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Abstract—We consider estimation under model misspecifica-
tion where there is a model mismatch between the underlying
system, which generates the data, and the model used during
estimation. We propose a model misspecification framework
which enables a joint treatment of the model misspecification
types of having fake features as well as incorrect covariance
assumptions on the unknowns and the noise. We present a
decomposition of the output error into components that relate
to different subsets of the model parameters corresponding to
underlying, fake and missing features. Here, fake features are
features which are included in the model but are not present in
the underlying system. Under this framework, we characterize
the estimation performance and reveal trade-offs between the
number of samples, number of fake features, and the possibly
incorrect noise level assumption. In contrast to existing work
focusing on incorrect covariance assumptions or missing features,
fake features is a central component of our framework. Our
results show that fake features can significantly improve the
estimation performance, even though they are not correlated with
the features in the underlying system. In particular, we show
that the estimation error can be decreased by including more
fake features in the model, even to the point where the model is
overparametrized, i.e., the model contains more unknowns than
observations.

Index Terms—Model uncertainty, model mismatch, robustness.

I. INTRODUCTION

In this paper, we study the linear estimation problem when
the model is misspecified, or in other words, when there is a
mismatch between between the true underlying system and the
assumed model during estimation. In particular, the unknowns
xS ∈RpS×1 and xC ∈RpC×1 generate the noisy observations
y ≈ ASxS + ACxC , with the features in AS ∈Rn×pS
and AC ∈Rn×pC . We consider the setting where this true
underlying system is not fully known, and AC is unavailable
for estimation; hence AC constitute the missing features.
Moreover, the assumed model is misspecified with the fake
features AF ∈Rn×pF . Hence, the mismatched estimator is
based on the misspecified model y ≈ ASxS + AFxF .

Within this framework, we analyze the effect that the fake
features AF have on the estimation performance. Here, the
fake features AF are statistically independent of the under-
lying features AS and AC , hence they have no explanatory
power for the observations y. This formulation allows us to
explore the fundamental relationships between the estimation
performance and the model complexity. In particular, we study
the mismatch between the number of parameters in the true

underlying system, and the number of parameters in the model
assumed during estimation [1]–[13].

Conventional wisdom suggests that overparameterization,
i.e., when the number of tuneable parameters of a model
exceeds the number of data points, degrades the estimation
performance. On the other hand, recent work on double-
descent curves has highlighted how the estimation perfor-
mance can improve as the model complexity increases beyond
the point of overparametrization [3]–[12]. This phenomenon
has been illustrated with various real-world datasets, such
as MNIST [3, Fig. 2-4], CIFAR-10 [3, Fig. S1], TIMIT [3,
Fig. S2], and a wide range of estimators, including neural
networks [3, Fig. 3], random forests [3, Fig. 4]. In this paper,
we contribute to the line of work on overparameterization by
focusing on fake features and error decomposition under a
statistical estimation framework.

Double-descent curves are often observed under some type
of model misspecification, such as missing features [2], [4]–
[6] or incorrectly tuned regularization parameters [11]. In [1],
a preliminary characterization of the least-squares estimation
error with fake and missing features has been presented for
deterministic unknowns. Under isotropic Gaussian features,
and with only missing features, i.e., pF = 0, more explicit
expressions for the estimation error with deterministic priors
are presented in [2] and [4], and in [5] with stochastic priors.
More general covariance structures have been investigated for
the features [6], [8], and connections between the estimation
performance and the effective rank of the covariance matrix
have been studied [7], [14]. Misalignments between the fea-
tures and unknowns have been studied for neural networks [9],
as well as in the asymptotic regime of linear regression with a
special case of noisy fake features [10]. Mismatches between
linear data generation and non-linear estimation models have
been investigated [12]. Double-descent curves have also been
observed in the setting of distributed learning, where each
learner has a subset of the underlying features at its disposal,
effectively creating local models with missing features and
without fake features [15], [16].

Model misspecifications often arise in practical application
scenarios and can drastically affect the performance, such as
in the case of positioning problems [17], channel estimation
for wireless communications [18] and radar applications [19].
Accordingly, robust estimation methods under covariance ma-
trix uncertainties have been investigated under a range of
estimation settings, such as the constrained minimum mean

ar
X

iv
:2

20
3.

03
39

8v
2 

 [
ee

ss
.S

P]
  3

0 
N

ov
 2

02
2



squared error estimator [20], the generalized difference regret
criterion [21] and a maximum a-posteriori estimator [22], as
well as robustness under missing features [23].

An important example of the misspecification scenarios
covered by our formulation, is that of overcomplete dic-
tionaries, i.e., dictionaries that contain more features than
what is needed to represent a given family of signals. In
our formulation, an overcomplete dictionary is obtained when
there are fake features, but no missing features. Overcomplete
dictionaries are commonly used for signal representation [24],
and such representations has been investigated from various
aspects, including finding sparse representations within large
overcomplete dictionaries in the compressive sensing frame-
work [24], and also under dictionary mismatch [25]–[27]. In
contrast to the above line of work, where a low-dimensional
representation is sought, we instead focus on the scenario
where the overcomplete dictionary is directly used.

The aim of this paper is to characterize the estimation per-
formance with the model misspecifications of fake and missing
features. We formulate this problem in the framework of linear
minimum mean squared error (LMMSE) estimation [28]. We
focus on the average estimation performance in terms of the
unknowns, i.e., the mean squared error (MSE). Another type
of model misspecification that we consider is constituted by
potential discrepancies between the true covariance matrices
and those used during estimation. The main contributions of
this work are as follows:

• We present a statistical estimation framework which
introduces a general notion of model misspecification
with both fake features and incorrect covariance matrix
assumptions.

• We provide analytical expressions for the MSE related
to each set of unknowns xS , xC and xF as well as the
output y, as functions of the number of fake features and
missing features, for both under- and overparameterized
settings, i.e., n > pS + pF and n < pS + pF .

• We show that the presence of fake features can sig-
nificantly improve the estimation performance for xS
compared to when there are no fake features; even in the
overparametrized regime, and even though the fake fea-
tures are uncorrelated with the true underlying features.

• Our decomposition of the MSE associated with y in terms
of the MSEs associated with xS , xC and xF quantifies
the difference in the behaviour of these errors.

Consistent with the line of work focusing on missing
features [2], [4]–[6], we show that the error can be very large
if the number of observations n is close to the assumed model
dimension, which in our setting is pS+pF , i.e., the sum of the
number of included underlying features and fake features. The
decrease in error with increasing pF in the overparametrized
regime confirms the presence of double-descent behaviour
even with fake features. Our results further show that even
when the MSE associated with y stays on the same level for
the under/over-parameterized scenarios, the minimum error for
the unknowns xS can be obtained in the overparametrized

scenario with a high number of fake features. These results
also suggest that the model may learn the parameters of the
underlying system even though the output prediction is poor.

The rest of the paper is structured as follows: Section II
presents the problem formulation. In Section III, we provide
our first main result in Theorem 1, which characterizes the
MSE when the assumed noise level is zero. The problem
setting is then generalized in Section IV with a non-zero
noise level assumption, and we present our second main
result in Theorem 2. We illustrate our results with numerical
experiments in Section VI. We provide further discussions in
Section VII, and conclude the paper in Section VIII.

Notation: We denote the Moore-Penrose pseudoinverse and
the transpose of a matrix A as A+ and AT, respectively. The
m×m identity matrix is denoted as Im. The Euclidean norm
and trace operator are denoted by ‖ · ‖ and tr(·), respectively.
We use E

x
[·] or Ex[·] to emphasize that the expectation is

taken with respect to the random variable x. For two random
column vectors z, w, we denote their covariance matrix by
Kzw = Ez,w[(z−Ez[z])(w−Ew[w])T]. For auto-covariance
matrices, we write the subscript only once: Kz = Kzz . We
use the notation (·)+ = max(·, 0). We refer a vector/matrix
with independent and identically distributed (i.i.d.) elements
with N (0, 1) as a standard Gaussian random vector/matrix.

II. PROBLEM STATEMENT

A. The Underlying System and the Misspecified Model

In this paper, we consider noisy observations y which are
generated by the following linear system,

y = Ãx + v = ASxS + ACxC + v. (1)

We refer to the system in (1) as the underlying system. The
following linear model represents a misspecification of the
underlying system

y = Āx̄ + v̄ = ASxS + AFxF + v̄. (2)

We refer to (2) as the misspecified model. Here, the matrix
AS ∈Rn×pS represents the features that are present in both
(1) and (2), and the matrices AC ∈Rn×pC and AF ∈Rn×pF
represent the missing features and the fake features, respec-
tively. The matrices Ã and Ā are composed as

Ã = [AS , AC ]∈Rn×p, (3)

Ā = [AS , AF ]∈Rn×p̄. (4)

The unknowns are denoted by xS ∈RpS×1, xC ∈RpC×1, and
xF ∈RpF×1, respectively, where

x = [xT
S , x

T
C ]T ∈Rp×1, (5)

x̄ = [xT
S , x

T
F ]T ∈Rp̄×1. (6)

We have that p = pS + pC and p̄ = pS + pF . The
vector y ∈Rn×1 denotes the observations, and v ∈Rn×1 and
v̄ ∈Rn×1 denote the observation noise in the underlying
system and the misspecified model, respectively. Figure 1 and
Figure 2 illustrate the underlying system and the misspecified



= +

AS AC xCxSy

+ v

Fig. 1: Illustration of the underlying system. The features in
AS and AC together with the noise v generate the observa-
tions y.

= + + v

AS AF xFxSy

Fig. 2: Illustration of the misspecified model. The features in
AC are missing, and there are additional fake features AF .

model, respectively. Note that the underlying system in (1) can
be equivalently expressed as follows, by setting xF , 0,

y = ASxS + ACxC + AFxF + v, (7)

highlighting the mismatch between the underlying system and
the misspecified model (2).

In the considered setting, the observations in y are generated
by the underlying system in (1) and we are interested in
estimating the unknowns x. We do not have full knowledge of
the underlying system in (1). Instead, we base the estimation
on the belief that y comes from the (incorrect, misspecified)
model in (2). In particular, we do not have full knowledge of
the correct feature matrix Ã = [AS ,AC ]. In the misspecified
model, not only the features in AC are missing, but there are
also additional fake features AF that are not present in the
underlying system.

The unknowns xS , xC , and xF , and the noise vectors
v and v̄ are zero-mean random vectors. The noise vectors
are uncorrelated with each other and the unknowns. For any
random vector z ∈Rm, the associated covariance matrix is
denoted by Kz ∈Rm×m.

In addition to using the misspecified model in (2), the true
covariance matrices are not known during estimation, and we
use K̂ to denote an assumed covariance matrix. For example,
K̂x̄, denotes the assumed covariance matrix of x̄. Note that
the assumed covariance matrix is not necessarily equal to its
true counterpart Kx̄, i.e., we possibly have K̂x̄ 6= Kx̄.

B. Linear Estimation and the MSE

We consider linear estimators, i.e., estimators such that the
estimate is a linear function of the observations. Suppose
that (WS ,WC ,WF ) are estimators for (xS ,xC ,xF ), with
the associated estimates x̂S = WSy, x̂C = WCy and
x̂F = WFy. Then, the corresponding MSEs are given by

JS(WS) = E
x,y

[
‖xS − x̂S‖2

]
= E

x,y

[
‖xS −WSy‖2

]
, (8)

JC(WC) = E
x,y

[
‖xC − x̂C‖2

]
= E

x,y

[
‖xC −WCy‖2

]
, (9)

JF (WF ) = E
x,y

[
‖xF − x̂F ‖2

]
= E

x,y

[
‖xF −WFy‖2

]
, (10)

where the expectations are taken over the probability dis-
tributions of x and y from the underlying system in (1).
The estimators for x = [xT

S ,x
T
C ]T and x̄ = [xT

S , x
T
F ]T

can be written as W = [WT
S , W

T
C ]T ∈Rp×n and W̄ =

[W̄T
S , W̄

T
F ]T ∈Rp̄×n, with the associated estimates x̂ = Wy

and ˆ̄x = W̄y. Hence, the estimators for the composite vectors
x and x̄ are written as a combination of the linear estimators
of their respective parts.

Our interest lies in the unknowns of the underlying system
x = [xT

S ,x
T
C ]T. Hence we focus on the MSE over x, i.e.,

J(W ) = E
x,y

[
‖x− x̂‖2

]
= JS(WS) + JC(WC). (11)

C. LMMSE Estimation – True Model

The LMMSE estimator, i.e., the matrix W ∈Rp×n
that minimizes the MSE J(W ), is given by WO =
arg minW Ex,y

[
‖x−Wy‖2

]
, where the subscript O em-

phasizes that the estimator is optimal. Under correct model
assumptions, WO is given by, [28],

WO=KxyK
+
y =KxÃ

T(ÃKxÃ
T+Kv)+=

ï
WO,S

WO,C

ò
. (12)

Here we have used that y comes from the underlying system
in (1), from which Kxy = KxÃ

T ∈Rp×n, and Ky =
ÃKxÃ

T + Kv ∈Rn×n. The matrices WO,S ∈RpS×n and
WO,C ∈RpC×n denote the blocks of WO which estimate xS
and xC , respectively.

In (12), we use the Moore-Penrose pseudoinverse, hence
the estimator minimizes the MSE regardless of whether Ky

is singular or not [28, Theorem 3.2.3].

D. LMMSE Estimation – Misspecified Model

In this paper, our focus is on estimation under the model
mismatch caused by the discrepancy between the underlying
system (1) and the misspecified model (2). Hence, we con-
sider the estimator based on the assumed covariance matrices
K̂x̄y ∈Rp̄×n and K̂y ∈Rn×n, which are given by K̂x̄y =
K̂x̄Ā

T and K̂y = ĀK̂x̄Ā
T + K̂v̄ . The associated estimator

W̄ ∈Rp̄×n is thus

W̄ = K̂x̄yK̂
+
y = K̂x̄Ā

T(ĀK̂x̄Ā
T +K̂v̄)+ =

ï
W̄S

W̄F

ò
, (13)

where W̄S ∈RpS×n and W̄F ∈RpF×n. Given y from (1), the
estimator W̄ produces the estimate

ˆ̄x =

ï
x̂S
x̂F

ò
= W̄y, (14)

where x̂S = W̄Sy ∈RpS×1, x̂F = W̄Fy ∈RpF×1. Note that
xC is missing from the misspecified model (2), hence the
associated estimator of xC is set to W̄C = 0∈RpC×n and we
have x̂C = Ex[xC ] = 0. The corresponding MSEs in (8) –
(10) are then JS(W̄S), JC(W̄C) and JF (W̄F ).

A key performance criterion considered in this paper is the
estimation error for xS and xC of the underlying system. The
corresponding MSE is given by

J(W̄ ) = JS(W̄S) + JC(W̄C). (15)

Note that the expectation in J(W̄ ) is taken with respect to
the true underlying distribution of x and y, hence it evaluates



the MSE that is obtained when the data comes from (1) but
the estimator W̄ is used, which is based on the misspecified
model in (2).

To summarize our setting, y is generated by the system in
(1). The estimation is performed using the features available
to us, AS and AF , and produce estimates for xS and xF
based on the misspecified model in (2), implicitly setting the
estimate of xC to zero.

E. Random Feature Matrices and Expected MSE

We now define the expected MSE over features, which is
the main performance criterion in this work.

We analyze the MSE J(W̄ ) in (15), and specifically how
it depends on the feature matrices AS , AC and AF . We
model the feature matrices as statistically independent standard
Gaussian random matrices, i.e., all elements of the matrices
are i.i.d. with N (0, 1). The features are uncorrelated with the
unknowns and the noise.

The expected MSE associated with W̄ in (13) over the
distribution of A = [AS ,AC ,AF ]∈Rn×(pS+pC+pF ) is

ε(pS , pC , pF , n) = E
A

[
J(W̄ )

]
. (16)

In other words, we obtain one set of feature matrices
[AS ,AC ,AF ], compute W̄ , and the associated MSE J(W̄ )
with respect to the distribution of x and v. We then compute
the expected MSE ε as the expectation of J(W̄ ) with respect
to the distribution of the features in A. Hence, the statistical
model on the features lets us analyze the MSE from the
perspective of performing multiple experiments over different
realizations of A.

III. EXPECTED MSE UNDER MODEL MISSPECIFICATION

In this section, we present one of our main results, The-
orem 1, which provides an analytical expression for the
expected MSE of the LMMSE estimator W̄ in (13) under
the assumption v̄ = 0, i.e., the assumed noise level is zero:

Theorem 1. Let K̂x̄ = Ip̄, Kv = σ2
vIn, K̂v̄ = 0, n ≥ 1. If

n > p̄+ 1, then the expected MSE in (16) associated with W̄
in (13) is

ε(pS , pC , pF , n) = pS
n−p̄−1 (tr(KxC

) + σ2
v) + tr(KxC

). (17)

If p̄ > n+ 1, then
ε(pS , pC , pF , n) = npS

p̄(p̄−n−1) (tr(KxC
) + σ2

v)

+
Ä
1− n

p̄ −
pFn(p̄−n)

(p̄−1)p̄(p̄+2)

ä
tr(KxS

) + tr(KxC
).

(18)

Proof: See Appendix B.
Recall that p̄ = pS+pF . Theorem 1 shows how the expected

MSE ε varies with the number of samples n, observed
underlying features pS and fake features pF in the misspecified
model (2). In particular, Theorem 1 shows the following:

1) The expected MSE ε has no dependence on the covari-
ance structure of the unknowns, but only depends on the
respective power levels, i.e., tr(KxS

) and tr(KxC
).

2) The expected MSE takes on very large values when the
number of data points is close to the assumed model size,
i.e., n ≈ p̄. See that n − p̄ − 1 or p̄ − n − 1 appear in

the denominators of the respective leading terms in (17)
and (18). Note that this peak around n ≈ p̄ occurs only
if tr(KxC

) + σ2
v > 0, i.e., the observations are noisy, or

there are missing features.
3) The expected MSE is not a monotonically increasing

function of pF . We further discuss this point in Sec-
tion III-A.

4) In the limit of n → ∞, the effect of the fake features
vanishes, and the observed unknowns xS are estimated
perfectly. Hence the error approaches ε→ tr(KxC

), i.e.,
the missing unknowns xC constitute all of the error.

Remark 1. Let K̂v̄ = 0, K̂x̄ � 0. Consider a given vector
of observations y. If the model has as many parameters as
there are observations, i.e., p̄ = n, then the model perfectly
fits the observations at hand:

ŷ = Ā ˆ̄x = ĀW̄y = ĀK̂x̄Ā
T(ĀK̂x̄Ā

T)−1y = y. (19)

On the other hand, ˆ̄x does not necessarily provide a good
estimate of the unknowns; hence the large error values around
n ≈ p̄ in (17) and (18) are obtained.

The fake features in our framework can be associated with
the weak features investigated in [9], [10]. Consistent with [9],
[10], our work shows that irrelevant features can be beneficial.

The main contribution of Theorem 1 is quantification of
the fake features’ effect on the estimation performance for the
underlying features xs. Theorem 1 with pF > 0 together
with the results on the output error (i.e., the error in y, see
(38)) shows that the error ε, i.e., the error for the model
parameters xS and xC , behaves significantly different from
the output error. This aspect has been overlooked in the
literature which either focuses on the output error, which is
not necessarily the same as the error in the model parameters
xS and xC , or consider the unknowns without fake features.
For the special case of pF = 0, Theorem 1 provides the output
error (minus an additive term of σ2

v) which is consistent with
the results with missing features [4], [5]. Nevertheless, the
results of Theorem 1 in its general form cannot be derived
from expressions of the output error and it constitutes a
component of a non-trivial decomposition of the output error,
see Section V.

A. Effect of Fake Features

Theorem 1 shows that the presence of fake features, i.e.,
pF > 0, can be beneficial to the estimation performance when
the model is misspecified. In this section, we discuss this
phenomenon.

For values of pF such that p̄ < n− 1, i.e., if the misspec-
ified model is underparameterized, then pF = 0 minimizes
the expected MSE ε. In other words, ε is monotonically
increasing with pF in the underparameterized regime. The
overparametrized case, i.e., p̄ > n+ 1, is less straightforward
and discussed next.

Corollary 1. Consider the setting of Theorem 1. If the number
of samples n, and underlying unknowns pS and pC are fixed,
and n <∞, pS <∞ and pC <∞, then the following holds:



i) limpF→∞ ε(pS , pC , pF , n) = tr(Kx).
ii) If pF → ∞, then the expected MSE ε approaches the

limit in i) from below.

Proof: See Appendix C.
By Theorem 1, if tr(KxC

) + σ2
v > 0, the expected MSE ε

diverges if n ≈ p̄. On the other hand, Corollary 1 shows that ε
approaches its limit for pF →∞ from below with increasing
pF . These observations together reveal the following:

Remark 2. Under tr(KxC
) + σ2

v > 0 and K̂v̄ = 0, ε is
non-monotonic as pF increases and there is a local minimum
with non-zero pF in the overparametrized regime, i.e., n < p̄.

The following corollary shows that under certain signal
power conditions, the expected MSE ε is lower for pF →∞
than for pF = 0.

Corollary 2. Consider the setting of Theorem 1. Let
tr(KxS

) = r tr(Kx), and tr(KxC
) = (1 − r) tr(Kx) with

0 ≤ r ≤ 1. If n ≥ pS , n > 1, and

r <
pS
n− 1

tr(Kx) + σ2
v

tr(Kx)
, (20)

or, if n < pS , and

r <
pS

2pS − n− 1

tr(Kx) + σ2
v

tr(Kx)
, (21)

then the expected MSE is smaller as pF →∞ than for pF = 0.

Proof: See Appendix D.
With the insights gained from Corollary 1 and Corollary 2,

we observe the following:

Remark 3. Even though the fake features represents a model
misspecification, their presence can improve the estimation
performance, even when the model with fake features is
drastically overparameterized.

In the setting of Theorem 1, the estimator W̄ from (13) is
given by W̄ = Ā+ = (ĀTĀ)+ĀT, where Ā = [AS ,AF ]
is the matrix of regressors of the misspecified model. The
underlying mechanism which explains the potential benefits
of fake features is directly connected to the spectral properties
of the matrix ĀTĀ. This point is discussed in more detail in
the subsequent sections.

IV. MODEL MISSPECIFICATION AND NOISE LEVEL
ASSUMPTION

We now present our second main result, Theorem 2 which
generalizes the setting of Theorem 1 by allowing the assumed
noise level to be non-zero.

Theorem 2. Let K̂x̄ = Ip̄, Kv = σ2
vIn, K̂v̄ = σ̂2

v̄In � 0,
and p̄ > 1. Then the expected MSE associated with W̄ in (13)
is

ε(pS , pC , pF , n) = (tr(KxC
) + σ2

v)
pS
p̄
µ̄1

+ µ̄2 tr(KxS
) + tr(KxC

),
(22)

where

µ̄1 =

p̄∑
i=1

E
λi

[ λi
(λi + σ̂2

v̄)2

]
, (23)

and

µ̄2 =
1

p̄(p̄+ 2)

(
(pS + 2)

p̄∑
i=1

E
λi

[ σ̂4
v̄

(λi + σ̂2
v̄)2

]
+ 2

p̄− pS
p̄− 1

p̄∑
i=1

i−1∑
j=1

E
λi,λj

[ σ̂4
v̄

(λi + σ̂2
v̄)(λj + σ̂2

v̄)

])
,

(24)

and λi are the eigenvalues of ĀTĀ∈Rp̄×p̄.

Proof: See Appendix E. Note that while the setting of Theo-
rem 1 is a special case of Theorem 2 in the limit of σ̂v̄ → 0,
we have kept the results separate since the setting with σ̂v̄ = 0
allows more explicit evaluations of the expressions.

A. Effect of Fake Features and Noise Level Assumption

The expressions in Theorems 1 and 2 show how the
presence of fake features can have a regularizing effect on
the expected MSE. Additionally in Theorem 2, we see the
regularizing effect of the noise level assumption σ̂v̄ . We will
now discuss these effects in detail.

In the setting of Theorem 2, the potentially misspecified
covariance matrices are given by K̂x̄ = Ip̄ and K̂v̄ = σ̂2

v̄In.
By (13), with these covariance matrices, the estimator is W̄ =
ĀT(ĀĀT + σ̂2

v̄In)−1, which can be rewritten as

W̄ = (ĀTĀ + σ̂2
v̄Ip̄)

−1ĀT. (25)

Hence, if ĀTĀ + σ̂2
v̄Ip̄ is ill-conditioned then it will affect

the behaviour of the estimator.
Recall that Ā∈Rn×p̄, where n is the number of observa-

tions, and p̄ = pS + pF is the number of unknowns in the
misspecified model. It has been established that the singular
values of an n× p̄ matrix with i.i.d. zero-mean random entries
with unit variance lie on the interval [

√
n − √p̄,√n +

√
p̄]

with high probability [29]. Asymptotically as n and p̄ grows,
all singular values lie in this interval. The non-zero eigenvalues
λi of ĀTĀ are the squared singular values of Ā, hence these
λi are lower bounded by `min , (

√
n − √p̄)2, with high-

probability. Now suppose that the assumed noise level σ̂v̄ is
small in relation to `min, and note that λi appears in the
denominators of the fractions λi

(λi+σ̂2
v̄)2 in (23). These fractions

are then ≈ 1
λi

, which can take on very large values if `min is
close to zero, i.e., if n ≈ p̄.

Remark 4. With σ̂2
v̄ small, the peak in MSE when the

number of samples is close to the assumed model size, i.e.,
n ≈ p̄, occurs because if n ≈ p̄, then non-zero eigenvalues
of ĀTĀ may be close to zero (but not exactly zero) with
high probability. By changing the number of fake features pF ,
the probability of having non-zero eigenvalues close to zero
decreases, hence the problem becomes effectively regularized.

Similarly, the MSE in Theorem 1 (where σ̂2
v̄ = 0) also takes

on large values if n ≈ p̄, where the effect of the dimensions
on the error can be directly seen in n − p̄ − 1 or p̄ − n − 1,
which appear in the denominators of the terms in (17) and
(18). Hence, pF can act as a regularizer both with σ̂v̄ > 0
under small σ̂v̄ and with σ̂v̄ = 0.



Nevertheless, the MSE peak at n ≈ p̄ can be dampened by a
large enough σ̂v̄ . In particular, consider the fractions λi

(λi+σ̂2
v̄)2

in (23). If σ̂v̄ is large enough in relation to the eigenvalue
distribution’s lower bound `min, then these fractions take
small values with high probability, preventing divergent error
behaviour. Although σ̂v̄ can be used to regularize the problem
and dampen the peak in MSE around n ≈ p̄, its value should
be not be too high. The next remark illustrates this point:

Remark 5. In the setting of Theorem 2, the expected MSE
is constant in the limit of σ̂v̄ →∞, for any n <∞, p̄ <∞:

lim
σ̂v̄→∞

ε(pS , pC , pF , n) = tr(Kx). (26)

This result is a straightforward consequence of the fact that
W̄ → 0 in (13) as σ̂v̄ →∞. Note that tr(Kx) is the a priori
uncertainty for x, hence (26) shows that when σ̂v̄ is too high,
little or no reduction in uncertainty is gained with estimation.

We now discuss W̄ in relation to the regularized least-
squares (LS) approach

ˆ̄xLS = arg min
x̄
‖y − Āx̄‖2 + µ‖x̄‖2, (27)

where µ > 0 is the regularization parameter. This framework
is typically referred to as ridge regression, or Tikhonov regu-
larization [30], and has been well-studied. Recent works have
focused on the perspective of double descent [11], and robust
estimation [31], [32]. The optimal LS solution is given by
ˆ̄xLS = W̄y, with W̄ from (25), and σ̂2

v̄ = µ > 0. The
regularization term with µ > 0 is known to mitigate effects of
the potentially ill-conditioned matrix Ā, confirming the role
of σ̂2

v̄ as a regularization parameter. As discussed above, our
results illustrate that pF plays a similar regularizing role.

B. Optimal Noise Level Assumption

We will now consider the special case with a large number
of observations, i.e., n � p̄, and present the optimal σ̂v̄ that
minimizes the expected MSE.

Corollary 3. Consider the setting of Theorem 2. If n � p̄,
then the expected MSE is

ε(pS , pC , pF , n) ≈ (tr(KxC
) + σ2

v)
pS
p̄

˜̄µ1

+ ˜̄µ2 tr(KxS
) + tr(KxC

),
(28)

with
˜̄µ1 =

np̄

(n+ σ̂2
v̄)2

, ˜̄µ2 =
σ̂4
v̄

(n+ σ̂2
v̄)2

. (29)

Proof: See Appendix F.
Corollary 3 gives an approximation of the expected MSE

for settings where there is a high number of samples n in
relation to the number of unknowns in the misspecified model
p̄. We further note that, for σ̂v̄ <∞ and p̄ <∞, we have

lim
n→∞

ε(pS , pC , pF , n) = tr(KxC
). (30)

By analyzing (29), we see how the expected MSE ε is
affected by the assumed noise level σ̂v̄ . The following result
gives the value of σ̂2

v̄ which minimizes ε.

Lemma 1. Consider the setting of Theorem 2, and the
expression

σ̂2
v̄∗ = pS

tr(KxC
) + σ2

v

tr(KxS
)

. (31)

If pF = 0, then the σ̂2
v̄ that minimizes the expected MSE is

arg min
σ̂2
v̄

ε(pS , pC , pF , n) = σ̂2
v̄∗. (32)

If pF > 0 and n� p̄, then

arg min
σ̂2
v̄

ε(pS , pC , pF , n) ≈ σ̂2
v̄∗. (33)

Proof: See Appendix G.
Note that in general, σ̂v̄∗ in (31) is not equal to σv . Instead,

σ̂v̄∗ can be interpreted as the effective noise level of the
misspecified model. For instance, if tr(KxC

) or σ2
v is large

in comparison to tr(KxS
), then the features that are included

in the model through AS can not explain, i.e., account for, a
large portion of y. Hence, σ̂2

v̄∗ increases with tr(KxC
).

In general, we expect the number of fake features pF to
affect the optimal σ̂v̄ . However, there is no such effect in (33)
where n� p̄. While finding the optimal σ̂v̄ for a general pF
remains an important line of future work, we illustrate how
the optimal σ̂v̄∗ changes with pF in our numerical results in
Section VI-D.

V. EXPECTED MSE FOR PREDICTING THE OBSERVATIONS

Up to now, we have focused on the MSE associated with the
unknowns xS and xC . We now consider the output error, i.e.,
the error when predicting the output y∗ associated with the pair
(y∗,a∗). In particular, the output MSE, i.e., the error related
to the estimator W̄ and a data pair (y∗, [a

T
S∗,a

T
C∗,a

T
F∗]

T)
unseen during training, is given as

Jy(W̄ ) = Ey∗,x,y[(y∗ − āT
∗ ˆ̄x)2] = J(W̄ ) + JF (W̄F ) + σ2

v ,

with J(W̄ ) = JS(W̄S) +JC(W̄C) as in (15), W̄F as in (13),
JF (W̄F ) as in (10) and ā∗ = [aT

S∗,a
T
F∗]

T, ˆ̄x = [x̂T
S , x̂

T
F ]T,

and y∗ = ãT
∗ x + v∗, where ã∗ = [aT

S∗,a
T
C∗]

T and x =
[xT
S ,x

T
C ]T.

Taking the expectation of the output MSE Jy(W̄ ) over the
distribution of A, the expected output MSE is defined as

εy = E
A

[Jy(W̄ )] = εS + εC + εF + σ2
v , (34)

where εS = EA[JS(W̄S)], εC = EA[JC(W̄C)], and εF is the
error associated with the fake features AF and the estimate
x̂F , i.e.,

εF (pS , pC , pF , n) = E
A

[JF (W̄F )]. (35)

Theorem 3. Consider the setting in Theorem 1. If n > p̄+1,
then

εF (pS , pC , pF , n) = pF
n−p̄−1 (tr(KxC

) + σ2
v). (36)

If p̄ > n+ 1, then
εF (pS , pC , pF , n) = npF

p̄(p̄−n−1) (tr(KxC
) + σ2

v)

+ npF (p̄−n)
(p̄−1)p̄(p̄+2) tr(KxS

).
(37)

Proof: See Appendix H.



Inserting the expressions for ε = εS+εC in Theorem 1 and
εF in Theorem 3 into (34) we obtain that if n > p̄+ 1, then
the expected output MSE is

εy =
p̄

n− p̄− 1
(tr(KxC

) + σ2
v) + tr(KxC

) + σ2
v , (38)

and if p̄ > n+ 1, then

εy =
n

(p̄− n− 1)
(tr(KxC

) + σ2
v)

+
(
1− n

p̄

)
tr(KxS

) + tr(KxC
) + σ2

v .
(39)

The power of the missing unknowns appears in the output
MSE together with the noise level, i.e., tr(KxC

) + σ2
v . This

is consistent with the fact that from the perspective of the
misspecified model, the missing signal and the inherent noise
can be together regarded as an effective noise term.

Here, εy is consistent with [4, Theorem 2.1], with the
change of variables ‖βT c‖2 → tr(KxC

) and ‖βT ‖2 →
tr(KxS

). Note that Thm. 1 and Thm. 3 provide a non-trivial
decomposition of this error that has not been studied in the
literature. In Section VI-E, we investigate the decomposition
in (35) numerically. Interestingly, our results there illustrate
that x̂S can have relatively low error, even though the output
MSE is above its asymptote of tr(Kx) + σ2

v as pF →∞.

VI. NUMERICAL RESULTS

A. Example with Liver Toxicity Data

We now illustrate the double-descent behaviour with real-
world data using the liver toxicity dataset available in the
mixOmics package [33], containing measurements of toxin
levels in blood samples from 64 rats. We estimate the level of a
toxin (urea nitrogen) related to liver injury, using genetic data
of 3116 genes. We perform M = 1000 experiments, for which
we choose n = 54 of the data points uniformly at random
for training, and use the remaining n∗ = 10 to compute the
empirical output MSE, i.e., the error in y, see (38). For each
experiment, we increase the number of features p̄ used for
estimation, such that p̄ = 1, . . . , 3116, and record the output
MSE. Hence for experiment (i), i = 1, . . . , M , we have the
training data as Ā(i) ∈Rn×p̄ and y(i) ∈Rn×1, and estimate
the unknowns as ˆ̄x(i) = Ā(i)T (Ā(i)Ā(i)T + σ̂2

v̄Ip̄)
+y(i), and

then compute the output MSE on the n∗ unseen data as
1
n∗
‖y(i)
∗ − Ā

(i)
∗ ˆ̄x(i)‖2, where y

(i)
∗ ∈Rn∗×1 and Ā

(i)
∗ ∈Rn∗×p̄.

We plot the empirical average of the output MSE over M
experiments versus the number of observed features p̄ for four
different noise level assumptions σ̂v̄ in Figure 3. We observe
that for small σ̂v̄ , the output MSE exhibits a double-descent
behaviour over p̄, with its peak in error around the threshold
p̄ = n. The four curves show that the output MSE is minimized
with p̄ that is much larger than the number of training samples,
i.e., n = 54. Hence, the lowest output MSE over all p̄ can be
obtained in the overparametrized regime.

B. Experimental Setup and Overview
We now provide the setting for the rest of the numerical

results. The numerical results are obtained by averaging over
Mr = 100 realizations (i) of the regressors and Mu = 100
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Fig. 3: The average prediction error versus the number of
features p̄ for liver toxicity dataset [33].

realizations (j) of the unknowns and noise for each realization
of the regressors. We draw one set of regressors A(i) =

[A
(i)
S ,A

(i)
C ,A

(i)
F ] from the standard Gaussian distribution for

(i), i = 1, . . . ,Mr. For each set of regressors A(i), we
draw one vector of unknowns x(i,j) from N (0,Kx) with
Kx = Ip, and one noise vector v(i,j) from N (0, σ2

vIn). The
observations y(i,j) are generated using the underlying system
(1), and the estimator W̄ (i) is computed as in (13), based on
the misspecified model in (2), with K̂x̄ = Ip̄, K̂v̄ = σ̂2

v̄In.
Then, the estimate ˆ̄x(i,j) = W̄ (i)y(i,j) is computed. The MSE
J (i)(W̄ (i)) is then computed as

J (i)(W̄ (i))=
1

Mu

Mu∑
j=1

Ä
‖x(i,j)

S −x̂(i,j)
S ‖2+‖x(i,j)

C − x̂
(i,j)
C ‖2

ä
,

with x̂
(i,j)
C = 0. J (i)(W̄ (i)) is then averaged over the Mr

realizations of regressors, to create the empirical average MSE,
as an estimate of the expected MSE ε in (16)

ε̂(pS , pC , pF , n) ,
1

Mr

Mr∑
i=1

J (i)(W̄ (i)). (40)

In the plots, we report the normalized MSE given by ε̂
tr(Kx) .

In the case of σ̂v̄=0, analytical curves obtained using ε in
Theorem 1. For σ̂v̄ > 0, analytical curves are obtained using
Theorem 2 and numerical integration to obtain the necessary
moments [34, Section 1.2].

We now conduct a series of experiments focusing on how
the expected MSE ε, and its empirical counterpart ε̂, depends
on n, pF , σ̂v̄ and σv In all plots, the lines represent the
empirical results and the markers represent the analytical
results. We observe that in all applicable cases there is a close
match between the empirical and analytical curves.
C. Effect of Fake and Missing Features

We now illustrate the effect of the number of fake features
pF , and how the number of missing features pC affects this
relationship.

In Figures 4 and 5, we plot the theoretical expected MSE
from Theorem 1, and the empirically averaged MSE against
pF in the misspecifed model. In Figure 4, there are no
missing features, i.e., pC = 0, and in Figure 5, we have
pC = 50. The MSE is plotted for four different noise levels:
σv = {1, 5, 10, 50}, and the noise level assumption of σ̂v̄ = 0.
Here, n = 200, and recall that p̄ = pS + pF , hence the
threshold n = p̄ corresponds to pF = 100 in Figure 4
(pS = 100) and pF = 150 in Figure 5 (pS = 50).
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Fig. 4: Empirical (lines) and analytical (markers) MSE versus
the number of fake features pF . Here, pS = 100, pC = 0,
σ̂v̄ = 0 and n = 200.
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Fig. 5: Empirical (lines) and analytical (markers) MSE versus
the number of fake features pF . Here, pS = 50, pC = 50,
σ̂v̄ = 0 and n = 200.

As discussed in Section III, we observe that the optimal pF
is not always pF = 0, i.e., the presence of the fake features
can improve the estimation performance. As pF increases
from pF = 1, the MSE increases more and more rapidly
as p̄ = pS + pF approaches n. If pF increases further, then
the MSE decreases until it hits a local minimum and then
increases and eventually converges to ε = tr(Kx). Although
all curves converge to the same value, i.e., tr(Kx), the local
minima in the region pF > n can be well below tr(Kx), and
comparable to the MSE for small pF . For instance, for the
curves in Figure 4 and 5 with σv = 10, the local minima
around pF = 400 are lower than the minimum MSE for
smaller pF . If the noise is even larger at σv = 50, then the
MSE is very high for small pF , and significantly lower for
pF > 1000, and still approaches tr(Kx) as pF →∞. Hence,
these results illustrate the fake features’ regularizing effect.

Effects of missing features can be seen by comparing
Figure 4 and 5. In Figure 4, where pC = 0, we observe
that the MSE for small pF scales with the noise level σ2

v

(recall that the y-axis is normalized by tr(Kx)). On the
other hand, in Figure 5, the MSE for small pF scales with
the “effective” noise level, i.e. the power of the unobserved
unknowns tr(KxC

), together with the noise level σ2
v .

D. Effect of Non-zero Noise Level Assumption
We now investigate the effect of having a non-zero noise

level assumption, i.e., σ̂v̄ 6= 0. Recall that the assumed noise
level σ̂v̄ is not the same value as the noise level σv of the
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Fig. 6: The expected and average MSE versus the assumed
noise level σ̂v̄ . Here pS = 100, pC = 0, σv = 10 and n = 200.
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Fig. 7: Empirical (lines) and analytical (markers) output MSE
εy and its decomposition, versus the number of fake features
pF . Here, pS = 90, pC = 10, σv = 10, σ̂v̄∗ = 0 and n = 200.

underlying system. In Figure 6, we plot the MSE versus σ̂v̄
for different values of pF , with σv = 10. Here, n = 200,
pS = 100 and pC = 0.

In previous figures, where σ̂v̄ = 0, we observe large peaks
in MSE if n = p̄. If σ̂v̄ is large enough, such a peak can be
damped as can be observed in Figure 6, where the threshold
occurs if pF = 100. In particular, we observe that if σ̂v̄ > 5
the respective MSE for pF = 0 and pF = 100 are close in
value, compared to when σ̂v̄ < 5.0.

Figure 6 illustrates that the optimal choice of σ̂v̄ varies with
pF . For example, if pF = 0, then the optimal σ̂v̄ = 10, and
if instead pF = 500, then the optimal σ̂v̄ ≈ 0. Hence we
observe a trade-off between the regularizing effects provided
by the fake features and by σ̂v̄ . However, note that the optimal
value σ̂v̄∗ = 10 is given by Lemma 1 for n >> pF performs
quite well over 0 < pF ≤ 100 here.

E. The Output MSE and its Decomposition

In Figure 7, we plot the expected output MSE εy , i.e., the
error in y, see (38), together with its components εS , εC ,
εF , see (38). This figure highlights that the output MSE and
the MSE in the unknowns can behave drastically different: In
particular, even when the MSE associated with y stays on the
same level for the over/under parametrized scenarios (except
around the peak), the minimum error for the unknowns xS can
be obtained in the overparametrized case with a high number
of fake features. The plots also illustrate that the estimate for
the unknowns xS can be of relatively high quality, even though
the output MSE is high. In other words, these results suggest
that the model may learn the parameters xS of the underlying
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Fig. 8: The MSE versus the number of fake features for exper-
iments (0) – (3) which consider different feature covariances.
Here, pS = 90, pC = 10, σv = 0.1, σ̂v̄ = 0 and n = 200.

system, which is a subset of the true parameters, even though
the prediction for the output is poor.

F. The Effect of the Data Covariance
We now investigate the effect of non-isotropic features.

Let Ka and KaF
be the feature covariance matrices

for A and AF so that each row is i.i.d. drawn from
N (0,Ka) and N (0,KaF

), respectively. Here, A and AF

are uncorrelated. We generate Ka as follows: i) Given
a decay parameter α, generate a matrix of eigenvalues
Λa = diag(1α, . . . , pα)∈Rp×p; ii) Generate a Haar dis-
tributed orthogonal matrix Ua ∈Rp×p [35]; iii) Set Ka =

p
tr(Λa)UaΛaU

T
a . The matrix KaF

is generated with the
same procedure using a different decay parameter αF for
ΛaF ∈RpF×pF and an independently generated orthogonal
matrix UaF ∈RpF×pF . We perform the experiments with the
following pairs of (α, αF ): (0) α = 0, αF = 0; (1) α = 0,
αF = 20; (2) α = 1, αF = 0; (3) α = 1, αF = 20. Here,
Kx = Ip pS = 90, pC = 10, n = 200 and σv = 10.

In Figure 8, we plot the simulated average MSE (lines)
in the unknowns versus the number of fake features pF for
the experiments (1)-(3). Experiment (0) fulfills the setting of
Theorem 1, hence we plot the analytical expected MSE. We
observe two main effects of having non-isotropic features in
the underparameterized regime where n ≥ p̄: Firstly, for a
given Ka, changing KaF

does not change the average MSE.
This can be seen by comparing the curves for experiment (0)
and (1), and for (2) and (3). Secondly, we observe that the
MSE increases with α, or in other words the MSE is higher for
more correlated underlying features. In the overparameterized
regime, i.e., n < p̄, the curves are close, suggesting less
dependence on the correlation structure.

VII. DISCUSSIONS

We have shown that fake features can decrease the error
and hence improve the estimation performance, even though
these features are uncorrelated with the true features. Under
the Gaussian feature assumptions in Section II-A, we have
shown that if a performance improvement is observed with a
larger dictionary, this improvement is not necessarily due to
the explanatory power of the added features; it can be merely
due to the regularization effect of fake features. We note that
this result is a consequence of the misalignment between the
true model and the assumed model, which is a typical situation
in practical scenarios.

VIII. CONCLUSIONS

We have proposed a model misspecification framework
which enables a joint treatment of fake features, together
with incorrect covariance assumptions on the unknowns and
the noise. We have revealed the trade-offs between the fake
features and the noise level assumptions, when data comes
from an underlying linear system and the estimator is based
on a misspecified linear model.

Based on LMMSE estimation, our main results provide
analytical expressions of the expected MSE of the misspecified
estimator. We have presented numerical experiments which
verify our analytical findings. Our results show that the pres-
ence of fake features can improve the estimation performance
even when the model is overparameterized. We illustrate that
the MSE exhibits double descent with increasing model size,
even when the model size increase is due to fake features.
Our results further show that even though the respective MSEs
associated with the model parameters and the prediction of the
output both exhibit double descent, they can have significantly
different behaviour with increasing model size. In particular,
the globally optimal number of fake features for the MSE in
the model parameters may be found in the overparameterized
regime, even though the output MSE remains high regardless
of the number of fake features.

Important directions for future work include extending the
error characterization to general regressor and misspecified
model structures, including arbitrary covariance models, as
well as model mismatch between non-linear and linear mod-
els.

APPENDIX
A. Preliminaries

We here provide an overview of results which are used
throughout the derivations of the main results of our paper.

Lemma 2. Consider the setting in Section II. Let Kv = σ2
vIn.

Then, the expected MSE in (16), which is associated with the
estimator W̄ = [W̄T

S , W̄
T
F ]T in (13) and W̄C = 0, can be

decomposed as
ε(pS , pC , pF , n) = ε1 + ε2(tr(KxC

)+σ2
v) + εC , (41)

where
ε1 = Ē

A

[
tr
(
(IpS−W̄SAS)KxS

(IpS−W̄SAS)T
)]
, (42)

ε2 = Ē
A

[
tr
(
W̄SW̄

T
S

)]
, (43)

εC = tr(KxC
). (44)

The expected MSE of the unknowns related to the fake
features (35) is

εF = Ē
A

[
tr
(
W̄FASKxS

AT
SW̄

T
F

)]
+ (tr(KxC

) + σ2
v)Ē

A

[
tr
(
W̄FW̄

T
F

)] (45)

Proof: See Appendix I.

Lemma 3. Let A∈Rn×p be a standard Gaussian random
matrix, R = [IpS , 0]∈RpS×p, p > n, p > pS , pF = p − pS
and p > 1. The matrix Q = RA+ARTRA+ART ∈RpS×pS
has the expectation

E
A

[Q] =
Ä
n
p −

pFn(p−n)
(p−1)p(p+2)

ä
IpS . (46)



Let RF = [0, IpF ]∈RpF×p. The matrix Q̄ =
RA+ART

FRFA
+ART ∈RpS×pS has the expectation
E
A

[
Q̄
]

= npF (p−n)
(p−1)p(p+2)IpS . (47)

Proof: See Appendix J.

Lemma 4. Let V ∈Rp×p be a Haar distributed random
orthogonal matrix [36], with its entries denoted by vij ,
i, j = 1, . . . , p, and p > 1. Then the following moments hold
if i 6= j, k 6= l,

1) E
V

[v4
il] = 3

p(p+2) ,

2) E
V

[v2
ilv

2
ik] = E

V
[v2
ilv

2
jl] = 1

p(p+2) ,

3) E
V

[vilvjlvikvjk] = −1
(p−1)p(p+2) .

Proof: See Appendix K.

Lemma 5. If A∈Rn×p is a standard Gaussian matrix and
K ∈Rp×p a symmetric matrix, then E

A

[
AKAT

]
= tr(K)In.

Proof: See Appendix L.

B. Proof of Theorem 1
By Lemma 2, we investigate ε1 and ε2 in (42) and (43) in

the setting of Theorem 1. The estimator W̄ in the setting of
Theorem 1 is

W̄ =K̂x̄Ā
T(ĀK̂x̄Ā

T+K̂v̄)+ = Ā+ =

ï
W̄S

W̄F

ò
, (48)

where we have used that Ā+ = ĀT(ĀĀT)+. Recall that Ā =
[AS ,AF ]. With R = [IpS ,0]∈RpS×p̄, we can write

W̄S = RW̄ = RĀ+, (49)
and AS = ĀRT. We now combine ε1 and ε2 in (42) and
(43), with (49),
ε1 = Ē

A

[
tr
(
(IpS−RĀ+ĀRT)KxS

(IpS−RĀ+ĀRT)T
)]
, (50)

ε2 = Ē
A

[
tr
(
RĀ+Ā+TRT

)
= Ē

A

[
tr
(
R(ĀTĀ)+RT

)]
. (51)

We now analyze ε1 and ε2 under the two scenarios of
Theorem 1, i.e., n > p̄+ 1 and p̄ > n+ 1.

1) n > p̄+1: The matrix Ā∈Rn×p̄ is a standard Gaussian
random matrix, hence if n > p̄+1, then Ā is full column rank
with probability (w.p.) 1. It follows that Ā+Ā = Ip̄ w.p. 1 if
n > p̄+ 1. Hence, we obtain

ε1 = Ē
A

[
tr
(
(IpS−RRT)KxS

(IpS−RRT)
)]

= 0. (52)

We note that the rows of Ā, i.e., the columns of ĀT, are
i.i.d. standard Gaussian vectors. From [37, Prop. 1.2], we have

Ē
A

[(ĀTĀ)+] =
1

n− p̄− 1
Ip̄. (53)

Combining this expression with (51), we have

ε2 =
1

n− p̄− 1
tr
(
RRT

)
=

pS
n− p̄− 1

. (54)

We now combine ε1 from (52) and ε2 from (54) with (41), to
obtain (17) in Theorem 1.

2) p̄ > n+ 1: For ε2, we note that now ĀTĀ∈Rp̄×p̄ is a
singular matrix of rank n, and from [37, Thm. 2.1] we have

Ē
A

[(ĀTĀ)+] =
n

p̄(p̄− n− 1)
Ip̄, (55)

which combined with (51) gives

ε2 =
n

p̄(p̄− n− 1)
tr(RRT) =

npS
p̄(p̄− n− 1)

. (56)

We now expand the expression for ε1 in (50), and apply the
cyclic property of the trace operator,
ε1 = tr(KxS

) + Ē
A

[
tr(RĀ+ĀRTRĀ+ĀRTKxS

)

− 2 tr(RĀ+ĀRTKxS
)
]
.

(57)

Let the full singular value decomposition (SVD) of Ā be de-
noted by Ā = USV T, where U ∈Rn×n, and V ∈Rp̄×p̄ are
Haar distributed orthogonal matrices [34, Section 2.1.5], [35],
statistically independent from the diagonal matrix S ∈Rn×p̄,
which contains the singular values of Ā. Denoting the columns
of V by vi, we have

Ē
A

[Ā+Ā] = E
V,S

[V S+SV T] =
∑

i∈In/p̄

E
V

[viv
T
i ] =

n

p̄
Ip̄, (58)

where In/p̄ is the set of n indices out of {1, . . . , p̄}, cor-
responding to non-zero singular values of S. Here we have
used that EV [v2

ij ] = 1/p̄, and that EV [vjivli] = 0 if j 6= l
[36, Section 2.1], where vij denotes the entries of V .

With Q=RĀ+ĀRTRĀ+ĀRT ∈RpS×pS , we now com-
bine (58) with (57),

ε1 = tr(KxS
) + Ē

A

[
tr(QKxS

)
]
− 2np̄ tr(KxS

). (59)

From Lemma 3 we have that EĀ[Q] = µqIpS , with µq =
n
p̄ −

pFn(p̄−n)
(p̄−1)p̄(p̄+2) which we now apply to (59). Hence,

ε1 =
(
1− n

p̄ −
pFn(p̄−n)

(p̄−1)p̄(p̄+2)

)
tr(KxS

), (60)
Combining (60) and (56) with (41), we find the desired
expression of ε in (18) in Theorem 1.

C. Proof of Corollary 1
We first prove i) of Corollary 1. Let pF → ∞, hence n <

p̄ = pS + pF . Now consider the expression for ε in (18) of
Theorem 1. Furthermore, with n and pS constant and finite,
we have that the expression in front of tr(KxS

) goes to one,
and the fraction in front of tr(KxC

)+σ2
v goes to zero. Hence,

ε→ tr(KxS
) + tr(KxC

) = tr(Kx).
We now prove ii). The derivative of ε in (18) w.r.t. pF is

∂ε
∂pF

= −npS(2p̄−n−1)
p̄2(p̄−n−1)2 (tr(KxC

) + σ2
v)

+
(

0 + n
p̄2 − (n(p̄−n)+pFn)(p̄−1)p̄(p̄+2)

(p̄−1)2p̄2(p̄+2)2

+ pFn(p̄−n)(3p̄2+2p̄−2)
(p̄−1)2p̄2(p̄+2)2

)
tr(KxS

).

(61)

We now let pF → ∞, and analyze the proportionality of the
expression in (61) with respect to (w.r.t.) pF :
∂ε
∂pF
∝− 2npSpF

p4
F

(tr(KxC
) + σ̂2

v̄) +
(

2n
p2
F

− 2n(n+pS+1)pF
p4
F

+
3n(pS−1)(n−1)p2

F

p6
F

)
tr(KxS

)

∝− 2npS
p3
F

(tr(KxC
)+σ̂2

v̄)+ 2n
p2
F

tr(KxS
) ∝ 2n

p2
F

tr(KxS
).

Hence we have shown that if pF → ∞, then the derivative
of ε w.r.t. pF approaches zero from the positive side. In other
words, the expected MSE approaches its limit of ε→ tr(Kx)
from below. This concludes the proof.



D. Proof of Corollary 2
From Corollary 1, we have that if pF →∞ and n, pS and

pC are finite, then ε→ ε∞ , tr(Kx).
If n > pS + 1 and pF = 0, then ε = ε0 , tr(KxC

) +
pS

n−pS−1 (tr(KxC
) + σ2

v). Inserting tr(KxS
) = r tr(Kx) and

tr(KxC
) = (1 − r) tr(Kx) into the inequality ε∞ < ε0 and

solving for r leads to the expression in (20).
If pS >n + 1 and pF = 0, then we have ε0 = tr(KxC

) +
n

pS−n−1 (tr(KxC
)+σ2

v)+(1− n
pS

) tr(KxS
). Again, inserting

tr(KxS
)=r tr(Kx) and tr(KxC

)=(1−r) tr(Kx) into ε∞ <
ε0, and solving for r gives the desired expression in (21).

E. Proof of Theorem 2
By Lemma 2, we investigate ε1 and ε2 in (42) and (43), in

the setting of Theorem 2. The estimator in this setting is
W̄ = ĀT(ĀĀT + σ̂2

v̄In)−1. (62)
We first investigate the term ε1 from (42). Throughout the
proof, we use the following notation for the full SVD of Ā:

Ā = USV T, (63)
where U ∈Rn×n, and V ∈Rp̄×p̄ are Haar distributed orthog-
onal random matrices [34, Section 2.1.5], [35], statistically in-
dependent from S ∈Rn×p̄, which contains the singular values
si of Ā, i = 1, . . . ,min{n, p̄}, with si = 0 if i > min{n, p̄}.
With R = [IpS , 0]∈RpS×p̄, we have W̄S = RW̄ . Now let
M ∈RpS×pS be defined by
M = IpS−W̄SAS = IpS−RĀT(ĀĀT+σ̂2

v̄In)−1ĀRT

= IpS −RV ST(SST + σ̂2
v̄In)−1SV TRT (64)

= RV
(
Ip̄ − diag

(
λi

λi+σ̂2
v̄

))
V TRT (65)

= RV diag
(
λ̃i
)
V TRT, (66)

where λ̃i = σ̂2
v̄/(λi+ σ̂2

v̄), and λi = s2
i denote the eigenvalues

of ĀTĀ∈Rp̄×p̄. Inserting this into ε1 in (42), we have

ε1 = E
A

[
tr
(
MKxS

MT
)]

= tr
(
E
A

[Q]KxS

)
, (67)

where Q = MTM ∈RpS×pS has the entries qij =∑pS
k=1mkimkj , where mij =

∑p̄
l=1 vilvjlλ̃l denotes the

(i, j)th entry of M .
We now investigate the diagonal and off-diagonal entries of

Q in expectation. The diagonal entries are qii =
∑pS
k=1m

2
ki,

which has one term where k = i:

m2
ii =

( p̄∑
l=1

v2
ilλ̃l

)2

=

p̄∑
l=1

(
v4
ilλ̃

2
l + 2

l−1∑
j=1

v2
ilv

2
ij λ̃lλ̃j

)
,

and (pS − 1) terms where k 6= i:

m2
ki =

p̄∑
l=1

(
v2
klv

2
ilλ̃

2
l + 2

l−1∑
j=1

vklvilvkjvij λ̃lλ̃j

)
.

Using that the random matrix V is uncorrelated with S, and
the expectations from Lemma 4, we have the expectations

E
V,S

[m2
ii] =

p̄∑
l=1

(
3

p̄(p̄+2)ES[λ̃2
l ] + 2

l−1∑
j=1

1
p̄(p̄+2)ES[λ̃lλ̃j ]

)
,

E
V,S

[m2
ki] =

p̄∑
l=1

(
1

p̄(p̄+2)ES[λ̃2
l ]− 2

l−1∑
j=1

1
(p̄−1)p̄(p̄+2)ES[λ̃lλ̃j ]

)
,

which together with qii =
∑pS
k=1m

2
ki, gives

E
A

[qii] = µ̄2, (68)

with µ̄2 as in (24).
The off-diagonal entries of Q = MTM are, with i 6= j,

qij =

pS∑
k=1

mkimkj =

pS∑
k=1

Å p̄∑
l=1

vklvilλ̃l

ãÅ p̄∑
l=1

vklvjlλ̃l

ã
.

By [36, Lemma 2.22], products of entries from V are zero-
mean if any row- or column-index occurs an odd number of
times in the product. Hence

E
A

[qij ] = 0, i 6= j, (69)

since in each term of qij , there is an odd number of entries
from row i and j of V . By (68) and (69), we have now that
EA[Q] = µ̄2IpS , and together with (67) we find that

ε1 = µ̄2 tr(KxS
). (70)

We now find ε2 from (43) in the setting of Theorem 2.
Using the SVD of Ā in (63), and that W̄S = RW̄ , and (62),
we write
W̄SW̄

T
S =RW̄W̄TRT =RV ST(SST+σ̂2

v̄In)−2SV TRT

=RV diag
(

λi

(λi+σ̂2
v̄)2

)
V TRT. (71)

We combine (71) with (43), and use that V and S are
statistically independent,

ε2 = tr
(
E
S

[
diag

(
λi

(λi+σ̂2
v̄)2

)]
E
V

[
V TRTRV

])
. (72)

With vT
i ∈R1×p̄ denoting the rows of V , we have that

E
V

[V TRTRV ] =
∑pS
i=1 EV [viv

T
i ] = pS

1
p̄Ip̄. Here, we have

used that EV [v2
ij ] = 1

p̄ , and that EV [vijvil] = 0 if j 6= l [36,
Section 2.1]. Combining this with (72), we find

ε2 = pS
p̄

∑p̄
i=1 E

λi

[
λi

(λi+σ̂2
v̄)2

]
. (73)

We now combine (70) and (73), with (41) and find the
desired expression of ε in (22) of Theorem 2.

F. Proof of Corollary 3
For n � p̄, by the law of large numbers, ĀTĀ ≈

E[ĀTĀ] = nIp̄, and λi ≈ n, i = 1, . . . , p̄. Substituting
λi ≈ n into the eigenvalue expressions for µ̄1 and µ̄2 in (23)
and (24) of Theorem 2, we obtain the expressions in (29), and
the desired approximation for ε in (28).

G. Proof of Lemma 1
For pF = 0, we have p̄ = pS . With rmin =

min(n, pS), µ̄2 of Theorem 2 is given by µ̄2 =
rmin

pS
E
λ

[
σ̂4
v̄

(λ+σ̂2
v̄)2 ] + pS−rmin

pS
. Taking partial derivative with re-

spect to σ̂2
v̄ , we obtain ∂µ̄2

∂σ̂2
v̄

=
2σ̂2

v̄rmin

pS
E[ λ

(λ+σ̂2
v̄)3 ]. Similarly,

∂µ̄1

∂σ̂2
v̄

= −2rmin E[ λ
(λ+σ̂2

v̄)3 ]. Hence, ∂ε
∂σ̂2

v̄
= (

2σ̂2
v̄

pS
tr(KxS

) −
2(tr(KxC

)+σ2
v))rmin E[ λ

(λ+σ̂2
v̄)3 ], where the expectation term

is always non-negative. Setting the derivative ∂ε
∂σ̂2

v̄
to zero, we

find the optimal σ̂2
v̄ as in (31). Note that ∂2ε

∂(σ̂2
v̄)2 > 0, hence

we indeed find a minimum of the function. We note that for
the other stationary point at σ̂v̄ →∞, ∂2ε

∂(σ̂2
v̄)2 < 0, hence this

point is not a minimum.



For n� p̄, pF > 0, we have the approximation for ε in (28)
from Corollary 3. We take the derivative of this approximation
w.r.t. σ̂2

v̄ , and find the same solution for σ̂v̄ .

H. Proof of Theorem 3
The line of argument is similar to the proof of Theo-

rem 1, hence here we only present the key steps. Let RF =
[0, IpF ]∈RpF×p̄. By (48), we have that W̄F = RF Ā

+, and
EĀ[W̄FW̄

T
F ] = RF EĀ[(ĀTĀ)+]RT

F . Note that RFR
T
F =

IpF . Hence, if n > p̄ + 1, then tr(EĀ[W̄FW̄
T
F ]) = pF

n−p̄−1 ,
similar to (53). If instead p̄ > n+ 1, then tr(EĀ[W̄FW̄

T
F ]) =

pFn
p̄(p̄−n−1) , similar to (56). Hence, we have derived the second
term of (45). We now consider the first term of (45). If n > p̄+
1, then Ā+Ā = Ip̄, w.p. 1, hence W̄FAS = RF Ā

+ĀRT =
[0, IpF ]Ip̄[IpS ,0]T = 0 with R = [IpS , 0]∈RpS×p̄, hence the
first term of (45) is zero. If instead p̄ > n + 1, we note that
AT
SW̄

T
F W̄FAS = RĀTĀ+TRT

FRF Ā
+ĀR and apply (47)

to obtain Ē
A

[tr(AT
SW̄

T
F W̄FASKxS

)] = npF (p̄−n)
(p̄−1)p̄(p̄+2) tr(KxS

),

which concludes the proof.
I. Proof of Lemma 2

By (13), W̄ is given by W̄ = K̂x̄Ā
T(ĀK̂x̄Ā

T+K̂v̄)+ =
[W̄T

S , W̄
T
F ]T. Note that W̄ depends on AS and AF , but not

on AC . Combining (15) with (16),
ε = EA[JS(W̄S)] + EA[JC(W̄C)] = εS + εC , (74)

where εS = EA[JS(W̄S)] and εC = EA[JC(W̄C)]. Here, we
have dropped the arguments of ε(pS , pC , pF , n) for ease of
disposition, and we recall that A = [AS ,AC ,AF ].

We now investigate εC in (74). Using W̄C = 0, i.e., x̂C =
W̄Cy = 0, we have

JC(W̄C) = Ex,y[‖xC − x̂C‖2] = tr(KxC
). (75)

We obtain εC = EA[JC(W̄C)] = tr(KxC
), which matches

the desired expression in (44).
We now investigate the term JS(W̄S), as defined by (8).

With x̂S = W̄Sy, and y from the underlying system in (1),
JS(W̄S)= E

x,v

[
‖xS−W̄S(ASxS + ACxC + v)‖2

]
(76)

= E
xS

[‖(IpS−W̄SAS)xS‖2] + E
xC

[‖W̄SACxC‖2]

+ E
v

[‖W̄Sv‖2]−2E
x

[xT
S (IpS−W̄SAS)TW̄SACxC ],

(77)

where we have used that v is zero-mean and statistically
independent from xS and xC , and eliminated the associated
cross-terms. Rewriting with the trace operator,
JS(W̄S)= tr

(
(IpS−W̄SAS)KxS

(IpS−W̄SAS)T
)

+tr
(
W̄SACKxC

AT
CW̄

T
S

)
+tr

(
W̄SKvW̄

T
S

)
− 2 tr

(
W̄SACKxCxS

(IpS−W̄SAS)T
)
,

(78)

where we have used that KxS
= ExS

[xSx
T
S ], KxC

=
ExC

[xCx
T
C ], Kv = Ev[vvT] and KxCxS

= Ex[xCx
T
S ].

We now consider (78) in expectation over the regressor
matrices, i.e., εS = EA[JS(W̄S)]. We eliminate the cross-
terms between AC and W̄ , and between AC and AS , due to
statistical independence,

εS = Ē
A

[
tr
(
(IpS−W̄SAS)KxS

(IpS−W̄SAS)T
)

+ tr
(
W̄S

(
E
AC

[
ACKxC

AT
C

]
+ Kv

)
W̄T
S

)] (79)

= ε1 + ε2, (80)

with ε1 and ε2 as in the desired expressions (42) and (43).
Note that in the final step, we used that Kv = σ2

vIn, and that
EAC

[
ACKxC

AT
C

]
= tr(KxC

)In, from Lemma 5, which we
can apply due to AC being standard Gaussian.

Using that xF = 0, we have ‖xF − x̂F ‖2 = ‖x̂F ‖2 and
JF (W̄F ) = E

x,v
[‖W̄F (ASxS + ACxC + v)‖2], (81)

and by using similar steps as for JS , we expand the norm,
cancel the cross-terms, rewrite the expression with the trace
operator, take the expectation over A, and find εF of Lemma 2.

J. Proof of Lemma 3
Let the full SVD of A be denoted by A = USV T, where

U ∈Rn×n and V ∈Rp×p are Haar-distributed orthogonal ran-
dom matrices statistically independent from and S ∈Rn×p
[34, Section 2.1.5], [35], which contains the singular values
of A. Letting vi denote the columns of V , we have

M = V S+SV T =
∑
i∈In/p

viv
T
i , (82)

where In/p is the set of n indices out of {1, . . . , p}, cor-
responding to non-zero singular values of S. Noting that S
is of rank n w.p. 1, we choose In/p = {1, . . . , n}, without
loss of generality due to the Haar distribution of V . In
other words, we henceforth write the (i, j)th entry of M as
mij =

∑n
k=1 vikvjk.

The matrix Q∈RpS×pS can be written as Q =
RMRTRMRT, where R = [IpS ,0]∈RpS×p, hence the
(i, j)th entry of Q is qij =

∑pS
l=1milmlj =

∑pS
l=1milmjl,

where we have used MT = M . The diagonal elements qii
can be written as qii=

∑pS
l=1m

2
il = m2

ii+
∑pS
j=1, j 6=im

2
ij , which

we further expand,

qii =

n∑
l=1

v4
il + 2

n∑
l=1

l−1∑
k=1

v2
ilv

2
ik

+

pS∑
j=1, j 6=i

( n∑
l=1

v2
ilv

2
jl + 2

n∑
l=1

l−1∑
k=1

vilvjlvikvjk

)
.

(83)

Lemma 4 gives the moments necessary to derive the expec-
tation of qii. Combining these moments, we find
µq , E

A
[qii] = n

p(p+2)

Ä
n+ pS + 1− (pS−1)(n−1)

p−1

ä
. (84)

Regarding the off-diagonal entries of Q, we have with i 6= j

qij = miimij +mijmjj +
∑pS
l=1, l 6=i,jmilmlj . (85)

By [36, Lemma 2.22], products of entries from V are zero-
mean if any row- or column-index occurs an odd number
of times in the product. Hence miimij = (v2

i1 + · · · +
v2
in)(vi1vj1 + · · · + vinvjn), is zero-mean, due to the row-

index i occurring three times in each term of the summation.
Similarly, the other terms of (85), are also zero-mean. Hence
EA[qij ] = 0 for i 6= j. Combining this with (84), we obtain
the sought for expressions of EA[Q].

The diagonal elements of Q̄∈RpS×pS can be written as

q̄ii =

p∑
l=pS+1

n∑
k=1

(
v2
ikv

2
lk + 2

k−1∑
j=1

vikvlkvijvlj ,
)
, (86)

which in expectation is, using Lemma 4,

µq̄ , E
A

[q̄ii] = pFn
(

1
p(p+2) − n−1

(p−1)p(p+2)

)
. (87)



Similarly as for qij in (85), which we have shown is zero-
mean over the distribution of A, the off-diagonal entries in Q̄
are also zero-mean. Combining this with (87) and simplifying,
we obtain the sought for expression of EA[Q̄].

K. Proof of Lemma 4

Let δαβ = 1 if α = β, and zero otherwise. Applying [36,
Lemma 2.22], we obtain
E
V

[v4
il] = −1

(p−1)p(p+2)

[
δiiδiiδllδll + δiiδiiδllδll + δiiδiiδllδll

+ δiiδiiδllδll + δiiδiiδllδll + δiiδiiδllδll
]

+ p+1
(p−1)p(p+2)

[
δiiδiiδllδll + δiiδiiδllδll + δiiδiiδllδll

]
= −1[1+1+1+1+1+1]+(p+1)[1+1+1]

(p−1)p(p+2) = 3
p(p+2) .

Other moments are derived in a similar fashion. We omit these
derivations due to space constraints.

L. Proof of Lemma 5

Let the spectral decomposition of K be denoted as K =
LΛLT, where L∈Rp×p is an orthogonal matrix, and Λ =
diag(si)∈Rp×p, i = 1, . . . , p, contains the eigenvalues of
K. We note that AL ∼ A, due to the rotational invariance
of the standard Gaussian distribution. Hence E

A

[
AKAT

]
=

E
A

[
AΛAT

]
= E

A

[∑p
i=1 siaia

T
i

]
, where ai ∈Rn×1 denote

the columns of A. We note that ai are i.i.d. standard Gaussian
random vectors, hence E[aia

T
i ] = In. Hence, E

A

[
AKAT

]
=

(
∑p
i=1 si) In = tr(K)In, which concludes the proof.
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