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Gridless DOA Estimation With Multiple Frequencies
Yifan Wu , Michael B. Wakin , Fellow, IEEE, and Peter Gerstoft , Fellow, IEEE

Abstract—Direction-of-arrival (DOA) estimation is widely ap-
plied in acoustic source localization. A multi-frequency model is
suitable for characterizing the broadband structure in acoustic
signals. In this paper, the continuous (gridless) DOA estimation
problem with multiple frequencies is considered. This problem is
formulated as an atomic norm minimization (ANM) problem. The
ANM problem is equivalent to a semi-definite program (SDP) which
can be solved by an off-the-shelf SDP solver. The dual certificate
condition is provided to certify the optimality of the SDP solution
so that the sources can be localized by finding the roots of a
polynomial. We also construct the dual polynomial to satisfy the
dual certificate condition and show that such a construction exists
when the source amplitude has a uniform magnitude. In multi-
frequency ANM, spatial aliasing of DOAs at higher frequencies
can cause challenges. We discuss this issue extensively and propose
a robust solution to combat aliasing. Numerical results support
our theoretical findings and demonstrate the effectiveness of the
proposed method.

Index Terms—Atomic norm minimization, DOA estimation,
multiple frequency model, trigonometric polynomials.

I. INTRODUCTION

L INE spectrum estimation is a fundamental problem in
signal processing, and has many applications in direction-

of-arrival (DOA) estimation in sensor array processing [1],
wideband channel estimation [2], and modern imaging modal-
ities [3]. In line spectrum estimation, the observed signal
x[n] is a superposition of K complex sinusoids (i.e., x[n] =∑K

k=1 cke
−j2πfkn) and the goal is estimating the frequencies fk

of these K sinusoids. An important application of line spectrum
estimation is DOA estimation [1]. For DOA estimation, we
have K plane waves from angles {θ1, . . . , θK} impinging on
an array with Nm sensors. Due to differen propagation delays
to each sensor, the received data is a sum of K spatial si-

nusoid vectors [1 . . . e−j
2πf0(Nm−1)dcosθk

c ]T (k ∈ {1, . . . ,K})
parameterized by the plane wave directions θk (f0 is a temporal
frequency). Our goal is to estimate the K DOAs (θk) based on
the received data. The cosine of each DOA linearly maps to a
single spatial frequency 2πf0 d cos θk

c of the sinusoid, and once
the spatial frequencies are estimated, the DOA can be retrieved.
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Many line spectrum estimation methods as multiple signal clas-
sification (MUSIC) [4], and estimation of signal parameters via
rotational invariant techniques (ESPRIT) [5], have been used for
narrow band signals.

Unfortunately, the aforementioned methods cannot be applied
in wideband DOA estimation problems such as ocean acoustics
localization and speaker localization. Wideband signal DOA
estimation has been studied for decades [6], [7], [8], [9], [10].
A subspace-based wideband DOA estimation approach, inco-
herent signal subspace method [6], was proposed with later im-
provement in the coherent signal subspace method (CSSM) [7].
A broadband spatial-spectrum estimation approach [8] over-
came the peak bias and source spectral content sensitivity from
CSSM. Variants of CSSM, such as the weighted average of signal
subspaces method [9], and the test of orthogonality of projected
subspaces method [10] were also proposed. Recently, some
wideband DOA estimation methods based on sparse recovery
have also been developed [11], [12], [13], [14]. These sparsity-
based methods have demonstrated superior performance com-
pared to conventional methods.

The multi-frequency (or multi-dictionary) model [14], [15],
[16], [17], [18] has shown success in modeling wideband signals.
The multi-frequency model uses Nf (rather than 1) temporal
frequency bins in a frequency set F = {f1, . . . , fNf

} to char-
acterize a wideband signal. These frequencies are then used for
estimation, as opposed to using a single frequency under the
narrowband model. The multi-frequency model was used for
ocean acoustics localization [18]. Most of the existing methods
assume that the true spatial frequencies lie on a finite set of grid
points, and their performance may degrade if the true spatial
frequencies fall off the grid.

To overcome the grid mismatch problem, atomic norm min-
imization (ANM) methods that work on continuous (gridless)
dictionaries have been proposed in a variety of contexts [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32]. ANM extends grid-based, sparsity-promoting �1 norm
minimization to the continuous setting and is commonly applied
to solve the line spectrum estimation problem for signals that are
sparse in the temporal frequency domain. ANM was initially
proposed in [19], which provides a general recipe for finding
convex solutions to promote sparse decompositions, where one
seeks to represent a given signal based on a minimal number of
atoms from an atomic set composed of an ensemble of signal
atoms. The ANM framework overcomes the grid mismatch
issue and can achieve potentially infinite precision. However,
all prior ANM works used a narrowband assumption and are not
applicable for wideband DOA estimation.

A. Related Work

1) Multiple Frequencies: Multiple frequencies decompose a
wideband signal into multiple narrowband signals and therefore
are widely applied in acoustics source localization [15], [16],
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[18] when the signal contains a wide range of frequency bins
and cannot be characterized by a narrowband model. Some
grid-based sparse localization approaches for the multiple fre-
quencies were proposed [14], [15], [17], [18], [33] for robustness
and aliasing suppression.

2) Atomic Norm Minimization: ANM was initially proposed
in [19] as a general framework for promoting sparse signal de-
compositions. The pioneering ANM paper [20] worked directly
with the continuous (temporal) frequency estimation problem
and considered the complete data case. As long as the temporal
frequency separation was greater than a certain minimum sep-
aration, exact recovery of the active temporal frequencies was
guaranteed. Furthermore, a semidefinite programming (SDP)
framework that characterized the ANM problem was presented.
The authors in [21] studied continuous temporal frequency esti-
mation based on randomly sampled data for the single measure-
ment vector (SMV) case. The minimum separation condition
was relaxed in [24]. ANM for multiple measurement vectors
(MMVs) was studied in [23], [26], [30]. In [25], the author
considered a super-resolution problem that had a similar setup
to [20] except that the point spread function was assumed to be
unknown. Based on the assumption that the point spread function
was stationary and lived in a known subspace, the lifting trick
was applied, and the problem was formulated using ANM. The
model was generalized to nonstationary point spread functions
in [27]. The sample complexity of modal analysis with random
temporal compression was established in [28]. ANM for 2-D
temporal frequency estimation was studied in [22]. In [29],
the authors proposed a reweighted ANM framework, which
enhances the sparsity and achieves super-resolution. An atomic
norm for DOA estimation under gain-phase noise [34] was
proposed to mitigate the artifacts for electromagnetic signals.
ANM was also recently applied in digital beamforming [35],
[36], adaptive interference cancellation [37], denoising [38],
[39], and blind demodulation [40], [41]. We refer readers to [42]
for a comprehensive overview of ANM and its applications.

Our multi-frequency problem is different from the MMV
problems [23], [26], [30] extensively studied in the past few
years. Although both our work and MMVs fall under the general
topic of multi-channel line spectrum estimation, the tempo-
ral frequencies in each channel are different in our problem
while they are the same in MMVs. Therefore, each channel is
modulated with a different sinusoid while this heterogeneous
modulation is absent in MMVs. This heterogeneous modulation
leads to several challenges for theoretical analysis. First, it makes
it difficult to derive an equivalent SDP problem based on the
Vandermonde decomposition as has been done in many prior
ANM works. Second, under our setup, each frequency other than
the first will experience spatial aliasing of the DOAs. This leads
to potential collisions or near collisions of the DOAs which are
challenging to resolve. Thus, although having multiple frequen-
cies does provide more data, one must ensure that aliasing does
not undermine this benefit. These challenges make our problem
more difficult to analyse than MMV problems. We will elaborate
on these two challenges and our solutions in Section I-B.

B. Our Contributions

In this work, we extend ANM to the multi-frequency frame-
work so that it can be used for DOA estimation with wideband
signals. Our contributions are summarized as follows:

1) Formulate an equivalent SDP problem: Although ANM
itself is a convex optimization problem, it is not directly
solvable due to an infinite number of optimization pa-
rameters. Therefore, it is critical to find a computation-
ally feasible solution that equivalently characterizes the
ANM problem. Several prior works showed that certain
ANM problems could be equivalently characterized by
SDPs [21], [23], [26]. The derivation of an SDP problem
typically relies on a Vandermonde decomposition, and
equivalence with the ANM can be proved by showing that
the SDP solution is both an upper and a lower bound for the
ANM [21], [23], [26]. Unfortunately, this commonly used
technique cannot be applied in our case due to the hetero-
geneous temporal frequencies across different channels.
In [35], [43], certain SDPs were derived using the Van-
dermonde decomposition, but only the lower bound for
the ANM problem could be guaranteed. In this work, we
derive an equivalent SDP based on the bounded real lemma
for trigonometric polynomials [44]. This equivalent SDP
will provide a computationally feasible solution for the
ANM when multiple frequencies are considered. We also
explain how our SDP is the dual to a minor adaptation
of the SDP proposed in [45] for line spectrum estimation
with harmonics.

2) Provide the dual certificate condition: We derive a dual
certificate condition that can be used to certify the optimal
atomic decomposition. In particular, the DOAs of the
sources are localized with the help of the dual polynomial
arising from the ANM optimization problem. As long as
the dual polynomial satisfies the dual certificate condition,
the frequencies can be localized by finding the roots of a
polynomial. Therefore, the dual certificate condition not
only provides a theoretical guarantee for the optimality,
but also offers a method for the DOA estimation.

3) Construct the dual polynomial that satisfies the dual certifi-
cate condition: In cases where we can prove the existence
of a dual polynomial that satisfies the dual certificate
condition, then the optimality and therefore exact DOA es-
timation are guaranteed. If the array spacing d ≤ c

2Nff0
=

λNf

2 , spatial aliasing would be fully avoided for all of the
temporal frequencies, and it may be possible to construct a
valid dual polynomial under a mild separation assumption
on the source directions. In such a case, the success of the
algorithm is guaranteed.

The dual polynomial is developed our model for arbi-
trary spacing d. A larger aperture (Nm − 1)d with greater
d may improve spatial resolution but introduces spatial
aliasing. If the spacing d = c

2f0
= λ1

2 , spatial aliasing is
present in all but the first frequency. This spacing necessar-
ily creates periodicity in all but the first frequency of the
vector-valued dual polynomial. Such periodicity brings
the risk of creating ambiguity in the source direction.
More specifically, after spatial aliasing, when two source
directions coincide at one frequency, we refer to this as
collision. Collision may happen in multiple frequency
bins, and it becomes more likely for great Nf . Most
ANM works need well-separated harmonics to work [20],
[21], [23], [26]. However, in a multi-frequency scenario,
one must consider the separations for DOAs across all
frequencies. Assuming collisions and near collisions are
thus avoided and under some additional assumptions about
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the source amplitudes, we guarantee that there exists a dual
polynomial satisfying the dual certificate condition.

4) Implementation: We propose a fast implementation so that
the SDP has a reduced size. This fast implementation also
extends the approach to an arbitrary set of frequencies.
Numerical results show that the dual polynomial still
serves as a precise indicator for the DOAs. Hence, in terms
of the DOA estimation, the algorithm succeeds even when
collisions are present.

Finally, our work is inspired by recent advances in ANM
for super-resolution, but significantly deviates from the existing
MMV works. This work significantly extends our previous
ICASSP paper [46]. It includes additional analysis for the dual
polynomial construction, aliasing and collision, and provides a
fast algorithm and extensive simulations. This paper is the first
work that extends ANM to multiple frequencies so that it can
be adapted to gridless DOA estimation for wideband signals via
convex programming.

C. Notations and Organization

Boldface letters represents matrices and vectors. Conven-
tional notations (·)T , (·)H , (·)∗, 〈·〉R, and 〈·〉 stand for ma-
trix/vector transpose, Hermitian transpose, complex conjugate,
real inner product, and inner product, respectively. Tr(·) is used
to represent the trace of a matrix. ‖ · ‖p and ‖ · ‖F are used to
express vector �p norm and matrix Frobenius norm. For a Hermi-
tian matrix A, A � 0 means A is a positive semidefinite (PSD)
matrix. 	 stands for the Hadamard product. The �1,2 norm of a
matrix A = [a1 . . . aN ] is defined as ‖A‖1,2 :=

∑N
i=1 ‖ai‖2.

The imaginary unit is denoted by j =
√
−1.

The rest of the paper is organized as follows. Section II
introduces the signal model and the assumptions. The equivalent
SDP and the dual certificate condition are derived in Section III.
Section IV constructs the dual polynomial that satisfies the dual
certificate condition and also analyses the collision and near
collision issues. Section V presents some numerical examples to
support and demonstrate theoretical findings. Finally, Section VI
concludes the paper.

II. SIGNAL MODEL

A. Assumptions and Model Framework

1) Assumptions: The following assumptions are made for the
array configuration and signal model:

1) There are Nm sensors forming a uniform linear array
(ULA) with array spacing d.

2) There are K active sources impinging on the array from
unknown directions of arrival (DOAs) θ.

3) Each source has Nf active temporal frequency com-
ponents, each at an integer multiple f of a funda-
mental frequency f0, i.e., f ∈ {1, . . . , Nf} and ff0 ∈
{f0, . . . , Nff0}. This is only a technical assumption to
simplify the analysis, and our method can be applied in
any frequency set with the fast algorithm proposed in
Section III-F.

4) Suppose d ≤ c
2f0

holds (or, equivalently, 2πf0 d
c ≤ π),

where c is the speed of propagation. We also notice that
d = c

2f0
is the maximum separation to avoid spatial alias-

ing at the fundamental frequency. For higher frequencies
(i.e. f ≥ 2), aliasing will still exist. Such aliasing is not

Fig. 1. Multi-frequency data on array with Nm = 5 sensors. Top row: time
snapshot of propagating plane wave with angle of arrival θ and temporal
frequency (left to right) f0, 2f0, 3f0. Bottom row: array data are samples of
a spatial sinusoid whose spatial frequency depends on the temporal frequency
and DOA. Only the real part of the array data is shown.

considered in conventional narrowband ANM papers. It
is possible to develop the method with d = c

2Nff0
so that

aliasing can be completely avoided in all frequencies.
2) Multiple Frequencies: Based on the above assumptions,

we absorb the constant parameters d, f0, and c into a scaled DOA
parameter w = w(θ) := f0 d cos(θ)

c ∈ [−f0 d/c, f0 d/c]. Hence-
forth, w is simply referred as the DOA.

For each temporal frequency ff0 ∈ {1, . . . , Nf} · f0, let
yf ∈ C

Nm denote the received signal across the Nm sensors.
yf can be expressed as a sum of K spatial sinusoid vectors, with
the k-th vector having spatial frequency fw(θk). Importantly,
the spatial frequency depends on both the temporal frequency
ff0 and the DOA w(θk). To better illustrate these effects, we
refer the reader to Fig. 1. Suppose Nf = 3, Nm = 5, and the
input signal (top row) is a complex sinusoid with temporal
frequency ff0. The spatial samples obtained from the sensors
(red) will be sampled sinusoids (bottom row) with different
spatial frequencies that depend on both the temporal frequency
and the DOA.

Stacking all of the data from theNf frequencies into a matrix,
the full set of received data is denoted by Y := [y1 . . . yNf

] ∈
C

Nm×Nf . Summing over the K active DOAs, we write

Y = X+W, (1)

where

X :=
∑
w

cw[xw(1)a(1, w) . . . xw(Nf )a(Nf , w)]

=
∑
w

cwA(w)� xT
w, (2)

a(f, w) := [1 . . . e−j2πwf(Nm−1)]T ∈ C
Nm is the array mani-

fold vector (steering vector) corresponding to the f -th frequency
bin and DOA w, xw(f) is the signal amplitude for the f -th fre-
quency bin, and W := [w1, . . . ,wNf

] ∈ C
Nm×Nf is additive

Gaussian uncorrelated noise. xw := [xw(1) . . . xw(Nf )]
T ∈

C
Nf is a collection of Nf amplitudes corresponding to the

same DOA, A(w) := [a(1, w) . . . a(Nf , w)] ∈ C
Nm×Nf , and

� is the Khatri–Rao product defined as [A(w)� xT
w] :=

[a(1, w)xw(1) . . . a(Nf , w)xw(Nf )] ∈ C
Nm×Nf . We assume
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Fig. 2. Compaction of matrix X′ to X by mapping R : N ×Nf → Nm ×
Nf defined in (5).

that ‖xw‖2 = 1; the coefficient cw absorbs any other scaling of
the source amplitudes cwxw. Our goal is to identify the K active
DOAs w from the data matrix Y.

In the following sections, we primarily develop the optimiza-
tion methods within the noise-free model, i.e., where W = 0.
We describe, however, how the optimization problem is modified
if noise is present [see (10) and (21)].

B. Mapping Operator

In this section, we will define some mapping operators that
help us set up our method. Define

z = z(w) := [1 e−j2πw1 . . . e−j2πwNf (Nm−1)]T

= [z0 z1 . . . zN−1]T ∈ C
N (3)

that collects all possible complex exponentials from the array
manifolds in all frequencies, whereN := Nf (Nm − 1) + 1 and
z = z(w) := e−j2πw. The intuition for defining the z notation
will be explained after the definition of the dual polynomial vec-
tor (13). Introduce Z = Z(w) := [z . . . z] ∈ C

N×Nf and define
X′ ∈ C

N×Nf as

X′ :=

(∑
w

cwZ� xT
w

)
. (4)

Then, we define theR operator that maps X′ to X as

X = R(X′)⇒ X(i, j) = X′(1 + (i− 1)j, j), (5)

whereR : N ×Nf → Nm ×Nf is a mapping that selects Nm

elements from the N elements in each column of X′. We
demonstrate the mapping in Fig. 2. Note that A(w) can be
represented in terms of Z by using theR operator as

A(w) = R(Z). (6)

Note that in [45, (8)], an analogous mapping operator is
introduced in the context of the line spectrum estimation problem
with harmonics. In [45, (9)], the transformation is applied in the
signal space and enables the formulation of an SDP problem in
the primal domain. In our paper, R is applied to the coefficient
matrix H [see (15)] and that enables us to formulate an SDP
problem in the dual domain.

III. METHODOLOGY

A. Atomic Norm Minimization (ANM)

To efficiently represent matrices of the form (2), we define
the atomic set

A := {A(w)� xT
w : w ∈ [−f0 d/c, f0 d/c], ‖xw‖2 = 1}.

(7)
From (2), X is a sparse combination of K atoms from A since
only a few directions have active sources. ANM provides a
framework for identifying such sparse combinations in contin-
uously parameterized dictionaries. In our case, the dictionaryA
is parameterized by the continuous DOA w.

In the the noise-free case, to identify the K active DOAs w
from the data matrix Y, we propose the following ANM-based
optimization framework:

min
X

‖X‖A s.t. Y = X, (8)

where the atomic norm is defined as

‖X‖A := inf{t ≥ 0|X ∈ t · conv(A)}

= inf

{∑
w

|cw|
∣∣X =

∑
w

cwA(w)� xT
w

}
. (9)

When noise is present, we modify the optimization problem
to relax the equality constraint:

min
X

‖X‖A s.t. ‖Y −X‖F ≤ η, (10)

where η depends on the noise level.
It is not obvious how to obtain DOAs directly based on (8) [and

(10)], as one of the solutions isY itself. In the following sections,
we develop an equivalent optimization problem for computing
the atomic decomposition of Y, which enables determining the
DOAs via the dual polynomial.

B. Dual Atomic Norm and Dual Polynomial

Let ‖X‖ be a matrix norm. The associate dual norm, denoted
‖Q‖∗, is defined as [47, Appendix A.1.6],

‖Q‖∗ := sup
‖X‖≤1

〈Q,X〉R. (11)

Also note that the dual of the dual norm is the primal norm.
Now we apply (11) to the atomic norm. The primal atomic

norm ‖X‖A is expressed in terms of the dual atomic norm ‖Q‖∗A
(where Q := [q1 . . .qNf

] ∈ C
Nm×Nf is the dual variable) as

‖X‖A := sup
‖Q‖∗A≤1

〈Q,X〉R = sup
‖Q‖∗A≤1

〈Q,Y〉R, (12)

where the last equality is only for the noise-free case (see the
constraint in (8)).

For any dual variable Q, we define the corresponding dual
polynomial vector ψ(Q, w) ∈ C

Nf as

ψ(Q, w) :=
[
qH
1 a(1, w) . . .qH

Nf
a(Nf , w)

]T
=

[
Nm∑
m=1

q∗1(m)z(m−1) · · ·
Nm∑
m=1

q∗Nf
(m)zNf ·(m−1)

]T
.

(13)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 08,2023 at 16:17:22 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: GRIDLESS DOA ESTIMATION WITH MULTIPLE FREQUENCIES 421

Note that each entry in ψ(Q, w) is a polynomial in z. The
dual polynomial will be useful for setting up the dual certifi-
cate condition and extracting the DOA (see Section III-D and
Section III-E). However, since each frequency has different
array manifold vectors, it is difficult to express ψ(Q, w) as a
matrix product of Q and a vector. To construct a homogeneous
representation for ψ(Q, w), we will leverage z, an ensemble of
the array manifold, and the matrixH ∈ C

N×Nf defined in terms
of Q as follows (m = {1, . . . , Nm}, f = {1, . . . , Nf})

H(i, f) =

{
Q(m, f) for (i, f) = (f · (m− 1) + 1, f)
0 otherwise,

(14)
or H = R∗(Q), where R∗ : Nm ×Nf → N ×Nf is the ad-
joint mapping of R. Note the relationship between Q and H
can be alternatively expressed as

Q = R(H). (15)

With the help of H and z, ψ(Q, w) has the homogeneous
representation

ψ(Q, w) = HHz. (16)

Now, we consider ‖Q‖∗A, which appears in a constraint in
(12). Recalling that ‖xw‖2 = 1, we have

‖Q‖∗A := sup
‖X‖A≤1

〈Q,X〉R = sup
‖X‖A≤1

Re[Tr(QHX)]

= sup
xw
w

Re[Tr(QHA(w)� xT
w)]

= sup
xw(f)

w

Re

⎛⎝ Nf∑
f=1

xw(f)q
H
f a(f, w)

⎞⎠
(a)
= sup

xw
w

Re(xH
wψ(Q, w)) = sup

xw
w

|xH
wψ(Q, w)|

(b)
= sup

w
‖ψ(Q, w)‖2 = sup

w
‖HHz‖2 (17)

where (a) follows by the definition of the dual polynomial vector
and (b) follows from the definition of the operator norm.

Using (17), the condition ‖Q‖∗A ≤ 1 can be equivalently
formulated as an SDP constraint. To simplify the theoretical
analysis, we assume d = c

2f0
and thus w ∈ [−1/2, 1/2] here.

We however notice that the “if” part can be generalized to any
d ≤ c

2f0
.

Proposition 3.1: Let ψ(Q, w) be as defined in (13) and w ∈
[−1/2, 1/2]. Then ‖Q‖∗A ≤ 1 holds if and only if there exists a
matrix P0 ∈ C

N×N � 0 such that

N−k∑
i=1

P0(i, i+ k) = δk =

{
1, k = 0,

0, k = 1, . . . , N − 1,
(18)

and such that [
P0 H
HH INf

]
� 0. (19)

Proof: See Appendix A. �

C. SDP Formulations of ANM Problems

1) Noise-Free ANM: In the noise-free case, based on Propo-
sition 3.1 and (12), we have an SDP that is equivalent to (8):

max
Q,P0

〈Q,Y〉R s.t.

[
P0 H
HH INf

]
� 0,

N−k∑
i=1

P0(i, i+ k) = δk,H = R∗(Q), (20)

where the dual variable Q ∈ C
Nm×Nf , and H is related to Q as

in (14).
2) Robust ANM: To make ANM robust to noise and near

collisions [see (50)], we use the following alternative to (20):

max
Q,P0

〈Q,Y〉R − η‖Q‖F − λ‖Q‖1,2 s.t.

[
P0 H
HH INf

]
� 0,

N−k∑
i=1

P0(i, i+ k) = δk,H = R∗(Q), (21)

where the term η‖Q‖F suppresses noise [25, (15)] [36, (34), and
App. D]. The value of η is the same as in (10) [25], [36]. Based
on similar arguments to [36, App. D], (21) with λ = 0 is the dual
problem of (10). We further add an �1,2 regularization term to
suppress near collisions. The �1,2 regularization term λ‖Q‖1,2
promotes column sparsity, and it reduces the contributions from
the “bad frequencies”. Near collision is a phenomenon that arises
in our multi-frequency ANM model, and it is introduced in
Section IV-D1. For the noise-free data, one may set η = 0, and
for the near-collisions-free data, one may set λ = 0.

D. Dual Certificate

The dual polynomial ψ(Q, w) introduced in (13) serves as a
certificate for the optimality of (8) and can therefore be used to
extract the unknown DOAs. Specifically, we have the following
dual certificate theorem, which is inspired by [21, Proposition
II.4]. To ensure uniqueness, a linear independence assumption
is added.

Theorem 3.2: DefineW := {w1, . . . , wK} as a collection of
DOAs with cardinality K. Then X =

∑
w∈W cwA(w)� xT

w
(‖xw‖2 = 1) is the unique atomic decomposition such that
‖X‖A =

∑
w∈W |cw| if the following two conditions are sat-

isfied:
1) There exists Q such that the dual polynomial vector
ψ(Q, w) satisfies{

ψ(Q, w) = sign(c∗w)xw ∀w ∈ W
‖ψ(Q, w)‖2 < 1 ∀w /∈ W,

(22)

where sign(c∗w) :=
c∗w
|c∗w |

.

2) {A(w)� xT
w : w ∈ W} is a linearly independent set.

Proof: See Appendix B.

E. DOA Extraction

Based on Theorem 3.2, we know if (22) is satisfied, the
optimality is guaranteed. In (22), ‖ψ(Q, w)‖2 = 1 for w ∈ W .
After solving the SDPs (20)–(21) by CVX [48], the optimal
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Fig. 3. DOA extraction through the dual polynomial. An ULA
with Nm = 12 sensors, and spacing d = c/2f0 is used. Nf = 5.
θ = [80.7931◦, 88.854◦, 92.2924◦], and w = [0.08, 0.01,−0.02]. (a)
‖ψ(Q, w)‖2 versus w; (b) R(w) versus w; (c) Roots for R(w); (d) Amplitude
estimation for each frequency (three colors are used to indicate different
sources).

dual variables Q (and thus H) are obtained. Then, the DOA is
retrieved by finding the roots for R(w) defined in (57).

Based on (16), R(z) has the polynomial representation

R(z) = 1− zHP1z = 1−
(N−1)∑

i=−(N−1)
riz

i, (23)

where P1 := HHH and rk :=
∑N−k

i=1 P1(i, i+ k). Indeed,
R(z) is a polynomial with degree 2(N − 1). The roots ẑ can
be obtained, and ŵ is retrieved by locating the roots of R(z) on
the unit circle [see Fig. 3(c)]:

ŵ =

{
− ∠ẑ

2π

∣∣∣∣R(ẑ) = 0, |ẑ| = 1

}
. (24)

Note ∠ẑ = −2πŵ = − 2πf0 d
c cos θ = 2πf0 d

c cos(π − θ). θ̂ is
therefore estimated by

θ̂ = π − cos−1
(

∠ẑ
2πf0 d/c

)
. (25)

The implementation details for the proposed algorithm are
summarized in Algorithm 1.

F. Fast Algorithm

We notice that many rows in the matrixH are all zero, yet they
contribute to the size of the SDP constraint in (19). This inspires
us to come up with a fast algorithm which only includes the
non-zero rows of H in the SDP constraint. This fast algorithm
generalizes the method to any frequency set.

In particular, consider a frequency set F =
{F1, . . . , FNf

} · f0 with integers F1, . . . , FNf
and define

U = {m · f |m ∈ {0, . . . , Nm − 1}, f ∈ {F1, . . . , FNf
}} with

Fig. 4. (a) N/Nu; (b) t/tfast, where t and tfast are CPU times for (20) and the
fast program, respectively.

Algorithm 1: Gridless DOA Estimation Algorithm.

Input: Y ∈ C
Nm×Nf , d, f0, c,K, η (for noisy case), λ (for

near collision case)
Initialize:

(For noisy or near collision case) Solve (21) by CVX and
obtain H
(Otherwise) Solve (20) by CVX and obtain H from Q
P1 ← HHH

N ← Nf (Nm − 1) + 1
while −(N − 1) ≤ k ≤ (N − 1) do
rk ←

∑N−k
i=1 P1(i, i+ k)

end while
r← [−r−(N−1) · · · − r(N−1)]
r(N)← r(N) + 1
roots← roots(r)
[dist, ind]← sort(abs(1− abs(roots))
roots_sort← roots(ind)
roots_unique← roots_sort(1 : 2 : 2K)

θ̂ ← 180− acosd(angle(roots_unique)/(f0 d/c))
output: θ̂

cardinality Nu. The ratio of N/Nu in Fig. 4(a) shows a factor
of 2 in savings for large Nm and Nf which gives up to a factor
of 30 savings in CPU time [Fig. 4(b)]. Assume the entries in U
are sorted in ascending order. The matrix Hr ∈ C

Nu×Nf with
a reduced number of rows can be expressed in terms of Q as

Hr(r, f) =

{
Q(m, f) for (Ur, f) = (f · (m− 1) + 1, f)
0 otherwise;

(26)
note r is the index of Ur = f · (m− 1) + 1. We have the fol-
lowing proposition for an SDP with reduced dimension.

Proposition 3.3: Let ψ(Q, w) be as defined in (13). Then
‖Q‖∗A ≤ 1 holds if there exists a matrix Pr0 ∈ C

Nu×Nu � 0
such that∑

i,j
Uj−Ui=k

Pr0(i, j) = δk =

{
1, k = 0,

0, k = 1, . . . , N − 1
(27)

and such that [
Pr0 Hr

HH
r INf

]
� 0, (28)

where Hr is defined in (26).
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The proof is in the Appendix C. �
We therefore propose fast alternatives to (20) and (21) by

incorporating the reduced dimension SDP constraint. Note that
in Proposition 3.1, we theoretically guaranteed the equivalence
between (20) and (8). However, we only guarantee the “if”
part in Proposition 3.3. Nevertheless, it turns out that the fast
algorithm achieves promising performance in the empirical ex-
periments while greatly reducing the computational complexity.
The empirical improvement in computational complexity is up
to a factor of 30 [see Fig. 4(b)]. We apply the fast algorithms
throughout Section V.

G. Dual SDP Problem

Based on [45, (16)], we consider the dual problem of (20).
The dual problem of (20) is also an SDP, and it can be expressed
as

min
W,u,˜Y

[Tr(W) + Tr(Toep(u))]

s.t.

[
Toep(u) Ỹ

ỸH W

]
� 0,Y = R(Ỹ), (29)

where W ∈ C
Nf×Nf , u ∈ C

N , Ỹ ∈ C
N×Nf , and Toep(u) is a

N ×N Toeplitz matrix with the first column u.
The derivation of the dual problem is provided in App. D. Af-

ter solving (29), the DOAs are retrieved using the Vandermonde
decomposition of Toep(u) [45] and the root-MUSIC procedure.
Since both (20) and (29) are strictly feasible, strong duality
holds. Therefore, the optimal values for (20) and (29) must be
the same. Note the matrix associated with the PSD constraint for
both problems are (N +Nf )× (N +Nf ). We can solve either
one of them for DOA estimation.

IV. DUAL POLYNOMIAL CONSTRUCTION

In Theorem 3.2, a sufficient condition for optimal atomic de-
composition was given. In this section, for certain scenarios, we
show that it is possible to construct a dual certificate satisfying
(22). This implies the success of the DOA estimation algorithm
in the noise-free setting.

Following from [20], we consider an alternative, symmetric
index set {−2M, . . ., 2M} (modified from {0, . . ., Nm − 1}),
whereM = Nm−1

4 . Constructing a dual certificate satisfying the
requisite properties (22) using the original index set is equivalent
to constructing a “modulated” dual polynomialψ(w) (note that
ψ(w) is different from the ψ(Q, w) defined in Section III) on
the symmetric index set satisfying{

ψ(w) = sign(c∗w)xw ∀w ∈ W
‖ψ(w)‖2 < 1 ∀w /∈ W,

(30)

where xw(i) := xw(i) · e−j2πwiNm−1
2 , ∀i ∈ {1, . . . , Nf}. Note

|xw(i)| = |xw(i) · e−j2πwiNm−1
2 | = |xw(i)|, and |ψ(w)(i) ·

ej2πwiNm−1
2 | = |ψ(w)(i)|. Therefore, as long as ψ(w) (as-

sociated with the new index set {−2M, . . . , 2M}) satisfies
(30), ψ(w) := ψ(w)	 [ej2πw

Nm−1
2 . . . ej2πwNf

Nm−1
2 ]T (asso-

ciated with the original index set) must satisfy (22). Indeed,
‖ψ(w)‖2 = ‖ψ(w)‖2 and ψ(w) = sign(c∗w)xw for ∀w ∈ W .
In this section, we will construct ψ(w) that satisfies (30).

In addition, w ∈ [0, 1) is assumed in this section. Due to
the periodicity of the kernel, it is equivalent to consider w ∈

Fig. 5. Visualization of Ki(w) for i ∈ {1, 2, 3, 4}.

[−1/2, 1/2] as w ∈ [0, 1). This assumption indicates that d =
c

2f0
needs to be assumed for the following analysis.

A. Interpolation Kernel

Inspired by [20], we leverage the i-th order squared Fejér
kernel Ki(w) for the dual polynomial construction:

Ki(w) :=
1

iM

2M∑
k=−2M

gM (k)e−j2πkw·i

=
1

i

[
sin(π(M + 1)wi)

(M + 1) sin(πwi)

]4
, (31)

where

gM (k) =
1

M

min{k+M,M}∑
t=max{k−M,−M}

(
1− |t|

M

)(
1− |k − t|

M

)
.

(32)
Ki(w), i ∈ {1, 2, 3, 4} is shown in Fig. 5. When i = 1, Ki(w)
corresponds to the classical kernel used for the dual polynomial
construction in [20], [21], [23], [26], [30]. When i increases,
the period of the kernel reduces to 1/i. Therefore, the periodic
copies appears in the visible region [0, 1), and will potentially
bring about aliasing for the localization. In addition, note that
the amplitude of Ki(w) shrinks to 1/i, which will cancel the
scaling factor i of K ′i(w).

We summarize some useful facts for Ki(w)

Ki(w) =
1

i
K1(iw) K ′i(w) = K ′1(iw) K ′′i (w) = iK ′′1(iw).

(33)

B. Dual Polynomial Construction by Interpolation Kernel

We construct the dual polynomial vector ψ(w) ∈ C
Nf as

follows

ψ(w) :=⎡⎢⎣
∑

wk∈W [αk,1K1(w − wk) + βk,1K
′
1(w − wk)]

...∑
wk∈W [αk,Nf

KNf
(w−wk) + βk,Nf

K ′Nf
(w−wk)]

⎤⎥⎦, (34)

where K ′i(w − wk) is the first order derivative for Ki(w − wk).
The constructed dual polynomial in (34) is valid if there exists

αk,i and βk,i (i = 1, . . ., Nf ) that satisfy (22). To satisfy (22),
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for each frequency, we must have [20]

[
Di,0 Di,1

Di,1 Di,2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1i

...
αKi

β1i

...
βKi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sign(c∗w)xw1
(i)

...
sign(c∗w)xwK

(i)
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
ci
0K

]
,

(35)
where (K(l)

i is the l-th order derivative of Ki)

[Di,l]mn := K
(l)
i (wm − wn), m, n ∈ {1, . . .,K}, l ∈ {0, 1, 2},

(36)
and ci := [sign(c∗w)xw1

(i) . . . sign(c∗w)xwK
(i)]T ∈ C

K . ψ(w)
can be expressed as

ψ(w) =

[
K∑

k=1

c1(k) · · ·
K∑

k=1

cNf
(k)

]T
. (37)

One sufficient condition to ensure the existence for αk,i and
βk,i (i = {1, . . ., Nf}) is that

Ki :=

[
Di,0 Di,1

Di,1 Di,2

]
∈ C

2K×2K (38)

is invertible for any i ∈ {1, . . ., Nf}, which means rank(Ki) =
2K. Then, the solution to (35) is uniquely determined by in-
verting Ki. Unfortunately, the invertibility of Ki may not be
guaranteed in general.

C. Single Source Analysis

We begin with single source analysis (K = 1). For one source,
there is no separation condition or risk of collision to consider
in the analysis. The constructed Ki(w) is guaranteed to satisfy
(22) as stated in the theorem.

Theorem 4.1: Suppose K = 1 (DOA is w1), and xw1
(i) �= 0

for ∀i ∈ {1, . . ., Nf}. We then have{
ψ(w) = sign(c∗w)xw w = w1

‖ψ(w)‖2 < 1 ∀w �= w1.
(39)

Proof: Since K = 1, (35) reduces to[
Ki(0) K ′i(0)
K ′i(0) K ′′i (0)

] [
α1i

β1i

]
=

[
1/i 0
0 K ′′i (0)

] [
α1i

β1i

]
=

[
sign(c∗w)xw1

(i)
0

]
. (40)

Hence α1i = i · sign(c∗w)xw1
(i) and β1i = 0. Furthermore,

‖ψ(w)‖22 =

Nf∑
i=1

|α1iKi(w − w1)|2. (41)

When w = w1, ψ(w) = [α11K1(0) . . . α1Nf
KNf

(0)]T =

sign(c∗w)[xw1
(1) . . .xw1

(Nf )]
T = sign(c∗w)xw and

‖ψ(w)‖22 = ‖xw1
‖22 = 1.

For w �= w1, suppose α1i = i · sign(c∗w)xw1
(i) �= 0 for ∀i ∈

{1, . . ., Nf}, and notice that Ki(w − w1) < Ki(0) = 1/i.

Therefore

‖ψ(w)‖22 =

Nf∑
i=1

|α1iKi(w − w1)|2 <

Nf∑
i=1

|α1iKi(0)|2 = 1.

(42)
Therefore, (39) must hold. �

D. Multiple Source Analysis

The analysis is now extended to multiple source cases. For the
existing ANM based methods, if there is more than one source, a
minimum separation condition is assumed [20], [21], [23], [26].
However, in our signal model, we have to consider the potential
for aliasing and collisions (see Section IV-D1).

We first define the separation of W for the i-th frequency
Δ(Wi) as the closest wrap-around distance between two distinct
DOAs wm, wn

Δ(Wi) := inf
wm,wn∈W

min{i|wm − wn| mod 1,

1− (i|wm − wn| mod 1)}. (43)

Note that although |wm − wn| ∈ [0, 1), for i ≥ 2, i|wm − wn|
can be greater than 1. Due to the periodicity of the interpolation
kernel, we keep only the fractional part of i|wm − wn| in the
definition of the separation. We first introduce the concepts of
aliasing and collision before our analysis.

1) Aliasing and Collision: Aliasing. Because of the wrap-

around nature of a(i, w), when d >
λNf

2 there will be aliasing
peaks in the higher frequencies. Aliasing can happen even for
the single source case. Specifically, based on [1], if the temporal
frequency f · f0 satisfies

f · f0 ≥
c

d

1

1 + | cos(θ)| , (44)

then aliasing peaks enter into the visible region [−1/2, 1/2] and
that frequency experiences aliasing. When d = c/(2f0) and θ ∈
[0◦, 180◦], aliasing happens for all f ≥ 2. In addition to the peak
associated with the ground-truth DOAw, there are aliasing peaks
with DOAs w̄ = w ± k

f , (k < f, k ∈ N+). It can be shown that

a(f, w) = a(f, w̄). (45)

Aliasing happens for the single frequency beamforming [1]
provided that the temporal frequency is high enough. In [17],
the authors demonstrate that multiple frequencies can over-
come aliasing for conventional beamforming (CBF) and sparse
Bayesian learning (SBL) methods.

Collision. One consequence of aliasing is the possibility of
collision of multiple DOAs. Collision occurs when one DOA lies
exactly in the positions of the aliasing peaks of another source.
Formally, suppose there are K = 2 distinct DOAs w1 and w2

(w1, w2 ∈ [−1/2, 1/2]). w1 and w2 are said to have collision in
the i-th frequency if

a(i, w1) = a(i, w2). (46)

Such collision occurs whenever w1 and w2 satisfy

|w1 − w2| =
k

i
(i ∈ {2, . . . , Nf}, k < i, k ∈ N+). (47)

When collision occurs in the i-th frequency bin, it is verified that
the pi-th (p ≥ 2, p ∈ N+) frequency bins also have collision.
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Fig. 6. Collision demonstration. K = 2,Nf = 5, w1 = 1/2, w2 = 1/6.
(a)–(b) are the same as Fig. 1. (c) Red lines indicate w1 and blue lines indicate
w2 for the true sources (solid), and the aliased signal (dashed). Collision occurs
at 300 Hz.

For CBF and SBL, collision may bring about ambiguities
in the source power (and amplitude) estimation as these two
sources share the same array manifold vector.

As an example, let Nf = 5, f0 = 100 Hz, w1 = 1/2, and
w2 = 1/6. Then a(3, w1) = a(3, w2) and so these two sources
collide in the third frequency bin. As Fig. 6(a)–(b) illustrate,
the spatial samples obtained from all sensors are the same at
that frequency. In addition, collision can be interpreted as the
intersection of the true DOA of one source and the aliasing peaks
of another source. In Fig. 6(c), it is clear the collision exists in
the third frequency (300 Hz).

For our ANM problem, if (47) is satisfied, based on (46), we
must have

qH
i a(i, w1) = qH

i a(i, w2). (48)

Based on the definition of the dual polynomial in (13), the i-th
entry of ψ(Q, w1) and ψ(Q, w2) must therefore be equal. This
serves as an additional constraint for the dual polynomial. We
refer to (47) as the exact collision case. Collisions complicate
the construction of a dual polynomial that satisfies the optimality
condition [see (48)]. However, we observe that in the numerical
experiments, the method still works in the presence of exact
collisions [See Fig. 8(a)].

2) Case Classification: With multiple sources, depending on
the true DOAs, we have three possible cases:
� Case 1: There exists an exact collision. An exact collision

in the i-th frequency is defined as

|wm − wn| =
k

i
(i ∈ {1, . . . , Nf}, k < i). (49)

Fig. 7. ‖ψ(Q, w)‖2 versus DOA θ for Case 2. Nm = 12, f0 = 100 Hz,
d = c

2f0
, and xw ∼ CN (0, 1), K = 2. “×” indicates the peak, and the dashed

lines indicate the ground-truth DOAs.

Fig. 8. Histogram of the estimated DOA θ̂ for 100 realizations with true DOAs
(×).Nm = 12, f0 = 100Hz,d = c

2f0
, andxw ∼ CN (0, 1),K = 3. For each

realization, xw will be different. No noise is present except for (d) where SNR
is 15 dB.

for some DOAs wm, wn. For example, suppose w1 = 1/2,
w2 = 1/6, Nf = 6. Since |w1 − w2| = 1/3, the third fre-
quency has collision. Indeed, as shown in Fig. 6, the spatial
samples obtained from all sensors are the same in the third
frequency. Notice also that |w1 − w2| = 2/6 = 1/3, so the
sixth frequency also has collision.

� Case 2: There exists a near collision. A near collision in
the i-th frequency is defined as

|wm − wn| =
k

i
± ε (i ∈ {1, . . . , Nf}, k < i), (50)

for some wm, wn for sufficiently small ε > 0. The upper
bound of ε is proportional to 1/Nm. For example, suppose
w1 = 1/4, w2 = 0.001, Nf = 6, and the minimum sepa-
ration condition Δmin = 0.01. Then |w1 − w2| = 1/4−
0.001 = 1/4− ε with ε = 0.001 < Δmin. Therefore, the
fourth frequency has a near collision.

� Case 3: There are no collisions or near collisions across all
Nf frequencies. For example, suppose w1 = 1/4, w2 =
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1/10, Nf = 6, and Δmin = 0.01. It can be easily shown
that there is no collision or near collision for any i ∈
{1, . . . , Nf}.

3) Cases 1 and 2 Study: For Cases 1 and 2, an analytical
guarantee is hard to obtain due to the singularity of Ki. We
list some properties for Case 1 in the Appendix E. Although an
analytical guarantee is hard to obtain, we find the method (20)
can perform well in Case 1 [See Fig. 8(a)]. However, directly
solving (20) for Case 2 does not give a satisfactory performance
(See Fig. 7). To resolve the near collision issue in (21), we pro-
posed a robust solution in (21). The robust solution applies �1,2
regularization to nullify the contribution from the near collision
frequencies. The numerical examples (see Fig. 7) demonstrate
the effectiveness of the �1,2 regularization in suppressing near
collisions.

4) Case 3 Analysis: For Case 3, there is no collision and
therefore the theoretical analysis becomes tractable. Under a
uniform amplitude assumption, we draw analytical conclusions
on ‖ψ(w)‖2 in Theorem 4.2.

Theorem 4.2: If the amplitude is uniform across frequen-
cies for each source (i.e. |xw(1)| = · · · = |xw(Nf )| = 1/

√
Nf

for all w ∈ W), Δ(Wi) ≥ 4/(Nm − 1) and Nm ≥ 257, then
‖ψ(w)‖2 < 1 for w /∈ W .

Remark: The assumptions on the uniform amplitudes and the
number of sensors are made to facilitate the proof and may
not be necessary in practice. Intuitively, the uniform amplitude
assumption prevents certain frequency bins from dominating the
source amplitudes, which in the extreme case could transform
the multi-frequency model into the single-frequency model. The
assumption on the number of sensors is used to bound the
Fejér kernel. Note also that the separation assumption implicitly
implies an upper bound for the source number K.

Proof: See Appendix H and the following paragraphs.
With the first K constraints in (35), the constructed ψ(w)

automatically satisfies the first equality condition in (22) as
ψ(w) satisfies (37). However, we also need to show that with the
lastK equality constraints in (35), the constructedψ(w) satisfies
the second inequality condition in (22) (i.e. ‖ψ(w)‖2 < 1), and
we prove Theorem 4.2 to guarantee that. Inspired by [20], to
bound ‖ψ(w)‖2, α and β in (35) need to be bounded first. To
simplify the derivation, we prove the case when K = 2 in the
following sections. The result can be generalized to K > 2 with
the same reasoning.

Supposing that K = 2, (35) is simplified as a 4× 4 system of
equations. Note that i = 1 is the classical case [20], [21]. Since
collision is absent in this case, the matrix Ki defined in (38) is
invertible (for detailed reasoning, see Appendix G). Therefore,
the solution for (35) is uniquely identified as

⎡⎢⎣α1i

α2i

β1i

β2i

⎤⎥⎦ =

[
Di,0 Di,1

Di,1 Di,2

]−1 ⎡⎢⎣sign(c∗w)xw1
(i)

sign(c∗w)xw2
(i)

0
0

⎤⎥⎦
=

[
S−1i

−D−1i,2Di,1S
−1
i

] [
sign(c∗w)xw1

(i)
sign(c∗w)xw2

(i)

]
. (51)

where the Schur complement Si := Di,0 −Di,1D
−1
i,2Di,1.

Defineαi := [α1i α2i]
T andβi := [β1i β2i]

T . The follow-
ing lemma gives upper bounds for ‖αi‖∞ and ‖βi‖∞.

Lemma 4.3: If Δ(Wi) ≥ 4/(Nm − 1) = 1/M and Nm ≥
257 (or fc := 2M ≥ 128), then

(1) ‖αi‖∞ ≤ i · 1.008824 and ‖βi‖∞ ≤
3.294× 10−2

fc
. (52)

(2) If the amplitude is uniform across frequencies for each
source (i.e. |xw(1)| = · · · = |xw(Nf )| = 1/

√
Nf for all w ∈

{w1, w2}), we further have

‖αi‖∞ ≤
i · 1.008824√

Nf

, ‖βi‖∞ ≤
3.294× 10−2

fc
√

Nf

. (53)

Proof: See Appendix F for (1). The proof for (2) is sim-
ilar to that of Lemma 4.3 with the additional condition∥∥∥∥[sign(c∗w)xw1

(i)
sign(c∗w)xw2

(i)
]

∥∥∥∥
∞

= 1√
Nf

. �

Now that the upper bounds for ‖αi‖∞ and ‖βi‖∞ have been
obtained, ‖ψ(w)‖2 can be further bounded. The remaining steps
for bounding ‖ψ(w)‖2 are available in Appendix H.

V. NUMERICAL RESULTS

A. Case Studies

We evaluate our method for the three cases mentioned in
Section IV-D. The noisy case is also evaluated.

The simulation setup for the following examples is K inco-
herent sources have DOAs θ = {θ1, . . . θK} (90◦ is considered
broadside). Assume c = 340m/s, f0 = 100Hz, a uniform linear
array with Nm sensors and spacing d = c

2f0
. The temporal

frequencies of the sources are {1, . . . , Nf} · f0 Hz. The am-
plitude vectors xw of the three sources are randomly generated
with standard complex normal distribution CN (0, 1) and then
normalized so that ‖xw‖2 = 1. In Fig. 8, 100 realizations are
evaluated and in each realization, xw will be different. We plot
the distribution of the DOA estimation of these realizations in
the histogram. All cw = 1. The noise for each frequency wf is
randomly generated from the distribution CN (0, σ2) and then
scaled to fit the desired signal-to-noise ratio (SNR) defined as

SNR = 20 log10
‖X‖F
‖W‖F

. (54)

This setup is applied in all of the examples in the Section V-A
unless otherwise specified.

1) The Dual Polynomial for Case 2: For Case 2, if d = c
2f0

,
then all of the frequencies other than the first frequency will
have the risk of near collision. To overcome this issue, robust
ANM [see (21)] needs to be employed to suppress the near
collision. An alternative way to suppress the collision is to
choose a smaller spacing d = c

2Nff0
so that the collision can be

completely avoided for all frequencies. These two collision sup-
pression methods will be examined. Suppose there are K = 2
incoherent sources. In this case, if Nf ≥ 2, then the 2n-th (n
is any positive integer) frequency will have the near collision.
The dual polynomial for different Nf , λ, d, and θ [λ is the
regularization hyper-parameter in (21)] can be seen in Fig. 7.
For the regularization parameter λ, we empirically choose it
proportional to Nf (i.e., λ = k ·Nf , with k = 0.125 in particu-
lar for Fig. 7). The intuition behind is that for more frequencies,
the near collision is more likely to happen. However, since the
regularization can bring bias, a smaller λ is more favorable in
practice.
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From Fig. 7(a), if we only solve (20) without regularization,
numerous spurious peaks are an obstacle for identifying source
positions. However, with regularization, the dual polynomial
peaks become precise indicators for the source positions [See
Fig. 7(b)–(c)]. When Nf = 6, the near collision frequencies are
the 2nd, 4th, and 6th frequencies. Fig. 7(d) demonstrates the
success of choosing a smaller spacing d = c

2Nff0
in collision

suppression without regularization. However, there are potential
limitations for smaller spacing. Comparing Fig. 7(e) and (f), the
smaller aperture cannot resolve the close sources while the larger
aperture can. Thus, although the smaller aperture can avoid the
collision, it has lower spatial resolution. We leave the theoretical
analysis for choosing the regularization hyperparameter λ as
future work.

2) Case 1, 3, and Noisy Cases: The histograms for these
cases are plotted in Fig. 8. Since |w1 − w2| = |w2 − w3| = 0.25
and |w1 − w3| = 0.5, there are collisions in both the second and
fourth frequencies. From Fig. 8(a), all of the instances in the his-
togram are nevertheless concentrated in the ground-truth posi-
tions, which shows the proposed method can capture the ground-
truth positions accurately and has the robustness to the exact
collisions. The robustness to the exact collisions is attributed
to the combination of multiple frequencies. For the collision
frequencies, these two sources are essentially one source since
they share the same array manifolds for these frequencies [see
(46)] and they are mixed coherently, which makes it difficult to
separate them. For the non-collision frequencies, the two sources
are well-separated. Therefore, if we combine allNf frequencies,
the two peaks associated with the DOAs still stand out as long
as there exists non-collision frequencies. To demonstrate Case
3, we compare the single-frequency [Nf = 1, see Fig. 8(b)]
and multi-frequency [Nf = 5, see Fig. 8(c)] scenarios. When
Nf = 1, there are many bins that lie in the undesired positions.
In contrast, when Nf = 5, the bins are mostly concentrated
in the ground-truth positions. This example demonstrates the
potential benefits of multi-frequency ANM. In Fig. 8(d), the
setup is identical to that in Fig. 8(c) except the noise is present.
For the noisy case, the empirical value of η is chosen as [25]

η = σ/2 ·
√

NmNf + 2
√

NmNf .

From Fig. 8(d), the proposed method captures the source posi-
tions accurately in the noisy cases.

B. DOA Estimation Performance Evaluation

To comprehensively evaluate the performance of the proposed
method, we conduct Monte Carlo experiments. In all of the
experiments in this section, each point represents MC = 100
trials, and the root mean square error (RMSE) and mean absolute
error (MAE) are computed as

RMSE =

√
1

MC

∑MC

m=1

[
1

K

∑K

k=1

(
θ̂mk − θmk

)2
]
.

(55)

MAE =
1

MC

MC∑
m=1

(
1

K

K∑
k=1

|θ̂mk − θmk|
)
, (56)

Fig. 9. RMSE (◦) vs. SNR for d =
λNf

2 = c
2Nf f0

.Nm = 15,K = 3, f0 =

100 Hz, and the frequency set is {1, . . . ,Nf} · f0 Hz. The �1,2 regularization
parameter λ = 0 for all plots. Each point represents 100 trials. The DOAs for
each trial are randomly generated between [10◦, 170◦] with a minimum angular
separation 4/Nm. xw ∼ CN (0, 1).

where θ̂mk, and θmk are (sorted) estimated DOAs, and (sorted)
ground-truth DOAs for the k-th source and m-th trial. A maxi-
mum threshold of 10◦ was used to penalize the incorrect DOA
estimates (see below). c, f0, d, and the temporal frequencies are
the same as those in Section V-A. We also compare the proposed
method (ANM) with the multi-frequency sparse Bayesian learn-
ing (SBL) [17] and Cramér-Rao bound (CRB) [49, Eq. (119)].
For SBL, the spatial angle is discretized into grids with 0.5◦

between the adjacent grid points. Although there are many DOA
estimation methods, very few of them have been developed for
the multiple-frequency model. Therefore, only SBL and CRB
are included for reference.

1) DOA Estimation Under Varying SNR: We first examine
the robustness of ANM to noise. The performance of each

algorithm under d =
λNf

2 is detailed in Fig. 9. Notice that in
this setup, there will be no aliasing or collision. Therefore,
we can turn off the �1,2 regularization in (21). The proposed
algorith outperforms SBL in the high SNR cases. At low SNRs,
SBL achieves a better performance since it can estimate the
noise power. Note for the SBL with limited 0.5◦ separation, the
achievable accuracy for RMSE is 0.125◦. In addition, it turns out
that SBL has no failure trials (RMSE > 10◦ is defined as failure)
starting from SNR = 0, −5, −5, and −10 dB for Nf = 1, 2, 4,
and 8. For ANM, the same happens for SNR = 0, 0, −5, and
−5 dB. Therefore, for both SBL and ANM, the performance
improves in the low SNR region, which demonstrates the en-
hanced robustness to noise for the multi-frequency processing.

We then change the spacing to d = λ1

2 (See Fig. 10). In
this case, aliasing and possible collisions will be present when
Nf ≥ 2. However, if more frequencies are available, such am-
biguities can be potentially suppressed [17]. For that reason, we
only consider the case with 8 frequencies from 100, . . . , 800Hz.
In Fig. 9 the frequencies were 12.5, . . . , 100 Hz, the aperture is
here a factor 8 larger in Fig. 10. Although the error stops to
decrease for ANM in the high SNR region due to the bias from
the regularization, the performance still improves in the low SNR
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Fig. 10. RMSE (◦) vs. SNR for d = λ1
2 = c

2f0
. Nm = 15, K = 3, f0 =

100 Hz, and the frequency set is {1, . . . ,Nf} · f0 Hz. The �1,2 regularization
parameter λ = 0.6 for (b). Each point represents 100 trials. The DOAs for each
trial are randomly generated between [10◦, 170◦] with with a minimum angular
separation 4/Nm. xw ∼ CN (0, 1).

Fig. 11. MAE (◦) vs. K (a–b) and DOA separation (c). Nm = 15. Each point
represents 100 trials, and no noise is present. For (a–b), Nf = {2, 4}. For (b),

robust ANM (21) is used. For (c), Nf = 2, K = 2, and xw = 1/
√

Nf · 1Nf
.

The first DOA is 90◦− DOA separation, and the second DOA is 90◦+ DOA
separation. The grid resolution for SBL is 0.1◦.

region if more frequencies are available. In addition, compared
with Fig. 9(d), the performance of ANM improves when SNR
is between 0 and 20 dB, and that demonstrates the benefits of
larger apertures.

2) DOA Estimation Under VaryingK: We examine the DOA
estimation performance under varying numbers of sources (K)
in this section. Both the real flat [Fig. 11(a)] and complex
random amplitude source [Fig. 11(b)] are tested under noise-
free conditions. DOA is an integer randomly generated from a
uniform distribution between [0◦, 180◦]. Therefore, there is no
grid mismatch issue for SBL. For the real and flat amplitude case
(xw = 1/

√
Nf · 1Nf

), ANM will be immune to collisions (or
near collisions) since the fundamental constraint (48) and the
dual certificate condition (22) can be satisfied simultaneously.
Therefore, the optimality is guaranteed and perfect DOA estima-
tion is expected. In the complex random amplitude case, since
near collisions affect the performance of ANM, robust ANM
[see (21)] is applied. From Fig. 11(b), the DOA estimation error
increases when the complex amplitude is applied for both meth-
ods. ANM (and robust ANM) still outperforms SBL for both

real and complex amplitudes even if there is no grid mismatch
for SBL. Fig. 11(b) also demonstrates the effectiveness of robust
ANM for suppressing near collisions. Because of the presence of
near collisions in the complex amplitude case, more frequencies
do not necessarily bring about better performance for ANM.

3) DOA Estimation Under Varying DOA Separation: Finally,
we study the DOA estimation performance under different DOA
separations. Since the amplitude is real and flat, ANM is immune
to near collisions. From Fig. 11(c), SBL has the same estimation
error for all DOA separations andNf . That error is entirely from
the grid mismatch. However, the proposed gridless approach
overcomes this issue and achieves exact DOA estimation.

VI. CONCLUSION

The ANM framework is extended to support continuous pa-
rameter estimation across multiple frequencies. ANM is initially
formulated as an equivalent SDP problem based on the bounded
real lemma so that the ANM becomes computationally tractable.
In addition, the dual certificate condition is derived. With the
help of the dual certificate condition, the optimality can be
certified, and the DOAs are identified by finding the roots of
a polynomial. We also construct the dual certificate and show
that a valid construction exists when the source amplitude has a
uniform magnitude. Based on our signal model, the higher fre-
quencies may have the risk of collision or near collision. These
two cases are extensively studied and a robust ANM method with
regularization is proposed for near collision suppression. The
numerical results demonstrate the effectiveness of the proposed
method.

APPENDIX

A. Proof for Proposition 3.1

Construct the Hermitian trigonometric polynomial

R(w) := 1− ‖HHz‖22 = 1− zHHHHz. (57)

From (17), we know that ‖Q‖∗A ≤ 1 holds if and only ifR(w) ≥
0 for all w ∈ [−1/2, 1/2].

First, suppose there exists a matrix P0 ∈ C
N×N � 0 such

that (18) and (19) hold. We must argue that R(w) ≥ 0 for all w.
Consider the expression zHP0z and note that

zHP0z = Tr(zHP0z) = Tr(zzHP0) =

N−1∑
k=−(N−1)

rkz
−k,

where rk =
∑N−k

i=1 P0(i, i+ k) for k ≥ 0 and rk = r∗−k for
k < 0. From (18), we conclude that zHP0z = z0 = 1. Substi-
tuting this into R(w) and defining P1 := HHH gives

R(w) = zHP0z− zHP1z = zH(P0 −P1)z.

Since the matrix in (19) is PSD, its Schur complement P0 −
HI−1Nf

HH = P0 −P1 � 0, and so R(w) ≥ 0 for all w ∈
[−1/2, 1/2].

Next, suppose R(w) ≥ 0 for all w ∈ [−1/2, 1/2]. We must
argue that there exists a matrix P0 ∈ C

N×N � 0 such that (18)
and (19) hold. Since R(w) ≥ 0, 1 ≥ zHP1z, where we have
again defined P1 := HHH � 0. From [44, Lemma 4.25] and
the fact that 1 and zHP1z are univariate trigonometric poly-
nomials, it follows that there exists P0 � P1 such that 1 =
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zHP0z and (18) hold. The matrix in (19) has Schur complement
P0 −HI−1Nf

HH = P0 −P1 � 0, and therefore (19) holds. �

B. Proof for Theorem 3.2

First, notice that if (22) is satisfied, based on (17), we have
‖Q‖∗A ≤ 1. Then,

‖X‖A ≥ ‖X‖A · ‖Q‖∗A
(a)

≥ 〈Q,X〉R = Re[Tr(QHX)]

=
∑
w∈W

Re[Tr(cwQ
HA(w)� xT

w)]

=
∑
w∈W

Nf∑
f=1

Re[cwq
H
f xw(f)a(f,w)] =

∑
w∈W

Re[cwx
H
wψ(Q,w)]

(b)
=

∑
w∈W

Re[cwsign(c
∗
w)‖xw‖22] =

∑
w∈W
|cw|

(c)

≥ ‖X‖A, (58)

where (a) is based on Hölder’s inequality, (b) follows because
if w ∈ W , then ψ(Q, w) = sign(c∗w)xw based on (22), and (c)
follows from the definition of the atomic norm (9) as the infimum
of the combination coefficients. Hence, ‖X‖A = 〈Q,X〉R =∑

w∈W |cw|.
For uniqueness, suppose there exists another decomposition

X =
∑

w′ cw′A(w′)� xT
w′ which satisfies ‖X‖A =

∑
w′ |cw′ |.

There must exist w′ /∈ W contributing to X due to the mutual
linear independence of the atoms. Therefore, we have the con-
tradiction:∑

w′

|cw′ | = ‖X‖A = 〈Q,X〉R =
∑
w′

Re[cw′ 〈xw′ ,ψ(Q,w′)〉]

=
∑
w′∈W

Re[cw′x
H
w′ψ(Q,w′)] +

∑
w′/∈W

Re[cw′x
H
w′ψ(Q,w′)]

(a)
<

∑
w′∈W

|cw′ |+
∑
w′/∈W

|cw′ | =
∑
w′

|cw′ |, (59)

where (a) is because of (22). Therefore, the atomic decomposi-
tion which satisfies ‖X‖A =

∑
w∈W |cw| must be unique. �

C. Proof for Proposition 3.3

Construct the Hermitian trigonometric polynomial

R(w) := 1− ‖HH
r zr‖22 = 1− zHr HrH

H
r zr. (60)

From (17), we know that ‖Q‖∗A ≤ 1 holds if and only ifR(w) ≥
0 for all w.

First, suppose there exists a matrix Pr0 ∈ C
Nu×Nu � 0 such

that (27) and (28) hold. We must argue that R(w) ≥ 0 for all w.
Consider the expression zHr Pr0zr and note that

zHr Pr0zr = Tr(zHr Pr0zr) = Tr(zrz
H
r Pr0) =

N−1∑
k=−(N−1)

rkz
−k

rk =
∑

i,j,Uj−Ui=k

Pr0(i, j) (61)

for k ≥ 0 and rk = r∗−k for k < 0. From (27), we then conclude
that zHr Pr0zr = z0 = 1. Substituting this fact into R(w) and

defining Pr1 := HrH
H
r , we have

R(w) = zHr Pr0zr − zHr Pr1zr = zHr (Pr0 −Pr1)zr. (62)

Since the matrix in (28) is PSD, its Schur complement Pr0 −
HrI

−1
Nf

HH
r = Pr0 −Pr1 � 0, and so R(w) ≥ 0 for all w. �

D. The Derivation of the Dual Problem of (20)

Consider the Lagrangian of (20) given by

L(Q,P0,H,Λ1,Λ2,Λ3,ΛQ,v)

= 〈Q,Y〉R −
〈[

Λ1 Λ2

ΛH
2 Λ3

]
,

[
P0 H
HH INf

]〉
R

−
N−1∑
k=0

vk(δk −
∑

j−i=k

P0(i, j))− 〈ΛQ,H−R∗(Q)〉R

= 〈Q,Y〉R + 〈ΛQ,R∗(Q)〉R − [〈P0,Λ1〉R
+ 2〈Λ2,H〉R + Tr(Λ3)]

− v0 + 〈P0,Toep(v)〉R − 〈ΛQ,H〉R. (63)

The derivation uses:
∑N−1

k=0 vk
∑

j−i=k P0(i, j) =

〈P0,Toep(v)〉R. Further, the dual matrix
[
Λ1 Λ2

ΛH
2 Λ3

]
associated

with the inequality constraint
[
P0 H
HH INf

]
� 0 is an PSD

matrix to ensure the inner product between these two matrices
is non-negative, whereby the optimal value for the dual problem
gives a lower bound for the primal problem.

The dual function is

g(Λ1,Λ2,Λ3,ΛQ,v)= inf
Q,P0,H

L(Q,P0,H,Λ1,Λ2,Λ3,ΛQ,v)

s.t.

[
Λ1 Λ2

ΛH
2 Λ3

]
� 0. (64)

The infimum of L over Q is thereby infQ J(Q) :=
[〈Q,Y〉R + 〈ΛQ,R∗(Q)〉R] = [〈Y,Q〉R + 〈R(ΛQ),Q〉R] =
〈Y +R(ΛQ),Q〉R. The infimum of J(Q) is bounded only
if Y = −R(ΛQ). Similarly, the infimum of L over P0 is
bounded only if Toep(v) = Λ1 � 0. The infimum of L over H
is bounded only if ΛQ = −2Λ2. Consider 2Λ2 = Ỹ, then we
must have Y = −R(ΛQ) = R(2Λ2) = R(Ỹ).

ConsiderΛ3 = 1
2W, andv = 1

2u, the dual function becomes
− 1

2Tr(W)− 1
2Tr(Toep(u)). The dual problem is

max
W,u,˜Y

− 1

2
[Tr(W) + Tr(Toep(u))]

s.t.

[
Toep(u) Ỹ

ỸH W

]
� 0,Y = R(Ỹ), (65)

which is equivalent to (29). �

E. Properties for Exact Collision

1) Ki is Singular: First observe that Ki in (38) is singular.
We also recognize the periodicity of Ki(w). Since Ki(w) =
Ki(w + k/i)(k < i, i ∈ {1, . . . , Nf}), k/i is the period for
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Ki(w). In addition, k/i is also the period forK ′i(w) andK ′′i (w).
Without loss of generality, we assume there exists collision
between w1 and w2 (i.e. |w1 − w2| = k

i ), then

Ki(0) = Ki(w1 − w2) = Ki(w2 − w1) = 1,

K ′i(0) = K ′i(w1 − w2) = K ′i(w2 − w1) = 0, and

K ′′i (0) = K ′′i (w1 − w2) = K ′′i (w2 − w1). (66)

The first and second row of Ki are

[Ki(w1−w1) . . .Ki(w1−wK) . . .K ′i(w1−w1) . . .K
′
i(w1−wK)]

[Ki(w2−w1) . . .Ki(w2−wK) . . .K ′i(w2−w1) . . .K
′
i(w2−wK)].

(67)

Note that Ki(w2 − wj) = Ki(w1 − wj − (w1 − w2)) =
Ki(w1 − wj) and K ′i(w2 − wj) = K ′i(w1 − wj − (w1 −
w2)) = K ′i(w1 − wj) for any j. Thus, the first two rows are
identical. Ki is hence rank-deficient and singular.

However, the singularity of Ki does not imply that the
solution to the system of equations (35) does not exist.
If [sign(c∗w)xw1

(i) . . . sign(c∗w)xwK
(i) 0 . . . 0 ]T := x̂i lies in

the range space ofKi, the solution of (35) exists but non-unique.
Among the infinite number of solutions, we choose the Moore-
Penrose pseudoinverse solution K†ix̂i.

2) Recovery for the Coefficients Not Possible: Here, we dis-
cuss the possibility of recovering the coefficients under the col-
lision condition. Although it is possible to localize the sources,
the recovery of the coefficients ĉkx̂k is not possible due to the
fundamental limit in (46).

The DOAs are localized by finding the peak of the dual poly-
nomial vector under the collision condition. For the estimated
DOAs (ŵ1, . . ., ŵK), (2) gives

X =

K∑
k=1

ĉkA(ŵk)� x̂T
k =

K∑
k=1

A(ŵk)� x̃T
k , (68)

where x̃k := ĉkx̂k. Since Y = X = [y1. . .yNf
], the entries

in x̃k are recovered by solving yf =
∑K

k=1 a(f, ŵk)x̃k =
[a(f, ŵ1). . .a(f, ŵK)][x̃1(f). . .x̃K(f)]T (f = 1, . . . , Nf ).

However, when f = i, a(i, ŵ1) = a(i, ŵ2) from (46). Then,
a(i, ŵ1)x̃1(i) + a(i, ŵ2)x̃2(i) = a(i, ŵ1)[x̃1(i) + x̃2(i)].
Therefore, we have to decouple x̃1(i) and x̃2(i) based on their
sum, which is impossible.

F. Proof for Lemma 4.3

From below (30), |xw(i)| = |xw2
(i)|, we have

‖αi‖∞ =

∥∥∥∥S−1i

[
sign(c∗w)xw1

(i)
sign(c∗w)xw2

(i)

] ∥∥∥∥
∞

≤ ‖S−1i ‖∞
∥∥∥∥ [sign(c∗w)xw1

(i)
sign(c∗w)xw2

(i)

] ∥∥∥∥
∞
≤ ‖S−1i ‖∞, (69)

‖βi‖∞≤
∥∥∥∥D−1i,2Di,1S

−1
i

[
sign(c∗w)xw1

(i)
sign(c∗w)xw2

(i)

] ∥∥∥∥
∞

≤ ‖D−1i,2Di,1S
−1
i ‖∞ ≤‖D−1i,2‖∞‖Di,1‖∞‖S−1i ‖∞. (70)

‖S−1i ‖∞ is bounded as

‖S−1i ‖∞ = ‖(Di,0 −Di,1D
−1
i,2Di,1)

−1‖∞
≤ 1/(1− ‖I− (Di,0 −Di,1D

−1
i,2Di,1)‖∞)

≤ 1/[1− (‖I−Di,0‖∞ + ‖Di,1‖2∞‖D−1i,2‖∞)]. (71)

Inspired by the proof of [20, Lemma 2.2], the bounds
for ‖I−Di,0‖∞, ‖Di,1‖∞, and ‖K ′′i (0)I−Di,2‖∞ are estab-
lished (define d0 := 6.253× 10−3, d1 := 7.639× 10−2, d2 :=
1.053, d3 := 11/32π2, where d0, d1, and d2 are empirical [20]
and d3 is analytical):

‖I−Di,0‖∞ ≤
∥∥∥I−1

i
I
∥∥∥
∞
+
∥∥∥1
i
I−Di,0

∥∥∥
∞
=1−1

i
+|Ki(w1−w2)|

= 1−1
i
+

1

i
|K1(i(w1 − w2))| ≤ 1+

d0 − 1

i
,

‖Di,1‖∞ = |K ′i(w1 − w2)| = |K ′1(i(w1 − w2))| ≤ d1fc,

‖K ′′i (0)I−Di,2‖∞=|K ′′i (w1−w2)|=i|K ′′1(i(w1−w2))| ≤ id2f
2
c ,

|K ′′i (0)| =
iπ2fc(fc + 4)

3
≥ iπ2f2

c

3
+

4iπ2f2
c

3 · 128 = i · d3f2
c .

(72)

Therefore, ‖D−1i,2‖∞ is bounded as follows (d4 := 1/(d3 −
d2) = 0.4275)

‖D−1i,2‖∞ ≤
1

|K ′′i (0)|−‖K ′′i (0)I−Di,2‖∞
≤ 1

i(d3−d2)f2
c

=
d4
if2

c

.

(73)
Then, following (69) and (70), the bounds for ‖αi‖∞ and

‖βi‖∞ are (define cα := 1.008824, and cβ := 3.294× 10−2):

‖αi‖∞ ≤ ‖S−1i ‖∞ ≤
i

1− d0 − d21d4
:= i · cα,

‖βi‖∞ ≤ ‖D−1i,2‖∞‖Di,1‖∞‖S−1i ‖∞≤
d1d4

fc(1−d0−d21d4)
:=

cβ
fc

.

(74)

�

G. Invertibility of Ki

Using the Schur complement, Ki is invertible if Di,2 and
the Schur complement Si := Di,0 −Di,1D

−1
i,2Di,1 are both

invertible. To show that, we use the fact that a Hermitian matrix
M is invertible if ‖I−M‖∞ < 1 [20, (2.12)].

We begin with Di,2. Notice |K ′′i (0)| = i|K ′′1(0)| =
iπ2fc(fc+4)

3 . Therefore, based on (72),∥∥∥I− Di,2

K ′′i (0)

∥∥∥
∞
=
‖K ′′i (0)I−Di,2‖∞

|K ′′i (0)|
≤ id2f

2
c

iπ2fc(fc + 4)/3
<1,

(75)
which implies that Di,2

K ′′
i (0)

is invertible. Hence, Di,2 is also
invertible. We then consider the invertibility of Si. Based on
the triangle inequality,

‖I− Si‖∞ ≤ ‖I−Di,0‖∞ + ‖Di,1‖2∞‖D−1i,2‖∞. (76)
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Hence, to show ‖I− Si‖∞ < 1, ‖I−Di,0‖∞, ‖Di,1‖∞, and
‖D−1i,2‖∞ need to be bounded.

Plugging in the bounds in (72), and (73), we have

‖I−Si‖∞ ≤ 1+
d0+d

2
1d4 − 1

i
= 1+

8.747× 10−3−1
i

< 1,

(77)
which implies that Si is invertible. �

H. Proof for Theorem 4.2

For simplicity, we assume K = 2 in this section. But
the theorem can be generalized to K ≥ 2 if the separation
condition is satisfied. Based on the assumption |xw1

(i)| =
|xw2

(i)| = 1/
√

Nf for ∀i ∈ {1, . . ., Nf}, as long as each
entry in the constructed dual polynomial vector satisfies
|ψi(w;w1, w2)| < 1/

√
Nf , then ‖ψ(w)‖2 < 1. Therefore, the

bounds in Lemma 4.3 (2) further indicate |ψi(w;w1, w2)| (de-
note cα := 1.008824, cβ := 3.294× 10−2, c := 1√

Nf

)

|ψi(w;w1, w2)| = |
∑

k∈{1,2}
αk,iKi(w − wk) +βk,iK

′
i(w − wk)|

≤ ‖αi‖∞
∑

k∈{1,2}
|Ki(w − wk)|+ ‖βi‖∞

∑
k∈{1,2}

|K ′i(w − wk)|

≤ c[icα
∑

k∈{1,2}

|K1(i(w − wk))|
i

+
cβ
fc

∑
k∈{1,2}

|K ′1(i(w − wk))|]

= c[cα
∑

k∈{1,2}
|K1(i(w − wk))|+

cβ
fc

∑
k∈{1,2}

|K ′1(i(w − wk))|]

=c

⎡⎣ ∑
k∈{1,2}

cα|K1(i(w−wk) mod 1)|

+
cβ
fc
|K ′1(i(w−wk) mod 1)|

⎤⎦ .

(78)
When i = 1,

|ψ1(w;w1,w2)|

≤c

⎡⎣cα∑
k∈{1,2}

|K1(w − wk)|+
cβ
fc

∑
k∈{1,2}

|K ′1(w−wk)|

⎤⎦ . (79)

We show c[cα
∑

k∈{1,2} |K1(w − wk)|+ cβ
fc

∑
k∈{1,2} |K ′1(w

− wk)|] < 1√
Nf

by applying [20, Lemma 2.3 and 2.4]. We

consider both the near and far regions. The near region Tnear and
far region Tfar are defined as Tnear := ∪2k=1[wk − ν, wk + ν] and
Tfar := [0, 1]\Tnear, where ν = 0.1649

fc
.

For Tfar, based on [20, Lemma 2.4]

cα
∑

k∈{1,2}
|K1(w − wk)|+

cβ
fc

∑
k∈{1,2}

|K ′1(w − wk)|

≤ 0.99992 < 1. (80)

Therefore,

|ψ1(w;w1, w2)| ≤ c[cα
∑

k∈{1,2}
|K1(w−wk)|

+
cβ
fc

∑
k∈{1,2}

|K ′1(w−wk)|]<c.

If i > 1, the only difference between the last line of (78) and
the right hand side of (79) is the dilation of K1 and K ′1. This
indicates the i-th entry is a special case for i = 1. Therefore,
|ψi(w;w1, w2)| < c = 1/

√
Nf will also hold for i > 1. Hence,

in Tfar, ‖ψ(w)‖2 < 1 for w /∈ W .
For Tnear, inspired by the proof in [20, Lemma 2.3], we show

the strict concavity of |ψi(w;w1, w2)|. We have

ψi
R(w)ψ

i′′

R(w) + |ψi′(w)|2 + |ψi
I(w)||ψi′′

I (w)|

≤ −9.291× 10−2(ifc/
√

Nf )
2 < 0 (81)

and

d2|ψi|(w)
dw2

= − (ψi
R(w)ψ

i′
R(w) +ψ

i
I(w)ψ

i′
I (w))

2

|ψi(w)|3

+
ψi

R(w)ψ
i′′
R(w) + |ψi′(w)|2 + |ψi

I(w)||ψi′′
I (w)|

|ψi(w)| < 0.

(82)
Sinceψi′(w1) = ψ

i′(w2) = 0, local strict concavity will im-
ply |ψi(w;w1, w2)| < 1/

√
Nf in Tnear. �
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