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A Radar Signal Deinterleaving Method Based on
Semantic Segmentation with Neural Network

Wang Chao, Sun Liting, Liu Zhangmeng, and Huang Zhitao

Abstract—Radar signal deinterleaving is an important part
of electronic reconnaissance. This study proposes a new radar
signal deinterleaving method based on semantic segmentation,
which we call ”semantic segmentation deinterleaving” (SSD). We
select representative sequence modeling neural network (NN)
architectures and input the difference of time of arrival of the
pulse stream into them. According to semantics contained in
different radar signal types, each pulse in the pulse stream is
marked according to the category of semantics contained, and
radar signals are deinterleaved. Compared to the traditional
deinterleaving method, the SSD method can adapt to complex
pulse repetition interval (PRI) modulation environments without
searching the PRI or PRI period. Multiple rounds of search
and merging operation are not required for radar signals with
multiple pulses in a period. Compared to other deinterleaving
methods based on NNs, the SSD method does not need to digitize
the data and train a network for each target type. The SSD
method also does not need to iterate input and output data.
The proposed method has high robustness to pulse loss and
noise pulses. This research also shows that recurrent NNs still
have more advantages than convolutional NNs in this sequence
modeling task.

Index Terms—Radar signal deinterleaving, semantic segmen-
tation, difference of time of arrival (DTOA), bidirectional gated
recurrent unit (BGRU), bidirectional long short-term memory
(BLSTM), dilated convolutional network (DCN).

I. INTRODUCTION

In electronic warfare, to obtain information about a target
radar, it is necessary to use electronic reconnaissance equip-
ment for reconnaissance and interception of the corresponding
target radar signal. In an actual electromagnetic environment,
there are often other electromagnetic signals beside the target
radar signal. In that case, data collected by electronic recon-
naissance equipment may contain information from different
targets, and the intercepted pulse stream may also contain
interleaved pulses from different radiation sources, as shown
in Fig. [T} Full pulse data are pulse description words for each
pulse output in chronological order in electronic reconnais-
sance equipment. Pulse description words include the time
of arrival (TOA), direction of arrival (DOA), pulse width
(PW), radio frequency (RF), pulse amplitude (PA), and other
information about each pulse. Radar signal deinterleaving,
which is an important part of electronic reconnaissance, is
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essentially to deinterleave the interleaved pulse description
words belonging to different radiation sources in the full pulse
data.

Semantic segmentation is an important task in image pro-
cessing. It uses feature information about different categories
of targets, namely semantics, to mark each pixel in an image
according to the category of the target the pixel belonged to.
This method can segment different target types in an image
and is also known as dense prediction [1]]. In recent years,
neural networks (NNs) have become the most important tool
and a topic of active research of image semantic segmentation.

In this paper, a new radar signal deinterleaving method
based on semantic segmentation is applied to radar signal
deinterleaving, which we call “semantic segmentation dein-
terleaving” (SSD). According to feature information about
different radar signal types, each pulse of interleaved pulse
stream is marked according to the category of the target
using NNs to deinterleave different radar signal types in a
pulse stream. This method can realize signal deinterleaving
of multiple radar targets through one network and one step,
as shown in Fig. 2] It has significant advantages over other
methods.

Compared to the traditional methods [2], [3], [4], [S], 6],
(70, 181, 90, [10], [L1], [12], [13]], [14], the proposed method
does not need to search the pulse repetition interval (PRI) or
PRI period and can adapt to complex PRI modulation. When
there are multiple pulses in a period, there is no need to batch
the results of multiple rounds of search. Compared to other
deinterleaving methods based on NNs and automata [[15]], [16],
[17], [18], this method does not require data to be digitized.
There is no need to train a network for each target type and
to iterate input and output data repeatedly. Very precise PRI
values are not required as prior information. This study also
explored which network architecture is more advantageous
among the existing NNs suitable for sequence modeling.

This paper is organized as follows. Section II introduces
literature on radar signal deinterleaving and NNs for image
semantic segmentation and sequence modeling. The charac-
teristics and data model of this task are discussed in Section
III. Based on the analysis presented in Sections II and III,
we determine the NN architecture and deinterleaving strategy
adopted by the proposed method in Section IV. Section V
presents the experimental results and analysis. Section VI
concludes the entire research.
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Fig. 1: Input and label of an interleaved pulse stream.

| Orginal Pulse Streame |

l

’ Neural Network |

l

Pulse Streame of Category 1

Pulse Streame of Category 2
Pulse Streame of Category 3

Fig. 2: Deinterleaving process of the SSD method.
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Fig. 3: Deinterleaving process of the traditional methods based
on found PRI.

II. RELATED WORK
A. Radar signal deinterleaving

The research of radar signal deinterleaving can be divided
into two categories: deinterleaving based on multi-parameter
and deinterleaving based on arrival time information. The
former makes comprehensive use of the TOA, DOA, PW, RF,
and PA, while the latter uses only the TOA. This paper studies
the deinterleaving method based on arrival time information.

The radar PRI is the interval between fronts of adjacent
pulses when the radar transmits signal. In the deinterleaving
methods based on TOA, an important concept is to use the
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Fig. 4: Deinterleaving process of existing methods using neural
nework.
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periodicity of radar PRI. This concept first finds the radar PRI
or PRI period from information about the difference of TOA
(DTOA) of the pulse stream and then uses the found PRI
or PRI period to search the target radar pulse from the pulse
stream, as shown in Fig.E} 20, 131, 140, 151, 16l [71, [8]. Some
methods use the histogram of DTOA to obtain radar PRI, such
as cumulant difference histogram [3]] and sequential difference
histogram (SDIF) [4]], while others use DTOA matrix to find
PRI [7]], [8]]. Another method involves obtaining the spectrum
of PRI through the transformation of arrival time and then
extracting the real PRI [5], [|6]. PRI transform algorithm has
attracted much attention because of its excellent harmonic
suppression performance (PRI-Tran) [5].

The above methods have several shortcomings. First, when
radar signal pulses are dense or the target pulse loss rate
is high, it is easy to find the wrong PRI. Second, when
pulses belonging to different targets approach, it is difficult
to distinguish them accurately. Third, when searching for
potential PRI and target pulses, it is necessary to set thresholds
and tolerances based on experience, making the deinterleaving
effect prone to large fluctuations. Moreover, the threshold is
very sensitive to the data quality and the deinterleaving effect
may fluctuate significantly when the data quality changes.
Fourth, these methods require iterating input and output data
repeatedly to find new PRI and search pulses, which increases



the complexity of the algorithm and requires more time.
Especially, when the number of pulses in a period is large [J3]],
[4], [S]], the process of multiple rounds of searching for PRI
period and pulses may consume a lot of time. Fifth, after the
deinterleaving, the PRI modulation mode of the target radar
signal is still unknown. So it is necessary to recogonize the
modulation mode of target radar signal.

In other methods, a radar pulse stream with periodical PRI
is modeled as a linear dynamic model, and the Kalman filter is
used for deinterleaving [9]], [10], [11]], [12]. Some researchers
have also attempped to apply the Hidden Markov Model to
radar signal deinterleaving [13[]. The algorithmic processes of
these methods work only when some pre-assumptions are met
for the streams, and they are complicated to be packaged for
practical usages.

Researchers have attempted to use NNs to classify pulses
very early, but since NNs were not fully developed at that
time, they could only deal with relatively simple problems
[19], [200], [21]], [22]]. Recurrent NNs (RNNs) have been
introduced to deinterleave radar signals in [[15[]. They treat
the deinterleaving problem as a prediction problem, so only
unidirectional information about the pulse sequence is used to
judge the attribution of each pulse. Autoencoders are used to
reduce noise pulses, but can not find the target pulses [16].
When autoencoders are used to find target pulses, accurate
prior information about target pulse parameters is required
[17]. To facilitate NN processing of radar full pulse data, these
methods [[15], [16], [[17] use small time units to digitize time
information such as TOA, DTOA, PRI, and PW, as shown in
Fig.[5] This operation introduces three problems, which we call
“resolution problems”: first, it introduces errors and reduces
the accuracy of time information [[15]], [16], [17]; second, when
there is more than one pulse in a time unit, only one pulse
is presented, and information about other pulses is covered
[15], [16], [17]. Third, the methods based on this operation
may mark a position with no pulse as having one [[16f], [[17].
In addition, the above method needs to train a network for
each category of radar signal, and only one target can be
deinterleaved in each output step, as shown in Fig. @ In other
words, the existing method completes a binary classification
task in each output step, so it is necessary to iterate input and
output data repeatedly.

Finite automata have also been used for radar signal deinter-
leaving by researchers, but they also require prior information
about target pulse parameters [[18].

B. NNs for semantic segmentation and sequence modeling

In recent years, the application of NN in the field of image
semantic segmentation has been thoroughly studied, and some
important results have been produced [|1]], [23]], [24]], [25], [26],
[27], 28], [29]. To achieve a good semantic segmentation
effectiveness, some important concepts have been proposed,
such as “fully convolutional network [27]],” “multi-path refine-
ment network,” “U-Net architecture [29],” “encoder-decoder
architecture [1], [23]],” “fully connected conditional random
field [24],” and “atrous spatial pyramid pooling [25].” These
concepts have achieved excellent effects in image semantic
segmentation.

NNs are widely used in sequence modeling tasks. The RNN
is the most popular sequence modeling architecture so far and
has been considered the best architecture for a long time.
People began studying the RNN model in the 1980s [30],
[31], [32]], and proposing the Jordan Network in 1986 [32]
and the Elman Network in 1990 [30]. The latter became the
basis of some RNN architectures with a higher application
value. In 1997, Jurgen Schmidhuber proposed the long short-
term memory (LSTM) architecture [33]], which uses gated unit
and memory mechanism to improve RNNs in training. In the
same year, Mike Schuster proposed a bidirectional RNN model
(BRNN) [34]], which enables RNNs to simultaneously use se-
quence information in both forward and backward directions.
The development of the gated recurrent unit (GRU) further
improved the training problem of RNNs [35]]. The application
of RNN encoder—decoder effectively solves the sequence to
sequence (seq2seq) problem [36], [37]]. The introduction of the
attention-based models significantly improves the performance
of the RNN-based model on many tasks [38]], [39]. The use
of transformer models pushes attention-based models to new
heights while abandoning the RNN architecture [40].

The application of convolutional NNs (CNNs) in sequence
modeling tasks can also be traced back to the 1980s [41], [42],
[43]. In recent years, CNN-based models have also performed
excellently in some sequence modeling tasks, including au-
dio synthesis, word-level language modeling, and machine
translation, and can achieve state-of-the-art performance [44],
[45], [46], [47], [48]] in some tasks. These results prompt
researchers to ponder: can the CNN architecture outperform
the RNN architecture in more tasks, or is it simply limited
to some specific tasks? Shaojie Bai et al. conducted an
empirical study on this question [49] and proved that the
CNN architecture outperformed the RNN architecture in many
sequence modeling tasks, while these tasks are on the RNN’s
“home Turf.” The authors summarize this CNN architecture
as a temporal convolutional network (TCN) [49].

III. TASK CHARACTERISTICS AND DATA MODEL
A. Input and output form

For the input data to have smaller variance and facilitate NN
processing, the proposed method inputs DTOA of the pulse
stream into the NN instead of TOA. When the pulse stream
contains only a single radar target, the DTOA of the pulse
stream is the real PRI of the target. When the pulse stream
contains pulses from multiple radiation sources or pulses from
a single target arrive through multiple paths, the DTOA of the
pulse stream is chaotic. To make DTOA and TOA equal in
length, we add O before DTOA as the first value of DTOA.
The output of the proposed method is the label information
about the category of each pulse. When training the NN, the
DTOA and pulse labels to input are into the network, as shown
in Fig. [1]

Unlike existing deinterleaving methods based on NNs [15]],
[16], [17], the proposed method does not digitize time in-
formation as input to avoid adverse effects caused by it.
In the output, each pulse is judged to determine the target
category to which it belongs, rather than whether it belongs



to the target we want. In other words, the processing result of
the proposed method is multi-classification, whereas that of
existing methods is typically binary classification.

B. Difference between this task and image semantic segmen-
tation and other sequence modeling tasks

Radar signal deinterleaving based on semantic segmentation
is a problem of mapping an input sequence to an output
sequence. It is different from image semantic segmentation
and seq2seq tasks such as natural language processing (NLP).

1) Target points are unconcentrated and throughout the
sequence: In the pulse stream, the pulses of different targets
are interleaved and information about the same target runs
through the entire pulse stream. However, in image semantic
segmentation, the pixels of the same object are typically
concentrated in one or several regions.

2) There is a strict mathematical relationship between the
data at each input point of the sequence: Since the input
is DTOA, the information loss of one data point completely
changes the information in the pulse stream, so pooling is not
allowed. Image semantic segmentation and seq2seq tasks do
not have this feature.

3) The input and output are of equal length: The input
and output of this task are equal length sequences. In some
sequence modeling tasks such as machine translation, the input
and output are often not of equal length.

4) The input at each point is meaningless on its own:
Similar to image data, the input data of each point in this
task are meaningless alone. Only when they are computed
along with other input data, can their information be reflected.
However, in NLP tasks, each input word has a specific
meaning.

5) Forward and backward information is equivalent: In the
deinterleaving task, the forward and reverse information about
a sequence is completely equivalent, which is significantly
different from many sequence modeling tasks. Therefore, in
this task, using bidirectional information about the sequence
simultaneously is more conducive to accurately judging the
category of each pulse.

C. Limitations of the deinterleaving method based on semantic
segmentation and the solution

The deinterleaving method based on semantic segmentation
faces the same problem as image semantic segmentation, that
is, it cannot distinguish multiple objects belonging to the same
category in a single input. In image processing, this problem
is solved by instance segmentation [SO], [S1], [52], which
typically consists of two contents: semantic segmentation
and object detection, as shown in Fig. |§| [50]. However,
this solution cannot be applied to radar signal deinterleaving
because, in an image, pixels belonging to the same target are
concentrated, whereas in a pulse stream, pulses belonging to
the same target are not. Pulses from one target are interleaved
with pulses from other targets and distributed in the entire
pulse stream. The method to solve this problem is to extract
more different semantics from target radar signals and divide
radar signals into more classes. This will be discussed in
section IV.

Fig. 6: Effectiveness of image instance segmentation.

D. Data model

PRI modulation mode has an important effect on radar
function and performance. In this paper, we define and use
three PRI modulation modes in simulation experiments. The
DTOA of radar signals with these three PRI modulation
modes is shown in Figs. [0 The subfigures show the
DTOA of radar signals under different conditions: a) DTOA
of nondestructive radar signal, that is, PRI of radar signal; b)
DTOA of radar signal with pulse loss; ¢) DTOA of radar signal
with random noise pulses; and d) DTOA of radar signal with
pulse loss and random noise pulses.

1) Constant PRI: The radar PRI remains a constant, and
the PRI sequence can be represented as

PRI, = PRIg,n=1,2,3.... (1)

2) Dwell and Switch (D&S) PRI: Radar PRI changes in
groups, with the same number of pulses in each group.
The value of PRI changes periodically between groups. Its
mathematical model is expressed as

PRI, = PRI, ;,0<j <J, (2)

PRI, = PRI, Nk 3)

PRI, is the first PRI in each group, J represents the number
of pulses in each group, and K represents the number of pulse
groups in one period, that is, the number of PRI values in a
period.

3) Staggered PRI: Radar PRI consists of several fixed
values and changes periodically. The PRI sequence can be
described as follows:

PRI, = PRI, . (4)

M represents the number of PRI values in a period.

IV. NEURAL NETWORK ARCHITECTURE AND
DEINTERLEAVING STRATEGY

A. What kind of NN should be selected for this task

According to the concept of the proposed method, we select
a NN, and it is required to have good semantic segmentation
ability for sequence data with strong mathematical relations.
In Section III, we analyzed the difference between this task
and image semantic segmentation and seq2seq tasks such as
NLP.

Therefore, the NN used in the proposed method needs to
meet the following requirements: good ability at sequence
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modeling, full use of all information about the entire sequence
(or a sufficiently large receptive field), equal length of input
and output, and no pooling.

Accordingly, we select the BRNN and dilated convolutional
network (DCN) but ignore the classical NNs used for image
semantic segmentation [1], [23], [24], [25], [26], [27], [28],
[29] and used for seq2seq tasks, [36[], [37], [38], [39], [40], e.
g. encoder—decoder structures architecture.

1) BRNN: For DTOA data, forward and reverse information
is equivalent. To make full use of the complete information
about the sequence when determining the category of each
pulse, the BRNN is used in this study to process DTOA data.
Then, the output of each step of the BRNN is connected with
the full connected layer to realize the classification of each
time step, as shown in Fig. [I0] This study uses the LSTM

DTOA of Staggered PRI Signal
200 99 9 20

0 DTOA of Staggered PRI Signal with Pulse Loss

150

<
oot S
o | | |
[ i
| (ol
sofy [l /Y W 1)
i J Ul i il
|
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Pulse Index Pulse Index
(a) (b)
DTOA of Staggered PRI Signal with DTOA of Staggered PRI Signal with
Random Noise Pulses Pulse Loss and Random Noise Pulses
200 200
|
150 150 i |
I |
< < | |
S100f | | 2 100 | ]
o ‘ a | |
\ i [ I
i 50 | | il
| 5 (7 | i [
(N | il | \ | | K
! ! (A ! I
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Pulse Index Pulse Index
(© (@

Fig. 9: DTOA of Radar Signal with Staggered PRI

Output Layer

Full Connected Layer

Backward Layer

Forward Layer

Input Layer

Fig. 10: Deinterleaving process of BRNN.

and GRU architectures of RNN, that is, bidirectional GRU
(BGRU) and LSTM (BLSTM), to achieve this task.

2) DCN: Owing to TCN’s [49] outstanding performance
in sequence modeling tasks, this study used TCN as a refer-
ence when constructing a DCN. In terms of residual module
construction, a DCN 1is generally the same as a TCN. The
only difference is that, to keep the length of the feature map
unchanged in each convolution step, both sides of the feature
map are padded symmetrically rather than adopting causal
convolution, as shown in Fig. [TT] This operation considers
the equivalence of forward and reverse information. In this
study, we set the convolution kernel size of the DCN as
3 and 8 residual modules. This makes the receptive field
of each convolution kernel in the last layer of the network
sufficient to cover the length of the input data. After the
residual module, we use a common convolution to reduce the
number of channels to the number of target classes to achieve
the classification of each pulse.

B. How to use semantic information—deinterleaving strategy

Semantic segmentation is based on the characteristics of
different categories of objects. Analysis in Section III indicates



Fig. 11: Dilation and padding of DCN.

TABLE I: Semantic information for radar signal deinterleaving

semantic information category
category 1: constant PRI
category 2: D&S PRI

category 3: staggered PRI

PRI modulation mode

category 1: (a, b)
category 2: (b, ¢)

PRI value category 3: (c, d)

that sufficient different semantics need to be extracted from
radar signals to achieve a good deinterleaving effect. This part
mainly analyzes how to deinterleave radar signals using PRI
modulation modes and PRI parameters as semantics separately
and how to use both for deinterleaving comprehensively.

1) Take PRI modulation modes as semantic information:
Different PRI modulation modes represent different informa-
tion, that is, different semantics, as shown in Table [ The
target radar signals can be divided into different categories
accordingly. When the intercepted radar pulse stream contains
multiple targets with different PRI modulation modes, PRI
modulation information can be used as semantic information,
and the category of each pulse can be predicted on the basis
of this to achieve radar signal deinterleaving.

2) Take PRI parameters as semantic information:. When
multiple target radars adopt the same PRI modulation mode,
the deinterleaving method based on semantic segmentation
with PRI modulation modes is limited and cannot distinguish
such multiple targets. In this case, PRI parameter information
can be used as semantics to distinguish different targets. That
is, the radar signal with PRI value located in (a, b) is the
first subclass, the radar signal located in (b, c) is the second
subclass, the radar signal located in (c, d) is the third subclass,
and so on, as shown in Table m How to set the specific value
range of the subclass depends on the signal and the specific
task environment.

3) Comprehensive use of PRI modulation modes and PRI
parameters: It was highlighted in Part C of Section III that we
need sufficient semantics to divide radar pulses into different
classes to solve the problem of having multiple targets in the
same class. Here, we have proposed deinterleaving methods
using PRI modulation and PRI parameters as semantic infor-
mation. In this section, two methods are proposed to make
comprehensive use of this information for deinterleaving. One
is a parallel deinterleaving method, using PRI modulation
modes and PRI parameters simultaneously, as shown in Fig.
The second is the serial deinterleaving method, which
first uses PRI modulation and then uses PRI parameters for

deinterleaving, as shown in Fig. [I3] The former has fewer
deinterleaving steps and needs only one NN. The latter needs
to be completed step by step and uses multiple NNs. However,
the latter can adapt to more complex deinterleaving environ-
ments, e. g., when the semantic categories of radar pulses are
diverse and the capacity of NNs is limited.

C. Loss function

In this task, each sample input to the NN is the DTOA of
a pulse stream. The predicted loss of each sample by the NN
is the average of the predicted loss of all pulses in the pulse
stream, i.e.,

1 N
Loss = N anl lossy,. (@)

loss,, is the predicted loss of the nth pulse by the NN. We
use a cross-entropy loss function to evaluate the prediction
performance of each pulse of the NN, which can be described
below:

c A
loss = — Z . P.log(P.). (6)

C represents the category number of radar signals in the pulse
stream. P, denotes whether the current pulse belongs to the

A
cth radar signal category, and its value is either 0 or 1. P,
represents the probability that the current pulse belongs to the
cth radar signal category in the NN’s prediction.

V. EXPERIMENTS

A. Data simulation

According to the definition of PRI modulation modes in
Part D of Section III, the following designs are developed for
simulation data.

1) For all PRI modulation modes, the PRI value satisfies
the condition 20 < PRI < 100 unless we specify it.

2) For the D&S PRI, the number of pulses in each group
satisfies the condition 4 < J < 6, and the number of pulse
groups in one period satisfies the condition 4 < K < 6.

3) For the staggered PRI, the number of PRI values in a
period satisfies the condition 3 < M < 10 unless we specify
it.

4) In this paper, the Gaussian distributed deviation is added
to TOA to simulate measurement errors, and the standard
deviation is 0.1. Then, the DTOA is generated on this basis,
and the length of the DTOA is 1,000.

5) In this paper, the problem of target pulse loss and random
noise pulses in intercepted pulse stream is considered. The
pulse loss rate of the target is represented by p;, and the ratio
of the number of random noise pulses to the average number
of the target radars pulses in the intercepted pulse stream is
represented by p,,. The proportion of the number of random
noise pulses to the total number of pulses can be calculated

by p:_;j —, and D represents the number of target radars.
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B. Design of experiments

According to the deinterleaving strategy proposed in Section
IV, five experiments are designed to verify the feasibility of the
proposed deinterleaving method and compare the performance
of different NNs in addressing this problem.

Experiment 1 verifies the feasibility of deinterleaving radar
signal taking PRI modulation modes as semantics. Experi-
ments 2 and 3 verify the feasibility of deinterleaving radar
signal taking PRI parameters as semantics. Experiment 4 ver-
ifies the parallel deinterleaving method using PRI modulation
modes and PRI parameters simultaneously. Experiment 5 is
used to verify the first step of the serial deinterleaving method,
deinterleaving radar signal with PRI modulation modes when
there are multiple targets per PRI modulation mode. Experi-
ments 2 and 3 verify the second step. p; and p,, of each sample
of the training data are randomly chosen within a certain range.

1) Experiment I—Deinterleaving radar signal with PRI
modulation modes: The target settings are shown in Table
[ For the training data, 0 < p; < 0.25, 0 < p,, < 0.25.

2) Experiment 2—Deinterleaving radar signal of constant
PRI with PRI values: The target settings are shown in Table
[ For the training data, 0 < p; < 0.5, 0 < p,, < 0.5.

3) Experiment 3—Deinterleaving radar signal of staggered
PRI with PRI values: The target settings are shown in Table
[[V] For the training data, 0 < p; < 0.5, 0 < p,, < 0.5.

TABLE II: Target settings in Experiment 1

category | PRI modulation mode | number of targets
1 constant 1
2 D&S 1
3 staggered 1
4 random noise pulse

TABLE III: Target settings in Experiment 2

category V:l;z:t;s?g;R(}f number of targets
1 (20,40) 1
2 (40,60) 1
3 (60,80) 1
4 (80,100) 1
5 random noise pulse

4) Experiment 4—Deinterleaving radar signal using PRI
modulation modes and PRI parameters simultaneously: The
target settings are shown in Table For the training data,

TABLE IV: Target settings in Experiment 3

value range of | number of pulses
category staggered PRI in a period number of targets
1 (20,40) 7 1
2 (40,70) 7 1
3 (70,100) 7 1
4 random noise pulse
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Fig. 13: Serial deinterleaving method.

TABLE V: Target settings in Experiment 4

PRI modulation mode
category number of targets
and value range
1 constant PRI in (20,60) 1
2 constant PRI in (60,100) 1
3 staggered PRI 1
4 random noise pulse

TABLE VI: Target settings in Experiment 5

category PRI modulation mode ber of pulses | number of
and value range in a period targets
1 constant PRI in (20,60) 1 1
constant PRI in (60,100) 1 1
2 staggered PRI in (20,60) 7 1
staggered PRI in (60,100) 7 1
3 random noise pulse

0<p <0.5,0< p, <0.5.

5) Experiment 5—Deinterleaving radar signal with PRI
modulation modes when there are multiple targets per PRI
modulation mode: The target settings are shown in Table [V1}
For the training data, 0 < p; < 0.25, 0 < p,, < 0.25.

C. Result

The network capacity in the five experiments and the
overall performance on the test set (produced under the same
conditions as the training set) are listed in Table [VII]

In addition, we tested the trained model on datasets gen-
erated under three different conditions: a) there is pulse loss,
but no random noise pulse, i.e., p,, = 0; b) there is no pulse
loss, i.e., p; = 0, but there are random noise pulses; c) there

are both pulse loss and random noise pulses, and p; = p,,. The
results are shown in Figs. [T4{I8]

The experiments have proven the feasibility of the radar
signal deinterleaving method based on semantic segmentation
and the deinterleaving strategy proposed in Section IV. This
method does not require the target PRI to be found first and
can adapt to complex PRI modulation modes with superior
accuracy and robustness. The experiments also proves that the
classical RNN architecture is better than the CNN architecture
in this task.

From the results of controlled experiments, SDIF and PRI-
TRAN methods often do not achieve the best deinterleaving
accuracy when the data quality is the best. This is because
we adjust the threshold to make the overall performance of
these methods the best in the sample, which also reflects the
shortcomings of such methods. In addition, in this kind of
method, the remaining pulses after sorting are regarded as
noise pulses. Therefore, in some cases, when the proportion
of noise pulses increases, the overall sorting accuracy will
increase, but in fact, the sorting accuracy of target pulses
decreases.

VI. CONLUSION

In this paper, a radar signal deinterleaving method based
on semantic segmentation is proposed. It uses semantic in-
formation contained in different radar signals to label pulses
that constitute the same semantics as the same category. Two
deinterleaving strategies comprehensively using PRI modula-



TABLE VII: Network capacity and overall performance in the
five experiments

experiment | model size aceuracy
BLSTM | BGRU | DCN | SDIF | PRI-Tran
1 ~ 611K 91.1 89.3 86.4 83.2 60.6
2 ~ 211K 98.2 94.1 86 92 86.5
3 ~ 611K 95.5 95.8 71.5 832 41
4 ~ 611K 91.5 90.7 84.2 90.1 79.9
5 ~ 611K 95.5 95.4 83.5 \ \

tion modes and parameters are also proposed. Based on this
research, we obtained the following conclusions.

1) Compared to the traditional methods [2f], [3], [4], [5],
(e, 170, 181, o0, (101, [LIfI, [12], [13], [14], the SSD method
does not need to find PRI or PRI period first and then conduct
a sequence search, so it can adapt to complex PRI modulation
environments. It does not need to iterate over data. For radar
signals with multiple pulses in one period, multiple rounds
of search and merging operations are not required. After
deinterleaving with the SSD method, the PRI modulation mode
of target radar signal is known, and PRI modulation mode
recognition is no longer needed.

2) Compared to other deinterleaving methods based on NNs
and automata [15[, [[16f], [[L7]], [[18]], the SSD method does
not require digital data processing, avoiding the resolution
problem; this method can output multiple targets in one
step with one network, without training a network for each
target category and without iterating input and output data
repeatedly; only the PRI modulation modes and parameter
range are required for training, without very accurate PRI
values as prior information in this method.

3) The SSD method is easy to train and converge and
still maintains ideal accuracy and good robustness in complex
deinterleaving environments with a high pulse loss rate and
noise to target ratio.

4) We propose two deinterleaving strategies that compre-
hensively use PRI modulation modes and parameters. In the
future, we will investigate which method is more effective and
which scenarios they are applicable to.

5) In this paper, PRI modulation modes and parameters
are proposed as semantic information. However, the method
proposed in this paper still has limitations when PRI mod-
ulation modes of targets are the same and the PRI values
or value range overlap. At this point, other parameters of
full pulse data such as RF and PW can be used as semantic
information to further divide the target into more categories.
The deinterleaving method based on semantic segmentation
and multi-parameter will also be our future research direction.

6) Our research shows that the LSTM and GRU have
obvious advantages over DCN in this task. This may indi-
cate that, although the performance of the CNN architecture
has exceeded that of the RNN architecture in representative
sequence modeling tasks [49], RNNs are still superior to
CNNs in sequences with strong mathematical relationships.
This problem depends on further research and proof in the
field of deep learning in the future.
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Fig. 16: Deinterleaving radar signal of staggered PRI with PRI values.
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Fig. 18: Deinterleaving radar signal with PRI modulation modes when there are multiple targets per PRI modulation mode.

[34]

(351

[36]

[37]

[38]

(391

[40]

[41]
[42]

[43]

[44]

[45]

[46]

Computation, vol. 9, pp. 1735-1780, 1997. @ volutional sequence to sequence learning,” in /CML, 2017, Conference
M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net- Proceedings.

works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.  [47] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. Oord, A. Graves, and
2673-2681, 1997. [[-B] K. Kavukcuoglu, “Neural machine translation in linear time,” 2016. [[I-B]
J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, “Empirical evaluation [48] A.N.D. Oord, D. Sander, Z. Heiga, S. Karen, V. Oriol, G. Alex, K. Nal,
of gated recurrent neural networks on sequence modeling,” Eprint Arxiv, S. Andrew, and K. Koray, “Wavenet: A generative model for raw audio,”
2014. Bl SSW, 2016. B

L. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning [49] S. Bai, J: Z. Kolter, and V. Koltun, “An empirical evaluatiop of generic
with neural networks,” pp. 3104-3112, 2014. [[-B} [[V-3] convolutional and recurrent networks for sequence modeling,” ArXiv,
K. Cho, B. V. Merrienboer, C. Gulcehre, D. Ba Hdanau, F. Bougares, vol. ab5/1803'91271} 2018. @ [-B} =24 “ .

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn [50] K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask r-cnn,” IEEE
encoder-decoder for statistical machine translation,” Computer Science, Transactions on Pattern Analysis & Machine Intelligence, 2017. [-C}

2014. [-B] [[V-A]

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by (511 S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for

L X . ) . instance segmentation,” /EEE, 2018. @
jointly learning to align and translate,” Computer Science, 2014. [[I-B] [52] X. Wang, T. Kong, C. Shen. Y. Jiang, and L. Li, SOLO: Segmenting

J. C. Y.Bengio, D.Bahdanau, D.Serdyuk, and K. and, “Attention-based Objects by Locations.  Computer Vision — ECCV 2020, 2020. IIEI

models for speech recognition,” NIPS, 2015. [I-B}

A. Vaswani, N. Shazeer, P. Niki, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS 2017,
2017, Conference Proceedings. [[I-B] [V-A]

T. Sejnowski, “Parallel networks that learn to pronounce english text,”
Complex Systems, vol. 1, 1987. @

G. E. Hinton, “Connectionist learning procedures,” Artificial Intelli-
gence, 1989.

A. Waibel, T. Hanazawa, G. E. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” Readings in
Speech Recognition, vol. 1, no. 3, pp. 393-404, 1990. @

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language mod-
eling with gated convolutional networks,” in /CML, 2017, Conference
Proceedings.

G. Jonas, A. Michael, G. David, and Y. N. Dauphin, “A convolutional
encoder model for neural machine translation,” ACL, 2017, vol. a, 2017.

G. Jonas, A. Michael, G. David, Y. Denis, and Y. N. Dauphin, “Con-



	I Introduction
	II RELATED WORK
	II-A Radar signal deinterleaving
	II-B NNs for semantic segmentation and sequence modeling

	III TASK CHARACTERISTICS AND DATA MODEL
	III-A Input and output form
	III-B Difference between this task and image semantic segmentation and other sequence modeling tasks
	III-B1 Target points are unconcentrated and throughout the sequence
	III-B2 There is a strict mathematical relationship between the data at each input point of the sequence
	III-B3 The input and output are of equal length
	III-B4 The input at each point is meaningless on its own
	III-B5 Forward and backward information is equivalent

	III-C Limitations of the deinterleaving method based on semantic segmentation and the solution
	III-D Data model
	III-D1 Constant PRI
	III-D2 Dwell and Switch (D&S) PRI
	III-D3 Staggered PRI


	IV NEURAL NETWORK ARCHITECTURE AND DEINTERLEAVING STRATEGY
	IV-A What kind of NN should be selected for this task
	IV-A1 BRNN
	IV-A2 DCN

	IV-B How to use semantic information—deinterleaving strategy
	IV-B1 Take PRI modulation modes as semantic information
	IV-B2 Take PRI parameters as semantic information
	IV-B3 Comprehensive use of PRI modulation modes and PRI parameters

	IV-C Loss function

	V EXPERIMENTS
	V-A Data simulation
	V-B Design of experiments
	V-B1 Experiment 1—Deinterleaving radar signal with PRI modulation modes
	V-B2 Experiment 2—Deinterleaving radar signal of constant PRI with PRI values
	V-B3 Experiment 3—Deinterleaving radar signal of staggered PRI with PRI values
	V-B4 Experiment 4—Deinterleaving radar signal using PRI modulation modes and PRI parameters simultaneously
	V-B5 Experiment 5—Deinterleaving radar signal with PRI modulation modes when there are multiple targets per PRI modulation mode

	V-C Result

	VI CONLUSION
	References

