [16], [17], [18], [19],
[11].

Modern statistical inference procedures need to accommo-
date distributed storage and parallel computations to deal
with high volume and high-dimensional data. Bootstrap is
a powerful tool for quantifying the uncertainty of estimates,
i.e., confidence intervals and hypothesis tests. However, the
applicability of conventional bootstrap techniques in large-
scale settings may not be feasible because of computational
constraints. The bootstrap resamples may have the same size
as the original large-scale data, and repeating estimation for
each bootstrap replicate becomes prohibitively expensive. The
Bag of Little Bootstraps (BLB) [20] offers a scalable and com-
putationally efficient inference procedure for quantification of
the uncertainty associated with estimates that accommodates
distributed and parallel computing architectures. It subdivides
the complete large-scale data into smaller distinct subsets. It
can be considered as sampling without replacement from the
complete data set. Then, bootstrap is applied to each subset
and combines the inference results from each subset. However,
the BLB procedure is highly sensitive to outliers. In order to
overcome this issue, a statistically robust BLFRB approach
that extends the idea of fast fixed-point computations of FRB
method in [21] to MM-estimators was introduced in [22].
The modified bootstrap replicates are calculated by applying
a linear correction factor to the one-step approximation of
bootstrap replicates. Despite its robustness and computational
efficiency, BLFRB performs unreliably in high-dimensional
settings.

This paper focuses on statistical inference in large-scale
settings with distributed architecture where data may be high-
dimensional and contaminated by outliers. This problem has
not been thoroughly studied in open literature. In particular,
we propose two-stage statistical inference procedures that are
robust to outlying observations and allow for using distributed
storage and processing architectures for scalability. In the first
stage, the relevant predictors are selected in two steps. First
robust Lasso estimator is applied to distinct subsets of data
in order to perform local variable selection. The variables
for the whole data set are then found by applying a fusion
rule to the selections from individual nodes at the fusion
center or cloud. In the second stage, we conduct inference
by constructing confidence intervals, finding point estimates
of the selected parameters and their standard deviations based
on the large-scale data. The developed distributed and low-
complexity inference procedures that use linearly corrected
one-step robust estimators are employed. In special cases with
very high dimensionality (p{n « 1 or p " b, p number
of predictors, n sample size and b subsample size), one
may accelerate the model selection by a preprocessing stage
excluding the majority of irrelevant variables via a robust
variable screening procedure on the distinct subsets of data
stored at each node. We address this issue in Supplemental
Materials. The methods proposed in this paper extend our
previous work on two-stage robust and distributed inference
procedures [23], [24] by deriving computationally more effi-
cient estimation methods and establishing statistical properties

of the inference methods using analytical tools. We emphasize
that our asymptotic analysis is restricted to the classical fixed
p setting. In [5], the asymptotic properties were established
for a special case of post-Lasso estimator Lasso+mLS and the
valid bootstrap approximation while allowing p to grow at an
exponential rate in n. However, their analysis does not cover
the distributed and robust settings.

The main new contributions of the paper are summarized
as follows:

‚ Two-Stage Robust and Distributed inference employing
the class of τ -estimators called TSRD-τ is introduced. A
robust τ -Lasso sparsity promoting estimator is employed
in the first stage.

‚ The proposed TSRD-τ employs a novel Robust and
Scalable linearly corrected One-step Bootstrap procedure
using τ -estimator (RSOB-τ ) for performing the actual
inference. Its computational complexity is reduced by
efficient estimation of bootstrap replicates.

‚ Two-Stage Robust and Distributed inference employing
the class of MM-estimators called TSRD-MM is devel-
oped. The sparsity promoting estimator in the first stage is
robust MM-Lasso. It extends the BLFRB procedure [22]
by a robust variable selection stage promoting sparsity.

‚ Analytical results proving the robustness and consistency
of the TSRD-τ method are derived for fixed p and
diverging n. In order to formally show the quantitative
robustness of τ -Lasso, its finite-sample breakdown is
characterized.

‚ Extensive simulations are conducted to assess the perfor-
mance of robust and distributed two-stage procedures in
variable selection, bootstrap estimation of standard devia-
tion, robustness of confidence intervals and computational
complexity of the RSOB-τ procedure.

‚ Analytical results on the consistency and asymptotic
normality of the RSOB-τ procedure are verified through
computer simulations. Furthermore, the favorable theoret-
ical findings on robustness of bootstrap replications are
confirmed by extensive simulation studies and comparing
them to [22].

The two-stage inference solutions presented in this work
achieve scalability by performing inference over smaller dis-
tinct subsets of data in parallel, using multinomial weighting
and discarding irrelevant predictors. Considerable computa-
tional gains are achieved by using the low-complexity pro-
cedures to calculate bootstrap replications while retaining the
consistency. The model selection stage facilitates preventing
the impact of undesirable bias introduced by regularization
and allows for the inference free of regularization parameter
tuning.

This paper is organized as follows: In section 2, we describe
the proposed two-stage inference methods and the employed
data model. In section 3, the robust model selection methods
and the distributed inference procedures are explained in more
detail. In section 4, theoretical characterization of finite-sample
breakdown point of robust τ -Lasso is provided. Moreover,
the details of RSOB-τ are explained and its consistency and
robustness properties are established. Section 5 studies the
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performance of the two-stage robust inference procedures
in simulations. Their consistency, robustness of confidence
intervals, computational complexity, variable selection and
standard deviation are considered. Section 6 concludes the pa-
per. Detailed derivations and explanations of the theorems and
their proofs can be found in the Appendix and Supplemental
Material. Moreover, we present a robust variable screening
procedure [25] prior to model selection, aiming to reduce the
computational complexity in very high-dimensional data sets.
We refer the interested readers to Supplemental Materials.

II. OVERVIEW

In this section, we will define the employed data model and
briefly describe the proposed two-stage inference procedures.

A. Data Model

Consider a large-scale data with n independent and identi-
cally distributed (i.i.d.) observations following a linear regres-
sion model

y “ Xβ0 ` v (1)

where X “ pxr1s,xr2s, . . . ,xrnsq
T P Rnˆp denotes a regres-

sion matrix, y “ py1, y2, . . . , ynq
T P Rn is a response vector,

v “ pv1, v2, . . . , vnq
T P Rn is a measurement noise and the

errors vl are assumed to be independent of predictors xrls.
β0 P Rp denotes a sparse parameter vector with ks “ |S| non-
zero entries and S “ tj : 1prβ0spjq ‰ 0qu. In order to deal
with sheer volume of data, Y “

`

y,X
˘

is split into s smaller
distinct subsets of data Y̌piq “

`

y̌piq, X̌piq
˘

P Rbˆpp`1q, i “
1, ¨ ¨ ¨ , s that can be stored and processed separately. The sub-
sets may be formed by resampling without replacement from
rows of the complete data set where b “ ttnγu|γ P r0.6, 1qu.
The same situation would occur if subsets of data are stored
on s storage and computing nodes and each node contains b
observations.

B. Assumptions

Suppose the measurement noise or errors vl follow some
distribution F0 and the distribution of the observed predictors
xrls is G0. Then, the joint distribution H0 of pyl,xrlsq is

H0pxrls, ylq “ G0pxrlsqF0pyl ´ xTrlsβ0q. (2)

We make the following assumptions on the distribution of
errors and predictors.
‚ The probability density f0puq associated with probabil-

ity distribution F0 of the errors vl has the following
properties: even, monotone decreasing in |v| and strictly
decreasing in a neighborhood of 0.

‚ PpxT
rlsβ “ 0q ă 1´δ for all non-zero β and δ as defined

by equation (5).
‚ G0 has a finite second moment and EG0

rxrlsx
T
rlss is non-

singular.
The condition 1 generalizes the result established in this

work to extremely heavy-tailed errors by imposing no moment
conditions on the residual distribution F0. The condition 2
guarantees the probability that observed values of explana-
tory variable are concentrated on a hyperplane does not get

too large. The condition 3 concerns the second moment of
explanatory variables and very common in the asymptotic
analysis of regression estimators.

C. Proposed Two-Stage Inference Methods

In order to perform inference on potentially high-
dimensional models in the presence of sparsity and outlying
observations, we propose two-stage robust and distributed
statistical inference methods where robust variable selection is
performed in the first stage and then selected variables from
each distinct subset of data are combined by using a fusion
rule in the fusion center or cloud. The actual inference is
done in the second stage by using robust and low-complexity
bootstrapping procedures on the variables selected in the first
stage.

The robust variable selection incorporates features of
split-and-conquer approach [26], Bolasso [27] and robust
lasso estimators. The Bolasso discusses that Lasso fails to
produce consistent variable selection results under certain
decays of regularization parameter. More specifically, the
probability of selecting irrelevant variables is strictly positive.
In order to overcome this issue, Bolasso recommends to
generate sufficient number of bootstrap samples of the
original data set and intersect the support of the parameter
vector estimated based on each bootstrap. Thus, the irrelevant
variables would randomly be selected by Lasso and could be
eliminated from the support during intersection. The majority
voting scheme is often preferred over intersection because
if few of the relevant variables are erroneously not selected
by one bootstrap replication, the AND-rule excludes those
variables from the model. In the split-and-conquer approach,
the data set is split into s subsets and distinct subsets are
processed separately. In large-scale settings with distributed
storage and processing architecture, multiple distinct subsets
of i.i.d. data are stored on nodes. One can estimate the
support of the parameter vector based on distinct subsets of
data stored at each node and combine them in the fusion
center by using a voting scheme. Due to page limitations,
we chose to discuss only TSRD-τ and its related equations.
The TSRD-MM method basically replaces the class of
τ -estimators in TSRD-τ with MM-estimators.

D. TSRD-τ

We describe the core components of two-stage robust
and distributed inference procedure employing class of τ -
estimators. In the first stage, the robust variable selection
exploits the τ -Lasso method [28], [15] to select the sparse
basis for each of the s distinct data sets of b observations. The
selection results from each node are fused in a cloud or fusion
center by using a percentage-based voting rule to choose the
variables for the complete large data set. The chosen basis is
communicated to each distributed computing and storage node
and used in the second stage of the inference. A new robust and
scalable technique using one-step bootstrap approximation of
robust τ -estimators is proposed to find parameter estimates for
the selected basis and their confidence intervals in the presence
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of outliers. Bootstrap replicates are computed by using a robust
low-dimensional τ -estimator of regression [29]. The bootstrap
percentile method is used to estimate confidence intervals
associated with selected variables. The estimated confidence
intervals from each node are communicated to the cloud or
fusion center for the inference on complete large scale data.
The confidence intervals estimated for each subset of data are
combined at the fusion center by coordinate-wise averaging
over the lower and upper bound of confidence intervals.

In addition, we show that the distribution of the pro-
posed RSOB-τ asymptotically converges to the same limiting
distribution as the sampling distribution of τ -estimator for
distinct subsets of data. Combining this with the assumption
of PpŜ “ Sq “ 1 as n Ñ 8 implies that the asymptotic
distribution of bootstrap τ -estimates for non-zero variables
would converge to the same limiting normal distribution of
τ -estimator as if the true non-zero variables were known
a priori. The robustness properties of τ -Lasso and RSOB-
τ are established by using analytical methods and computer
simulations. A simple schemtaic of the proposed two-stage
inference method is presented in Fig. 1. The details of the
proposed TSDR-τ method are presented in the following
sections.

III. THE PROPOSED ROBUST INFERENCE PROCEDURE

A. Stage I: Model Selection

The proposed distributed and robust variable selection al-
gorithm employed in the first stage of the inference procedure
is described in detail. The main steps of the algorithm are
summarized in Fig. 2.

The large-scale data is first split into s distinct subsets
via resampling without replacement. Then, the robust model
selection is carried out in two steps in a distributed manner
as follows:

1) Variable Selection Using τ -Lasso
At each node, the relevant variables are selected by applying

robust τ -Lasso estimator [28], [15] to each distinct subset
of observations Y̌piq “ py̌piq, X̌piqq, i “ 1, ..., s. Hence, the
robust variable selection is performed by solving a set of s
estimation sub-problems defined as follows:

β̂piq “ argmin
β

Lpβq “ argmin
β

´

rσ̂piqτ s
2 ` λ}β}`1

¯

(3)

where λ controls the level of sparsity imposed by the `1-norm
penalty term. σ̂piqτ is a shorthand for σ̂τ přpiqpβqq an efficient
estimate of scale defined as follows:

rσ̂piqτ s
2 “

rσ̂
piq
b s

2

b

b
ÿ

l“1

ρ1

´ ř
piq
l pβq

σ̂
piq
b

¯

(4)

where řpiqpβq “ y̌piq´X̌piqβ and σ̂piqb denotes a shorthand for
σ̂Mpř

piqpβqq an M-scale estimate of residuals řpiqpβq defined
as the solution to

1

b

b
ÿ

l“1

ρ0

´ ř
piq
l pβq

σ̂
piq
b

¯

“ δ1 (5)

where δ1 is a tuning constant controlling the asymptotic
breakdown point of the estimator. ρ0p¨q and ρ1p¨q are even
and bounded functions satisfying the properties of ρ-function
defined by Maronna et al. [30]. Tukey’s bisquare ρ-function
is considered as a popular choice in robust regression and
defined as ρiptq “ 1 ´

`

1 ´ pt{ciq
2
˘3

1p|t| ď ciq, i “ 0, 1
where c0 and c1 are chosen so that the desired normal
efficiency ζ˚ and breakdown point δ˚ are attained for λ “ 0,
respectively. This can be achieved by finding c0 and c1 that
satisfy Erρ0ptqs “ δ˚ and

`

Erψ1ptqs
˘2
{Erψ2ptqs “ ζ˚ under

the normality assumption of errors t „ N p0, 1q when λ “ 0,
simultaneously. ψptq, ψ0ptq, ψ1ptq and W are defined as
follows:

ψptq “Wψ0ptq ` ψ1ptq,

ψ0ptq “ Bρ0ptq{Bt, ψ1ptq “ Bρ1ptq{Bt,

W “
`

2Erρ1ptqs ´ Erψ1ptqts
˘

{Erψ0ptqts.

(6)

Computation: In order to solve the optimization problem
given in equation (38), we employ the generalized gradient
to minimize the composite objective function consisting of
a non-convex term and a non-smooth `1-norm penalty term.
The generalized gradient of the objective function is defined
as Bβprσ̂

piq
τ s

2 ` λ}β}`1q where Bβrσ̂
piq
τ s

2 associated with
the smooth, non-convex, continuously differentiable term is
identical to its gradient ∇βrσ̂

piq
τ s

2 and Bβpλ}β}`1q associated
with non-smooth, convex term coincides with its subdifferen-
tial [17], [31]. It follows from the local lipschitzity of the
composite objective function, any point β̄ P Rp at which
0 P Bβprσ̂

piq
τ s

2 ` λ}β}`1q is a local minimum of the τ -Lasso
estimation problem. Therefore, the generalized gradient of the
objective function wrt β may be leveraged to find the local
minima of the given estimation problem. It can be shown the
generalized gradient of the objective function is equivalent to
the sub-gradient of the weighted least square penalized by
`1-norm except that the weights wpiql pβq here depend on the
unknown β. Hence, the original optimization problem may be
reformulated as follows:

β̂piq “ argmin
β

}Ωpiqpy̌piq ´ X̌piqβq}2`2 ` λ
1

}β}`1 , (7)

where λ
1

“ 2bλ{σ̂
piq
b , Ωpiq is a diagonal matrix whose entries

on diagonal are
b

w
piq
l and wpiql is given by,

w
piq
l “

“

w
piq
τ ψ0pr̃

piq
l q ` ψ1pr̃

piq
l q

‰

ř
piq
l

,

wpiqτ “

řb
l“1

“

2ρ1pr̃
piq
l q ´ ψ1pr̃

piq
l qr̃

piq
l

‰

řb
l“1 ψ0pr̃

piq
l qr̃

piq
l

.

(8)

where the notation ř
piq
l is a shorthand for ř

piq
l pβq and

r̃
piq
l “ ř

piq
l {σ̂

piq
b . In the spirit of iteratively reweighted

least-squares (IRLS) [32]-[33], we use iteratively reweighted
Lasso (IR-LASSO) alternating between finding the weight
matrices Ωpiq, refining β̂piq and updating σ̂

piq
b . The M-scale

estimates are calculated via fixed-point iterations at each step
of IR-LASSO.
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Y =
(
y,X

)
Distributed

Robust
Variable
Selection

Fusion
Center

Construction
of Confidence

Intervals

Fusion
Center CI...

Stage 1

...

Stage 2

... ...

Fig. 1. A simple schematic of the proposed two-stage robust and distributed inference.

Y =
(
y,X

)

Y̌(1) =(
y̌(1), X̌(1)

)

Y̌(2) =(
y̌(2), X̌(2)

)
...

Y̌(s) =(
y̌(s), X̌(s)

)

τ -Lasso
estimates, β̂(1)

τ -Lasso
estimates, β̂(2)

...
τ -Lasso

estimates, β̂(s)

Support Ŝ(1)

Support Ŝ(2)
...

Support Ŝ(s)

Support fusion,
Ŝ = {j :

∑s
i=1 1(β̂

(i)
j 6= 0)/s ≥ K}

Fig. 2. The model selection is carried out in two steps: performing model selection at each node storing a distinct subset of data and combining the selected
models from each node in the fusion center through a voting scheme.

2) Fusing variable selections
Once parameter estimation and variable selection are per-

formed at each node, the chosen variables are communicated
to the fusion center or cloud. In the fusion center, a percentage-
based voting rule is used to select the relevant variables for
the entire large-scale data set. The selection results of all
nodes are combined according to the following rule, that is,
, if a parameter is in the support within 100 ˆK percent of
subsets, it is selected to the support for the complete data
set, Ŝ “ tj :

řs
i“1 1pβ̂

piq
j ‰ 0q{s ě Ku. The chosen

variables Ŝ are broadcast into computation and storage nodes
and deployed in the second stage of inference which uses the
selected variables only.

Consider we skip the fusion and directly pass down the
variables selected at each of s nodes to the next stage. It
is likely that models selected at some subsets of data are
either overfitting or undefitting, which results in inaccurate
inference results, thereby an appropriate rule of fusion is
recommended.

B. Stage II: Robust Inference

1) Construction of CIs (RSOB-τ )
In this part, we perform the actual inference over the chosen

variables from the model selection stage by using the RSOB-τ .
The derived robust τ -estimation equations are used to compute
bootstrap replicates instead of MM-estimation equations in
[22]. Scalability is achieved by conducting inference in parallel
on each distinct subset of data. Moreover, applying the RSOB-
τ on only the selected variables eliminates the bias introduced
by the regularization term.

In order to develop low-complexity inference procedures
using bootstrap, it is required for the underlying estimator to

be expressed as a fixed-point problem. It is well-known that τ -
estimator fulfills the above requirement and can be represented
as a solution of fixed-point equations as follows:

θ̂b “ fpθ̂; Ỹbq (9)

where f : R|Ŝ|`1 Ñ R|Ŝ|`1 denotes a smooth function,
Ỹb “

`

y̌, X̃
˘

with the explaining variables chosen in the
model selection stage and θ̂b is a fixed-point of f . The terms
θ̂b and fpθ̂b; Ỹbq are defined, respectively, as follows:

θ̂b “

»

–

β̂b

σ̂b

fi

fl

fpθ̂b; Ỹq “

»

—

–

´

řb
l“1 ŵlx̃rlsx̃

T
rls

¯´1´
řb
l“1 ŵly̌lx̃rls

¯

,

řb
l“1 v̂lr̂l,

fi

ffi

fl

(10)

where

v̂l “
1

bδ2
ˆ
ρ0

`

r̃l
˘

r̃l
,

ŵl “
ŵτρ

1

0

`

r̃l
˘

` ρ
1

1

`

r̃l
˘

r̂l
,

ŵτ “

řb
l“1

”

2ρ1

`

r̃l
˘

´ ρ
1

1

`

r̃l
˘

r̃l

ı

řb
l“1 ρ

1

0

`

r̃l
˘

r̃l
,

r̂l “ y̌l ´ x̃Trlsβ̂b,

r̃l “
r̂l
σ̂b
.

(11)

ŵl down-weights the outlying observations. In order to con-
struct confidence intervals of the selected variables, the boot-
strap replications of θ̂b are computed as follows:

θ̂
‹

n,b “ fpθ̂
‹

n,b; Ỹ
‹q, (12)



6

where Ỹ‹ “
`

Ỹb,ω
‹
˘

denotes a bootstrap sample of size n
randomly drawn with replacement from the given subset of
data. The multiplicity of observations is determined by the
random weight vector ω‹ P Rb drawn from a multinomial
distribution

`

n, p1{bq1b
˘

. Instead of computing a fully iterating
bootstrap replicate θ̂

‹

n,b, we can approximate it via a one-step

iteration θ̂
1‹

n,b as follows:

θ̂
1‹

n,b “ fpθ̂b; Ỹ
‹q, (13)

However, the distribution of θ̂
1‹

n,b may not exhibit the actual
variability of the sampling distribution of θ̂b, mainly because
all bootstrap replicates θ̂

1‹

n,b are calculated starting from the
same initial value θ̂b. It has been shown that one-step iteration
of bootstrap replications for many estimators could be adjusted
by a correction term to provide asymptotically true estimate of
bootstrap distribution [34]. In order to achieve asymptotically
correct bootstrap estimates, the one-step improvement of θ̂

1‹

n,b

with a linear correction term can be written as [21], [35]:

θ̂
R‹

n,b “ θ̂b `
”

I´∇fpθ̂b; Ỹbq

ı´1´

θ̂
1‹

n,b ´ θ̂b

¯

, (14)

where θ̂
R‹

n,b P R|Ŝ|`1 denotes the linearly corrected one-step
bootstrap replication of θ̂b and ∇fp¨q is a gradient matrix with
respect to θ. The linear correction term can be obtained by
inverting the matrix

”

I ´ ∇fpθ̂b; Ỹbq

ı

via the block matrix
inversion lemma as described in Appendix.

Computational efficiency is attained because the correc-
tion factor and the initial estimate θ̂b are computed only
once for each subset of data. Furthermore, one-step bootstrap
replications of θ̂b are computationally inexpensive.We show
in theorem 2 that θ̂

R‹

n,b would estimate the same limiting
distribution as the actual bootstrap distribution θ̂

‹

n,b under
certain regularity conditions.

The algorithm begins with generating B bootstrap samples
for each distinct subset of data Ỹ

piq
b “

`

y̌piq, X̃piq
˘

P

Rbˆp|Ŝ|`1q, i “ 1, ¨ ¨ ¨ , s. Across all computing and stor-
age nodes, linearly corrected one-step bootstrap replicates
β̂
R‹,pijq
n,b , j “ 1, ¨ ¨ ¨ , B are computed. Then, confidence inter-

vals associated with selected variables from stage 1 are con-
structed by using bootstrap percentile method for each subset
of data. The estimated confidence intervals are communicated
from each computing node to the fusion center for performing
inference on the complete large-scale data. In the fusion center,
the confidence intervals for the complete large-scale data are
produced by applying coordinate-wise averaging over upper
bounds and lower bounds of transmitted confidence intervals
as follows:

CIj “
1

s

s
ÿ

i“1

CI
‹piq

j

CIj “
1

s

s
ÿ

i“1

CI‹piqj

(15)

where CIj and CIj denote the lower bound and upper bound
of confidence interval associated with entry j of the non-zero
parameter.

Herein, we assumed that the proportion of outliers withing
each subset of data remains below 50%, implying the esti-
mated confidence intervals are not corrupted. Therefore, we
may avoid the undesirable effects of outliers on the veracity
of confidence intervals. In case more than half of observations
within each subset of data are contaminated by outliers, we
recommend using the adaptive trimmed mean [36] or classical
trimmed mean with manually set trimming ratio [30].

Algorithm 1: The RSOB-τ procedure
Data: s distinct subsamples
Output: CI

1 for each subsample do
2 Generate B bootstrap samples of size n by

randomly drawing with replacement as follows:
Ỹ‹ “

`

Ỹb,ω
‹
˘

3 Find the initial estimate θ̂b by solving the
fixed-point problem given in equation (9)

4 Calculate the one-step linearly corrected bootstrap
replication corresponding to each bootstrap
sample β̂R‹n,b from equation (33)

5 Compute confidence intervals CI‹piq for each
subset of data via bootstrap percentile method

6 end
7 Combine the confidence intervals by coordinate-wise

averaging

IV. STATISTICAL ROBUSTNESS AND CONSISTENCY
PROPERTIES

In this section, the robustness properties of τ -Lasso es-
timators and linearly corrected one-step replications using
RSOB-τ are characterized by deriving their breakdown points.
Furthermore, asymptotic normality of the linearly corrected
one-step bootstrap replications is established under certain
regularity conditions.

A. Robustness Properties of τ -Lasso Estimators

The finite-sample breakdown point of τ -Lasso is derived. It
measures the largest proportion of observations when arbitrar-
ily replaced by outliers does not cause unbounded maximum
bias or equivalently does not break down. Given a subset
of data Y̌ “

`

y̌, X̌
˘

P Rbˆpp`1q randomly drawn from
the original data Y “

`

y,X
˘

P Rnˆpp`1q, the replacement
finite-sample breakdown point (FBP) ε˚

`

β̂; Y̌
˘

of a regression
estimator β̂ P Rp is defined as

ε˚
`

β̂; Y̌
˘

“ maxt
m

b
: sup
Y̌mPYm

}β̂
`

Y̌m

˘

}`2 ă 8u (16)

where the set Ym contains all datasets Y̌m with m
p0 ă m ă bq out of the original b observations replaced by
arbitrary values. The bounded supremum of `2 term in the
definition is equivalent to having a bounded maximum bias.
The following theorem proves the results for finite-sample
breakdown point of robust τ -Lasso estimator by extending
the theoretical result for that of robust S-PENSE estimator
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demonstrated in [17] to the class of τ -Lasso estimators.

Theorem 1: Suppose mpδq is the largest integer smaller
than bminpδ, 1 ´ δq for a subset of data Y̌ “

`

y̌, X̌
˘

P

Rbˆpp`1q and δ defined by equation (5). Then the finite-sample
breakdown point of the τ -Lasso estimator is bounded from
above and below as follows:

mpδq

b
ď ε˚pβ̂; Y̌q ď δ (17)

where β̂ denotes the τ -Lasso estimator.

Proof : The complete proof is given in Supplemental
Materials.

With minor modification of the proof given in the Supple-
mental Material, we can extend the above theorem for data
models including an intercept term.

B. Asymptotic Properties of TSRD-τ

In this section, we show that the proposed inference
procedure will enjoy desirable asymptotic properties for fixed
p under certain regularity conditions if the model selection
procedure is consistent. The model selection consistency in
the first stage would imply that the relevant variables are
selected with probability converging to 1 and the asymptotic
distribution of modified bootstrap τ -estimates for non-zero
coefficients would be the same asymptotic normal distribution
as if the true non-zero coefficients were known in advance.
It seems reasonable to conjecture that the model selection
procedure is consistent, extending the concept of Bolasso
[27] to robust `1-penalized estimators. We explore this
possibility in simulations. The asymptotic properties of FRB
for τ -regression estimator were proven in Theorem 1 of [35].
However, the inaccuracy in the linear correction factor in the
proof is rectified here. The asymptotic properties of BLFRB
and FRB for MM-regression estimator are established in [22]
and [21]. Also note that in this theorem, β0 P R|Ŝ| is a
shorthand for rβ0sŜ where parameter vector β0 P Rp as given
in equation (1) and P

ÝÑ denotes convergence in probability.

Theorem 2 : Let ρ0 and ρ1 be bounded ρ-functions satisfy-
ing the properties of bounded ρ-function defined by Maronna
et al. [30] and have continuous third derivatives. Assume
the model selection stage produces consistent estimates, i.e.,
PpŜ “ Sq “ op1q. Let β̂b be the τ -regression estimator for
a subset of data

`

y̌, X̃
˘

P Rbˆp|Ŝ|`1q randomly drawn from
the original data

`

y,
¯
X
˘

P Rnˆp|Ŝ|`1q and σ̂b be the M-scale
of residuals for the given subset of data and assume that they
are consistent estimators, that is, β̂b

P
ÝÑ β0 and σ̂b

P
ÝÑ σ0.

Given the following regularity conditions hold:
1. The following vectors and matrices exist and are finite:

1.1 E
“`

w̄τρ
1

0prq ` ρ
1

1prq
˘

{rxxT
‰´1

1.2 E
“

ρ
1

0prqx
‰

1.3 E
“`

w̄τρ
2

0prq ` ρ
2

1prq
˘

xxT
‰

1.4 E
“`

w̄τρ
2

0prq ` ρ
2

1prq
˘

rx
‰

2. Erρ10prqrs ‰ 0 and finite,

3. ρ
1

0puq{u, ρ
1

1puq{u,
`

ρ
1

0puq ´ ρ
2

0puqu
˘

{u2 and
`

ρ
1

1puq ´

ρ
2

1puqu
˘

{u2 are continuous.

where w̄τ “
`

2Erρ1prqs ´ Erρ11prqrs
˘

{Erρ10prqrs. Then,
the distribution of

?
n
`

β̂R‹n,b ´ β̂b
˘

converges weakly to the
limiting distribution of

?
b
`

β̂b ´β0

˘

and consequently to the
limiting distribution of

?
n
`

β̂n ´ β0

˘

as n and b approach
infinity.

Proof : The complete proof is presented in Supplemental
Materials.

C. Statistical Robustness of RSOB-τ

In this section, we are interested in studying the robustness
properties of the proposed RSOB-τ . The confidence intervals
for regression parameters were constructed by using RSOB-
τ quantiles and thus, the breakdown point of quantiles gives
an insight into the robustness and reliability of the inferences
made using the proposed method. Here, we derive some theo-
retical results about the breakdown point of quantile estimates
of RSOB-τ and FRB using τ -estimators.

Before proceeding, we define few concepts essential in
comprehending the robustness results. Given t P

`

0, 1
˘

, q̂t is
defined as the tth upper quantile of a statistic β̂b such that
P rβ̂b ą q̂ts “ t. According to [37], the upper breakdown
point of a bootstrap estimate q̂‹t is defined as the minimum
proportion of arbitrarily large outliers in the subset of data
Ỹ that can drive q̂‹t into infinity. In what follows theoretical
results on robustness properties of estimated RSOB-τ and
FRB quantiles using robust τ -estimator are demonstrated. The
following theorems are proved by using similar techniques
as in the proofs given for BLFRB and FRB quantiles using
robust MM-estimator [22] and [21]. Note that the theorems
below also hold for subsets of data Ỹ P Rbˆ|Ŝ| having |Ŝ|
predictors selected from model selection stage.

Theorem 3: Suppose Y “
`

y,X
˘

P Rnˆpp`1q is a
large-scale data following the linear model given in equation
(1). Except, here no sparsity assumption is imposed on the
parameter vector β0. Assume that Y is in general position,
i.e., any subset of p observations will result in a unique
determination of β0. Let β̂n be a robust τ -estimate of β0

based on the data Y whose breakdown point is ε. Then,
the breakdown point of the tth FRB quantile estimate of the
regression parameters rβ0splq, l “ 1, ¨ ¨ ¨ , p is determined by
minpε‹t , εq where ε‹t is the smallest δc P r0, 1s that satisfies the
following inequality,

P
“

Binomialpn, 1´ δcq ă p
‰

ě t (18)

Note that δc is different from δ0 and δ1.
Proof : The details of the poof are given in Appendix.

Theorem 4: Suppose Y̌ “
`

y̌, X̌
˘

P Rbˆpp`1q is a subset
of the large-scale data Y “

`

y,X
˘

P Rnˆpp`1q formed by
random resampling without replacement of the original full
data set. Except, here no sparsity assumption is imposed
on the parameter vector β0. Assume that Y̌ is in general
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position, i.e., any subset of p observations will determine a
bounded least-square estimate. Let β̂b be a robust τ -estimator
of β0 based on the bag of data Y̌, ε˚pβ̂b, Y̌q denotes the
finite-sample breakdown point of β̂b and δ1 “ 0.5. Then,
all the RSOB-T bootstrap quantiles estimated using the
τ -estimator that are constructed over Y̌ will have equal
asymptotic breakdown point to β̂b.

Proof : A detailed proof is given in Appendix.

V. SIMULATIONS AND RESULTS

In this section, the performance of the proposed method
is investigated in simulations considering both variable se-
lection and inference. In particular, correct identification of
sparse basis, statistical robustness of bootstrap estimates, the
quality of the parameter estimates and confidence intervals
are studied. The results in Theorem 2 is validated through
computer simulations, indicating the distribution of bootstrap
replications by using RSOB-τ asymptotically converges to the
sampling distribution of τ -estimator. The performance of the
proposed method is assessed through computer simulations
by using different proportions of outliers, large-scale data in
both low-dimensional pp ă b or nq versus high-dimensional
pp « n or " bq settings. It is assumed the large-scale data
follow a linear regression model where the parameter vector
β0 P Rp is sparse with ks non-zero entries. The measurement
noise vector, v, is an additive white Gaussian noise with a
variance (AWGN) σ2

v “ }Xβ0}
2
`2

10´SNR{10{n (SNR in dB).

A. Simulation Setting

Throughout simulations, the confidence intervals are re-
ported in a nominal level of 100 ˆ p1 ´ αclq% “ 90%
with αcl “ 0.1. We create a decreasing grid of 70 lambda
values with logarithmic spacing of 1.1, spanning λ1 to λ70

where λ1 is set to λmax. The maximum number of iteration
in τ and MM-Lasso estimators is fixed at 30. The robustness
of DPD-SIS procedure is adjusted by a tuning parameter α
set to 0.4 (stable for a range of contamination levels) to
provide robustness without significant loss in efficiency. The
proposed algorithm was implemented in MATLAB except
for the estimation of initial S-Lasso which was done in R
using PENSE [38]. It provides a good initial estimate by
constructing clean subsamples of data, potentially removing
outlying observations. This is achieved by using the principal
sensitivity components (PSCs) for EN estimator and removing
the observations with most extreme PSCs from the subsamples
in an iterative manner. A detailed description of initialization
for PENSE can be found in Supplementary Materials of [39].
In addition, we used the Dual Augmented Lagrangian [40]
implementation to solve the IR-LASSO, and MM- and S-
estimators as in [41].

The outliers in all simulations except for Section V-I are
introduced by randomly choosing the observations in y and
replacing them with random values chosen from a standard
Gaussian distribution with σe “ 250.

B. Data Standardization

Across all simulations for estimation problems using ro-
bust Lasso, it is assumed the linear regression model has
an intercept component and all columns of the augmented
regression matrix r1bˆ1X̌

piqs except the first one are robustly
standardized by centring the columns using a bisquare location
estimator and scaling them using bisquare scale estimators
[42]. The response vector y̌piq is centred using the bisquare
location estimator [42].

C. Calibration of Tuning Constants c0 and c1
In order to tune c0 for the M-scale of residuals within all

the robust estimators discussed in this paper, we set δi “ 0.5
for i “ 0, 1, 2 to achieve the maximum robustness against
outliers. δi controls the breakdown point according to Theorem
4.1 in [17] and δ0 is associated with initial S-Lasso estimator.
It’s worth mentioning 0.5 is the largest value δi can take on.
Note that c0 is tuned for the desired breakdown point with the
assumption λ “ 0. In particular, it is recommended to have
maximum robustness because bootstrapping may exacerbate
the malicious behaviour of outliers in resampled data sets. The
tuning constant c1 of τ -Lasso and MM-Lasso is respectively
adjusted to 6.08 and 4.68 to attain 95% efficiency under
Gaussian errors when λ “ 0. Likewise, c1 “ 6.08 for τ -
estimator and c1 “ 4.68 for MM-estimator are adjusted to
provide 95% efficiency under Gaussian errors for bootstrap
replications.

D. Choice of Fusion Parameter K

K denotes the proportion of data subsets classified the given
variable as relevant. Herein, the fusion parameter K for voting
rule is set to 0.5, indicating the variables selected within
at least 50% of subsets are regarded as relevant variables,
i.e, majority voting scheme. The specific value of 0.5 is
a compromise between reducing the false positive rate and
maximizing the selection of true relevant variables.

E. Choice of Batch Size b

The choice of batch size b is a design parameter, depending
on computational and storage resources available plus either
model selection performance or prediction performance. On
one hand, randomly partitioning the entire large-scale data
of size n into subsets of size b and independently analyzing
smaller subsets of data leads to significant computational
speed-up and data storage benefits [20], [26]. On the other
hand, the choice of batch size b trades off between overfitting
and underfitting in the variable selection procedure in addi-
tional to statistical correctness of confidence intervals. Setting
the batch size b to very large values results in rejecting relevant
variables. This limits the invertibility of sub-design matrices
as the eigenvalues are no longer strictly positive. However,
one shall tune b to be large enough to discard the irrelevant
variables. Moreover, very small batch size b equals to large
number of data subsets results in wasted computation as we are
occupying unnecessarily many computation and storage nodes
while only a small proportion of them would be needed. The
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known information-theoretic results [43] impose a condition
on the batch size b to ensure the support recovery for any
method, b ě csks logppq for a sufficiently large constant cs.
On the other hand, BLB [20] requires the batch size to some
values n0.6 ă b ă n0.9 such that the statistical correctness is
obtained. Combining these two constraints, one may choose
the batch size in the range of maxpn0.6, csks logppqq ď b ď
n0.9. We then need to take into account practical implications
of computational constraints and choose an appropriate batch
size b.Given the batch size b, one can obtain the number of
subsamples s and γ in a straightforward manner.

We provide an example describing an appropriate batch size
b. Let n “ 1000000, b “ 500 and ks “ 50, we then obtain
that the minimum batch size from support recovery point of
view is b ě 311cs. Setting the constant cs “ 30, sufficiently
large for sparse recovery, implies that b ě 9400. On the other
hand, reliable statistical correctness is attained by BLB for
b ě pn0.6 « 4000q. We shall occupy many resources over
100 computing cores. If we set b “ n0.75 « 32000, we
shall need 33 computing cores and computations over 32000
is manageable by single computing cores, which gives a good
compromise between computational burden and statistical effi-
ciency. Setting b « n0.9 would mean almost 4 subsets of size
250000 which require higher computational power for each
node and not very desirable.

F. Tuning of regularization parameter

In order to calibrate the robust penalized estimation prob-
lem, λmax is initially estimated by using the method intro-
duced by Khan et al. [44] and then improved upon via a binary
search [16]. A set of candidate lambdas in decreasing order
starting from λmax is formed. Selection of λ is carried out
through a robust version of Bayesian Information Criterion
(BIC) [45], defined as

RBICpλq “ b logpσ̂2
b pλqq ` Cpb, pq}β̂pλq}`0 (19)

where σ̂b denotes the robust M-scale of residuals and Cpb, pq
is set to logpbq for settings where the dimensionality p is much
smaller than the sample size n. Cpb, pq “ logplogpbqq logppq is
chosen for logppq{bÑ 0 as pÑ 8 to attain better empirical
performance [46], [47], [48]. Here, standard BIC is modified
by replacing the non-robust estimate of scale with the robust
M-estimate of scale to deal with outliers. Finally, the optimal
tuning parameter λ minimizes the RBIC over the pre-defined
grid of lambdas

λ˚ “ argmin
λPΛ

RBICpλq. (20)

G. Scenarios

We consider the following scenarios for which simulation
studies are carried out.
‚ Scenario 1: We set the simulation parameters as

follows: n “ 27000, p “ 30000, b “ 900 (p{b “ 33.33),
γ “ 0.6667, SNR “ 15 dB, B “ 1000. β0 P Rp is sparse
with ks “ 40 non-zero entries. rβ0sS is set to 3 ˆ 1S
and their positions are chosen randomly. The covariate

vectors xris, i “ 1, ¨ ¨ ¨ , n are drawn independently
from a multivariate Gaussian distribution N

`

0,Σ
˘

with
Σij “ ρ|i´j| (Toeplitz covariance structure, ρ “ 0.5).

‚ Scenario 2: The simulation parameters are set as follows:
n “ 2000000, p “ 80, b “ 40000 (p{b “ 1{500),
γ “ 0.730367, SNR “ 30 dB, B “ 400. β0 P Rp
is sparse with ks “ 20 non-zero entries. rβ0sS is set
to 3 ˆ 1S and their positions are chosen randomly.
Explaining variables xris in the regression matrix are
i.i.d, randomly drawn from a multivariate Gaussian
distribution N

`

0, Ip
˘

.

‚ Scenario 3: The simulation parameters are set as
follows: n “ 80000, p “ 100, b “ 4000 (p{b “ 1{40),
γ “ 0.73466, SNR “ 15 dB, B “ 300. The regression
matrix X is randomly generated from mutually
independent observations drawn from N p0,Σq with
Σij “ ρ|i´j| (Toeplitz covariance structure, ρ “ 0.5).
β0 P Rp is sparse with ks “ 10 non-zero entries. rβ0sS
is set to 3ˆ 1S and their positions are chosen randomly.

‚ Scenario 4: We set the simulation parameters as follows:
n “ 4900, p “ 6000, b “ 350 (p{b “ 17.14), γ “
0.6895, SNR “ 15 dB, B “ 1000. β0 P Rp is sparse
with ks “ 10 non-zero entries. β0 is set to

β0 “ r2.5, 2.5, 2.5, 2, 3, 3, 3, 3.5, 3.5, 3.5,0
T
p´kss

T

The covariate vectors xris, i “ 1, ¨ ¨ ¨ , n are drawn
independently from a multivariate Gaussian distribution
N
`

0,Σ
˘

with Σij “ ρ|i´j| (Toeplitz covariance
structure, ρ “ 0.5).

‚ Scenario 5: We set the simulation parameters as follows:
n “ 20000, p “ 80, SNR “ 15 dB. β0 P Rp is sparse
with ks “ 15 non-zero entries. β0 is set to

β0 “ r3.5, 3.5, 3.5, 5, 5, 5, 2.5, 2.5, 2.5, 1.5, 2ˆ1T5 ,0
T
p´kss

T

The covariate vectors xris, i “ 1, ¨ ¨ ¨ , n are drawn
independently from a multivariate Gaussian distribution
N
`

0,Σ
˘

with Σij “ ρ|i´j| (Toeplitz covariance struc-
ture, ρ “ 0.5).

H. Variable Selection Performance with Different `1-penalized
Estimators

In this subsection, we first substitute different `1-penalized
estimators with τ -Lasso estimators used in the model selection
stage of TSRD-τ introduced in Section III. We then carry
out simulations to compare the variable selection performance
of the resulting procedures with that of TSRD-τ and TSRD-
MM. For this purpose, we use `1-penalized estimators such
as RA-Lasso [19] and Sparse-LTS [18]. The former is im-
plemented in MATLAB by following exactly the computation
algorithm described in [19] whereas we use the well-known
R package robustHD for Sparse LTS regression [49]. We
run the simulations on the synthetic data set described by
Scenario 5 except for setting SNR “ 10 dB with normal
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errors. In this experiment, we introduce contamination in the
regression matrix X and the response vector y, simultaneously.
For each simulation, we consider four contamination schemes
as follows:
‚ Scheme 1: 10% of observations in the response vector

y are replaced with random values drawn from stan-
dard Gaussian with σe “ 250. We also replace the
corresponding observations in X with random values
chosen from standard multivariate Gaussian distribution
with Σ “ σ2

eIp. (large-variance outliers)
‚ Scheme 2: 10% of observations in the response vector y

are replaced with random values drawn from a Gaussian
distribution N p250, 1q. We also replace the corresponding
observations in X with random values chosen from a
multivariate Gaussian distribution Np50ˆ1p, Ipq. (gross
outliers)

‚ Scheme 3: The additive noise is heavy-tailed Student’s
t-distribution with one degree of freedom.

‚ Scheme 4: The outlier contamination follows the same
procedure as in Scheme 1 with the assumption of heavy-
tailed additive errors, thereby combining Scheme 1 and
3.

Across all schemes, the same set of observations are
replaced with outliers. Herein, we perform a Monte-Carlo
study of 20 trials where a random realization of outlier in
y is used at each trial. Table I shows the result of variable
selection method with different `1-penalized estimators for
four contamination schemes, averaged over 20 trials. We
observe that the proposed variable selection algorithms using
τ -Lasso estimator and MM-Lasso estimator perfectly recover
the true relevant variables while keeping the false positive
rates low. In contrast, variable selection method using Sparse-
LTS results in significantly larger false positive rates for
smaller subsample sizes under contamination schemes 1 and
2. Except for contamination scheme 2 (heavy-tailed errors),
the variable selection with RA-Lasso results in extremely
overfitted models.

I. Robustness of Bootstrap Replications

In this subsection, the robustness of RSOB-τ is quantified
by an uncertainty measure in comparison to BLB. In particular,
we calculate the standard deviation based on the bootstrap
replications produced by both methods and verify the results
in Theorem 4 by assessing the relative error. The bootstrap
estimate of standard deviation is computed as follows:

xSDpβ̂nq “
1

|Ŝ|

|Ŝ|
ÿ

l“1

˜

1

s

s
ÿ

i“1

ˆ B
ÿ

j“1

´

rβ̂
‹pijq
n,b sl ´ rβ̂

‹pi.q
n,b sl

¯2

B ´ 1

˙1{2
¸

(21)
where rβ̂‹pi.qn,b sl is given by:

rβ̂
‹pi.q
n,b sl “

1

B

B
ÿ

j“1

rβ̂
‹pijq
n,b sl (22)

In order to measure how accurate the bootstrap estimate of
standard deviation approximates the average standard devia-
tion of β̂n, we use the relative error criterion that is defined
as follows:

ε “
xSDpβ̂nq ´ SDpβ̂nq

SDpβ̂nq
(23)

where the average standard deviation SDpβ̂nq is defined as
σ{
?
nO based on asymptotic covariance of τ -estimator [29].

Here, O is set to 1 for least square estimator in BLB and
O “ 0.95 for τ -estimator in RSOB-τ tuned to have 95%
Gaussian efficiency.

First, we show that even one outlying observation could
drive xSDpβ̂nq based on bootstrap estimates obtained by BLB
into infinity whereas those based on bootstrap replications
obtained by the RSOB-τ remain resistant to outlier. Herein,
we run the simulations on the synthetic data set described
by Scenario 2. In this experiment, a data point within the
original data set is randomly drawn and its response vector
is multiplied by an extreme value αo powers of 10 to imitate
the situation where outlier is introduced by misplacement of
decimal point. In regard to model selection, the robust and
non-robust two-stage methods exhibit reliable performance in
selecting the true sparse basis of the parameter vector with
a TP “ 1 and CER “ 0. One might have expected that the
non-robust inference would fail in model selection. However,
only the bag of data containing the outlier yielded unreliable
estimates but the voting scheme in the fusion center reduces
the adversarial effect of outlier.

In the stage 2, the bootstrap estimates of xSDpβ̂nq are
computed based on the data set generated by the selected
predictors from the model selection stage. As it is observed
in Fig. 3, both two-stage algorithms TSRD-τ and TSLL
perform remarkably well in terms of relative error when there
are no outliers present within the data set. However, the
bootstrap estimates of standard deviation obtained by BLB
are severely influenced by the presence of even one outlier. As
the magnitude of αo increases, the relative error gets larger,
implying that BLB is not robust to outliers. On contrary, the
relative error of standard deviation obtained by TSRD-τ is not
influenced at all by the presence of one outlier regardless of
its magnitude.

Theorem 4 states the upper breakdown point of RSOB-τ
bootstrap quantile estimates is 0.499 for the simulation set-
up described above. In order to examine the robustness of
bootstrap replications, we show that the TSRD-τ bootstrap
replications are robust in the face of outliers even if the data
is contaminated severely by outliers. In this experiment, the
outliers are introduced by randomly choosing a percentage of
the observations in y and multiplying them with a random
value αo “ 100000. The proposed method TSRD-τ correctly
recovers the true sparse basis with zero false positive rate
even in the presence of severe contamination. As shown in
Fig. 4 , the bootstrap estimate of standard deviation based
on the RSOB-τ is only slightly influenced by the outliers
at contamination levels as high as 40%, hence verifying the
results in Theorem 4. In other words, the impact of outliers
on the bootstrap estimates is bounded. Note that the curves in
Fig. 3 and Fig. 4 are obtained by averaging over 15 trials of
Monte Carlo simulations
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TABLE I
COMPARISON OF VARIABLE SELECTION PERFORMANCE WITH DIFFERENT `1- PENALIZED ESTIMATORS: THE PROPOSED ALGORITHMS USING

MM-LASSO AND τ -LASSO EXHIBIT A RELIABLE PERFORMANCE IN RECOVERING THE TRUE SPARSE BASIS (TPR=1) WHILE KEEPING FALSE POSITIVE
RATES LOW. VARIABLE SELECTION METHOD USING SPARSE-LTS FAILS TO SUPPRESS THE FALSE POSITIVES FOR SCHEMES 1 AND 2 (SMALLER

SUBSAMPLE SIZE). VARIABLE SELECTION WITH RA-LASSO PERFORMS RELIABLY ONLY FOR SCHEME 3, HEAVY-TAILED ERRORS WITH NO OUTLIER
CONTAMINATION

scheme 1 scheme 2 scheme 3 scheme 4

TP FP CER TP FP CER TP FP CER TP FP CER

b “ 625

TSRD-τ 1 0.0085 0.0069 1 0 0 1 0 0 1 0 0
TSRD-MM 1 0 0 1 0 0 1 0 0 1 0 0
Sparse-LTS 1 0.14 0.1138 1 0.2008 0.1631 1 0.0008 0.0006 1 0.0023 0.0019
RA-Lasso 1 1 0.8125 1 0.1461 0.1187 1 0 0 1 1 0.8125

b “ 800

TSRD-τ 1 0 0 1 0 0 1 0 0 1 0 0
TSRD-MM 1 0 0 1 0 0 1 0 0 1 0 0
Sparse-LTS 1 0.0146 0.0119 1 0.05 0.0406 1 0 0 1 0 0
RA-Lasso 1 1 0.8125 1 0.2477 0.2019 1 0 0 0.9966 0.9938 0.8081

b “ 1000

TSRD-τ 1 0.0015 0.0013 1 0 0 1 0 0 1 0 0
TSRD-MM 1 0 0 1 0 0 1 0 0 1 0 0
Sparse-LTS 1 0.0023 0.0019 1 0.0077 0.0062 1 0 0 1 0 0
RA-Lasso 0.92 0.9231 0.7650 1 0.4661 0.3787 1 0 0 0.3733 0.3569 0.4075

0 200 400

100

105

0 200 400

100

105

0 50 100 150 200 250 300 350 400

100

105

Fig. 3. The presence of only one extreme outlier in the data can drive
the bootstrap estimate of standard deviation obtained by BLB in two-stage
Lasso-LS into infinity. However, the bootstrap estimates of standard deviation
obtained by RSOB-τ in TSRD-τ remains almost unaltered to the presence of
one extreme outlier. The curves produced by TSRD-τ for all different values
of α overlap, implying that one outlier has almost no effect on bootstrap
estimates of standard deviation based on TSRD-τ .

J. Statistical Convergence

In this subsection, the correctness of Theorem 2 is verified
by computer simulations. In other words, we show the distri-
bution of

?
n
`

β̂R‹n,b´β̂b
˘

converges to the limiting distribution
of
?
n
`

β̂n´β0

˘

as n and b approach infinity. Here, we run the
simulations on the synthetic dataset described by Scenario 2,
the same settings as in section V-I are used for the sake of con-

0 50 100 150 200 250 300 350 400
10-5

100

Fig. 4. The proposed inference method RSOB-τ at the stage 2 of TSRD-
τ exhibit strong resilience to outlier even when 40% of observations are
contaminated by outliers and relative error of standard deviation remains
bounded.

venience to study the statistical convergence. We assume that
large-scale data is not contaminated by outliers. However, the
number of bootstrap samples within each subset of data is set
to 1000. Under the condition τ -estimator is tuned for 95% nor-
mal efficiency, the limiting distribution of

?
n
`

β̂n´β0

˘

obeys
a multivariate Gaussian distribution N

`

0, pσ2{0.95qIks
˘

. The
distribution of

?
n
`

β̂R‹n,b´β̂b
˘

is formed by randomly drawing
a subset

`

y̌, X̃
˘

from the original data set
`

y,
¯
X
˘

P Rnˆ|Ŝ|`1,
computing the initial τ -estimate β̂b and performing one-step
linear correction of initial τ -estimates for bootstrap samples by
using the derived equations. The plot on the right-hand side
of Fig. 5 shows the empirical distribution of

?
n
`

β̂R‹n,b ´ β̂b
˘

overlaps the true limiting distribution of
?
n
`

β̂n´β0

˘

for all
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elements of β̂R‹n,b. On contrary, the plot on the left-hand side
of Fig. 5 shows the empirical distribution of

?
n
`

β̂1‹
n,b ´ β̂b

˘

underestimates the variability of the true limiting distribution
of
?
n
`

β̂n ´ β0

˘

for all elements of β̂1‹
n,b. Therefore we can

conclude the distribution of
?
n
`

β̂R‹n,b´β̂b
˘

provides a reliable
approximation of the distribution of

?
n
`

β̂n ´ β0

˘

.
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Fig. 5. The distribution of bootstrap replicates produced by linearly corrected
one-step τ -estimator in RSOB-τ overlaps the true limiting distribution of τ -
estimator whereas the distribution of bootstrap replicates produced by one-step
τ -estimator underestimates the variability of the true limiting distribution of
τ -estimator.

K. Computational Complexity

In this subsection, we compare the computational complex-
ity of the proposed distributed inference method, RSOB-τ at
stage 2 of TSRD-τ to a robust realization of BLB method
employing τ -estimator for computing bootstrap replicates.
We run the simulations on the synthetic data illustrated by
Scenario 3 where the proportion of outliers is set to 10%.
The experiment was conducted in parallel on a single node
of a high-performance computing cluster (Triton) where 22
computing cores and 14 GB of memory were requested and
a Dell PowerEdge C4130 node was granted. The cumulative
processing time is recorded after each iteration where new set
of bootstrap samples are successively added to the bags. The
cumulative processing time of RSOB-τ versus robustified BLB
is demonstrated in Fig. 6. As the number of bootstrap samples
increases, the proposed RSOB-τ requires significantly less
processing time in comparison to robustified BLB. This im-
plies the RSOB-τ achieves remarkably higher computational
efficiency.

0 50 100 150 200 250 300

101

102

Fig. 6. The RSOB-T method employing linearly corrected one-step τ -
estimator is significantly faster than robustified BLB.

L. Overfitting versus Underfitting and their implications on
inference

In order to make valid inferences, we shall ensure the model
selection procedure performs reliably. Herein, we examine
how confidence intervals are influenced by overfitting and
underfitting in the model selection. To do so, we run the
simulations on the synthetic data described by Scenario 5
where the proportion of outliers is set to 10%. We set the
number of data partition s “ 40. We study the validity of the
statistical inference procedure TSRD-τ when model selection
can not perfectly recover the true support, resulting in either
overfitted models or underfitted models. We first consider a
scenario where the model selection procedure fails to reject
all irrelevant variables associated with zero coefficients of
the parameter vector, resulting in an extremely overfitted
model. We further consider the case that the model selection
procedure fails to select all relevant variables and 10 out
of 15 relevant variables are classified as irrelevant variables,
resulting in an underfitted model.

We observe that confidence intervals for non-zero coef-
ficients of underfitted model are much larger than that of
overfitted model, as indicated by Fig. 7. In particular, con-
fidence interval for one coefficient of underfitted model is
very biased. Therefore, we do not only lose information about
the relevant variables not chosen by the model selection in
underfitted model. Also, the inference results may not reliably
reflect confidence intervals for the non-zero coefficients of
selected model. Moreover, we observe from Fig. 8 that the
confidence intervals for the given coefficients of parameter
vector associated with false positives cover 0. We can identify
these coefficients as zero and variables corresponding to them
as irrelevant. In this experiment, the confidence intervals
associated with only 5 coefficients did not contain zero. Hence,
the variable selection can still be improved even when one
faces overfitting.

6 8 10 12 14 16

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 7. Confidence intervals for non-zero coefficients of underfitted model are
much larger than that of overfitted model. Besides, confidence interval for one
non-zero coefficient of the underfitted model is extremely biased. (the dash-
dot lines indicate the true value of parameter vector for the corresponding
entry)
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Fig. 8. In the overfitted model, we observe that confidence intervals for
false positives associated with zero coefficients of the parameter vector cover
zero for the given entries. This implies that we can identify the variables
associated with confidence intervals covering zero as irrelevant. ( the dash-
dot lines indicate the true value of parameter vector for the corresponding
entry)

M. Fusing the Variables Selected by S-Lasso Estimates

We now study how the variable selection algorithm performs
when instead of the variables selected by τ -Lasso estimates,
the variables selected by the initial S-Lasso estimates across
nodes are aggregated via the majority voting scheme. To do so,
we carry out a series of Monte-Carlo simulations of 20 trials
where a random realization of outlier is used at each trial.
We run the simulations on the synthetic data set described by
Scenario 3 for low-dimensional regime and the synthetic data
set described by Scenario 4 for high-dimensional regime.

Table II shows the result of simulations. We observe that
if we aggregate the variables selected by the initial S-Lasso
estimates instead of those selected by τ -Lasso estimates,
the performance will remain almost the same. This could
be explained by the fact that both τ -Lasso and S-Lasso
estimators promote sparsity and are robust to gross outliers.
We suspect that low Gaussian efficiency has little effect on the
performance of sparse recovery.

TABLE II
FUSING THE VARIABLES SELECTED BY S-LASSO ESTIMATES: IF WE

USE THE VARIABLES SELECTED BY S-LASSO ESTIMATES INSTEAD OF
THOSE SELECTED BY τ -LASSO, THE MODEL SELECTION WILL REMAIN

ALMOST UNCHANGED.

TSRD-τ Fusion / S-Lasso

ξo TP FP CER TP FP CER

LD
0.1 1 0 0 1 0.0011 0.0010
0.2 1 0 0 1 0.0017 0.0015

HD
0.1 1 0 0 1 0 0
0.2 1 0 0 1 0 0

VI. CONCLUSION

This paper introduced robust and distributed inference pro-
cedures for large scale data where data exhibits an underlying
low-dimensional structure and is contaminated by outliers.
We propose two-stage inference procedures called TSRD-τ

and TSRD-MM. The former employs the class of robust τ -
estimators whereas the latter employs that of MM-estimators.
In the first stage, active explaining variables are selected by
local variable selection employing robust Lasso estimators.
The selections from each node are combined by applying a
fusion rule at the fusion center or cloud. The selection is
broadcast to the computational nodes. In the second stage,
actual inferences on the selected variables are performed
by using the robust and computationally efficient bootstrap
procedures. Confidence intervals are constructed, parameter
estimates are found, and standard deviations are quantified.
The favorable statistical properties including consistency and
robustness of the proposed method were established using
analytical methods and verified in simulations. Moreover,
the quantitative robustness properties of robust τ -Lasso were
established, in particular its finite-sample breakdown point.

Future directions of research include extending the classical
asymptotic analysis to high-dimensional asymptotic analysis
where p grows with n to infinity. It is also an open question
how one can establish asymptotic results for local optima.
Finally, it would be interesting to devise a rigorous proof for
the model consistency of proposed TSRD-τ and TSRD-MM
procedures.

APPENDIX A
DERIVATION OF THE LINEAR CORRECTION TERM

The linear correction may be derived by inverting a block-
matrix as follows:

”

I´∇fpθ̂b; Ỹq
ı´1

“

„

A η
ζ a

´1

, (24)

where A, η, ζ and a are given by

A “
`

Âb

˘´1

«

A2 ´A1

ff

,

η “
`

Âb

˘´1

«

η2 ´ η1

ff

,

ζ “
1

bδ2

b
ÿ

l“1

ρ
1

0pr̃lqx̃
T
rls,

a “
1

bδ2

b
ÿ

l“1

ρ
1

0pr̃lqr̃l.

(25)

A1, A2, η1 and η2 are calculated as follows:

A1 “
1

b

b
ÿ

l“1

x̃rls∇βwτρ
1

0pr̃lq,

A2 “
1

bσ̂b

b
ÿ

l“1

”

ŵτρ
2

0pr̃lq ` ρ
2

1pr̃lq
ı

x̃rlsx̃
T
rls,

η1 “
1

b

b
ÿ

l“1

∇σwτρ
1

0pr̃lqx̃rls,

η2 “
1

bσ̂b

b
ÿ

l“1

“

ŵτρ
2

0pr̃lq ` ρ
2

1pr̃lq
ı

x̃rlsr̃l,

(26)
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where ∇βwτ and ∇σwτ are shorthands for Bwτ pθ̂bq{Bβ and
Bwτ pθ̂bq{Bσ, respectively. Âb, ∇βwτ and ∇σwτ are given by

Âb “
1

b

b
ÿ

l“1

ŵ
piq
l x̃rlsx̃

T
rls, (27)

∇βwτ “

řb
l“1

”

ρ
2

1pr̃lqr̃l ´ ρ
1

1pr̃lq
ı

x̃T
rls{σ̂b

řb
l“1 ρ

1

0pr̃lqr̃l
,

`

řb
l“1

”

ρ
2

0pr̃lqr̃l ` ρ
1

0pr̃lq
ı

x̃T
rls{σ̂b

řb
l“1 ρ

1

0pr̃lqr̃l
ŵτ .

(28)

∇σwτ “

řb
l“1

”

ρ
2

1pr̃lqr̃l ´ ρ
1

1pr̃lq
ı

r̃l{σ̂b
řb
l“1 ρ

1

0pr̃lqr̃l

`

řb
l“1

”

ρ
2

0pr̃lqr̃l ` ρ
1

0pr̃lq
ı

r̃l{σ̂b
řb
l“1 ρ

1

0pr̃lqr̃l
ŵτ

(29)

On the other hand,
„

A η
ζ a

´1

“

„

Mb db
Nb qb



. (30)

APPENDIX B
DERIVATION OF THE ONE-STEP BOOTSTRAP REPLICATES

The one-step bootstrap replicates β̂1‹
n,b and σ̂1‹

n,b are calcu-
lated as follows:

β̂1‹
n,b “

´

b
ÿ

l“1

ω‹l w
‹
l x̃rlsx̃

T
rls

¯´1 b
ÿ

l“1

ω‹l w
‹
l y̌lx̃rls,

σ̂1‹
n,b “

b
ÿ

l“1

ω‹l v̌
‹
l

`

y̌l ´ x̃Trlsβ̂b
˘

,

(31)

where v‹l , w‹l and w‹τ are computed as follows:

v‹l “
b

n
v̂l,

w‹l “
w‹τρ

1

0pr̃lq ` ρ
1

1pr̃lq

r̂l
,

w‹τ “

řb
l“1 ω

‹
l

”

2ρ1pr̃lq ´ ρ
1

1pr̃lqr̃l

ı

řb
l“1 ω

‹
l ρ
1

0pr̃lqr̃l
.

(32)

Therefore, the linearly corrected one-step bootstrap replica-
tions using τ -estimators are calculated as follows:

β̂R‹n,b “ β̂b `Mb

´

β̂1‹
n,b ´ β̂b

¯

` db

´

σ̂1‹
n,b ´ σ̂b

¯

,

Mb “

´

A´ ηa´1ζ
¯´1

,

db “ ´A´1η
´

a´ ζA´1η
¯´1

.

(33)
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This supplemental material contains a section on initial
variable screening (Preprocessing) for very high-dimensional
settings along with additional simulation results and technical
proofs of the theorem discussed in the paper.

INITIAL VARIABLE SCREENING (PREPROCESSING): DATA
WITH VERY HIGH-DIMENSIONAL SUBSETS

In order to reduce the computational burden in settings with
very high-dimensional subsets, an initial variable screening
procedure called Density Power Divergence-SIS (DPD-SIS)
[25] is employed to further reduce the model complexity, the
number of variables to an order of sample size n. In distributed
and parallel architecture, we use the variable screening only
in very high-dimensional settings where p is much larger
than b. Basically, the DPD-SIS extends the Sure Independence
Screening (SIS) to address robustness in the presence of
outliers. The robust screening procedure assigns a certain
score to each predictor and then predictors are ranked in
descending order based on the calculated score. In order to
compute the score, the marginal estimate of each regression
coefficient is obtained via a minimum DPD estimator and
then its absolute value determines the score associated with
each predictor. At each node, the DPD-SIS variable screening
procedure is utilized to discard a certain number of irrelevant
predictors and then distinct subsets with reduced dimension-
ality is passed down to next step for further processing, that
is, X̌ P Rbˆp Ñ X̄ P Rbˆq with pq ! pq an order of sample
size. A reasonable choice for q is the number of observations
within subsets of data, that is, q “ b. Note that variable
screening procedure is dispensable in low-dimensional models,
i.e. q “ p. Subdividing a high-dimensional data into smaller
subsets may be allowed as long as the batch size b satisfies the
requirements for sparse recovery and statistical correctness of
bootstrap computations as specified in Section V.E, Choice of
Batch Size, within the main body of the paper. The algorithmic
details of DPD-SIS can be found in [25].

The DPD-SIS is initially applied to the distinct subsets of
data and top b predictors, the exact order of sample size, within
each subset of data are kept based on their score and the
remaining predictors are discarded. We then form a set of
predictors appearing within at least half of data subsets. We
now place these set of predictors on top of the ranking within
each of s data subsets, keep the top b predictors and reject the
remaining ones. The model selection proceeds with the data
set of reduced dimensionality.

ADDITIONAL SIMULATION RESULTS

A. High-dimensional: Model Selection and Inference

In this part, we study the performance of the proposed
methods, TSRD-τ and TSRD-MM, for a large-scale high-
dimensional data set (p ą b) in terms of model selection
and robustness of confidence intervals to outliers. We run the
simulations on the synthtetic dataset described by Scenario
1. In the current high-dimensional setting, an initial variable
screening procedure is employed to reduce the dimensionality
prior to model selection. The DPD-SIS is initially applied
to the distinct subsets of data and top b covariates, the

TABLE III
MODEL SELECTION IN HIGH-DIMENSIONAL: THE PROPOSED

TWO-STAGE ROBUST INFERENCE METHODS ACHIEVE A PERFECT
RECOVERY OF TRUE SPARSE BASIS (TP=1) WITH SMALL NUMBER OF

FALSE POSITIVES UNDER ZERO CONTAMINATION TO MODERATE
CONTAMINATION. IN CONTRAST, THE TWO-STAGE LASSO-LS

COMPLETELY FAILS AT RECOVERING THE SPARSE BASIS (TP “ 0) FOR
ALL SCENARIOS EXCEPT FOR OUTLIER-FREE.

TSRD-τ TSRD-MM TSLL

ξo TP FP CER TP FP CER TP FP CER

0 1 0.0004 0.0004 1 0.0013 0.0013 1 0 0
0.1 1 0.0003 0.0003 1 0.0009 0.0009 0 0 0.0013
0.2 1 0.0002 0.0002 1 0.0002 0.0002 0 0 0.0013
1 Although no truly active variables are selected by TSLL in the model selection stage,
one might be mislead by low CER. This can be attributed to fact that the number of truly
active variables ks are insignificant compared to p.

exact order of sample size, within each subset of data are
kept based on their score and the remaining covariates are
discarded. The model selection proceeds with the data set
of reduced dimensionality. The proposed two-stage robust
inference algorithms are compared to their two-stage non-
robust counterpart employing Lasso in the first stage and BLB
based on least square estimator in the second stage. For the
sake of brevity, the non-robust two-stage inference method is
regarded as two-stage Lasso-LS (TSLL). Before using Lasso,
variable screening is carried out by the DPD-SIS to ensure
the data with the reduced dimensionality contains relevant
variables. In regard to model selection, the performance is
quantified by using confusion matrix and CER as represented
in Table III. The model selection algorithms in the stage 1
of TSRD-τ and TSRD-MM could perfectly identify all true
non-zero parameters for different proportions of outliers at the
highly underdetermined setting, p{b “ 33.33. In contrast, the
non-robust TSLL algorithm fails completely at identifying the
sparse basis of the parameter vector except for outlier-free
scenario.

The selected variables from the first stage are used to
construct confidence intervals based on the bootstrap methods
RSOB-τ and BLFRB. The confidence intervals constructed for
the first 15 selected variables are shown in Fig. 9. The CIs
formed by robust inference methods at the stage 2 of TSRD-τ
and TSRD-MM remain resistant to contamination and length
of CIs are slightly inflated with an increase in the proportion of
outliers. In regard to outlier-free scenario, the robust bootstrap
methods provide reliable estimates of the CIs constructed by
bootstrap percentiles of least-square estimator. Hence, it can
be concluded that the proposed two-stage inference methods,
TSRD-τ and TSRD-MM, can be used to perform robust
statistical inference for large-scale high-dimensional data sets.
Note that no comparison is made to two-stage Lasso-LS in
the presence of outlying observations due to zero true positive
rate, i.e., no element of sparse basis was identified.

B. Effect of Substituting τ -Lasso with non-regularized τ - and
MM-estimators on Variable Selection

We study the effect of substituting the τ -Lasso estimator
with τ -estimator and MM-estimator under the settings de-
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Fig. 9. When there are no outlying observations, the confidence intervals
based on bootstraps methods in TSRD-τ and TSRD-MM provide reliable
estimates of the CIs based on bootstrap percentiles of least-square estimator.
The confidence intervals produced by TSRD-T and TSRD-MM methods
exhibit robustness to outliers and their lengths are slightly affected by an
increase in the proportion of outliers. Thus, reliable parameter estimates and
confidence intervals are obtained even in the presence of outliers (the dash-dot
lines indicate the true value of non-zero entries of parameter vector).

scribed by Scenario 3 and 10% outlier ratio. We conduct
the above experiment with 20 trials for which a random
realization of outlier is used at each trial. The τ - and MM-
estimators were initialized with S-Lasso estimates of the
parameter vector β. We observe in our simulations that both
τ - and MM-estimators fail in recovering the correct support
and all irrelevant variables are selected within the estimated
support In contrast, TSRD-τ employing the τ -Lasso estimator
succeeds in recovering the correct support, indicated by the
following contingency table.

TABLE IV
MODEL SELECTION: THE PROPOSED TSRD-τ METHOD ACHIEVES A
PERFECT RECOVERY OF TRUE SPARSE BASIS (TP=1) WITH NO FALSE
POSITIVES (FP “ 0). IN CONTRAST, ALL IRRELEVANT VARIABLES ARE
SELECTED WITHIN THE ESTIMATED SUPPORT WHEN ONE REPLACES THE

τ -LASSO ESTIMATOR WITH NON-REGULARIZED ESTIMATORS

TSRD-τ τ MM

ξo TP FP CER TP FP CER TP FP CER

0.1 1 0 0 1 1 0.9 1 1 0.9

Note that we obtained the results demonstrated in the above
table by averaging over 20 trials.

C. Effect of Initial Estimate on Variable Selection

In order to explore the influence of initial estimates on the
variable selection procedure, we perform a series of simu-
lations with high-dimensional and low-dimensional data. We
run the τ -Lasso estimator when randomly initialized and then
when initialized with non-regularized τ -estimates (applicable
only to low-dimensional regime) and compare the results
of model selection with recommended procedure where the
τ -Lasso estimator is using S-Lasso estimates as the initial
point. In both high-dimensional and low-dimensional data, we
carry out a Monte-Carlo study of 20 trials where a random
realization of outlier is used at each trial. In case of τ -
Lasso estimator with random initialization, we initiate the
algorithm with a randomly distributed multivariate Gaussian
N p1000 ˆ 1p`1, p250q2 ˆ Ip`1q for each trial and batch
of data, chosen to be far from the true coefficient β0. We
run the simulations on the synthetic data set described by
Scenario 3 for low-dimensional regime and the synthetic data
set described by Scenario 4 for high-dimensional regime.

As shown in Tables V-VI, the model selection algorithm
using τ -Lasso achieves the exact support recovery regardless
of initialization across all trials for the low-dimensional and
high-dimensional regimes. Although the model selection pro-
cedure succeeds in perfectly recovering the true support when
τ -Lasso estimator initialized randomly. In fact, the τ -Lasso
optimization problem is solved via alternating minimization
where the sub-problems are non-convex themselves. Recent
results show that many well-known nonconvex optimization
problems possess a well behaved landscape where all second-
order stationary points are global minima [50] and [51]. We
conjecture that the variable succeeds in recovering the true
support when the τ -Lasso optimization problem is initialized
randomly due to potential nice landscape of optimization
problem in conjunction with collaborative nature of fusion
procedure. We suspect this result may not entirely generalize
to all scenarios and this topic requires further study from the
optimization perspective.

D. The Effect of Sample Size, Dimensionality , and Number
of Subsamples on Computational Complexity of RSOB-τ

We conduct a number of experiments to examine how the
computational complexity of RSOB-τ scales with sample size,
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TABLE V
INFLUENCE OF INITIAL ESTIMATE ON MODEL SELECTION IN

LOW-DIMENSIONAL DATA: REGARDLESS OF HOW THE τ -LASSO
ESTIMATOR IS INITIALIZED, THE MODEL SELECTION METHOD

SUCCEEDS IN PERFECTLY RECOVERING THE TRUE SPARSE BASIS (TP=1)
WITH NO FALSE POSITIVES (FP “ 0) UNDER CONTAMINATION.

TSRD-τ random init. init. by τ -estimates

ξo TP FP CER TP FP CER TP FP CER

0.1 1 0 0 1 0 0 1 0 0
0.2 1 0 0 1 0 0 1 0 0

TABLE VI
INFLUENCE OF INITIAL ESTIMATE ON MODEL SELECTION IN

HIGH-DIMENSIONAL DATA: REGARDLESS OF HOW THE τ -LASSO
ESTIMATOR IS INITIALIZED, THE MODEL SELECTION METHOD

SUCCEEDS IN PERFECTLY RECOVERING THE TRUE SPARSE BASIS (TP=1)
WITH NO FALSE POSITIVES (FP “ 0) UNDER CONTAMINATION.

TSRD-τ random init.

ξo TP FP CER TP FP CER

0.1 1 0 0 1 0 0
0.2 1 0 0 1 0 0

dimensionality and the number of subsamples. To do so, we
plot the processing time against one of the above parameters
while keeping the remaining parameters at their defaults. This
process continues until all parameters have been allowed to
vary for a range of values. We run the simulations on the
data set described by Scenario 3 where 10% of observations
are contaminated by outliers. We then compare them to the
result of simulations obtained using robust realization of BLB
method based on τ -estimator and report the corresponding
results in Fig. 10-12. We conduct the experiment on a single
node of a high-performance computing cluster (Triton) where
22 computing cores and 25 GB of memory were used. Note
that we report the processing time of RSOB-τ versus that
of robustified BLB where a distinct subsample is allocated
to each computing core. The number of bootstrap samples is
fixed at B “ 300.

Fig. 10 shows that as we increase the sample size n,
the processing time associated with RSOB-τ grows at much
slower rate than the processing time associated with the
BLB method based on τ -estimator, thereby achieving higher
computational efficiency for larger sample size. In Fig. 11,
we obtain similar results when plotting the processing time
against dimensionality p. That is, RSOB-τ achieves higher
computational efficiency for larger dimensions p.

1 2 3 4 5 6 7 8 9 10
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Fig. 10. The processing time of RSOB-τ method employing linearly corrected
one-step τ -estimator scales much better with sample size than the robustified
BLB method.
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Fig. 11. The processing time of RSOB-τ method employing linearly
corrected one-step τ -estimator scales much better with dimensionality than
the robustified BLB method.

Fig. 12 shows that as we increase the number of subsets
(data partitions), the processing time associated with both
RSOB-τ and the robustified BLB decreases and simultane-
ously the gap between the two curves shrinks. Therefore, there
would little benefit in excessively increasing the number of
subsets when considering the processing time. We assume that
each subsample is processed by allocating one computing core
to each subsample. Setting s to very large values leads to
wasted computation as we are occupying so many resources
while a small portion of each resource is needed. One could
use tn{n0.9u ă s ă tn{maxpcsks logppq, n0.6qu as a crude
approximation and choose b “ n{s so that it uses the com-
putational and storage capabilities of the computational nodes
efficiently. As it would be difficult to allocate computing cores
for large numbers, we record the processing time associated
with each subsample and their maximum is considered to be
the processing time for better interpretability.
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Fig. 12. The above plot indicates if one excessively increases the number of
data partitions, small computational gains are made by using RSOB-τ than
using the robustified BLB.

PROOF OF THEOREM 1

The finite-sample breakdown point of τ -Lasso estimator
can be derived in two separate stages: first stage is dedicated
to show the boundedness of finite-sample breakdown point
from above and second stage is dedicated to show the
boundedness of finite-sample breakdown point from below.
Once the boundedness from above and below is established,
the above theorem is proved immediately. Before proceeding
any further, we extend the lemma 5.1 [30] for M-scale
estimators to τ -scale estimators as follows:

Lemma 1: Consider any sequence of samples
´

Ŷpkq “
`

ŷpkq, X̂pkq
˘

P Rbˆpp`1q
¯

kPN
“

´

Ŷp1q, Ŷp2q, Ŷp3q, ¨ ¨ ¨
¯

and

corresponding residual vector rpkq “ ŷpkq ´ X̂pkqβ̂pkq for
Ŷpkq. Suppose rpkql denotes the residual for

`

ŷ
pkq
l , px̂

pkq
rls q

T
˘

a
row in Ŷpkq, Then

1) Let C “ tl : |r
pkq
l | Ñ 8u, if #pCq ą bδ, then

σ̂τ pr
pkqq Ñ 8 as k Ñ8.

2) Let D “ tl : |r
pkq
l | is bounded u, if #pDq ą b´ bδ, then

σ̂τ pr
pkqq is bounded.

where Ñ 8 denotes the left-hand side of arrow tends to
infinity. The part 1 of the lemma implies that if the number
of unbounded entries of rpkq exceeds bδ, then τ -scale estimate
of rpkq goes to infinity. On the other hand, if the number of
bounded entries of rpkq exceeds b´ bδ, then τ -scale estimate
of rpkq remains bounded. To prove the above lemma, we use
the results from lemma 3.2 in [52], the τ -scale is bounded
from above and below as follows:

c̄iσ̂Mpuq ď σ̂τ puq ď
c

sup
tPR

ρ1ptqσ̂Mpuq @u P Rb, (34)

where c̄i is a positive constant, σ̂M denotes the M-scale
estimate and σ̂τ denotes the τ -scale estimate. Now, we can
take advantage of the inequality associating M-scale estimate
with τ -scale estimate. We extend the lemma 5.1 in p.184 of
[30] for M-scale estimators and derive similar results for τ -
scale estimators. According to part 1 of lemma 5.1 in [30],

if #pCq ą bδ ñ σ̂Mpr
pkqq Ñ 8,

c̄i ˆ8 ď σ̂τ pr
pkqq ď

c

sup
tPR

ρ1ptq ˆ 8,
(35)

which implies both upper and lower bound of τ -scale estimate
goes to infinity. This proves part 1 of the lemma, if #pCq ą bδ
then σ̂τ pr

pkqq Ñ 8. To prove the second part of lemma, we
know from part 2 of lemma 5.1 [30],

#pDq ą b´ bδ ñ σ̂Mpr
pkqq is bounded,

c̄i ˆ bounded ď σ̂τ pr
pkqq ď

c

sup
tPR

ρ1ptq ˆ bounded, (36)

which implies both lower and upper bounds of τ -scale esti-
mates are bounded. This proves the second part of the lemma,
if #pDq ą b´ bδ, then σ̂τ prpkqq is bounded. Now, we need to
prove in two separate stages that the finite-sample breakdown
point of the τ -Lasso estimator is bounded from the above and
the below.

E. Bounded From Below

In order to establish the boundedness of β̂ from below, we
need to show that the sequence of τ -scale estimates

`

β̂pkq P
Rp

˘

kPN is bounded for any arbitrary sequence of contaminated
samples

`

Ŷ
pkq
m

˘

kPN with m ď mpδq. The method of proof
by contradiction can be used to establish the boundedness
from below. That is, it is assumed the sequence

`

β̂pkq
˘

kPN is
unbounded and then shown that β̂pkq violates the optimality
condition where it is assumed to attain the minimum of the
τ -Lasso objective function. Thus, β̂pkq should be bounded to
be a minimizer of the objective function.

Suppose β̃ P Rp has a bounded `1-norm such that }β̃}`1 “
Kb ă 8. For the uncontaminated observations py̌l, x̌Trlsq within

the contaminated sample Ŷ
pkq
m , the corresponding residuals

|r
pkq
l

`

β̃, Ŷ
pkq
m

˘

| “ |y̌l´ x̌T
rlsβ̃| ă 8 are bounded based on the

triangle inequality. Without loss of generality, it is assumed
bδ “ bminpδ, 1 ´ δq. Since the inequality m ď mpδq ď bδ
holds based on the theorem assumption, it can be shown the
number of bounded residuals #pDq ě b ´ m ě b ´ bδ.
Therefore, we can conclude σ̂τ

´

rpkq
`

β̃, Ŷ
pkq
m

˘

¯

can be large
but still bounded based on the above lemma,

sup
kPN

σ̂τ

´

rpkq
`

β̃, Ŷpkq
m

˘

¯

ă 8. (37)

Now, let the sequence
`

}β̂pkq}`1
˘

kPN be unbounded.
An unbounded sequence does not converge, i.e. sequences
that contain arbitrarily large numbers. Hence, there ex-
ists a sequence index k0 such that }β̂pk0q}`1 ą Kb `
1
λ supkPN σ̂

2
τ

´

rpkq
`

β̃, Ŷ
pkq
m

˘

¯

and as a result we can say for

every k
1

ě k0,
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L
`

β̂pk
1
q,Ŷpk

1
q

m

˘

hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

σ̂2
τ

´

rpk
1
q
`

β̂pk
1
q, Ŷpk

1
q

m

˘

¯

` λ}β̂pk
1
q
}`1

ą σ̂2
τ

´

rpk
1
q
`

β̂pk
1
q, Ŷpk

1
q

m

˘

¯

`λ

˜

Kb `
1

λ
sup
kPN

σ̂2
τ

´

rpkq
`

β̃, Ŷpkq
m

˘

¯

¸

ě σ̂2
τ

´

rpk
1
q
`

β̃, Ŷpk
1
q

m

˘

¯

` λKb “ L
`

β̃, Ŷpk
1
q

m

˘

ñ

L
`

β̂pk
1
q, Ŷpk

1
q

m

˘

ě L
`

β̃, Ŷpk
1
q

m

˘

(38)

where λ determines the amount of regularization imposed by
the `1-norm and Lp¨q is τ -Lasso objective function as given
in equation (38). The above result contradicts the fact that
β̂pk

1
q is the minimizer of the objective function, as the loss

function is larger for β̂pk
1
q. Thus, β̂pkq should be bounded

for m ď mpδq and the boundedness from below is proved.

F. Bounded From Above

The boundedness from above can be established by showing
that the estimator breaks down for m ą bδ. In order to
prove such a property, proof by contradiction is used in this
work. That is, it is assumed that the sequence of estimates
`

β̂pkq
˘

kPN minimizing the τ -Lasso objective function over the
contaminated sample Ŷ

pkq
m is bounded. and then shown the

τ -Lasso objective function evaluated at β̂pkq achieves larger
value than the τ -Lasso objective function evaluated at a given
unbounded β̃pkq. This contradicts the assumption that β̂pkq is
the minimum of τ -Lasso objective function. Thus, it can be
concluded β̂pkq must be unbounded for m ą bδ establishing
the boundedness from above.

As the τ -Lasso objective function is comprised of three
primary components, its evaluation is carried out in three
separate steps as follows:

1) M-scale of residuals, component 1

2) 1
b

řb
l“1 ρ1

˜

r̂
pkq
l

σ̂M

`

r̂pkq
˘

¸

, component 2

3) λ}β̂pkq}`1 , component 3

Once these components are evaluated, the τ -Lasso objective
function is formed by a simple addition and multiplication
operation over these components. In order to proceed with
the proof, the τ -Lasso objective function is evaluated for
the bounded sequences β̂pkq and unbounded sequences β̃pkq

and then compared with each other to arrive at a contradiction.

1) Evaluation of τ -Lasso Objective Function for β̂pkq

a) Component 1
Suppose the set C Ă t1, ¨ ¨ ¨ , bu denotes the indices of the

observations within the original contaminated-free sample Y̌

replaced by outliers to construct the contaminated sample Ŷ
pkq
m

with m “ #pCq. To simplify the proof without loss of the
generality, we choose an arbitrary x0 P Rp with unit `2-norm,

}x0}`2 “ 1. Now, we construct a contaminated sequence of
samples with m outliers given by

`

ŷ
pkq
l , x̂

pkq
rls

˘

“

#

`

kν`1,x0k
˘

l P C
`

y̌l, x̌rls
˘

l R C
, (39)

where 0 ă ν ď 1 and
`

kν`1,x0k
˘

are chosen to account for
outlying observations. The sequence for outlying observations
diverges as k goes to infinity.

First, we assume that β̂pkq is bounded in norm and conse-
quently, we have |rpkql

`

β̂k, Ŷ
pkq
m

˘

| “ |ŷl ´ px̂
pkq
rls q

T β̂pkq| ă 8

is bounded for l R C and k P N. r̂pkql is a shorthad for
r
pkq
l

`

β̂k, Ŷ
pkq
m

˘

. On the other hand, the residuals correspond-
ing to contaminated observations, l P C are lower bounded
by

|r̂
pkq
l | “ |kν`1 ´ kxT0 β̂

pkq
| “ k|kν ´ xT0 β̂

pkq
| and xT0 β̂

pkq

ď }x0}`1}β̂
pkq
}`1 ñ |kν ´ xT0 β̂

pkq
| ě |kν ´ }x0}`1}β̂

pkq
}`1 |

ñ |r̂
pkq
l | ě k|kν ´ }x0}`1}β̂

pkq
}`1 |

(40)

In addition, the right-hand side of inequality goes to infinity
as k approaches infinity which implies the residuals r̂pkql go
to infinity for l P C as well. Based on the above lemma and
lemma 5.1 in p.184 of [30] , we conclude that both σ̂τ

`

r̂pkq
˘

and σ̂M
`

r̂pkq
˘

go to infinity for #pCq ą bδ. As a result, we
can decompose the M-estimation of scale equation as follows:

ÿ

lRC

ρ0

˜

r̂
pkq
l

σ̂M
`

r̂pkq
˘

¸

`
ÿ

lPC

ρ0

˜

r̂
pkq
l

σ̂M
`

r̂pkq
˘

¸

“ bδ (41)

Recalling the proof of Theorem 4.1 in [53], it follows

ρ0

` 1

γ

˘

“
bδ

m
(42)

where

γ “ lim
kÑ8

σ̂M
`

r̂pkq
˘

kν`1
(43)

b) Component 2
On the other hand, we have

1

b

b
ÿ

l“1

ρ1

˜

r̂
pkq
l

σ̂M
`

r̂pkq
˘

¸

“
m

b
ρ1

˜

1´ xT0 β̂
pkq
{kν

σ̂M
`

r̂pkq
˘

{kν`1

¸

ñ

lim
kÑ8

m

b
ρ1

˜

1´ xT0 β̂
pkq
{kν

σ̂M
`

r̂pkq
˘

{kν`1

¸

“
m

b
ρ1

´ 1

γ

¯

(44)

c) Component 3

limkÑ8 }β̂
pkq
}`1 remains bounded according to the as-

sumption of the proof.
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d) Deriving τ -Lasso Objective Function
Now, we can evaluate the τ -Lasso loss function according

to equation (38) as follows:

lim
kÑ8

σ̂2
τ

`

r̂pkq
˘

k2ν`2
“ lim
kÑ8

σ̂2
M

`

r̂pkq
˘

k2ν`2
ˆ
m

b
ρ1

˜

1´ xT0 β̂
pkq
{kν

σ̂2
M

`

r̂pkq
˘

{kν`1

¸

ñ lim
kÑ8

σ̂2
τ

`

r̂pkq
˘

k2ν`2
“
mγ2

b
ρ1

´ 1

γ

¯

ñ lim
kÑ8

L
`

β̂pkq, Ŷ
pkq
m

˘

k2ν`2

“ lim
kÑ8

˜

σ̂2
τ

`

r̂pkq
˘

k2ν`2
` λ

}β̂pkq}`1
k2ν`2

¸

“
mγ2

b
ρ1

´ 1

γ

¯

(45)

where limkÑ8 }β̂
pkq
}`1{k

2ν`2 “ 0 due to the bounded norm
of β̂pkq.

2) Evaluation of τ -Lasso Objective Function for β̃pkq

Now, we evaluate the τ -Lasso objective function for an
unbounded sequence β̃pkq in a three-step procedure as follows:

a) Component 1
The unbounded sequence is assumed to be β̃pkq “ kν

2 x0.
The residuals for this sequence become

r̂
pkq
l “

#

kν`1 ´ kν`1

2 xT0 x0 l P C

y̌l ´
kν

2 xT0 x̌rls l R C
“

#

kν`1

2 l P C

y̌l ´
kν

2 xT0 x̌rls l R C
(46)

where xT0 x0 “ }x0}
2
`2
“ 1 and all residuals go to infinity as

k Ñ 8. Hence, both σ̂τ
`

r̂pkq
˘

and σ̂M
`

r̂pkq
˘

tend to infinity.
The decomposition of M-estimation of scale equation yields,

ÿ

lRC

ρ0

˜

y̌l ´
kν

2 xT0 x̌rls

σ̂M
`

r̂pkq
˘

¸

`
ÿ

lPC

ρ0

˜

kν`1{2

σ̂M
`

r̂pkq
˘

¸

“ bδ (47)

Using the proof of Theorem 4.1 in [53] , it can be inferred

ρ0

˜

1

limkÑ8
σ̂M

`

r̂pkq
˘

kν`1{2

¸

“
bδ

m
(48)

where

lim
kÑ8

σ̂M
`

r̂pkq
˘

kν`1{2
“ γ (49)

b) Component 2
On the other hand, we have

1

b

b
ÿ

l“1

ρ1

˜

r̂
pkq
l

σ̂M
`

r̂pkq
˘

¸

“
m

b
ρ1

˜

1

σ̂M

`

r̂pkq
˘

kν`1{2

¸

ñ

lim
kÑ8

m

b
ρ1

˜

1

σ̂M

`

r̂pkq
˘

kν`1{2

¸

“
m

b
ρ1

´ 1

γ

¯

(50)

c) Component 3
limkÑ8 }β̃

pkq
}`1 diverges as k goes to infinity.

d) Deriving τ -Lasso objective function
Now, we can evaluate the τ -Lasso loss function according

to equation (38) as follows:

lim
kÑ8

σ̂2
τ

`

r̂pkq
˘

k2ν`2
“ lim
kÑ8

σ̂2
M

`

r̂pkq
˘

k2ν`2
ˆ
m

b
ρ1

˜

1

σ̂M

`

r̂pkq
˘

kν`1{2

¸

ñ lim
kÑ8

σ̂2
τ

`

r̂pkq
˘

k2ν`2
“
mγ2

4b
ρ1

´ 1

γ

¯

ñ lim
kÑ8

L
`

β̃pkq, Ŷ
pkq
m

˘

k2ν`2

“ lim
kÑ8

˜

σ̂2
τ

`

r̂pkq
˘

k2ν`2
` λ

}β̃pkq}`1
k2ν`2

¸

“
mγ2

4b
ρ1p

1

γ
q

(51)

where

lim
kÑ8

}β̃pkq}`1{k
2ν`2 “ lim

kÑ8
}kνx0{2}`1{k

2ν`2

“ lim
kÑ8

}x0{2}`1{k
ν`2 “ 0

(52)

3) Comparison
Now, we can compare the τ -Lasso objective function for

the given bounded and unbounded sequences and conclude
that for large enough k0,

L
`

β̃pkq, Ŷ
pkq
m

˘

k2ν`2
ă

L
`

β̂pkq, Ŷ
pkq
m

˘

k2ν`2
, @k ě k0 (53)

The above results contradict the fact that the bounded β̂pkq

is the minimum of the τ -Lasso objective function for the
contaminated sample with m ą bδ. Because the τ -Lasso
objective function for the unbounded β̃pkq is smaller than
that of β̂pkq. This implies the β̂pkq have to be unbounded and
thus, the robust τ -Lasso estimator breaks down for m ą bδ.

PROOF OF THEOREM 2

To begin with the proof, it follows from the first-order
condition that τ -estimates of regression parameter and scale
for the given subset of data, β̂b and σ̂b must satisfy the
following equations [29]:

1

b

b
ÿ

l“1

“

ŵτρ
1

0

´ r̂l
σ̂b

¯

` ρ
1

1

´ r̂l
σ̂b

¯

‰

x̃rls “ 0,

1

b

b
ÿ

l“1

ρ0

´ r̂l
σ̂b

¯

“ δ,

(54)

where r̂l “ y̌l ´ x̃T
rlsβ̂b and ŵτ is given by

ŵτ “

řb
l“1

”

2ρ1

´

r̂l
σ̂b

¯

´ ρ
1

1

´

r̂l
σ̂b

¯

r̂l
σ̂b

ı

řb
l“1 ρ

1

0

`

r̂l
σ̂b

¯

r̂l
σ̂b

. (55)

Therefore, we can obtain τ -estimates of regression β̂b and
scale σ̂b for the subset of data with observations

`

y̌, X̃
˘

as
follows:

β̂b “ Abpβ̂b, σ̂bq
´1vbpβ̂b, σ̂bq,

σ̂b “ σ̂bubpβ̂b, σ̂bq,
(56)
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where

Abpβ̂b, σ̂bq “
1

b

b
ÿ

l“1

ŵlx̃rlsx̃
T
rls,

vbpβ̂b, σ̂bq “
1

b

b
ÿ

l“1

ŵly̌lx̃rls,

ubpβ̂b, σ̂bq “
1

bδ

b
ÿ

l“1

ρ0

´ r̂l
σ̂b

¯

,

ŵl “
ŵτρ

1

0

´

r̂l
σ̂b

¯

` ρ
1

1

´

r̂l
σ̂b

¯

r̂l
.

(57)

Alternatively, the robust τ -estimates of regression parameters
and scale can be written as the solution of a fixed-point
problem as follows:

θ̂b “ fpθ̂b; Ỹq, (58)

where f : Rp|Ŝ|`1q Ñ Rp|Ŝ|`1q, θ̂b P Rp|Ŝ|`1q and fpθ̂b; Ỹq
are given by

θ̂b “

»

–

β̂b

σ̂b

fi

fl ,

fpθ̂b; Ỹq “

»

–

Abpβ̂b, σ̂bq
´1vbpβ̂b, σ̂bq

σ̂bubpβ̂b, σ̂bq

fi

fl .

(59)

Conditioned on Ŝ “ S, |Ŝ| can be replaced with ks. Given ρ0

and ρ1 are differentiable functions, we can expand f by using
Taylor expansion around the limiting values, θ0 “ rβ0, σ0s

T ,
as follows:

θ̂b “ fpθ0q `∇fpθ0qpθ̂b ´ θ0q

`
1

2

“

Iks b pθ̂b ´ θ0q
T
‰

∇2fpθ̄qpθ̂b ´ θ0q
loooooooooooooooooooooooomoooooooooooooooooooooooon

Rb

, (60)

where fpθ0q is a short-hand for fpθ0; Ỹq, ∇fp¨q P

Rpks`1qˆpks`1q is the matrix of partial derivatives, ∇2fp¨q P
Rpks`1q2ˆpks`1q is the Hessian matrix of fp¨q, b denotes the
Kronecker product and θ̄ lies on the line segment between θ0

and θ̂b. The term
“

Iks bpθ̂b´θ0q
T
‰

∇2fpθ̄q in the remainder
is a pks` 1q2ˆpks` 1q matrix whose pi, jq-entry is given by

Mij “ pθ̂b ´ θ0q
T

«

B2fpθ̄q

BθiBθj

ff

. (61)

In addition, ∇fp¨q is defined as follows:

∇fpθq “

„

BrpAbq
´1vbs{Bβ BrpAbq

´1vbs{Bσ
Brσubs{Bβ Brσubs{Bσ



. (62)

Here, ub, Ab and vb are short-hands for ubpθq, Abpθq
and vbpθq, respectively. Tedious but straightforward calcu-
lations show that the second-order terms B2fpθ̄q{pBθiBθjq
are a combination of sample mean products. Taking into
account the convergence of the sample mean products to
their corresponding population mean according to Lemma
2 in [21], (an extension of law of large numbers) and
continuity of derivatives of ρ0 and ρ1, we can guarantee

B2fpθ̄q{pBθiBθjq “ Opp1q for i, j “ 1, ¨ ¨ ¨ , ks ` 1. On the
other hand, it follows from the root-n consistency of estimators
[54] that }θ̂b ´ θ0}`2 “ Opp1{

?
bq. Hence, the pi, jq-entry

Mij “ Opp1{
?
bq. Noting that ith entry in the remainder is

a linear combination
řks`1
j“1 Mijprθ̂bsj ´ rθ0sjq “ opp1{

?
bq,

implying the remainder term Rb “ opp1{
?
bq. Therefore, we

can re-express the Taylor expansion given in equation (60) as
follows:

pθ̂b ´ θ0q “ pfpθ0q ´ θ0q `∇fpθ0qpθ̂b ´ θ0q ` opp1{
?
bq ñ

rI´∇fpθ0qspθ̂b ´ θ0q “ pfpθ0q ´ θ0q ` opp1{
?
bq ñ

?
bpθ̂b ´ θ0q “ rI´∇fpθ0qs

´1
?
brfpθ0q ´ θ0s ` opp1q.

(63)

On the other hand, we know that opp1q term converges
to 0ks`1 in probability as b tends to infinity. As a result,
both sides of the following converge to the same limiting
distribution.

?
bpθ̂b ´ θ0q „ rI´∇fpθ0qs

´1
?
brfpθ0q ´ θ0s, (64)

where the notation „ stands for weak convergence of both
sides to the same limiting distribution. Consider n bootstrap
samples are drawn from the given subset of data, we approx-
imate the actual bootstrap estimates θ̂

‹

n,b for the given subset
of data using linearly corrected one-step bootstrap estimates
θ̂
R‹

n,b as follows:

?
npθ̂

R‹

n,b ´ θ̂bq „ rI´∇fpθ̂bqs
´1
?
nrf‹pθ̂bq ´ θ̂bs, (65)

where n denotes the number of observations in the com-
plete data set and f‹pθ̂bq is one-step bootstrap estimate
and shorthand for f‹pθ̂b; Ỹ

‹q where Ỹ‹ “

´

y̌, X̃;ω‹
¯

P

Rnˆpks`1q. Since rI´∇fpθ̂bqs
´1 is a consistent estimator of

rI´∇fpθ0qs
´1, we only need to show that

?
nrf‹pθ̂bq ´ θ̂bs

converges to the same limiting distribution as
?
brfpθ0q´θ0s.

To proceed with estimation of the correction matrix rI ´
∇fpθ̂bqs

´1, we compute the gradient matrix I ´ ∇fpθ̂bq as
follows:

I´∇fpθ̂bq “
A η

ζ a

. (66)

where

A “ I´
BrpAbq

´1vbs

Bβ

ˇ

ˇ

ˇ

θ̂b
, η “ ´

BrpAbq
´1vbs

Bσ

ˇ

ˇ

ˇ

θ̂b

, a “ 1´
Brσubs

Bσ

ˇ

ˇ

ˇ

θ̂b
, ζ “ ´

Brσubs

Bβ

ˇ

ˇ

ˇ

θ̂b
.

(67)

Let’s begin with calculating ζ,

ζ “ ´
Brσubs

Bβ

ˇ

ˇ

ˇ

θ̂b
ñ ´

Brσubs

Bβ
“ ´p

Bσ

Bβ
ub ` σ

Bub
Bβ
q ñ

ζ “
1

bδ

b
ÿ

l“1

ρ
1

0pr̆lqx̃
T
rls.

(68)



23

where řl denotes a shorthand for řlpβq “ y̌l´ x̃T
rlsβ and r̆l “

r̂l{σ̂b. In order to calculate a, we need to derive Brσubs{Bσ,

Brσubs

Bσ
“ p

Bσ

Bσ
ub ` σ

Bub
Bσ
q “

1

bδ

”

b
ÿ

l“1

ρ0p
řl
σ
q ´

b
ÿ

l“1

ρ
1

0p
řl
σ
q
řl
σ

ı

.

(69)

Therefore, a can be derived as follows:

a “ 1´
Brσubs

Bσ

ˇ

ˇ

ˇ

θ̂b
“

1

bδ

b
ÿ

l“1

ρ
1

0pr̆lqr̆l. (70)

Finding A requires differentiating pAbq
´1vb with respect

to β. To do so, αb “ pAbq
´1vb is defined to simplify the

derivations as follows:

vb “ Abαb ñ
B

Bβ
rAbαbs “

Bvb
Bβ

. (71)

To avoid confusion, the subscripts are dropped from αb, Ab

and vb. Hence, we can express B
Bβ rAαs as

B

Bβ
rAαs “ A

Bα

Bβ
`

»

—

—

—

—

—

—

—

–

ˇ

ˇ

...
...

ˇ

ˇ

BrAs
Bβ1

α
...

... BrAs
Bβks

α

ˇ

ˇ

...
...

ˇ

ˇ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ñ

Bα

Bβ
“ A´1

«

Bv

Bβ
´

»

—

—

—

—

—

—

—

–

ˇ

ˇ

...
...

ˇ

ˇ

BrAs
Bβ1

α
...

... BrAs
Bβks

α

ˇ

ˇ

...
...

ˇ

ˇ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ı

.

(72)

Next, we find the expression for Bv
Bβ

Bv

Bβ
“

1

b

b
ÿ

l“1

řlx̃rlsBwτ {Bβρ
1

0přl{σq

ř2
l

y̌l

`
1

b

b
ÿ

l“1

” řl

´

´ wτρ
2

0přl{σqx̃rls{σ ´ ρ
2

1přl{σqx̃rls{σ
¯

ř2
l

`

x̃rls

´

wτρ
1

0přl{σq ` ρ
1

1přl{σq
¯

ř2
l

ı

y̌lx̃
T
rls,

(73)

where wτ is given by

wτ “

řb
l“1

”

2ρ1

´

řl
σ

¯

´ ρ
1

1

´

řl
σ

¯

řl
σ

ı

řb
l“1 ρ

1

0

`

řl
σ

¯

řl
σ

. (74)

On the other hand, Bwτ
Bβ can be calculated as follows:

Bwτ
Bβ

“

řb
l“1

”

ρ
2

1přl{σqx̃
T
rlsřl{σ

2 ´ ρ
1

1přl{σqx̃
T
rls{σ

ı

řb
l“1 ρ

1

0přl{σqřl{σ

`

řb
l“1

”

ρ
2

0přl{σqx̃
T
rlsřl{σ

2 ` ρ
1

0přl{σqx̃
T
rls{σ

‰

řb
l“1 ρ

1

0přl{σqřl{σ
ˆ wτ .

(75)

Now, we need to compute BrAs{Bβj ,

BrAs

Bβj
α “

1

b

b
ÿ

l“1

”

Bwτ {Bβjρ
1

0přl{σq ´ wτρ
2

0přl{σqx̃lj{σ

řl

´
ρ
2

1přl{σqx̃lj{σ

řl
`

´

wτρ
1

0přl{σq ` ρ
1

1přl{σq
¯

x̃lj

ř2
l

ı

x̃rlsx̃
T
rlsα

(76)

Therefore, we have
»

—

—

—

—

—

—

—

–

ˇ

ˇ

...
...

ˇ

ˇ

BrAs
Bβ1

α
...

... BrAs
Bβks

α

ˇ

ˇ

...
...

ˇ

ˇ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
1

b

b
ÿ

l“1

řlx̃rlsBwτ {Bβρ
1

0přl{σq

ř2
l

x̃Trlsα

`
1

b

b
ÿ

l“1

” řl

´

´ wτρ
2

0přl{σqx̃rls{σ ´ ρ
2

1přl{σqx̃rls{σ
¯

ř2
l

`

x̃rls

´

wτρ
1

0přl{σq ` ρ
1

1přl{σq
¯

ř2
l

ı

x̃Trlsx̃
T
rlsα

(77)

Now, we can calculate Bα
Bβ as follows:

Bα

Bβ
“ A´1

«

1

b

b
ÿ

l“1

x̃rlsBwτ {Bβρ
1

0přl{σq

řl
py̌l ´ x̃Trlsαq

`
1

b

b
ÿ

l“1

”´wτρ
2

0přl{σqx̃rls{σ ´ ρ
2

1přl{σqx̃rls{σ

řl

`
x̃rls

´

wτρ
1

0přl{σq ` ρ
1

1přl{σq
¯

ř2
l

ı

x̃Trlspy̌l ´ x̃Trlsαq

ff

(78)

Plugging in θ̂b into Bα
Bβ , we can proceed with A,

A “ I´
BrA´1vs

Bβ

ˇ

ˇ

ˇ

θ̂b
“
`

Âb

˘´1

«

´
1

b

b
ÿ

l“1

x̃rls∇βwτρ
1

0pr̆lq

`
1

b

b
ÿ

l“1

”

ŵτρ
2

0pr̆lq ` ρ
2

1pr̆lq
ı

x̃rlsx̃
T
rls{σ̂b

ff

(79)

where α
ˇ

ˇ

ˇ

θ̂b
“ β̂b is given by the fixed-point assumption. Now,

we turn our attention to deriving the last missing expression,
BrA´1vs
Bσ ,

Bv

Bσ
“ A

Bα

Bσ
`
BA

Bσ
αñ A

Bα

Bσ
“
Bv

Bσ
´
BA

Bσ
αñ

Bα

Bσ
“ A´1p

Bv

Bσ
´
BA

Bσ
αq

(80)

Subsequently, Bα
Bσ can be derived by following analogous

procedures to Bα
Bβ as follows:

Bα

Bσ
“ A´1

«

1

b

b
ÿ

l“1

”

Bwτ {Bσρ
1

0přl{σq ´ wτρ
2

0přl{σqřl{σ
2

řl

´
ρ
2

1přl{σqřl{σ
2

řl

ı

x̃rlspy̌l ´ x̃Trlsαq

ff

(81)
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where Bwτ
Bσ is given as follows:

Bwτ
Bσ

“

řb
l“1

”

ρ
2

1přl{σqř
2
l {σ

3 ´ ρ
1

1přl{σqřl{σ
2
‰

řb
l“1 ρ

1

0přl{σqřl{σ

`

řb
l“1

”

ρ
2

0přl{σqř
2
l {σ

3 ` ρ
1

0přl{σqřl{σ
2
ı

řb
l“1 ρ

1

0přl{σqřl{σ
ˆ wτ

(82)

Having Bα
Bσ , we can compute η as follows:

η “ ´
BrpA´1vs

Bσ

ˇ

ˇ

θ̂b
“
`

Âb

˘´1

«

1

b

b
ÿ

l“1

”

´∇σwτρ
1

0pr̆lq

`ŵτρ
2

0pr̆lqr̆l{σ̂b ` ρ
2

1pr̆lqr̆l{σ̂b

ı

x̃rls

ff

(83)

Consequently, we can exploit the block matrix inversion
lemma to compute rI´∇fpθ̂bqs

´1 as follows:

”

I´∇fpθ̂bq
ı´1

“

„

A η
ζ a

´1

“

„

Mb db
Nb qb



,

Mb “

´

A´ ηa´1ζ
¯´1

,

db “ ´A´1η
´

a´ ζA´1η
¯´1

,

Nb “ ´

´

a´ ζA´1η
¯´1

ζA´1,

qb “
´

a´ ζA´1η
¯´1

.

(84)

Now, we only need to prove both
?
nrf‹pθ̂bq ´ θ̂bs and?

brfpθ0q ´ θ0s are convergent to the same limiting distribu-
tion. We show that fpθ0q ´ θ0 can be expressed as smooth
function of means. Therefore, we can exploit the results on
central limit theorem, and its extension to bootstrapping of
smooth functions of means [55] and show that

?
nrf‹pθ̂bq´θ̂bs

and
?
brfpθ0q ´ θ0s are convergent to the same limiting

distribution. Let’s define Qpθ0q and its expected value µpθ0q

as follows:

Qpθ0q

“

´ρ
1

0pr{σ0q

r
xxT ,

ρ
1

1pr{σ0q

r
xxT ,

ρ
1

0pr{σ0q

r
yx,

ρ
1

1pr{σ0q

r
yx,

2ρ1pr{σ0q ´ ρ
1

1pr{σ0qr{σ0, ρ
1

0pr{σ0qr{σ0, σ0
ρ0pr{σ0q

δ

¯

,

µpθ0q “ ErQpθ0qs “

´

Z1,Z2, z3, z4, z5, z6, σ0

¯

(85)

where Qpθ0q and µpθ0q P Rksˆks ˆ Rksˆks ˆ Rks ˆ Rks ˆ
Rˆ Rˆ R and

r “ y ´ xTβ0

β0 “
`z5

z6
ˆ Z1 ` Z2

˘´1
ˆ
`z5

z6
ˆ z3 ` z4

˘ (86)

Given b observations of
´

y̌l, x̃rls

¯

, the sample mean Q̄bpθ0q

is given by

Q̄bpθ0q

“

´1

b

b
ÿ

l“1

ρ
1

0přlpβ0q{σ0q

řlpβ0q
x̃rlsx̃

T
rls,

1

b

b
ÿ

l“1

ρ
1

1přlpβ0q{σ0q

řlpβ0q
x̃rlsx̃

T
rls

,
1

b

b
ÿ

l“1

ρ
1

0přlpβ0q{σ0q

řlpβ0q
y̌lx̃rls,

1

b

b
ÿ

l“1

ρ
1

1přlpβ0q{σ0q

řlpβ0q
y̌lx̃rls,

1

b

b
ÿ

l“1

“

2ρ1přlpβ0q{σ0q ´ ρ
1

1přlpβ0q{σ0qřlpβ0q{σ0

‰

,

1

b

b
ÿ

l“1

ρ
1

0přlpβ0q{σ0qřlpβ0q{σ0,
σ0

bδ

b
ÿ

l“1

ρ0přlpβ0q{σ0q

¯

.

(87)

where řlpβ0q “ y̌l ´ x̌T
rlsβ0. Then, consider the function g :

RksˆksˆRksˆksˆRksˆRksˆRˆRˆRÑ RksˆR defined
as follows:

gpZ̄1, Z̄2, z̄3, z̄4, z̄5, z̄6, z̄7q

“

«

`

z̄5
z̄6
ˆ Z̄1 ` Z̄2

˘´1
ˆ
`

z̄5
z̄6
ˆ z̄3 ` z̄4

˘

,

z̄7

ff

.
(88)

which is a composition of differentiable functions, yielding a
smooth function. Now, we can express fpθ0q “ gpQ̄bpθ0qq,
θ0 “ gpµpθ0qq, fpθ̂bq “ gpQ̄bpθ̂bqq , f‹pθ̂bq “ g‹pQ̄n,bpθ̂bqq
and fpθ̂bq “ θ̂b (based on the fixed-point property) as smooth
function of means and consequently

?
brfpθ0q ´ θ0s “

?
brgpQ̄bpθ0qq ´ gpµpθ0qqs. (89)

Based on Theorem 2.2 in [55], we have
?
brQ̄bpθ0q ´ µpθ0qs „

?
brQ̄‹

bpθ0q ´ Q̄bpθ0qs,
?
brQ̄‹

bpθ0q ´ Q̄bpθ0qs „
?
nrQ̄‹

n,bpθ0q ´ Q̄bpθ0qs
(90)

and since the estimator θ̂b is consistent, we can show that
?
nrQ̄‹

n,bpθ0q ´ Q̄bpθ0qs „
?
nrQ̄‹

n,bpθ̂bq ´ Q̄bpθ̂bqs. (91)

Given g is a smooth function, the following holds using
Lemma 8.10 given in [55],

?
brgpQ̄bpθ0qq ´ gpµpθ0qqs

„ ∇gpµpθ0qq
?
brQ̄bpθ0q ´ µpθ0qs,

?
nrgpQ̄‹

n,bpθ̂bqq ´ gpQ̄bpθ̂bqq

„ ∇gpµpθ̂bqq
?
nrQ̄‹

n,bpθ̂bq ´ Q̄bpθ̂bqs.

(92)

Therefore, we have
?
brgpQ̄bpθ0qq ´ gpµpθ0qqs

„
?
nrgpQ̄‹

n,bpθ̂bqq ´ gpQ̄bpθ̂bqqs
(93)

which basically proves
?
brfpθ0q ´ θ0s „

?
nrf‹pθ̂bq ´ θ̂bs (94)

As discussed earlier, rI´∇fpθ̂bqs
´1 is a consistent estimate

of rI´∇fpθ0qs
´1. Therefore, we have
?
bpθ̂b ´ θ0q „

?
npθ̂

R‹

n,b ´ θ̂bq
?
bpθ̂b ´ θ0q „

?
npθ̂n ´ θ0q

?
npθ̂n ´ θ0q „

?
npθ̂

R‹

n,b ´ θ̂bq

(95)

where they will converge to the same limiting distribution as
n and b tend to infinity.
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PROOF OF THEOREM 3

To begin with the proof, it is assumed a certain proportion of
observations in Y are contaminated by outliers that no longer
comply with the linear regression model given in equation (1).
Basically, we will show that if there are at least p non-outlying
observations in a bootstrap sample, it is guaranteed the FRB
β̂R‹n remains bounded. Hence, we will determine under what
conditions, the FRB β̂R‹n becomes unbounded or equivalently
the maximum bias goes to infinity. The FRB β̂R‹n is given by

β̂R‹n “ Mnpβ̂
1‹
n ´ β̂nq ` dnpσ̂

1‹
n ´ σ̂nq (96)

where Mn and dn can be computed by using equation (33)
by changing b to n and

`

y̌, X̃
˘

to
`

y,X
˘

. It is easy to show
that correction factors Mn and dn depend on the original data
set Y rather than bootstrap sample and stay bounded if the
original τ -estimator β̂n does not break down. Next, we need
to discuss how β̂1‹

n and σ̂1‹
n are influenced by bootstrapping.

Recall from equation (31) that

σ̂1‹
n “

σ̂n
nδ

n
ÿ

l“1

ρ0

`
y‹l ´ x‹T

rls β̂n

σ̂n

˘

(97)

which implies σ̂1‹
n remains bounded for any bootstrap sample

due to boundedness of ρ0p¨q. Subsequently, we will study
under what conditions one-step bootstrap τ -estimates β̂1‹

n can
break down. β̂1‹

n is given by

β̂1‹
n “

”

n
ÿ

l“1

x̃‹rlsx̃
‹T
rls

ı´1” n
ÿ

l“1

ỹ‹l x̃
‹
rls

ı

, (98)

where x̃‹
rls “

a

ŵ‹l x
‹
rls, ỹ

‹
l “

a

ŵ‹l y
‹
l and ŵ‹l is given by

ŵ‹l “
ŵ‹τρ

1

0

` r̂‹l
σ̂n

˘

` ρ
1

1

` r̂‹l
σ̂n

˘

r̂‹l
,

ŵ‹τ “

řn
l“1

“

2ρ1

` r̂‹l
σ̂n

˘

´ ρ
1

1

` r̂‹l
σ̂n

˘ r̂‹l
σ̂n

‰

řn
l“1 ρ

1

0

` r̂‹l
σ̂n

˘ r̂‹l
σ̂n

,

r̂‹l “ y‹l ´ x‹Trls β̂n.

(99)

Thus, β̂1‹
n can be expressed as the solution of a least-square

problem with the observations
`

ỹ‹, X̃‹
˘

. It can be inferred
from the equation (99) that the weights ŵ‹l will remain
bounded as r̂‹l approaches infinity. Therefore, one needs to
verify that as long as there are at least p good, non-outlying
observations within the bootstrap sample, the corresponding
one-step bootstrap estimate β̂1‹

n will remain bounded. In other
words, it would suffice to show that contamination by outliers
will influence one-step bootstrap estimate β̂1‹

n by a finite
amount whose value is independent of outliers.

The remaining of the proof follows exactly that of Theorem
2 in [21] with an exception c1 is assumed to be greater than
or equal to c0 or equivalently c1 “ maxpc1, c0q without loss
of generality.

PROOF OF THEOREM 4

According to Theorem 3, the qunatile estimates q̂‹t obtained
by FRB employing τ -estimator can breakdown under two
scenarios as follows:

‚ If β̂b is an unreliable estimate of β0, which may be
attributed to the higher proportion of outliers than the
finite-sample breakdown point of the estimator in Y̌.

‚ If the number of bootstrap samples containing less than
p good, non-outlying observations constitutes at least t%
of the total number of bootstrap samples, B.

Unreliable implies the estimate does not remain bounded any
longer. In regard to RSOB-T replicates, all the bootstrap
qunatiles q̂˚t , t P

`

0, 1
˘

, will be driven above any bound if
β̂b is already unreliable. By contrast, we can show all the
bootstrap quantile estimates q̂˚t will remain bounded under
the given assumptions of the theorem with high probability
approaching to one in large-scale datasets, n Ñ 8, as long
as β̂b is reliable, i.e. the proportion of outliers in Y̌ is less
than the finite-sample breakdown point of the estimator. This
implies all bootstrap samples formed according to RSOB-T
scheme will contain at least p good observations.

Following a similar approach given in Theorem 1 and the
relationship 34 between τ -scale and M-scale, it is easy to show
that finite-sample breakdown of τ -estimator is the same as
the finite-sample breakdown point of S-estimator. Under the
given assumptions, the finite-sample breakdown point of S-
estimator is given by P. Rousseuw in theorem 1 of [56]. Then,
the finite-sample breakdown point of τ -estimator is equal to
that of S-estimator as follows:

ε˚pβ̂b, Y̌q “
tb{2u´ |Ŝ| ` 1

b
(100)

where the initial estimate of β0 with high breakdown is an
S-estimate of β0. Considering β̂b is a bounded and reliable
estimate of β0, there exists at least h “ b´

`

tb{2u´ |Ŝ| ` 1
˘

non-outlying observations. Using lemma 1 in [22], all
observations within Y̌ will be drawn at least once in the
bootstrap sample with high probability converging to 1 as
nÑ8 (Big Data). Given the assumption of general position
and the fact that h ą |Ŝ| implies there exists at least more
than |Ŝ| non-outlying observations in the bootstrap sample,
we can conclude all bootstrap quantiles q̂‹t are bounded and
reliable with high probability converging to 1 as nÑ8 (Big
Data).
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