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Abstract—This paper proposes a new adaptive framework for
tracking multiple objects in the presence of data association
uncertainty and heavy clutter, either with or without knowledge
of the measurement rates and/or target shapes. Built upon an
online Gibbs sequential Markov chain Monte Carlo sampling
scheme, the adaptive tracker is Bayesian optimal and robust,
requiring no additional approximations or measurement partition
steps. With a non-homogeneous Poisson process measurement
model, our tracker can tackle the data association task with
linear computational complexity. Meanwhile, we study gener-
alised inverse Gaussian and inverse Wishart distributions for
modelling Poisson rates and object shapes, respectively; these
prior models ensure closed-form full conditionals in our online
Gibbs sampling steps, under which object states and shapes can
be jointly estimated with associations and Poisson rates in a par-
allel fashion. Furthermore, a fast Rao-Blackwellisation scheme
for linear Gaussian dynamics is designed and demonstrated to
significantly improve both tracking efficiency and accuracy. We
validate the efficacy of our method on real and simulated data.

Index Terms—sequential Markov chain Monte Carlo, extended
target tracking, data association, Rao-Blackwellisation

I. INTRODUCTION

Recent advances in sensor technologies have led to an
increase in sensor resolution, making the traditional point
target assumption less conducive to many modern applications,
including surveillance, unmanned aerial vehicles (UAVs), and
autonomous driving, where multiple detections are captured
for each object per time step. The non-homogeneous Poisson
process (NHPP) measurement model [1], also referred to as
the Poisson point process (PPP) model, is a common extended
object measurement model adopted in the existing extended
target trackers, e.g., [2]–[7]. It assumes a Poisson-distributed
number of measurements from targets and the clutter process,
and the measurement process is modelled as an NHPP from
the superposition of conditionally independent NHPPs from
each target as well as the clutter.

In comparison to conventional point target tracking, ex-
tended or group target tracking poses more challenges to
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maintaining tracking efficiency and accuracy. To begin with,
the complexity of data association in extended target tracking
dramatically increases with the number of measurements,
making traditional methods such as the joint probabilistic
data association (JPDA) [8] and the multiple hypothesis
tracker (MHT) [9] fail due to the requirement of exhaustive
enumeration of all possible association hypotheses. Another
challenge is that, in practice, the Poisson rates of the NHPP
measurement model may be unknown to users and/or time-
varying. Therefore, efficient learning of these time-varying
parameters would be essential to maintaining the robustness
of the tracker. In addition, practical applications may require
the estimation of the target shape, which also demands the
robustness of the tracker, since the estimation accuracy of
the target position, measurement rates, and target shapes are
highly correlated. Therefore, this paper proposes an adaptive
and robust extended target tracker that can provide a fast and
reliable estimation of target position and shape under varying
and unknown detection environments.

A. Related Work

The data association problem has been intensively studied
for tracking multiple point targets in clutter. Besides the
classical JPDA and MHT algorithms, other popular point target
trackers include the probabilistic MHT (PMHT) [10]–[12], the
graphical model approaches [13], [14], the sampling-based
methods [15]–[17], the random finite set (RFS) approaches
[18], and references therein. To tackle the data association un-
certainty in extended target tracking, many point multi-target
trackers have been developed to accommodate extended targets
that can generate more than one measurement. However, a
direct extension of the point target tracker to the extended
target version, such as the extended target JPDA filter in [19],
can experience a large growth in combinatorial complexity as
the number of targets and measurements increases.

One way to alleviate the computational burden of data
association is to implement a heuristic measurement partition
before the data association step. Based on this measurement
clustering technique, a two-stage MHT algorithm has been
proposed in [20] by using a generalisation of track-oriented
MHT recursion to handle repeated measurements. Similarly, a
JPDA-based tracker has been devised in [21] that can estimate
both the targets’ positions and their sizes with a limited
computational burden. This measurement partition strategy
has also been combined with the recently popular RFS-based
approaches to deal with extended target tracking, e.g., the
extended target probability hypothesis density (PHD) filter
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[2] and the extended target Poisson multi-Bernoulli mixture
(PMBM) filter [4]. Nevertheless, the performance of these
clustering-based methods is closely dependent on the clus-
tering result, and this preprocessing step could deteriorate
tracking accuracy, especially in challenging cases of heavy
clutter and/or closely-spaced targets [6], [22].

To mitigate the measurement partition error, several sam-
pling methods are employed in the PMBM filter to sample the
candidate associations directly without conducting measure-
ment partitioning [22]. In spite of improved tracking results,
there are several issues with this method. Firstly, its stochas-
tic optimization sampling scheme is not a rigorous MCMC
method and cannot guarantee sampling from the desired pos-
terior distribution. In addition, the MCMC sampling schemes
in [22] are not scalable and require significant computation
cost because they cannot sample all association components
in parallel, and the relative likelihoods need to be recalculated
each time an association component is sampled. A further
issue is that it heuristically truncates hypotheses to avoid the
exhaustive enumeration of possible data association hypothe-
ses, which may lead to undesirable tracking performance in
demanding scenarios with high association uncertainty [6].

Another extended target tracker that requires no measure-
ment partition to solve data association is built upon the scal-
able sum-product algorithm (SPA) data association framework
for point targets [13]. For point targets generating no more than
one measurement, closed-form SPA calculations are available
for linear Gaussian models [13]. However, for extended tar-
gets that produce multiple measurements, closed-form SPA
operations are not available under a linear Gaussian system.
Hence, a particle filter implementation of the SPA algorithm
was proposed in [23] for tracking a fixed number of extended
targets, which was later developed in [6] to include target
detection, termination, and shape estimation. The SPA-based
tracker has demonstrated performance advantages compared
to the PMBM filter [6]. Nonetheless, this SPA method is
suboptimal in a Bayesian sense, e.g., it approximates the joint
posterior distribution by a product of marginal distributions at
each time step. Furthermore, the cycles of the constructed fac-
tor graph raise concerns regarding, e.g., the convergence of the
loopy SPA algorithm and the order of message computation,
since these factors may affect the estimation result.

The non-homogeneous Poisson process, besides serving
as an extended target measurement model, also provides an
alternative perspective to solve data association efficiently, free
from measurement partitioning. The idea of exploiting the
NHPP model to simplify the data association was first pre-
sented in [1], [24]. Based on the NHPP model, the likelihood
function can be evaluated without constructing the association
hypotheses, resulting in a compact particle filter implemen-
tation of a Bayesian extended target tracker that circumvents
the data association step. A similar strategy for untangling the
NP hard data association appears in the probabilistic multiple
hypothesis tracker (PMHT), which relaxes the restriction of
one measurement per target for point targets so that the PMHT
requires neither exhaustive enumeration of associations nor
pruning [10]. Although their relationship is rarely mentioned
in literature, we will later prove that the NHPP measurement

model is equivalent to the point target measurement model
of the general PMHT when conditional on the measurement
number, where the association probability vector of the PMHT
can be calculated by a vector of normalised Poisson rates in
the NHPP model (i.e., the Π defined with πi in (23)).

A recent application of the NHPP measurement model is the
extended target JPDA filter [5], where the marginal association
probabilities can be obtained with linear complexity in the
number of measurements and targets. An improved version
of [5] that incorporates detection and existence probabilities
can be found in [25]. Nevertheless, the independent marginal
association posterior is a rough approximation due to the
assumption of an independent predictive likelihood for each
measurement conditional on associations. An additional ap-
proximation is the sequential PDA state update strategy, which
is a recursive moment matching procedure that is sensitive
to the order of the measurements [5], [25]. Therefore, a
scalable data association framework has been devised in our
previous paper [26], which can achieve parallel computing of
target states as well as association variables under a sequential
Markov chain Monte Carlo (SMCMC) inference framework.
Compared to the methods in [5], [6], it theoretically converges
to an optimal Bayesian filter with a sufficiently large sample
size [17], [27]. Compared to the sampling-based PMBM
filter in [22] that cannot independently sample associations
and requires suboptimal truncations to avoid enumeration of
all association hypotheses, our method is scalable, and both
associations and states can be sampled in parallel.

Besides data association uncertainty, another important issue
in extended target tracking is the robustness of the algorithm.
For one thing, the Poisson rates, which are parameters of
the NHPP measurement model, may be unknown and/or
time-varying. Previous studies that adopt NHPP measurement
models assume Poisson rates either to be known constants
[1], [5] or predefined functions of the extended target state
[2]. This prior information, if incorrect, could lead to false
association results, which further influences the tracking ac-
curacy. Therefore, measurement rate estimation has been con-
sidered in several extended target RFS-based trackers with a
heuristic design of the predicted density by using a Gamma
distribution prior [2], [4]. The same heuristic prediction step
has also been adopted in the PMHT framework to estimate
the target measurement rates [11], implemented by a batch
expectation–maximization (EM) method. An online PMHT
method has also been developed for cases of unknown Poisson
rates [12]. However, this online PMHT method cannot return
the original rate estimates as it lacks the estimation of the
normalisation constant. Another problem is the false deduc-
tion of the clutter’s association probability (i.e., π0) in [12],
which should have been estimated along with the association
probabilities of the targets. The particle filter implementation
also limits its ability to track a large number of targets due to
the degeneration problem of the particle filter [27].

Contrary to the heuristic design of the transition density
in [4], [11], we develop a Bayesian optimal multi-target
tracker that can capture the temporal characteristics of rates by
exploring the generalised inverse Gaussian (GIG) family [26].
Specifically, we explore the GIG distribution as the prior for
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Poisson rates, which is conjugate to the Poisson distribution
despite rarely being applied in these contexts. Compared to
the Gamma prior adopted in [2], [4], the three-parameter GIG
distribution is more flexible and known to be a better fit for
highly dispersed detection data [28].

B. Contributions

This paper presents a novel adaptive framework that can
jointly estimate measurement rates, target kinematic states,
and/or shapes in the presence of data association uncertainty
and clutter. Here, a scalable solution to the data association
problem is derived by exploiting the NHPP measurement
model, under which the associations are conditionally in-
dependent and can be estimated in parallel without an ex-
haustive enumeration of all associations. Another key inno-
vation is a fast Rao-Blackwellised SMCMC implementation
that is distinct from the well-known Rao-Blackwellisation
scheme for linear Gaussian systems [29]–[31]. This fast Rao-
Blackwellisation scheme enables the tracker to maintain a
parallel processing structure, making it advantageous in large-
scale tracking scenarios. Further, we enhance its adaptability
to handle realistic situations with unknown and time-varying
Poisson rates/target shapes. Throughout this paper, the number
of targets is assumed to be known for simplicity, which is
applicable to cases where the target number has been acquired
manually or through a track-by-detection paradigm. However,
the framework may be extended to accommodate an unknown
and time-varying number of targets, e.g., by introducing an
existence vector as in [17]. Extensions to the joint detection
and tracking framework will be presented in future work.

An earlier conference version of this paper has been pre-
sented in [26]. In comparison, this paper makes significant
improvements and proposes a number of novel developments
as follows. First, this paper provides much more detailed
derivations and implementation of the algorithm, as well as
a full performance analysis by evaluating it in comparison
with other popular algorithms including the LT-JPDA filter
[5], online PMHT [12], different versions of the SPA-based
trackers [6], [23] and the GGIW-PMBM filters [4]; a real an-
imal behavioural dataset has also been studied to demonstrate
the efficacy of the proposed method in group target tracking
scenarios. Moreover, we analyse the conditions for equivalence
between the NHPP trackers and the PMHT algorithm, and pro-
vide a direct mathematical relationship between Poisson rates
and association probabilities defined in PMHT algorithms.

One of the major advances is that we devised two
Rao-Blackwellisation SMCMC schemes for linear Gaussian
systems, based on the proposed association based NHPP
(AbNHPP) tracker in [26]. The Rao-Blackwellised particle
filter has been empirically demonstrated to be capable of alle-
viating the degeneration of particle filters and thus improving
tracking performance, e.g., see [15], [32] for a point target
tracking case. Nonetheless, these particle filter based methods
would still suffer from severe degeneration in high dimensional
problems. In contrast, our proposed Rao-Blackwellisation
schemes are based on the SMCMC sampling method, the
superiority of which over regular particle filters has recently
been demonstrated both empirically and theoretically [17],

[27], [33]–[35]. Most importantly, we propose a fast Rao-
Blackwellisation scheme that is comparable to the standard
Rao-Blackwellisation scheme in estimation accuracy while
maintaining an efficient parallel sampling structure and a better
mixing property. To our knowledge, this is the first time
that this type of Rao-Blackwellisation has been developed for
the SMCMC methods in this paper. Typically, the standard
Rao-Blackwellisation scheme (e.g. in Section IV-A, or other
general Rao-Blackwellisation schemes [15], [29]) operate by
sampling from a reduced state space. In contrast, the proposed
fast Rao-Blackwellisation scheme in Section IV-B first sam-
ples from the original state space to maintain desired sampling
and computational features; thereafter, only the samples in the
reduced state space are used to approximate the intractable
expectation, whereby the estimates enjoy the benefit of Rao-
Blackwellisation. We can later see from the results that the
advantage brought by this fast Rao-Blackwellised SMCMC
scheme is significant in both tracking accuracy and efficiency,
compared to the standard joint SMCMC sampler for the con-
sidered multi-object tracking problem. The underlying reason
is that the stationary distribution of the fast Rao-Blackwellised
scheme is built on a mixture Gaussian approximation, which
is more accurate than that of the standard joint SMCMC built
on the weighted Dirac masses.

Another improvement is that we develop an adaptive ex-
tended target tracker that can deal with challenging scenarios
where both the rates and target shapes are time-varying by
utilising the GIG family and the inverse Wishart distribution
[36]. Other target extent models (e.g., [3]) can be easily
accommodated in our scheme if necessary. Unlike the popular
Gamma Gaussian inverse-Wishart (GGIW) model [4], which
uses a heuristic predicted density for both rates and target
shapes, our method is mathematically more rigorous, with
a closed-form transition density that leads to an optimal
Bayesian filter; the conjugacy of the GIG distribution and
inverse Wishart to the likelihood function also leads to simple
and closed-form full conditionals for Gibbs sampling steps,
allowing efficient parallelisation. This novel adaptive extended
target tracker can also be employed in group tracking scenar-
ios, where we can acquire the shape, the location, as well as
other information (e.g., the approximate target number in the
group) for tracking a group of objects. An example result of
a group tracking case can be seen in Section. VI-F.

C. Paper Outline

The remainder of this paper is structured as follows. Section
II presents the NHPP measurement model and data associ-
ation framework. Section III presents the AbNHPP tracker
under known measurement rates; Rao-Blackwellised AbNHPP
trackers for linear Gaussian systems are detailed in Section IV.
Section V introduces the proposed adaptive AbNHPP tracker
that can handle multi-target tracking tasks with unknown/time-
varying Poisson rates and/or object extents. Results and con-
clusions are given in Sections VI and VII.

II. MODEL

Assuming that there are K objects moving indepen-
dently, the overall target state at time step n is Xn =
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[X⊤
n,1, ..., X

⊤
n,K ]⊤, where each vector Xn,i, i ∈ {1, ...,K}

denotes the i-th target’s kinematic state, and K is known as
a prior. The Mn measurements received at time step n are
denoted by Zn = [Zn,1, ..., Zn,Mn

].

A. Dynamical Model

Assume that targets move in a D-dimensional surveillance
area, and the target state for each object i in the d-th dimension
is Xd

n,i = [xdn,i, ẋ
d
n,i]

T , which contains the target’s position
and velocity. We assume a continuous time linear Gaussian
dynamical model for the kinematic state Xd

i (t), expressed in
a stochastic differential equation (SDE) [37]:

dXd
i (t) = Ad

iX
d
i (t)dt+ CidB

d
i (t), (1)

where Bd
i (t) is a one-dimensional Brownian motion with

variance Qi. Subsequently, the state at time t+τ can be derived
by integrating (1) from t to t+ τ :

Xd
i (t+ τ) = FiX

d
i (t) +wd

i,t, wd
i,t ∼ N (0, Pi) (2)

with the transition matrix Fi and the noise covariance Pi being

F d
i = eτAi , P d

i =

∫ τ

0

etAiCiQiC
⊤
i e

tA⊤
i dt. (3)

By direct discretisation of (2), the transition density at time
step n is p(Xd

n,i|Xd
n−1,i) = N (F d

i X
d
n−1,i, P

d
i ). For inde-

pendent moving targets, the joint transition density can be
computed as p(Xn|Xn−1) =

∏D
d=1

∏K
i=1 p(X

d
n,i|Xd

n−1,i).
For a constant velocity (CV) model, we have Ai = [0 1; 0 0],

Ci = [0; 1], and its transition matrix and noise covariance are

F d
i =

[
1 τ
0 1

]
, P d

i = Qi

[
τ3/3 τ2/2
τ2/2 τ

]
. (4)

B. NHPP Measurement Model

This paper considers an NHPP measurement model as in
[1]. Denote the set of Poisson rates by Λ = {Λi; i =
0, 1, ...,K}, where Λ0 is the clutter rate, and Λi is the i-th
target rate, i = 1, ...,K. We assume the measurement process
of each target i is an NHPP with intensity λi(Zn|Xn,i),
where the measurement number mn,i is Poisson distributed
with rate Λi defined over the observation area V , and Λi =∫
V
λi(Zn|Xn,i)dZn. The clutter process is a homogeneous

Poisson process (HPP) with intensity λ0(Zn|Xn,0) and Pois-
son rate Λ0, where Xn,0 denotes the parameter/information
of the clutter. By superposition of the conditional indepen-
dent NHPP/HPP measurement process from K targets and
the clutter, the total measurement process remains an NHPP
with intensity λ(Zn|Xn) =

∑K
i=0 λi(Zn|Xn,i) and the total

number of measurements follows a Poisson distribution with
rate Λs =

∑K
i=0 Λi and Mn =

∑K
i=0mn,i:

p(Mn) =
e−Λs(Λs)

Mn

Mn!
. (5)

The measurements are conditionally independent when condi-
tional on the measurement number Mn and target state Xn,

p(Zn|Xn,Mn) =

Mn∏
j=1

p(Zn,j |Xn), (6)

where each measurement Zn,j is an i.i.d. sample from the
probability density function (PDF) p(Zn,j |Xn) given by

p(Zn,j |Xn) =
λ(Zn,j |Xn)

Λs
(7)

where the intensity function λ(Zn,j |Xn) is λ(Zn,j |Xn) =∑K
i=0 λi(Zn,j |Xn,i) and each intensity can be computed by

λi(Zn,j |Xn,i) = Λip(Zn,j |Xn,i). Subsequently, by multiply-
ing (5)-(6) using Bayes’ Theorem, the likelihood function of
the measurement process is

p(Zn,Mn|Xn) =
e−Λs

Mn!

Mn∏
j=1

K∑
i=0

Λip(Zn,j |Xn,i). (8)

For the measurement model, we assume the target originated
measurement follows a linear and Gaussian model while the
clutter measurement is uniformly distributed in the observation
area of volume V :

p(Zn,j |Xn,i) =

{
N (HXn,i, Ri), i ̸= 0; (object)
1
V , i = 0; (clutter)

(9)

where H is the observation matrix. For point target i, Ri

indicates the sensor noise covariance; for extended target, Ri

represents the target extent where the target shape is modelled
as a Gaussian distribution,. For time-varying target extent or
measurement noise covariance, Ri will be replaced by Rn,i.
We will discuss this time-varying Rn,i in Section V-B.

C. Data Association

Under the NHPP measurement process in Section II-B, the
total measurements at each time step are generated by K + 1
conditionally independent NHPP measurement processes from
K targets and clutter. However, we still do not know to which
NHPP process each measurement belongs, and the associations
have to be integrated out by summation over all possible
associations in the likelihood function (8).

To retrieve the measurement-target correspondence, we re-
introduce the data association variables to avoid the summation
involved in the evaluation of the likelihood function. We define
data association as a random variable θn = [θn,1, ..., θn,Mn

],
with each component θn,j , j ∈ {1, ...,Mn} indicating the
origin of each measurement Zn,j ; θn,j = 0 indicates that Zn,j

is a clutter measurement from the clutter’s HPP process with
λ0(Zn|Xn,0), and θn,j = i, i ∈ {1, . . . ,K} means that Zn,j

is generated from the NHPP of target i with λi(Zn|Xn,i).
Under the assumption of the NHPP measurement model,

Mn measurements {Zn,j}Mn
j=1 along with associations

{θn,j}Mn
j=1 are conditionally independent. Therefore we have

p(Zn, θn|Xn,Mn) =

Mn∏
j=1

p(Zn,j , θn,j |Xn) (10)

For each measurement Zn,j , the likelihood function is

p(Zn,j , θn,j |Xn) =
λθn,j (Zn,j |Xn,θn,j )

Λs
, (11)

where λθn,j (Zn,j |Xn,θn,j ) = Λθn,jp(Zn,j |Xn,θn,j ). It can be
easily verified that integrating θn,j out of p(Zn,j , θn,j |Xn) in
(11) leads to p(Zn,j |Xn) in (7).

By using Bayes’ theorem and (11), we can deduce that the
prior for each association p(θn,j) is a categorical distribution
with support θn,j ∈ {0, ..,K}, [·] is the Iverson bracket and
[θn,j = i] evaluates to 1 if θn,j = i, and 0 otherwise.

p(θn,j) =
p(Zn,j , θn,j |Xn)

p(Zn,j |Xn,θn,j )
=

K∏
i=0

(
Λi

Λs

)[θn,j=i]

. (12)
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The conditional p(θn,j |Zn,j , Xn), which is proportional to
(11), is also a categorical distribution as follows:

p(θn,j |Zn,j , Xn) =
(Λ0

V l̃

)[θn,j=0] K∏
i=1

(Λilij

l̃

)[θn,j=i]

, (13)

where lij = N (Zn,j ;HXn,i, Ri) under the measurement
model in Section II, and l̃ is a normalisation constant to ensure
the sum of all categories’ probabilities equals one. We can see
that the full conditional for each θn,j has an explicit form,
and each association θn,j can be directly sampled in parallel.
Hence, once the associations are known, we can perform the
update step in parallel on the condition that the targets move
independently. Therefore, it motivates us to formulate a multi-
target tracker based on an online Gibbs sampling scheme
such that both association and target state sampling steps are
parallelisable. We will present this method in section III.

III. ASSOCIATION BASED NHPP TRACKER

This section presents the formulation of the AbNHPP
tracker. We assume as a starting point that both Poisson rates
and object shapes are known as prior information, meaning
that all deduced distributions are implicitly conditional on
them. The joint filtering distribution of interest is given by

p(Xn, θn|Z1:n) ∝ p(Mn)p(Zn, θn|Xn,Mn) (14)

×
∫
p(Xn|Xn−1)p(Xn−1|Z1:n−1)dXn−1,

where p(Mn) and p(Zn, θn|Xn,Mn) have been defined in (5)
and (10), respectively, and p(Xn|Xn−1) is the state transition
density given in Section II-A. As this joint posterior is in-
tractable, here we present an online Gibbs sequential MCMC
scheme to jointly estimate the target states and associations.
To avoid the integration in (14), we target p(Xn−1:n, θn|Z1:n)
instead of p(Xn, θn|Z1:n) at each time step n, where Xn−1:n

denotes states {Xn−1, Xn}. The AbNHPP tracker for the joint
inference of p(Xn, θn|Z1:n) is summarised in Algorithm 1.

The implementation of Gibbs sampling at each time step
n requires full conditionals of all variables in the joint
target distribution. Assume at time step n − 1, we have a
set of Np unweighted samples from the converged chain
{X(p)

n−1, θ
(p)
n−1}

Np
p=1 to approximate the stationary distribu-

tion p(Xn−1, θn−1|Z1:n−1). First, we deduce the full con-
ditionals of the Gibbs sampling block of θn, in which
we sample each θn,j for j = 1, ...,Mn from conditional
p(θn,j |θn,−j , Xn−1:n, Z1:n), θn,−j denotes all {θn,k}Mn

k=1,k ̸=j :

p(θn,j |θn,−j , Xn−1:n, Z1:n) =
p(θn, Zn|Xn−1:n, Z1:n−1)

p(θn,−j , Zn|Xn−1:n, Z1:n−1)

=

∏
k ̸=j p(θn,k, Zn,k|Xn)p(Zn,j , θn,j |Xn)∏

k ̸=j p(θn,k, Zn,k|Xn)p(Zn,j |Xn)

= p(θn,j |Zn,j , Xn) (15)

where p(θn,j |Zn,j , Xn) has an explicit form given in (13), and
the second line is derived from the conditional independence
assumption of the NHPP measurement model. Therefore, each
θn,j , j = 1, ...,Mn can be sampled independently in parallel.

Next, we deduce the full conditional of Xn−1. For K
independently moving targets, the transition density has the

property that p(Xn−1|Xn) =
∏K

i=1 p(Xn−1,i|Xn,i). The con-
ditional of Xn−1 can be deduced by

p(Xn−1|Xn, θn, Z1:n) ∝ p(Xn|Xn−1)p(Xn−1|Z1:n−1)

≈ 1

Np

Np∑
p=1

K∏
i=1

p(Xn,i|X(p)
n−1,i)δX(p)

n−1
(Xn−1)

=
1

Np

Np∑
p=1

K∏
i=1

N (Xn,i;FiX
(p)
n−1,i, Pi)δX(p)

n−1
(Xn−1). (16)

Finally, we deduce the full conditional of Xn,i for each
object i ∈ {1, ...,K} as follows:

p(Xn,i|Z1:n, Xn,−i, Xn−1, θn) ∝ p(Zn|Xn, θn)p(Xn|Xn−1)

∝
∏

j∈Θin

p(Zn,j |Xn,i)p(Xn,i|Xn−1,i)

∝ N (Z̃i
n;HXn,i, R̃i)N (Xn,i;FiXn−1,i, Pi)

∝ N (Xn,i;µn|n,i,Σn|n,i), (17)

where Θi
n includes the indexes of all measurements generated

from target i, i.e., Θi
n = {j|j ∈ {1, ...,Mn}, θn,j = i}, Xn,−i

denotes all {Xn,k}Kk=1,k ̸=i. The likelihood N (Z̃i
n;HXn,i, R̃i)

is obtained by the product formula for multiple multivariate
Gaussians [38], and

Z̃i
n =

1

|Θi
n|

∑
j∈Θin

Zn,j , R̃i =
1

|Θi
n|
Ri, (18)

where | · | denotes the cardinality of the set.
Thereafter, µn|n,i,Σn|n,i in (17) can be calculated by

Kalman filtering as follows:

µn|n−1,i = FiXn−1,i, Σn|n−1,i = Pi

kn = Σn|n−1,iH
T
(
HΣn|n−1,iH

T + R̃i

)−1

µn|n,i = µn|n−1,i + kn(Z̃
i
n −Hµn|n−1,i)

Σn|n,i = (I − knH)Σn|n−1,i

(19)

Therefore, conditioned on the association θn, we can update
the target states in parallel.

Algorithm 1: Association-based NHPP tracker

1 for time step n = 1 to T do
2 Initialization
3 for iteration m = 1 to Miter do
4 Sample θmn,1, ..., θ

m
n,Mn

from (13) in parallel;
5 Sample Xm

n−1 from (16);
6 For every object i = 1, ...,K,
7 Sample Xm

n,i from (17) in parallel.
8 end
9 After a burn-in time: keep the subsequent Np

samples {X(p)
n , θ

(p)
n }Npp=1 ∼ p(Xn, θn|Z1:n).

10 end

A. Discussion

1) Relationship to probabilistic multi-hypothesis tracker:
In the basic PMHT [39], a fundamental assumption is that each
target can generate more than one measurement. Accordingly,
it defines an association probability vector (also known as
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measurement probability vector [10]) of K targets and clutter
Π = [π0, ..., πK ], where

∑K
i=0 πi = 1. By relaxing the one

measurement per target restriction, a probabilistic structure for
the association is defined as Pr(θn,j = i) = πi (see eq.(6) in
[39]), which implies that the association prior has a form of

p(θn,j) =

K∏
i=0

(πi)
[θn,j=i]

. (20)

Subsequently, the likelihood of a general PMHT algorithm can
be written as follows according to [12], [39]:

p(Zn|Xn,Mn) =

Mn∏
j=1

K∑
i=0

πip(Zn,j |Xn,i). (21)

Recall that in the NHPP measurement model, the likelihood
function in (8), if conditional on the measurement number Mn,
can be deduced by dividing (8) by the prior of Mn in (5):

p(Zn|Xn,Mn) =

Mn∏
j=1

K∑
i=0

Λi

Λs
p(Zn,j |Xn,i) (22)

Therefore, we can observe that the the relationship between
association probabilities and measurement rates is:

πi =
Λi

Λs
, i = 0, ...,K. (23)

where Λs =
∑K

i=0 Λi is the normalisation constant. The
underlying reason for this relationship is that the measurement
number generated from targets and clutter in the PMHT is
multinomial distributed [11], and there is a mathematical
relationship between the Poisson and multinomial distributions
as in (23). Subsequently, we can see that the likelihood
function and association prior of the NHPP trackers and
PMHT algorithms are actually equivalent, when conditional
on a known measurment number Mn.

2) AbNHPP tracker for point target tracking: With this
relationship, the association prior of PMHT in (20) and
that of the AbNHPP tracker in (12) equal; thereafter, the
conditional of the AbNHPP tracker in (13) can be rewritten
in the context of the PMHT by substituting each Λi with πi
(with a different normalization constant). Therefore, we can
see that the AbHHPP tracker in Algorithm 1 can also be
implemented in point target tracking as a counterpart to the
PMHT algorithms. As PMHT algorithms has been validated in
literature to be capable of tracking point targets, the AbHHPP
tracker, due to this equivalence, can also be implemented for
point target tracking. For unknown or time-varying association
probabilities, likewise, we can first infer the measurement
rates, and then calculate the association probabilities using
(23). On the contrary, the PMHT cannot infer the Poisson
rates in a reverse manner from the estimated association
probabilities if the normalisation constant is not given.

In point target tracking, it usually defines a detection proba-
bility Pd,i for each target i, by which the measurement number
(0 or 1 in this case) generated by each target is Bernoulli dis-
tributed with mean Pd,i. Note that under the above-mentioned
point target AbNHPP tracker, the detection probability Pd,i is
not specifically defined. Rather, it is implicitly calculated by
the Poisson rate λi based on the first moment approximation of
the Bernoulli and Poisson distributions as in [1], [11]. There-
fore, the approximated estimation of detection probabilities

may be inaccurate when the detection probabilities are close
to one due to the divergence between Poisson and Bernoulli.

IV. RAO-BLACKWELLISED ABNHPP TRACKER

In the case of a linear and Gaussian dynamic system
defined in Section II-A, a Rao-Blackwellisation scheme can
be applied to replace the joint Monte Carlo estimation in
Section III; such a Rao-Blackwellised estimator is theoretically
proved to have smaller or at least equal variance compared
to the joint estimator, and, in practice, can greatly enhance
tracking performance. To see this, we first split the joint
filtering probability density p(θ1:n, Xn|Z1:n) with regard to
the marginal-conditional decomposition:

p(θ1:n, Xn|Z1:n) = p(θ1:n|Z1:n)p(Xn|θ1:n, Z1:n), (24)

where p(Xn|θ1:n, Z1:n) is linear Gaussian conditional on θ1:n.
For this partially tractable state space model, we only

need to sample the association θ1:n. Specifically, we adopt
a Monte Carlo approximation, and the posterior distribution
p(θ1:n|Z1:n) at each time step n is approximated by a set of
Np unweighted samples {θ(p)1:n}

Np
p=1:

p̂(θ1:n|Z1:n) =
1

Np

Np∑
p=1

δ
θ
(p)
1:n

(θ1:n). (25)

Subsequently, the marginal posterior of Xn can be
approximated by a Gaussian mixture:

p(Xn|Z1:n) ≈
1

Np

Np∑
p=1

p(Xn|θ(p)1:n, Z1:n), (26)

and each p(Xn|θ(p)1:n, Z1:n) is a Gaussian deduced as follows:

p(Xn|θ(p)1:n, Z1:n) ∝ p(Zn|Xn, θ
(p)
n )p(Xn|θ(p)1:n−1, Z1:n−1)

∝
K∏
i=1

∏
j∈Θin

p(Zn,j |Xn,i)p(Xn,i|θ(p)1:n−1, Z1:n−1)

∝
K∏
i=1

N (Z̃i
n;HXn,i, R̃i)N (Xn,i;µ

(p)
n|n−1,i,Σ

(p)
n|n−1,i)

∝
K∏
i=1

N (Xn,i|µ(p)
n|n,i,Σ

(p)
n|n,i) (27)

where Θi
n = {j|j ∈ {1, ...,Mn}, θ(p)n,j = i}, Z̃i

n and R̃i is
computed by (18), and

µ
(p)
n|n−1,i = Fiµ

(p)
n−1|n−1,i

Σ
(p)
n|n−1,i = FiΣ

(p)
n−1|n−1,iF

⊤
i + Pi. (28)

The µ(p)
n|n,i,Σ

(p)
n|n,i in (27) are then updated by Kalman filtering.

From the final form of the conditional p(Xn|θ(p)1:n, Z1:n), we
can see that each object Xn,i can be updated independently.

For the intractable part p(θ1:n|Z1:n), we adopt a SMCMC
inference scheme by considering the posterior p(θ1:n|Z1:n)
as the stationary distribution of the Markov chain, where the
posterior is derived as:

p(θ1:n|Z1:n) ∝ p(Zn|Z1:n−1, θ1:n)p(θn|Mn)p(θ1:n−1|Z1:n−1)

∝ p(θn|Mn)

Np∑
p=1

p(Zn|Z1:n−1, θ
(p)
1:n−1, θn)δθ(p)

1:n−1
(θ1:n−1) (29)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3240498

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

In (29), the joint prior p(θn|Mn) can be calculated from the
product of Mn independent association priors by using (12)

p(θn|Mn) =

Mn∏
j=1

p(θn,j) =
1

ΛMn
s

K∏
i=0

(Λi)
mn,i , (30)

mn,i =

Mn∑
j=1

[θn,j = i], (31)

where mn,i is the number of measurements generated by
object i according to θn. Note that by definition of Θi

n in
(17), we have mn,i = |Θi

n| for all i = 0, 1, ...,K.
Each marginal likelihood p(Zn|Z1:n−1, θ

(p)
1:n−1, θn) in (29)

can be decomposed as
p(Zn|Z1:n−1, θ

(p)
1:n−1, θn)

=

∫
p(Zn|Xn, θn)p(Xn|Z1:n−1, θ

(p)
1:n−1, θn)dXn

=
∏

j∈Θ0
n

p(Zn,j |Xn,0)

K∏
i=1

∫ ∏
j∈Θin

p(Zn,j |Xn,i)

× p(Xn,i|θ(p)1:n−1, Z1:n−1)dXn,i

=

(
1

V

)mn,0 K∏
i=1

∫
N (Z̃i

n;HXn,i, R̃i)

×N (Xn,i;µ
(p)
n|n−1,i,Σ

(p)
n|n−1,i)dXn,i

=

(
1

V

)mn,0 K∏
i=1

N (Z̃i
n;µZ̃in

,ΣZ̃in
), (32)

where Z̃i
n and R̃i are defined in (18), and

µZ̃in
=Hµ

(p)
n|n−1,i, (33)

ΣZ̃in
=HΣ

(p)
n|n−1,iH

⊤ + R̃i. (34)

Now we can see that θ1:n cannot be directly sampled from
the p(θ1:n|Z1:n) in (29), as this requires the evaluation of
(29) to (32) for each possible realization of θ1:n. Here, we
first introduce a standard Rao-Blackwellisation algorithm, and
then we develop a fast Rao-Blackwellisation version that can
maintain the parallel computing efficiency.

A. Standard Rao-Blackwellisation Scheme

In the standard Rao-Blackwellisation scheme, we target the
posterior p(θ1:n|Z1:n) as the stationary distribution. Therefore,
in the online Gibbs sampling steps, we sequentially infer
the association θ1:n−1 and θn,1, ..., θn,Mn

with the full con-
ditionals p(θ1:n−1|θn, Z1:n) and p(θn,j |θn,−j , θ1:n−1, Z1:n),
j ∈ {1, ...,Mn}.

By using (29), we can deduce that each conditional has the
following expressions:

p(θ1:n−1|θn, Z1:n) ∝ p(Zn|Z1:n−1, θ1:n)p(θ1:n−1|Z1:n−1)

≈ 1

Np

Np∑
p=1

p(Zn|Z1:n−1, θ
(p)
1:n−1, θn)δθ(p)

1:n−1
(θ1:n−1), (35)

p(θn,j |θn,−j , θ1:n−1, Z1:n) ∝ p(θn,j , Zn|θn,−j , θ1:n−1, Z1:n−1)

= p(Zn|Z1:n−1, θ1:n−1, θn)p(θn,j)

∝
K∑
i=0

Λip(Zn|Z1:n−1, θ1:n−1, θn)δi(θn,j). (36)

where the marginal likelihood p(Zn|Z1:n−1, θ1:n−1, θn) can be
calculated by (32) and both conditionals are in closed forms.

However, it is noted that the associations in (36) are no
longer mutually independent and thus cannot be sampled
in parallel. This dependence also makes it computationally
inefficient especially for a large data set, as the likelihood
needs to be evaluated repeatedly in calculating probabilities
of each support {θn,j = i}Ki=0. Therefore, a more efficient
Rao-Blackwellisation framework is proposed in Section IV-B.

B. Fast Rao-Blackwellised AbNHPP Tracker

The objective distribution here is p(θ1:n|Z1:n), which is
the same as the standard Rao-Blackwellisation scheme. In
contrast with the standard approach, the sampling steps are
modified to include an auxiliary sampling step for Xn; that is,
to obtain p(θ1:n|Z1:n), we instead target p(θ1:n, Xn|Z1:n) at
each time step n, while only keeping the converged sample set
of θ1:n to approximate the posterior p(θ1:n|Z1:n). Afterwards,
the posterior p(Xn|Z1:n) can be approximated by a Gaussian
mixture distribution as in (26). This fast Rao-Blackwellised
AbNHPP (RB-AbNHPP) tracker is summarised in Algorithm
2. Here we deduce the full conditionals of θ1:n−1, θn, and Xn

that are required in the implementation of the online Gibbs
sequential MCMC sampling scheme.

First, we sample each association θn,j from the conditional
p(θn,j |θn,−j , θ1:n−1, Xn, Z1:n), j = 1, ...,Mn. The associa-
tion is independent of previous θ1:n−1 given Xn, and the full
conditional equals to p(θn,j |Zn,j , Xn) as in (15). Therefore,
we can still independently sample each association θn,j in this
fast RB-AbNHPP tracker from (13). Next, the conditional of
θ1:n−1 can be deduced as

p(θ1:n−1|θn, Xn, Z1:n)

∝ p(Xn|θ1:n−1, Z1:n−1)p(θ1:n−1|Z1:n−1)

≈ 1

Np

Np∑
p=1

K∏
i=1

p(Xn,i|θ(p)1:n−1, Z1:n−1)δθ(p)
1:n−1

(θ1:n−1), (37)

where p(Xn,i|θ(p)1:n−1, Z1:n−1) is given in (28). We will
see later that sampling θ1:n−1 from (37) is to provide
the mean and covariance of the sampled r-th component
p(Xn|θ(r)1:n−1, Z1:n−1) in (38), and thus it is not necessary to
keep the whole history of θ1:n−1. Hence, sampling θ1:n−1 can
be understood as sampling an index r from {1, ..., Np}, and
the corresponding Gaussian component p(Xn|θ(r)1:n−1, Z1:n−1)
will be used in the following Gibbs step of sampling Xn.

Finally, we sample the block Xn from the conditional
p(Xn|θ1:n, Z1:n), which is the same as (27) with θ1:n being
the sample from this iteration instead of a component θ(p)1:n.
Thus, each target state can be sampled in parallel with the
conditional distribution as follows:

p(Xn,i|Xn,−i, θ1:n, Z1:n) ∝ p(Xn|θ1:n, Z1:n)

∝ N (Z̃i
n;HXn,i, R̃i)N (Xn,i;µ

(r)
n|n−1,Σ

(r)
n|n−1)

∝ N (Xn,i;µn|n,i,Σn|n,i), (38)

where r is the index of the sampled Gaussian component, and
θ
(r)
1:n−1 = θ1:n−1. The mean µ

(r)
n|n−1 and variance Σ

(r)
n|n−1 of

the r-th component are given in (28), and µn|n,i,Σn|n,i in (38)
can then be computed by Kalman filtering.
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If the Markov chain in this fast RB-AbNHPP tracker at
each time step n converges to the stationary distribution
p(θ1:n, Xn|Z1:n), the output samples {θ(p)1:n}

Np
p=1 from Al-

gorithm 2 are implicitly drawn exactly from p(θ1:n|Z1:n),
which is the stationary distribution in the standard Rao-
Blackwellisation scheme. Therefore, we can expect this fast
Rao-Blackwellisation scheme to have comparable performance
to the standard Rao-Blackwellisation scheme in Section IV-A
while maintaining an efficient parallel sampling structure.
Therefore, all the RB-AbNHPP trackers deduced in the fol-
lowing sections are based on this fast RB-AbNHPP tracker.

Compared to the joint inference scheme in Section III, the
fast RB-AbNHPP tracker enhances the estimation performance
without introducing a large extra computational burden, and
we can see from the results in Section VI-C that the advantage
brought by the Rao-Blackwellisation is significant. Besides
theoretically having a smaller estimation variance, another
explanation for the performance boost may be due to the fact
that the posterior of object states in the RB-AbNHPP tracker
is approximated by a Gaussian mixture, which can normally
preserve more information and lead to a more accurate sta-
tionary distribution at future time steps than approximated
by a group of particles in the joint inference scheme. This
improvement in accuracy due to the Rao-Blackwellisation
scheme is especially crucial for tracking multiple objects in
clutter, where an inaccurate stationary distribution at any time
step may cause a large estimation error and further result in
track loss, which will make it difficult to restore the track in
future time steps. Comparatively, other estimation tasks may
have less obvious performance improvements by adopting a
Rao-Blackwellisation scheme, e.g. in [29], [30], [32].

Algorithm 2: Fast Rao-Blackwellised AbNHPP tracker

1 for time step n = 1 to T do
2 Initialization X(0)

n

3 for iteration m = 1 to Miter do
4 Sample θmn,j ,j = 1, ...,Mn in parallel by (13);
5 Sample θm1:n−1 in parallel by (37);
6 Sample Xm

n,i,i = 1, ...,K in parallel by (38).
7 end
8 After a burn-in time: keep the subsequent Np

samples {θ(p)1:n−1, θ
(p)
n }Npp=1 ∼ p(θ1:n|Λn, Z1:n).

9 Each object state is updated by Kalman filtering
and p(Xn|Z1:n) ≈ 1

Np

∑Np
p=1 p(Xn|θ(p)1:n, Z1:n)

10 end

V. ADAPTIVE ABNHPP TRACKER FOR POINT OR
EXTENDED TARGETS

The AbNHPP trackers developed in Section III and IV is on
the premise that Poisson rates and object extents (i.e., sensor
noises for point targets) are known as constants. However,
this assumption can be restrictive in real-world applications
where such information may be unknown and/or time-varying.
Therefore, in this section we extend the AbNHPP tracker
to a more general framework which can handle multi-target
tracking tasks with unknown/time-varying Poisson rates and/or

object extents. Specifically, we will first introduce the mea-
surement rate model and the object shape model. Then, we will
devise the adaptive AbNHPP tracker based on the proposed
fast RB-AbNHPP tracker in Section IV-B, since it outperforms
the joint sequential MCMC estimator in Section III.

A. Measurement Rate Model

Recall that under the NHPP measurement model, the num-
ber of measurements mn,i generated by object i (i = 0, ..,K)
is Poisson distributed, that is,

p(mn,i|Λn,i) =
e−Λn,i(Λn,i)

mn,i

mn,i!
, i ∈ {0, 1, ...,K}. (39)

Here we assume the Poisson rate Λn,i for each object i to be
a time-varying random variable with a prior g(Λn,i) implicitly
conditional on known parameters (e.g., the hyperparameters of
the prior distribution or Poisson rates Λ1:n−1,i at previous time
steps). To better capture the dynamic detection profile while
keeping the efficient inference structure intact, we explore in
this section a more flexible conjugate family of distributions,
namely, the GIG distributions, for the Poisson rate, in contrast
to a common choice such as the Gamma distribution. The GIG
distribution is a three-parameter distribution

GIG(Λ; a, b, p) = (a/b)p/2

2Kp(
√
ab)

Λp−1 exp(−a
2
Λ− b

2Λ
) (40)

with the expectation being

E[Λ] =
√
bKp+1(

√
ab)

√
aKp(

√
ab)

, (41)

where Kν(z) denotes the modified Bessel function of the sec-
ond kind for order ν and argument z. Note that Gamma distri-
bution GIG(Λ;

√
2a, 0, p), inverse Gaussian GIG(Λ; a, b,− 1

2 ),
and inverse gamma GIG(Λ; 0,

√
2a,−p) may be obtained as

special cases of the GIG (see [28]).
The transition densities of Poisson rates for every object and

the clutter are assumed mutually independent p(Λn|Λ1:n−1) =∏K
i=0 p(Λn,i|Λ1:n−1,i). To satisfy the conjugacy of Bayesian

inference, both the prior p(Λ0,i) and its transition density
p(Λn,i|Λ1:n−1,i) have a form of a GIG distribution. It leads
to a closed-form full conditional distribution of Λn,i in online
Gibbs sampling steps, which will be deduced in Section V-C.
Specifically, we discuss two settings: Poisson rates are time
independent, and Poisson rates follow a first-order Markov
chain. Inference methods will be described for each setting.

1) Time independent Poisson rates: Assume that the Pois-
son rates Λn,i (i = 0, ..,K) at current time step n are not
dependent on the previous Λ1:n−1,i, that is, the transition
density follows a zero-order Markov chain p(Λn,i|Λ1:n−1,i) =
p(Λn,i). In this case, we let the prior of each object i at every
time step n be a GIG distribution

p(Λn,i) = GIG(Λn,i; ai, bi, pi). (42)

The joint distribution p(mn,i,Λn,i) equals p(mn,i|Λn,i) in
(39) times p(Λn,i) in (42). By marginalising Λn,i out of the
joint distribution p(mn,i,Λn,i), the number of measurements
from target i turns out to be a Sichel distribution:

p(mn,i) = Si(mn,i;
√
bi(ai + 2),

2

ai + 2
, pi). (43)
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The Sichel distribution is a three-parameter distribution:

Si(m;α, β, γ) =
((1− β)

1
2 )γ

Kγ(α(1− β)
1
2 )

(αβ/2)
m

m!
Km+γ(α), (44)

where shape parameters α > 0, 0 < β < 1 , −∞ < γ < ∞.
Compared to the Poisson distribution, the Poisson mixture
distributions possess an over-dispersion property such that the
variance is always larger than the mean, regardless of the
choice of the mixing density. The Sichel distribution is one
example of a Poisson mixture distribution when the GIG dis-
tribution is applied as the mixing density; a negative binomial
distribution is deduced if the Gamma distribution serves as the
mixing density, while the Sichel distribution can have a longer
tail than the negative binomial distribution. The property of a
Sichel distributed measurement number may seem indirect to
the current rate estimation framework; nonetheless, the over-
dispersion property of these mixed Poisson distributions may
lead to a more stable estimation of the target number, e.g., in
[40], and this part will be analysed in future work.

2) Time dependent Poisson rates: For cases where the
Poisson rates change more gradually over time, we introduce
a novel GIG first-order Markov chain as the prior for the
Poisson rate, where the Poisson rate is dependent on Poisson
rate of the last time step p(Λn,i|Λ1:n−1,i) = p(Λn,i|Λn−1,i),
(i = 0, ..,K). We construct the chain such that the expectation
of Λn,i w.r.t. p(Λn,i|Λn−1,i) equals the previous time step’s
Poisson rate Λn−1,i. Under this constraint, the transition
density of Λn,i for each object i is designed as:

p(Λn,i|Λn−1,i) = GIG(Λn,i;
rcrB
Λn−1,i

,
rcΛn−1,i

rB
, pi), (45)

where rB =
Kpi+1(rc)

Kpi (rc)
, rc > 0. We can verify by using (41)

that the expectation of Λn w.r.t. p(Λn|Λn−1) equals to Λn−1,i

under such GIG chain prior constructed in (45). Under this
setting, Poisson rates are unlikely to change greatly from the
last time step, making it suitable for tracking scenarios with a
more stable detection environment.

B. Object Shape Model
Here a simple Gaussian distribution is adopted to rep-

resent target’s extent with an ellipsoidal shape. When the
measurement error is negligible compared to target extent,
the measurement likelihood for the j-th measurement gen-
erated from target i can be defined by p(Zn,j |Xn,i) =
N (Zn,j ;HXn,i, Rn,i). The measurement error, if required,
can be included as an additive sensor noise as in [3], and
our framework can be easily extended to this case.

We adopt a common assumption that transition densities
of all object shapes are mutually independent p(Rn|Rn−1)
=

∏K
i=1 p(Rn,i|Rn−1,i). The evolving model for each object

shape is assumed to be a first-order Markov chain, that
is, p(Rn,i|R1:n−1,i) = p(Rn,i|Rn−1,i). In order to satisfy
conjugacy to a Gaussian likelihood function, we assume an
inverse Wishart distribution for each object’s shape Rn,i. The
inverse Wishart distribution [41] defined on a d× d positive-
definite matrices R is expressed as

IWd(R; v, ψ) =
det(ψ)

v
2 det(R)−

(v+d+1)
2

2
vd
2 Γd(

v
2 )

e−
Tr(ψR−1)

2 (46)

where v denotes degrees of freedom, v > d− 1, ψ is the d×
d positive-definite scale matrix, and Γd(·) is the multivariate
Gamma function. The expectation is given by

E[R] = ψ/(v − d− 1). (47)

Specifically, we adopt the similar assumption that ob-
ject shapes change smoothly over time. Hence, we con-
struct a Markov chain that the expectation of Rn,i w.r.t.
p(Rn,i|Rn−1,i) equals the previous time step’s object shape
Rn−1,i, and its the transition density is devised as

p(Rn,i|Rn−1,i) = IWd(Rn,i; ξi, Rn−1,i(ξi − d− 1)), (48)

where ξi is a known constant. It can be easily verified that the
expectation of Rn,i w.r.t. p(Rn,i|Rn−1,i) is Rn−1,i.

C. Inference Algorithms

Our task is to infer Poisson rates Λ1:n and object shapes
R1:n in conjunction with the object states Xn and associations
θ1:n. For a linear Gaussian dynamical model, we adopt the
fast Rao-Blackwellisation scheme in Section IV-B, where
we utilise a SMCMC strategy to approximate the posterior
p(θ1:n,Λ1:n, R1:n|Z1:n), based on which the marginal dis-
tribution of Xn can be directly estimated as a Gaussian
mixture Monte Carlo approximation using Kalman filtering.
In particular, we construct a MCMC chain with the station-
ary distribution being p(Xn, θ1:n,Λ1:n, R1:n|Z1:n); when the
chain converges, we keep the samples of θ1:n,Λ1:n, R1:n to
approximate the target distribution p(θ1:n,Λ1:n, R1:n|Z1:n).
The stationary distribution is written as:
p(Xn, θ1:n,Λ1:n, R1:n|Z1:n)

∝ p(Mn|Λn)p(Zn|Xn, θn, Rn)p(θn|Mn,Λn)p(Λn|Λ1:n−1)

× p(Rn|R1:n−1)p(Xn|θ1:n−1, R1:n−1, Z1:n−1)

× p(θ1:n−1,Λ1:n−1, R1:n−1|Z1:n−1), (49)

where the transitions p(Λn|Λ1:n−1) are defined according
to different measurement rate models in Section V-A, and
transition p(Rn|R1:n−1) are defined in Section V-B.

To sample from the stationary distribution in (49), once
again, a SMCMC with Gibbs sampling steps is adopted. The
general procedure is presented in Algorithm 3. Specifically,
we sample {θ1:n−1,Λ1:n−1, R1:n−1}, θn, Λn, Rn, and Xn

in turns from the conditional distribution of each block. The
explicit form of each component’s conditional distribution is
deduced as follows.

First, the conditional of joint state at last time step can be
derived from (49):

p(θ1:n−1,Λ1:n−1, R1:n−1|Xn, θn,Λn, Rn, Z1:n)

∝ p(Λn|Λ1:n−1)p(Rn|R1:n−1)p(Xn|θ1:n−1, R1:n−1, Z1:n−1)

× p(θ1:n−1,Λ1:n−1, R1:n−1|Z1:n−1)

≈
Np∑
p=1

p(Xn|θ(p)1:n−1, R
(p)
1:n−1, Z1:n−1)p(Λn|Λ(p)

1:n−1)

× p(Rn|R(p)
1:n−1)δ{θ,Λ,R}(p)

1:n−1
(θ1:n−1,Λ1:n−1, R1:n−1) (50)

Note that this step is equivalent to sample one index from
1, ..., Np according to the weight of each sample.
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Algorithm 3: Adaptive RB-AbNHPP tracker

1 for time step n = 1 to T do
2 Initialization θ(0)1:n Λ

(0)
1:n, R(0)

1:n, X(0)
n

3 for iteration m = 1 to Miter do
4 Step 1: sample joint state at time step n− 1
5 Sample {θm1:n−1,Λ

m
1:n−1, R

m
1:n−1} by (50);

6 Step 2: sample measurement rates (optional)
7 1) For time independent Poisson rates:
8 Sample Λm

n,i,i = 0, ...,K in parallel by (51).
9 2) For time dependent Poisson rates:

10 Sample Λm
n,i,i = 0, ...,K in parallel by (52).

11 Step 3: sample object shapes (optional)
12 Sample Rm

n,i,i = 1, ...,K in parallel by (57).
13 Step 4: sample object states
14 Sample Xm

n,i,i = 1, ...,K in parallel by (38).
15 Step 5: sample associations
16 Sample θmn,j ,j = 1, ...,Mn in parallel by (13);
17 end
18 After a burn-in time:
19 keep the subsequent Np samples
20 {θ(p)1:n,Λ

(p)
1:n, R

(p)
1:n}

Np
p=1 ∼ p(θ1:n,Λ1:n, R1:n|Z1:n).

21 end

1) Conditionals of measurement rates: We will derive the
conditionals of measurement rates under two measurement rate
models, respectively.

a) Time independent Poisson rates: First, we consider
a time independent Poisson rate prior for each Λn,i(i =
0, ...,K). By using (49) and the time independence of
the rates, the condition Λ1:n−1 in the full conditional
p(Λn|Xn, θ1:n,Λ1:n−1, R1:n, Z1:n) can be omitted, and

p(Λn|Xn, θ1:n, R1:n, Z1:n) ∝ p(Mn|Λn)p(θn|Mn,Λn)p(Λn)

=
e−Λs,n(Λs,n)

Mn

Mn!

1

ΛMn
s,n

K∏
i=0

(Λn,i)
mn,iGIG(Λn,i; ai, bi, pi)

∝
K∏
i=0

e−Λn,iΛ
mn,i

n,i Λpi−1
n,i e

− ai
2 Λn,i−

bi
2Λn,i

∝
K∏
i=0

GIG(Λn,i; ai + 2, bi,mn,i + pi), (51)

where mn,i is the number of measurements generated by
object i given θn. Clearly, the conditional for each Poisson
rate has an explicit form of a GIG distribution, which verifies
the conjugacy of the GIG prior. In this way, we can sample
each Λn,i(i = 0, 1, ...,K) independently from its conditional
in a parallel fashion.

b) Time dependent Poisson rates: Under a time depen-
dent Poisson rate model, we can deduce that the conditional
of Λn is a GIG distribution in a form similar to (51) with
different parameters:

p(Λn|Xn, θ1:n,Λ1:n−1, R1:n, Z1:n)

∝ p(Mn|Λn)p(θn|Mn,Λn)p(Λn|Λn−1)

∝
K∏
i=0

GIG(Λn,i;
rcrB
Λn−1,i

+ 2,
rcΛn−1,i

rB
,mn,i + pi). (52)

where we can see that the conditional of each Λn,i is also
a GIG distribution and each Λn,i(i = 0, 1, ...,K) can be
sampled in parallel.

2) Conditionals of extended target shapes: For tracking a
group or a large object that the shape is non-negligible, we
can jointly estimate the shape R1:n, along with θn,Λ1:n, X1:n.
Under the object shape model in Section V-B, the conditional
of shape state Rn, by using (49), is

p(Rn|Xn, θ1:n, R1:n−1,Λ1:n, Z1:n)

∝ p(Zn|Xn, θn, Rn)p(Rn|Rn−1)

=

K∏
i=1

∏
j∈Θin

p(Zn,j |Xn,i, Rn,i)p(Rn,i|Rn−1,i) (53)

Note that the expression of
∏

j∈Θin
p(Zn,j |Xn,i, Rn,i) is dif-

ferent from (18) in which case we discard the constant factor
as object shape Rn,i in (18) is a known constant. Here, the
likelihood function is derived as∏

j∈Θin

p(Zn|Xn,i, Rn,i)

∝ N (Z̃i
n;HXn,i, R̃n,i)Wd(S

i
n;mn,i − 1, Rn,i) (54)

Si
n =

∑
j∈Θin

(Zn,j − Z̃i
n)(Zn,j − Z̃i

n)
⊤ (55)

where N (Z̃i
n;HXn,i, R̃n,i) has the same form of (18), Θi

n =
{j|j ∈ {1, ...,Mn}, θn,j = i}, and mn,i is defined in (31).
The Wishart distribution defined on Sd×d is written as

Wd(S;m,R) =
det(S)

1
2 (m−d−1)e−

1
2 Tr(SR−1)

2
md
2 Γd(

m
2 )det(R)

m
2

(56)

where m denotes degrees of freedom, and m ≥ d.
Applying (54) to (53), the full conditional of Rn is
p(Rn|Xn, θ1:n, R1:n−1,Λ1:n, Z1:n) (57)

∝
K∏
i=1

N (Z̃i
n;HXn,i, R̃n,i)Wd(S

i
n;mn,i − 1, Rn,i)

× IWd(Rn,i; ξi, Rn−1,i(ξi − d− 1))

∝
K∏
i=1

IWd(Rn,i; ξi +mn,i, Rn−1,i(ξi − d− 1) + Si
n).

Hence, we verify that the full conditional of each target shape
is also an inverse Wishart distribution, and we can sample the
object shapes in parallel for object i = 1, ...,K.

3) Conditionals of associations and object states: Given
the sampled {θ1:n−1,Λ1:n−1, R1:n−1}, Λn, and Rn, the full
conditionals of θn and Xn are equivalent to (13) and (38),
respectively. Therefore we will not repeat here.

VI. RESULTS

A. Performance Metrics

We use the following metrics to evaluate the performance of
proposed algorithms and to compare them with other methods.

1) Optimal sub pattern assignment (OSPA) [42]: The OSPA
distance is used to evaluate the tracking accuracy, and we
note that this can be regarded as a version of the general
OSPA (GOSPA), normalised over the target number and
with parameter α = 1 [43]. The order is set to p = 2
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Fig. 1: Example tracks and estimates of scenario 1; black lines
are ground truth, and squares are estimates

and the distance cut-off value is c = 50. We additionally
calculate its mean and standard deviation over Monte
Carlo runs for cases 1 and 2 as the simulated trajectories
are all different in these datasets.

2) Track loss percentage: At each time step, a target is
considered tracked if the current OSPA value is lower
than c = 50. Then, a successful track is determined if the
target is tracked for at least 80% of its lifespan. In this
paper, the track number equals the target number K, and
the track loss percentage is the ratio of the unsuccessful
track number to the total track number K.

3) CPU time: We record the CPU time required at a single
time step and average it over all time steps (System: In-
tel(R) Core(TM) i7-8550 CPU@1.80 GHz, 8 GB RAM).

4) Gaussian Wasserstein distance (GWD)-OSPA metric: The
GWD metric in [44] is designed for evaluating a single
extended target tracking performance, which considers
both the position and target shape estimation error. For
evaluating multiple extended targets. The GWD-OSPA
metric is computed by using the optimum assignments
of the OSPA metric, similar to the GWD-GOSPA in [4].

B. Design and Settings of Simulations and Comparisons

We design various cases of tracking multiple targets in
heavy clutter with or without knowing the measurement rates
and target shapes in order to demonstrate the adaptiveness of
the proposed method. An extensive comparison analysis of
existing tracking algorithms is provided, including the linear
time JPDA (LT-JPDA) filter [5], the PF-NHPP tracker [1],
the online PMHT algorithm [12], and detailed comparisons
with the popular PMBM filters [4] and SPA-based trackers
[6]. Other RFS-based methods such as the PHD filter are not
included here since the PMBM filters have been verified to
outperform them in [4].

In Case 1, we validate the efficacy of the proposed Bayesian
optimal SMCMC inference schemes over other suboptimal
methods in tracking scenarios with known measurement rates
and target shapes. Under this fixed rates and target shapes
setting, the differences of the underlying modeling assump-

tions over compared methods in both measurement rates and
target shapes are minimised, meaning that a fair comparison
can be made since our proposed GIG rate transitions and the
mathematically well-defined inverse Wishart shape transition
may be advantageous but are not utilised in all of the compared
methods. In Case 2, we analyse the advantages and generality
of the proposed GIG prior models in modeling both highly
dispersed and slowly changing Poisson rates with a small
variance. Case 3 verifies the robustness of the proposed
method in tracking multiple extended targets with time-varying
measurement rates and target shapes. In Section VI-F, we
demonstrate the proposed AbNHPP trackers in group target
tracking scenarios with a real fish dataset.

In the simulations, we assume the target number is fixed
and known. Therefore, to present a fair comparison, this target
number information is incorporated into the PMBM filters
[4] and SPA-based trackers [6] that are originally devised
for tracking a varying number of targets. To be specific,
for PMBM filters and SPA-based trackers, we consider both
the standard versions with the target birth process and death
process termed ‘PMBM-B’ and ‘SPA-B’, and the fixed target
number versions termed ‘PMBM-NB’ and ‘SPA-NB’, respec-
tively. The reasons for this altered versions of PMBM-NB and
SPA-NB algorithms are: 1) it matches the modeling setting in
our experiment; 2) it is faster because the birth and death
operations are deleted in each of the algorithms; however,
note that the original recycling step is kept in the PMBM-
NB method, therefore a birth process will still be carried out
in a small region due to the recycling process. 3) it achieves
a much lower OSPA than the standard version.

To fit the setting of a known target number K, both PMBM-
B and PMBM-NB filters are initialised with a single multi-
Bernoulli hypothesis with K components, each associated
with an existence probability of 1, and a ground truth target
state prior. Similarly, the SPA-B and SPA-NB trackers are
initialised with the ground truth target number K and target
state prior, where the SPA-NB tracker corresponds to the
fixed target version in [23]. The target number K is also
employed to cap the number of output state estimates by K
when evaluating the OSPA metric for PMBM-B, PMBM-NB,
and SPA-B methods. For both PMBM-B and SPA-B methods,
the survival probability is set to 0.99, and targets are born
according to a Poisson process of intensity 0.1 and Gaussian
density covering the surveillance region of interest. For both
the PMBM-NB and SPA-NB methods, the survival probability
is set to 1.

Other general parameter settings are as follows. For both
the PMBM-B and PMBM-NB filters, the detection probability
is set to 1 to match our model. The ellipsoidal gate size
in probability is 0.999. The global hypotheses and Bernoulli
components pruning thresholds are set to 10−2 and 10−3,
respectively. The maximum global hypothesis number is 100.
The DBSCAN algorithm is run with 50 different distance
values equally spaced between 1 and 50, and the maximum
assignments number is 20 for the Murty’s algorithm. For SPA-
B, the threshold for object declaration is 0.5, and the pruning
threshold is 10−3. Note that the parameters in the PMBM and
SPA methods are manually tuned considering both the tracking
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performance and implementation efficiency; for instance, the
grid for the DBSCAN clustering is carefully selected to a
value such that a finer grid will no longer improve the tracking
accuracy but only introduce extra computational time.

C. Case 1: Tracking Multiple Targets with Known Measure-
ment Rates and Target Shapes

To evaluate the robustness of the algorithms in tracking
efficiency and accuracy, we design two tracking scenarios.
In the scenario 1, there are four targets moving in a 2D
surveillance area; the target rates are all set to 5, and the
clutter rate is 50. In contrast, the scenario 2 is more challenging
with 8 targets and a heavier clutter. The target rates remain
5 while the clutter rate becomes 300. Besides target number
and clutter rate, other parameters are all the same for the
two scenarios. Specifically, for each scenario, we generated
50 different synthetic simulations. In each simulation, the
trajectories are simulated using the CV model in (2), (4) with
Qi = 25, i = 1, ...,K. The total time steps are 50, and the
time interval between observations is τ = 1s. The target is
simulated as an extended target with an elliptical extent, and
its covariance in (9) is set to Ri = 100I, (i = 1, ...,K) where
I is a 2-D identity matrix.

The tracking results are presented in Table I and II. Note
that the target number K is inherently known in all methods
in the table except for the PMBM-B, the PMBM-NB, and
the SPA-B methods. Nevertheless, the cardinality errors of the
PMBM filters and SPA-B method are almost always 0 in all
time steps owing to our modifications. Therefore, the OSPA
metric is only used for comparing the localization error in most
cases in this tracking scenario. To visualise the reliability of
the trackers, we monitor their track loss percentages over all 50
simulations and present their average value in the tables. The
number of particles used in the PF-NHPP, the AbNHPP and
RB-AbNHPP trackers is denoted in the subscript in the tables.
The burn-in time for the AbNHPP2000, the AbNHPP10000, the
RB-AbNHPP100 and the RB-AbNHPP500 are respectively 500,
500, 50, and 100. For SPA-B and SPA-NB methods, we set the
iteration number to 3 as suggested [6]. The particle number is
set to 300, 3000, and the resulting parameter combinations are
denoted as SPA-B3000−3, SPA-NB300−3 and SPA-NB3000−3.

TABLE I: Tracking performance of scenario 1 with 4 targets

method OSPA (mean ±1σ) track loss(%) CPU time (s)

LT-JPDA 12.5 ± 6.43 10.50 0.002
PF-NHPP10000 15.29 ± 5.20 14.00 4.03

PMBM-B 7.00 ± 0.80 0.00 0.77
PMBM-NB 6.37 ± 2.34 0.50 0.29

SPA-B3000−3 6.44 ± 1.36 0.00 1.33
SPA-NB300−3 6.58 ± 1.61 0.50 0.10
SPA-NB3000−3 6.01 ± 1.30 0.50 1.23
AbNHPP2000 6.61 ± 0.76 0.00 1.43
AbNHPP10000 5.95 ± 0.40 0.00 16.22

RB-AbNHPP100 5.78 ± 0.31 0.00 0.04

In both Table I and Table II, our proposed RB-AbNHPP
evidently outperforms all other competing methods in tracking
accuracy, i.e. it has lower mean and variance of OSPA, and
a lower track loss percentage. Besides this superior tracking
performance, it is the second fastest tracker, only slower than

TABLE II: Tracking performance of scenario 2 with 8 targets

method OSPA (mean ±1σ) track loss(%) CPU time (s)

LT-JPDA 22.96 ± 5.69 35.8 0.015
PMBM-B 8.82 ± 1.47 7.00 6.35

PMBM-NB 8.50 ± 2.59 1.50 1.61
SPA-NB300−3 7.61 ± 2.19 0.75 1.45
SPA-NB3000−3 7.05 ± 2.04 1.00 23.55
SPA-B3000−3 8.08 ± 2.86 0.25 98.99

RB-AbNHPP100 6.49 ± 1.12 0.25 0.12
RB-AbNHPP500 6.35 ± 0.35 0.00 0.49

the LT-JPDA tracker which, however, has significantly inferior
tracking performance. The advantage of the RB-AbNHPP is
more significant for the challenging tracking task in Table II,
where our RB-AbNHPP100 achieves a clearly lower OSPA
value than its next-ranked method, SPA-NB3000−3, with a
much faster implementation. This advantageous tracking accu-
racy of the proposed RB-AbNHPP is owing to the asymptotic
properties of MCMC and the efficacy of Rao-Blackwellisation.
As stated in Section IV-B, the Rao-Blackwellisation in our RB-
AbNHPP can construct a more accurate stationary distribution
than our standard AbNHPP, hence requiring fewer samples to
achieve the same level of accuracy. This can be seen from
the Table I, where the standard AbNHPP with 10000 samples
is outperformed by the RB-AbNHPP with only 100 samples,
which brings a huge saving in CPU time.

Four examples of tracking results from Scenario 1 can be
seen in Figure 1, where we show the presence of tracking
loss in the compared methods. Here we omit the plot of our
proposed RB-AbNHPP tracker because its estimated results
are similar to the ground truth and there is no track loss. The
tracking performance of other competing methods can be seen
in both Table I and Table II. We can see that the fastest method
is the LT-JPDA, but its crude approximations lead to a poor
tracking accuracy. The PMBM-NB and SPA-NB algorithms
achieve a lower OSPA than the standard PMBM-B and SPA-
B methods due to the more accurate modeling assumptions;
however we notice that the birth process may be able to
retrieve some lost track targets, and hence PMBM-B and SPA-
B have lower track loss percentages as shown in Table I. In
general, the SPA-based methods outperforms PMBM methods
given a large enough sample size. The poor performance of
PF-NHPP in Table I, even with a very large sample size,
is due to its severe particle degeneration caused by high-
dimensional sample space. This degeneration can typically
be mitigated by the SMCMC methods, as demonstrated by
the results of our tracker in the Table I. We can see from
both tables that more samples can typically lead to a better
performance for SPA-NB, AbNHPP and RB-AbNHPP, and
among them the proposed RB-AbNHPP requires the smallest
number of samples to achieve the best performance. This is
again owing to the nature of MCMC and Rao-Blackwellisation
we analysed before. This significantly small sample size in the
proposed RB-AbNHPP makes it the fastest method among all
tested sampling-based algorithms. Finally, we emphasis that its
efficiency can be further improved by exploiting the scalable
features as described in Algorithm 2.
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(a) Measurement rates with GIG independent priors (b) Measurement rates with GIG Markov chain priors

Fig. 2: Estimates and ground truths of the measurement rates for both targets and clutter; the black lines are ground truth; the
dotted lines are means of estimated rates and shaded areas represent means ±1σ (σ-standard deviation).

D. Case 2: Unknown and Varying Measurement Rates

In this simulation, we consider tracking scenarios where
measurement rates are unknown and time-varying, and target
extents are either negligible (e.g., targets are far away from
sensors), or known in advance. Specifically, we analyse the
tracking performance and Poisson rate estimation results under
two proposed GIG measurement rate models in the follow-
ing two simulations: (1) multi-target tracking under a time-
independent GIG prior rate model for both targets and clutter;
(2) multi-target tracking under a GIG Markov chain prior rate
model for both targets and clutter. In addition, we compare it
with the online PMHT method proposed in [12] to validate
the effectiveness of the proposed method.

TABLE III: Results under an independent GIG rate model

method OSPA (mean ±1σ) track loss(%)

online PMHT 6.19±3.09 30.0
RB-AbNHPP 1.30±0.08 0.00

1) Poisson rate with a time independent GIG prior: In the
first simulation, three extended objects move independently
in 2-D over 50 time steps. The trajectories are simulated
using the CV model with Qi = 1, and the covariance in
(9) is set to Ri = 4I, (i = 1, 2, 3). The time interval
between observations is τ = 1s. We generated 50 datasets to
evaluate the performance. For each dataset, the Poisson rates
are generated with a GIG independent prior with parameters
a1:3 = 0.8, a0 = 0.1, b1:3 = 0.1, b0 = 10, {pi = i}3i=1 and
p0 = 0.5, under which measurements are generated according
to Section II-B. For target rates, the GIG priors’ means are
around 2, 5, and 8; the clutter rate is around 20. The simulated
Poisson rates for three targets and clutter are shown in Fig.
2a. We can see that both target rates and clutter rate show an
over-dispersed and a long-tailed property.

We use the adaptive RB-AbNHPP tracker introduced in
Section V-C with object shape being known constants.
In detail, we use a total of 70 particles to approximate
p(θ1:n,Λ1:n|Z1:n), after a 30-iteration burn-in time. For the
online PMHT method, 3000 particles are used in the particle
filtering algorithm. Recall that the online PMHT can handle
the tracking task under time-varying Poisson rates (see Section

III-A1), whereas it is unable to provide valid Poisson rate
estimation results. Therefore, we only present the Poisson rate
estimation results of our method, shown in Fig. 2a. We can
see that the proposed method can correctly estimate rates with
high accuracy. From Table III, our method excels in tracking
accuracy, while the online PMHT method suffers from track
loss even though a large sample size has been used.

TABLE IV: Results under a GIG Markov chain rate model

method OSPA (mean ±1σ) track loss(%)

online PMHT 5.53±3.50 26.67
RB-AbNHPP 1.48±0.06 0.00

2) Poisson rate with a GIG Markov chain prior: In the
second simulation, trajectories of three extended targets are
generated with Qi = 1, and the covariance in (9) is set to
Ri = 25I, (i = 1, 2, 3). The Poisson rates are simulated by a
GIG Markov chain prior with parameters rc = 10, p0:3 = 50.
The other settings are the same as in the first simulation.
From Fig. 2b, we can observe that the rates change more
gradually over time due to the time dependence of Poisson
rates. The estimated rates by using the proposed method are
shown in Fig. 2b. It can be seen that measurement rates
are well estimated in both low and high measurement rate
scenarios. The comparison of tracking performance is shown
in Table IV. Again, our method has a lower OSPA distance and
therefore outperforms the online PMHT in tracking accuracy.

E. Case 3: Tracking Multiple Extended Targets with Varying
Measurement Rates and Target Shapes

This section analyses the adaptive RB-AbNHPP tracker’s
performance for extended target tracking scenarios. We com-
pare our proposed method with the popular GGIW-PMBM
filter in [4]. To present a fair comparison, the target num-
ber is known to the GGIW-PMBM filter and the modified
PMBM-NB implementation is chosen for this GGIW-PMBM
filter since it outperforms PMBM-B as described in section
VI-C. Since the GGIW-PMBM filter assumes a heuristic
predicted density that possesses a time dependency property
of Poisson rates, we correspondingly select the time dependent
GIG Markov chain rate model in Section V-A2 for a fair
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Fig. 3: (a) Measurements and ground truth shapes; grey ellipses denote ground truth target extent at every second time steps;
black dots denote measurements; (b) position estimates of two trackers; black lines are ground truth, blue lines are estimates
from RB-AbNHPP tracker and tangerine squares are estimates from GGIW-PMBM filter; (c) and (d) are shape estimates of
two trackers; blue and tangerine ellipses are estimates from RB-AbNHPP tracker and GGIW-PMBM filter, respectively.

Fig. 4: Measurement rates over 50 time steps; black lines are
ground truth; dotted lines and shaded areas are estimated mean
and standard derivation of Poisson rates over 50 datasets.

Fig. 5: Mean OSPA and GWD-OSPA over 50 time steps.

comparison. Note that the GGIW-PMBM filters in [4] build
on heuristic rate and shape transitions where their heuristic
transitions depend on the estimation result at the previous time
step, and hence are unable to generate synthetic datasets.

In this simulation, trajectories of two extended targets are
generated with a CV model, and Qi = 10, i = 1, 2. The
target shape is simulated as defined in Section V-B with
ξi = 5000, i = 1, 2. The Poisson rates follow the GIG Markov
chain prior model with parameters rc = 5 and p1:2 = 10. We
assume a known clutter rate Λ0 = 50 as the GGIW-PMBM
tracker [4] cannot estimate the clutter rate. The measurement
data is shown in Fig. 3, where ground truth target extents are
presented at every second time steps. The trajectories show
that it is a demanding tracking scenario where two targets
first move closely in parallel, and then their tracks cross and
depart. The ground truth Poisson rates for the two extended
targets are shown in Fig. 4. With such a heavy clutter setting

in this experiment, the measurements from two targets are
buried in clutter. Hence, it is challenging to correctly estimate
the measurement rates and track all the targets.

To evaluate the robustness of the algorithm, we generate
50 Monte Carlo runs under the same settings, and the aver-
age OSPA distance, the average GWD-OSPA, and estimated
measurement rates are calculated over 50 datasets. We can see
from Fig. 4 that our method can successfully estimate mea-
surement rates of two targets under this challenging scenario.
In comparison, the GGIW-PMBM filter overestimates the Λ1

from time step 30 to 40 due to the interference of clutter,
and it fails to estimate the measurement rate of target 1 and
2 when the target rates are low because of the malfunction
of the partition algorithm. From the mean OSPA distance and
mean GWD-OSPA metric in Fig. 5, our method has a much
lower OSPA and GWD-OSPA value than the GGIW-PMBM
filter over all time steps, meaning that it has a more steady and
accurate estimation in both position and shape of the targets.
One example target extent estimation result is shown in Fig.
3, where the GGIW-PMBM filter frequently loses track, while
the proposed method can track all targets and their extent even
when target rates are low. In accordance to the implementation
simplicity, the GGIW-PMBM filter requires manual tuning
of parameters such as measurement partition parameters. Our
method, on the other hand, require no manual tuning other than
choosing the iteration number, which makes it more adaptive
and practically applicable.

F. Real Fish Dataset
We verify the proposed method in a real dataset of a

school of 61 golden shiner fish collected in [45]. The video
is recorded by a Sony EX1 video camera (1280 x 720
pixels) mounted above the fish tank at a frame rate of 60
Hz over 60 time steps. Based on the preprocessed 2D position
measurement data, we additionally add heavy clutter to make
this scenario more challenging. The clutter rate is set to 50.
The measurement data with clutter is shown in Fig. 6. The
figure applies different colors to measurements received at
different time steps in order to show the transition of group
shape. From Fig. 6, we can observe that the shape of the
group changes greatly from its initial shape. In this task, we
aim to track the fish school and its shape in an online fashion;
the Poisson rate of the fish school will also be estimated to
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Fig. 6: Total measurement set and estimates at time step 5, 35 and 50; black dots are clutters; the colorbar indicates the time
step these measurements are received at and colored dots are measurements of the fish school with the color representing the
time step corresponding to the colorbar; red crosses and circles are estimated group center and shape of fish school, respectively.

Fig. 7: Estimated Poisson rates of the fish school and clutters.

obtain the density of the fish school. Both the target rate and
the clutter rate are unknown to users. Here we implement the
adaptive RB-AbNHPP tracker with a measurement rate and
target shape model in Section V, where specifically we adopt
the GIG Markov chain prior model for Poisson rates.

The estimation of fish school shape, its group center po-
sition, and its Poisson rate are shown in Fig. 6 and Fig. 7.
Note that as the camera gives one measurement per fish, we
can assume the Poisson rate of each fish being one, and thus
the ground truth Poisson rate of the whole fish school is 61.
From the results, the estimated rate of fish school has a mean
around 61, which corresponds to the true number of the fish
school. Therefore, we can see that our method can not only
track the group center and shape online but also provide us
with useful information on the approximated number of fishes
in the group based on the estimated Poisson rate.

VII. CONCLUSION

This paper develops a robust Bayesian multi-object tracker
that can estimate online the target states and shapes in con-
junction with measurement rates and association variables. A
fast Rao-Blackwellisation scheme for linear Gaussian models
has been devised which shows great improvement in both the
speed and accuracy of the algorithm. We have introduced the
powerful GIG family of distributions to model time-varying
measurement rates, offering a general solution to the modelling
of the time evolution of measurement rates. Future work
will include cases with a time-varying number of targets and
detection environments with a non-uniform clutter map.
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