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Optimal Solutions for Joint Beamforming and
Antenna Selection: From Branch and Bound to
Graph Neural Imitation Learning

Sagar Shrestha, Xiao Fu, and Mingyi Hong

Abstract—This work revisits the joint beamforming (BF) and
antenna selection (AS) problem, as well as its robust beamforming
(RBF) version under imperfect channel state information (CSI).
Such problems arise due to various reasons, e.g., the costly nature
of the radio frequency (RF) chains and energy/resource-saving
considerations. The joint (R)BF&AS problem is a mixed integer
and nonlinear program, and thus finding optimal solutions is
often costly, if not outright impossible. The vast majority of
the prior works tackled these problems using techniques such
as continuous approximations, greedy methods, and supervised
machine learning—yet these approaches do not ensure optimality
or even feasibility of the solutions. The main contribution of this
work is threefold. First, an effective branch and bound (B&B)
framework for solving the problems of interest is proposed.
Leveraging existing BF and RBF solvers, it is shown that the
B&B framework guarantees global optimality of the considered
problems. Second, to expedite the potentially costly B&B al-
gorithm, a machine learning (ML)-based scheme is proposed
to help skip intermediate states of the B&B search tree. The
learning model features a graph neural network (GNN)-based
design that is resilient to a commonly encountered challenge
in wireless communications, namely, the change of problem
size (e.g., the number of users) across the training and test
stages. Third, comprehensive performance characterizations are
presented, showing that the GNN-based method retains the global
optimality of B&B with provably reduced complexity, under
reasonable conditions. Numerical simulations also show that the
ML-based acceleration can often achieve an order-of-magnitude
speedup relative to B&B.

Index Terms—Beamforming, Antenna Selection, Global Opti-
mum, Machine Learning, Graph Neural Networks

I. INTRODUCTION

Beamforming lies at the heart of transmit signal design of
multiple antenna systems. In the past decade, a plethora of
beamforming algorithms have been proposed under various
scenarios; see, e.g., [1]-[7]. Among the most challenging
scenarios is the joint beamforming and antenna selection
(BF&AS) problem (see, e.g., [5]-[7]), which often arises
due to various reasons—such as the costly nature of radio
frequency (RF) chains [5], [8]-[10], energy consumption con-
siderations [11], [12], problem size reduction [13], overhead
minimization [14], and algorithm accommodations [15].
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Jointly designing the beamformers and selecting antennas
is a mixed integer and nonlinear program, which is known to
be NP-hard [16], [17]. A large portion of the literature tackles
this problem using continuous programming-based approxima-
tions. For example, [5]-[7], [18] used convex and nonconvex
group sparsity-promoting regularization to encourage turning
off antenna elements. However, the continuous approximations
are often NP-hard problems as well (especially when the
sparsity promotion is done via nonconvex quasi-norms as in
[5]), and thus it is unclear if they can solve the problem of
interest optimally. In addition, works using greedy methods to
assist antenna selection also exist (see, e.g., [16], [19]-[22]).
But the optimality of joint (R)BF&AS is still not addressed in
these works.

In recent years, machine learning (ML) approaches are
employed to handle the joint BF and AS problem. In [23], a
supervised learning approach was proposed. The basic idea is
to use a continuous optimization algorithm to produce training
pairs (i.e., channel matrices and sparse beamformers), and
then learn a neural network-based regression function using
such pairs. Similar ideas were used in [24], [25] with various
settings. This type of approach in essence mimics the training
pair-generating algorithms at best, and thus the optimality of
their solutions is again not guaranteed.

Contributions. In this work, we revisit the joint BF and AS
and its extension under imperfect channel state information
(CSI), namely, the joint robust beamforming (RBF) and AS
problem. We are interested in the unicast BF and RBF formu-
lations in [46] and [26], respectively. The goal is to satisfy the
users’ quality-of-service (QoS) constraints while minimizing
the power consumption, with only a subset of the antenna
elements activated. Our detailed contributions are as follows:
e Optimal Joint (R) BF&AS via Branch and Bound. Our
first contribution lies in an optimal computational framework
to attain the global optimal solutions to the joint (R)BF&AS
problems. To this end, we propose a Branch and Bound (B&B)
[27], [28] framework that is tailored for the problems of
interest. Our design leverages problem structures of unicast BF
and RBF, which allows for branching only on a subset of the
optimization variables—thereby having reduced complexity
and being effective. Unlike continuous optimization-based
approximations in [5]-[7], [18] whose solutions are often sub-
optimal or infeasible, the proposed B&B is guaranteed to
return an optimal solution.

e An ML-based Acceleration Scheme. B&B is known for
its relatively weak scalability. To improve efficiency, an idea



from the ML community (see, e.g., [7], [30]) is to learn
a binary classifier offline using multiple problem instances.
The classifier determines whether or not any encountered
intermediate state of the B&B algorithm could be “skipped”,
as skipping these states saves computational resources and
expedites the B&B process. Generic ML learning functions
(e.g., support vector machines (SVM)) used in existing works
like [7], [31] do not reflect the problem structure in wireless
communications. In this work, we propose a graph neural
network (GNN) [32] based learning function designed to
exploit the physics of the (R)BF problem—which offers an
enhanced classification accuracy. More importantly, the GNN
is agnostic to the change of scenarios (e.g., problem size)
during training and testing. This feature is designed to meet
the need of wireless communication systems, as the number of
users served by a base station could change quickly in practice.

o Theoretical Understanding. We present comprehensive
performance characterizations for the proposed approaches. In
particular, we show that the ML-based acceleration retains the
global optimality of the B&B procedure with high probability,
under reasonable conditions. ML-based B&B acceleration has
limited theoretical studies, and the results were developed
under often overly ideal settings (e.g., convex classifier) [5],
[7]. There is a lack of understanding of the impacts of key
factors such as nonconvexity, limited training samples, and the
employed ML model’s structure. Our analysis takes important
aspects into consideration, such as the nonconvexity of the
GNN learning process, the GNN’s structure and complexity,
the GNN’s function approximation error, and the amount
of available samples. As a consequence, the analysis offers
insights to reveal key trade-offs in practice.

A shortened version was submitted to ICASSP 2023 [34].
The conference version included the B&B design and ML
acceleration for the perfect CSI case. The journal version ad-
ditionally presents the imperfect CSI case, the detailed analysis
of the B&B algorithm, the performance characterizations for
the ML acceleration, and more extensive simulations.

Related Works. B&B was proposed for beamforming prob-
lems in [35], [36], and antenna selection problems in [37]-
[39]. Particularly, the work in [35] considered a single group
multicast beamforming problem, the work in [38] consid-
ered a joint power allocation and antenna selection problem,
the work in [37] considered antenna selection-assisted rate
maximization in wiretap channels, and [10], [39] considered
receive antenna selection for sum rate maximization. How-
ever these are different from the QoS-constrained downlink
transmit beamfroming formulation considered in our work,
which requires new B&B designs. ML-based B&B accel-
eration so far has been mostly used for mixed integer and
linear programs (MILPs) in the ML community, e.g., [7], [8],
where the B&B design is standard. Such methods have also
been adopted in wireless communications in [31], [41] where
resource allocation tasks are framed as mixed integer and
nonlinear programs (MINPs). However, the joint (R) BF&AS
problem has not been considered. In addition, comprehensive
theoretical understanding to such ML-acceleration procedures
has been elusive.

Notation: z, * and X denote a scalar, a vector, and a
matrix, respectively. @, denotes the nth column of X. We
use the matlab notation X (n,:) to denote the nth row of
X. [N] denotes the set {1,2,..., N}. ||x]l2, ||&]loco> | X2,
I X7, || X |lrow—0 denote the vector ¢o norm, vector o,
norm, matrix spectral norm, matrix Frobenius norm, and the
number of non-zero rows in the matrix, respectively. Tr(X),
XH and X7 denote the trace, hermitian, and transpose of
X. |X| denotes the cardinality of the set X. E[-] denotes
the expectation operator. X > 0 denotes that X is positive
semi-definite matrix. X (S,:) with & C [N] denotes the
submatrix of X € CN*M containing only the rows of X
contained in the set S. X _,, denotes the submatrix of X with
the nth column removed. f(-) is C-Lipschitz continuous iff

[f(x) = FW)l2 < Clle — yll2.

II. BACKGROUND

Consider a classic single-cell downlink communication sce-
nario where the base station (BS) has N antennas [42], [46].
The BS serves M single antenna users. Denote w,, € CV
as the beamforming vector for serving user m. In this work,
our interest lies in a scenario where the BS only activates L
anntennas. Hence, we aim to select a subset A C {1,...,N}
such that |A] < L and w,, (i) # 0 only when i € A. The
message signal for user m is represented by s,,(t). Given the
channel h,, € CN between the BS and user m, the signal
received by user m can be expressed as follows:

Ym(t) = R aw,, 5., (t) + Z hHawps,(t) + nyy,
L#£m

where m,, is zero-mean circular symmetric white Gaussian
noise with variance o2,. Assume w.l.0.g. that {s,,(t)}M_, are
mutually uncorrelated and temporally white with zero-mean
and unit-variance. Then, the total transmission power is given
by Yooy [lwml3 = W2, where W = [wi,...,wy].
The signal to interference and noise ratio (SINR) at the mth
receiver is expressed as:

|w7]ihm|%

Dt (W R |3 + 02,

A. Unicast Beamforming and SOCP

One of the most popular formulations for beamforming is
the so-called QoS formulation [43]-[45] that tries to maintain
a pre-specified SINR level for all users. When h,, is known,
the unicast BF problem can be formulated as follows:

SINR,,, =

(D

min‘i}{/nize W% (2a)
Hh 2
subject to [, | > Ym, m € [M]. (2b)

H
>t [0 R+ 02,
Problem (2) is called “unicast” BF because every user receives

its own message. Problem (2) appears to be nonconvex, but it
can be recast as a second-order cone program (SOCP):

Lemma 1 ( [46]). Eq. (2b) can be equivalently written as a
second-order cone constraint:

1
VYmoZ,

Re(wfihm) > | [wlh,>+1,  (3)

L#£m



for all m € [M)]. Therefore, any algorithm for solving SOCP
can be used to solve (2) optimally.

B. Robust Beamforming and SDR

When the BS only has imperfect CSI, the following worst-
case RBF formulation is often considered [26], [42], [47]-[49]:

minimize ||[W||% (4a)
w
HE |2
. . w, h
subject to _min | "}{J"I 5 = Tms
hp €U Ze;é»,n ‘w[ hm‘ + O-m,
VYm € [M], (4b)

where Uy, == {hm + en | llemllz < em}, By is the
approximate channel vector available at the BS, and ¢, is
the bound on the approximation error. Problem (4) cannot be
directly converted to a convex program as in the perfect CSI
case (cf. Lemma 1). However, Problem (4) can be tackled by
a convex relaxation technique, namely, semidefnite relaxation
(SDR) [50]. Let W,,, := 'wmwfnl. Then the SDR of (4) is
given by

M
minimize Tr(W,, S5a
{W,,eCNxN}M | ; ( ) oo
. . o W T,
subject to _min S 7 A > Ym,
b €U Zj;ﬁm thj hm + 07271,
(5b)

W, =0, V¥Yme[M].

Note that (5) and (4) are equivalent if the constraint W,,, =
w,,wi (or, rank(W,,) = 1) has not been relaxed. Problem
(5) can be further re-expressed as a standard semidefinite
program (SDP) using the S-Lemma; see details in [42].
Interestingly, this relaxation procedure turns out to be tight

under reasonable conditions:

Lemma 2 ( [42, Theorem 1]). Suppose that Problem (4) is
feasible. Let 11, := I — H_,,,(H% H_,,)"*H*  be the
orthogonal complement projector of H_,,. If

1T 13 1
R > 1 Mo (M - 1)

then the optimal solution of (4) can be obtained using SDR.

Y, V1L, (6)

m

The condition in (6) means that if the downlink channels
associated with different users are sufficiently different, then
the SDR is tight.

C. Joint (R)BF&AS: Existing Approaches

The joint (R)BF&AS problem frequently arises in practice
for many reasons. For example, due to the the costly and
power-hungry nature of RF chains, in some antenna arrays, the
number of RF chains may be fewer than that of the antenna
elements [5], [8]-[10]. Furthermore, AS is also used for
energy-efficiency considerations [11], problem size reduction,
overhead control, and algorithm design accommodations—
see, e.g., [9], [13]-[15], [51] and the discussions therein. The
problem considered in this work is as follows:

minli/[r/nize W% (7a)
subject to C(Wim, R, Emy Om) = Yim, (7b)
||W||r0w-0 < L. (7C)
where the row-0 function || - |lyow-0 counts the number of

nonzero rows in W and

C(wma hm7 Emy Jm,)
lwh Ao |?
St (Wi A2 402,
. \'thm|2
Mg -y o 12502
m Y pm (W Am P40,

if BF is considered,

if RBF is considered.

Problem (7) is a non-convex combinatorial problem, and it
is NP-hard [17]. Some representative approaches for tackling
joint (R)BF&AS problems are as follows:

1) Continuous Approximations: In the literature, Prob-
lem (7) and other joint (R)BF&AS formulations are often
handled by continuous approximation. For example, a repre-
sentative continuous approximation technique was used in [5]
for handling a multicast version of (7). Using the idea from
[5], one can recast the unicast problem in (7) as a regularized
formulation as follows:

mil’l‘i}{/nile ||W||%’ + )\”Wllrow—o (8)

subject to C(Wp, Ay Emy Om) = Ym, m € [M].

The idea in [5] is to approximate the row-0 function using
a group sparsity-inducing norm, namely, the /., ; norm, i.e.,
[IW]|row-0 = 22[21 |IlW (n,:)||s and its nonconvex counter-
part | W | ow-0 = Zi:;l log (J|IW(n,:)]|lec +€) [52]. Similar
ideas were used in [18]. Such continuous approximations allow
the use of standard nonlinear program techniques to tackle
(8). However, as mentioned, these methods do not provide
any optimality guarantees. In addition, the feasiblity of W is
often not met by the approximate solutions.

2) Greedy Methods: A number of greedy approaches also
exist for tackling various formulations of the joint (R)BF&AS
problem; see, e.g., [16], [19]-[22]. The major idea is to activate
or shut down an antenna in every iteration using a certain
criterion that is often defined by the optimization problem’s
objective function—see an example in Sec. V-B1. Notably,
such greedy algorithms are not necessarily computationally
light, as will be seen in our simulations.

3) Supervised Learning: More recently, a number of
learning-based approaches are proposed to tackle the joint
(R)BF&AS problem; see, e.g., [23], [53], [54]. In [23], a
multicast version of (7) was considered. The idea is to use
an existing joint multicast BF&AS algorithm (e.g., the algo-
rithm from [5]) to generate “training pairs” {H;, W;}._; by
simulating a large number of problem instances, where ¢ is
the instance index, W, is a (row-sparse) solution produced by
the training pair-generating algorithm, and H; is the channel
matrix of instance ¢. Note that the training pairs can take other
forms, e.g., { H;, z;} where 2; € RM is a binary vector found
by the training pair-producing algorithm, indicating which



antenna is activated [23], [24]. Then, a deep neural network
(DNN) fg(-) is trained via

. 1

0 « argmin ;awt, Fo(H)), ©)
where 0 represents the parameters of the DNN and ¢(z,y)
measures the divergence between x and y. When a new H is
seen in the test stage, one can use the learned DNN to predict
the solution, i.e., W = f5(H). This “supervised learning”
idea is similar to a line of work in deep learning-based wireless
system design; see, e.g., [55], [56]. Notably, it cannot exceed
the performance of the algorithm that produces the training
pairs or ensure producing a feasible solution in the test stage.
Other deep learning-based ideas were seen in [25], [53], [54],
[57] using either supervised learning or unsupervised learning
variants, but similar challenges remain.

III. OPTIMAL JOINT (R)BF&AS viA B&B

A natural idea for solving hard optimization problems is
to employ a global optimization technique, e.g., the B&B
procedure [27], [28], [58]. Designing a practically working
B&B algorithm is often an art—it normally involves judicious
exploitation of problem structures. That is, not every hard
problem enjoys an efficient B&B algorithm. Nonetheless, as
we will see, the special properties of BF and RBF allows for
an effective B&B design.

A. Preliminaries of B&B

We follow the notations from the tutorial in [58] to give
a brief overview of B&B’s design principles. Consider a
nonconvex problem:

(10a)
(10b)

minimize f(x)
xT
subject to x € X.

where both the objective function and the constraint can be
nonconvex. Suppose that there is a partition of the space X =
X U...UXs, and that lower and upper bounds of f(x) over
each X, are easier to find (relative to directly solving (10)).
Let @y, (X;) and @1, (X;) be the algorithms that return lower
and upper bounds of the optimal solution of (10) over the set
X, respectively. Then, the following holds:

. o
min Oy (AX;) < @(X)

< i i)

< min Suy (%)) (11
where ®(X) represents the optimal solution of (10) over the
feasible region X. A premise of the success of B&B is that
one could find a partition X; for ¢ = 1,...,5 and a pair of
functions @), and ®,;;, which can make the following hold:

min q)ub(-)(i) - 1I<Ifgiils (blb(Xz) S € (12)

1<i<S
where € > 0 is a pre-specified error tolerance parameter.

The effectiveness of B&B relies on two key factors. First,
the design of the lower and upper bounding algorithms repre-
sented by @y,(X;) and P, (X;), respectively, plays a central
role. Second, the way of partitioning the space X" also matters.
It often requires a problem-specific way to progressively and

(7b), (7c)

W(ni,:) =0

(7b), (7c),
W(ny,:) =0

W(nz,:) =0

W(ny,:) € CM

(7b), (7c),
W(n,:) € CM

(7b), (7o),
W(ny,:) =0,
W(ng,:) =0

(7b), (7c),
W(ny,:) =0,
W (ng,:) € CM

(7b), (7c),
W(n,:) € CM,
Wi(ns,:) =0

(7o), (70),
Wi(n.,:) e CM,
W(ng, Z) ccM

Fig. 1. Ilustration of B&B tree for problem (7). Here n; € [N] are the
branching variables selected at each node.

judiciously partition the constraint set X’ (usually from rough
to fine-grid), so that the difference in (12) could shrink
quicker than exhaustive search. Meeting either of the design
requirements is not necessarily easy. Moreover, the key designs
in B&B algorithms (e.g., the X’ partition strategies) are highly
problem-dependent; that is, there is hardly a “standard recipe”
for B&B algorithm design.

B. Proposed B&B for Joint (R)BF&AS

Problem (7) involves optimization in discrete and contin-
uous spaces in the constraints. Designing a B&B algorithm
for such problems can be difficult due to the large search
space that consists of both types of constraints. However, the
special structure of (R)BF in (7) allows us to efficiently obtain
bounds over the entire range of the values of the continuous
(beamforming) parameters once the discrete (antenna selec-
tion) parameters have been chosen; this will be clearer in (14)
and (15). As such, we only need to construct a B&B tree over
the discrete space.

1) B&B Tree Construction: We illustrate the idea of sys-
tematically partitioning the feasible region of Problem (7) in
Fig. 1. Here, /\/'i(f) denotes the feasible region corresponding to
the ith node at the /th level. In the sequel, we will use the term
“node” and the associated feasible region interchangeably. The
root is denoted as A9, and we have

NO = (W | W satisfies (7b), (7c)}.

In the first level, the region represented by the root node is
split into two regions represented by two child nodes, namely,

NY = {W | W(ny,:) =0, W satisfies (7b), (7c)}
N2(1) = {W | W(ny,:) € CM, W satisfies (7b), (7¢c)}.

where n; € [N] is an antenna index selected by a designed
antenna selection criterion (e.g., via random sampling). Up to
the first level of the tree, the status (“include (activate)” or
“exclude (shut down)”) of all antennas other than antenna 7
have not been decided.

Note that the nodes in the B&B tree could constitute a
partition in various forms. For example, for nodes in the same
level, we have

MO UL UND = N0,



where S; = 2¢ is the number of nodes in the ¢th level of the
tree. In addition, we have

N(Z) _ N(Z—H) UN(Z—H)
S S1 S2 ’

where s := 2(s — 1) + 1 and s := 2(s — 1) + 2 represent
the left and right children developed from NS(Z) in the full
tree. In fact, the children of N in any level and A\ SZS) also
present a partition of the root node, where N EZS) is the union
of Nl(z), ... ,Néf) with N excluded.

The B&B algorithm starts from the first level to compute
lower and upper bounds of (7) over the node-defined regions.
Then, the B&B algorithm picks a node to “branch”, i.e., to
further partition oftentimes using a heuristic-based metric; see
[27]. Going deeper in the tree towards the final leaves will
allow us to progressively decide which antennas to activate or
shut off. Let ¢ denote the iteration index of the B&B algorithm,
where an iteration corresponds to a branching (partitioning a
node) operation. Use P(*) to denote the collection of (s, )
corresponding to the unbranched nodes. Then, the union of
/\/bm’s for (s,¢) € P represents a partitioning of the root in
iteration ¢. In each iteration ¢, the stopping criterion in (12) is
evaluated. It follows that the following two quantities need to
be evaluated:

13)

1Y = min By, (M), ug) = min Py (N),
(s,£)eP(®) (s,£)eP®)
where lg) and ug) are the global lower and upper bounds in

iteration t¢. In particular, the lower and upper bounds over the
newly created two child nodes need to be found—since other
nodes have been evaluated in a certain previous iteration. The
hope is that one would not need to visit all nodes of tree before
reaching the stopping criterion in (12).

2) Lower and Upper Bounds: In order to compute
By, (M) and By (WD), Tet us define AL C [N] and
Bgl) C [N ]\A(f) to be the index sets of the antennas that
have been activated and shut down at node s in level /,
respectively. Note that A U B C [N] constitute the set
of decided antennas at the node. Then, finding the upper and
lower bounds of ||[W||2. at this node amounts to finding those

of the following optimization problem:
minimize |W|% (14)
w

subject t0 C(W, Ry Emy Om) > Ym, Y,

W(n,:)=0, VneBO,
Wi(n,:)eCM, vneAD,
||W||row—0 < L7 S [N]

For any given node /\/s(l), the lower bound can be obtained by

solving the following relaxation of (14):

iy (ML) = minimize W | (15a)
SubjeCt to C(wma hm7 8m, Um) Z er7 vma (15b)

W(n,:)=0, VYneBY,

where we have dropped |W||;ow—0 < L. If Problem (15) is
not feasible, <I>1b(NS(£)) is set to +00.

In the following lemma, we show that (15) can be optimally
solved for all nodes in the B&B tree. It also helps derive a
procedure for @, (+).

Lemma 3. Regarding (15), the following hold:

(a) Consider the BF case where perfect CSI is given. Then,
(15) can be optimally solved by using SOCP.

(b) Consider the RBF case where imperfect CSI is given.
Assume that

HHmh'mH% 1
) >1+M+ (M M)
where I, := I—H,m(ﬁfmﬁ,m)_lﬁfm, holds for
H € {H(S,:)|VS € [N],|S| > L}. Then, Problem (15)
can be optimally solved using SDR.
(¢c) Under the same conditions of (a) and (b), solving the
following gives a valid upper bound of (14) under the
BF and RBF cases, respectively:

Ym, ¥m,  (16)

(N = minimize |[W 7 (17a)
subject to C(Wpy, Ry Emy Om) = Y, Ym,  (17b)

W(n,:) =0, VYneBWY,

where Eg“ = C§") U Bg) represents the set of N — L
antennas to be excluded, and C{" C [N ]\(Aff) U Bg‘”)
is the index set of undecided antennas that have been
assigned the minimum power in the solution of (15). If
Problem (17) is not feasible, <I>ub(/\/'s(z)) is notationally
set to +o0.

The proof of Lemma 3 is relegated to Appendix B.

3) Node Selection and Branching: After (15) and (17) are
computed in iteration t, l(Hl) and ugﬂ) are updated. If the
stopping criterion ug) — lé) < ¢ is not met, one needs to pick
a node in P® to further partition. To this end, we employ the
“lowest lower bound first” principle that is often used in the
literature [27]. To be specific, we pick a non-leaf node N, S(f R
such that

Oy, (NY),

min

(5,0) EPM\Sear
where Siear := {(£,5) : AU = L,[B”] = N — L} is the
set of leaf nodes. To partition the region N, S(f , we need to
pick an undecided antenna and decide whether to include or
exclude it in our solution. We select the antenna that has been
assigned the largest power among the undecided antennas in
iteration ¢, i.e.,

(£*,s%) € arg (18)

max WS 6B, 9

n* = arg > .
i€ [N\ (AL uBS)

where W) := argminw (15) at N, Then, n* is used
to partition NV, S(f* into two child nodes (i.e., excluding and
including antenna n* on top of the decided antennas in

s(f *)). The associated include/exclude sets in the child nodes,

J\/’s(f*ﬂ),i € {1,2}, are updated as follows:
B _ gl {n*} AU 40
EH s* ’ sy

s*

A = Ay, B =80,



Note that if any of the child nodes, have L included or N — L
excluded antennas, we apply the following update:

— [INNALFY i 148D =

A(‘i*“ INN\BE T i BE T = N— L. (20)
This ensures that we do not generate any new nodes that do
not satisfy (7¢). Finally, the two children replace N« ) i p®
to form PU¢+1),

Note during the process, some nodes in the B&B tree can
be simply discarded, or, “fathomed”—as in the standard ter-
minologies of B&B [27]. After iteration ¢, one can potentially
find a set of (s, ¢") such that

(Plb(./\/s(/[/>) > ug)

The above means that . S(/e ") needs not to be further partitioned
in the next iteration. Hence, we can form a set F(®) in each
iteration, which only contains the nodes that need to be further
considered, i.e.,

F®) {(s',f’) cp® ‘ Dy (Ns(,el)) gug)}

This is arguably the most important for attaining efficiency
against exhaustive search. A summary of the B&B procedure
can be found in Appendix A.

4) An Alternative B&B Method: 1t is interesting to note
that there is often more than one way to come up with a B&B
procedure for a given problem. For example, a commonly
used approach for deriving B&B of mixed integer and linear
programs (MILPs), and more generally, subset selection prob-
lems (see, e.g., [31], [59]) can also be used for our problem
(7). The method is by introducing auxiliary Boolean variables.
Specifically, problem (7) can be expressed as follows:

mi%rgize |W|% (21a)
subject to C(Wp, Rms Em, Om) > Y,
z € {0,1}V, (21b)
2Z'1<L,
IW (n,:)||2 < Cz(n), ¥n € [N].
where C < oo is a large positive constant and z(n) = 0
means that the nth antenna is excluded whereas z(n) = 1

indicates the opposite. The constraint in (21b) can be re-
laxed to be z € [0,1]" for finding the lower bound (see
Appendix C-B2 for details). In this procedure, the branching
operations are imposed on the new variable z [31], [59]. The
reason that we do not choose formulation (21) to design
B&B for our joint (R)BF&AS problem is that this approach
could be computationally (much) less efficient compared to
the proposed approach (see a proof in Theorem 1 in the
next subsection). The computational efficiency of our method
comes from the fact that the computation of upper and lower
bounds in (15) and (17) can be reused for many nodes; see the
proof of Theorem 1. However, it is not obvious if such kind
of computation reduction is still possible for the formulation
in (21).

C. Optimality

We show that the proposed algorithm will produce optimal
solutions for the problem of interest:

Theorem 1. Regarding the proposed B&B procedure (see
Appendix A), the following statements hold:

(a) When BF is considered, the proposed B&B solves (7)
optimally.

When RBF is considered, if the conditions in Lemma 3(b)
are satisfied, the proposed B&B solves (7) optimally.

(c) The total number of SOCPs/SDRs solved by the proposed

B&B is upper bounded by

N—L+1 .
N N —1

QCompute— (L) + 7:22 (L—l)

The number of SOCPs/SDRs needed by the B&B asso-
ciated with the alternative formulation in Sec. IlII-B4 is
upper bounded by QCOmpute = 2(1}4[) — 1.

The proof of Theorem 1 is in Appendix C. At the first
glance, it feels a bit surprising that the B&B algorithms
could use more than (12) SOCP/SDRs to find the optimal
solution, since this seems to be worse than exhaustive search.
This is because, in the worst case, B&B visits many more
intermediate states in the search tree—but exhaustive search
only visits the leaves. Nonetheless, in practice, B&B is often
much more efficient than exhaustive search since B&B does
not really exhaust all the nodes. Theorem 1 (c) spells out
the advantage of our B&B design relative to the more classic
B&B idea as in (21) from the MILP literature. Note that the
reduction of complexity shown in (c) could be substantial. For
example, when (N, L) = (12,8), QcCompute =060, whereas

Compute =989. Hence, there is a potential saving of 339

SOCPs/SDRs (reduction by 34%) in the worst case.

(b)

Remark 1. Under approximate CSI, the conditions in Lemma
3(b) is the premise for our theorem to hold [cf. Theorem 1(b)].
When the condition is violated, it is possible that the SDR in
(14) might return solutions whose rank is higher than one
in theory—which would hinder the optimality of the B&B
procedure. Nonetheless, such higher-rank solutions were never
seen in our simulations—which is consistent with observations
from the literature [26], [42], [48], [49]. Our conjecture
is that the sufficient condition in Lemma 3(b) is far from
necessary. In rare cases where rank-one solutions do not exist
for (14), standard procedures like randomization [50] may be
resorted to for finding rank-one approximations.

IV. ACCELERATED JOINT (R)BF&AS via ML

The challenge of any B&B algorithm lies in the large
number of nodes in the tree. This means that in the worst
case, many SOCPs and SDRs need to be solved. An idea from
the ML community is to “train” a classifier to recognize the
relevant nodes, i.e., nodes that lead to leaves containing the
optimal solution [7]. If a node is deemed to be “irrelevant”,
the B&B algorithm would simply skip branching on this node,
and thus could save a substantial amount of time. In this
section, we will show that a similar idea can be used for



accelerating our B&B based joint (R)BF&AS algorithm—with
carefully designed neural models to meet the requirements
arising in wireless communications. More importantly, we will
present comprehensive performance characterizations, includ-
ing sample complexity and global optimality retention, which
are currently lacking in the existing literature.

A. Preliminaries: Node Classification and Imitation Learning

1) Node Classification: Let us denote

me : RY — [0,1]
as the node classifier parameterized by 6, which returns the
probability of a node being relevant. Let

dNLD) e RF

be the mapping from a node to its feature representation.
When 7o (¢p(N. S(Z))) < 0.5, then the node is deemed irrelevant.
Otherwise, the node is branched.

To train such a classifier, denote { (N, ys)}Z_; as the (node,
label) training data, where we have removed the level indices
of the nodes for notation simplicity. To create the training
pairs, one could run random problem instances of (7) using the
B&B procedure. Note that the label y, is annotated according
to the following rule:

As C A* and Bg C [N]\A*,

. (22)
otherwise,

where A, and B, are the index sets of included and excluded
antennas at node s, respectively, and A* is the index set of
the active antennas of the optimal solution found by B&B of
the associated problem instance.

2) Imitation Learning: The simplest supervised learning
paradigm would learn 7 using the following risk minimiza-
tion criterion:

T
.. )

mlmemlz E: (o (¢s) ,ys) +7(0), (23)

where ¢, = ¢(N;), L(x,y) is a certain loss function,

e.g., the logistic loss, and (@) is a regularization term, e.g.,
r(@) = )||@]|2. Unfortunately, such a supervised learning
approach often does not work well, since it ignores the fact
that the node generating process is sequential and interactive
with the node classifier in the test stage. In ML-based MILP,
the remedy is to adopt the imitation learning (IL) [S] approach,
where g is integrated in the training data generating process
[7]. To be more specific, the training data generation process
is done in a batch-by-batch manner with online optimization.
The IL training criterion is as follows (see Section IV-C for
data generation and training process):

o0ty = (24)

Z E(”9(¢s),ys)+r(0),

arg mln
Z |Dt‘ (¢5,ys)ED;

Antennas

€1 N+1 Users

TN+1

TN+M
N,N+M
Channel

Fig. 2. Illustration of the input graph representation for a node.

where D is the ¢th batch of training pairs. The learned model
parameter 6 is selected from 8()’s via the following:

E(¢>s7ys) [’C (We(d)s)? ys)] 5

~

0 =arg min (25)

oc{oM}]_,
where [ is the total number of batches generated during the
training process. In practice, one can use a validation set
to approximate the above expectation. In the test stage, the
proposed B&B algorithm is run with the assistance of .

The key of using IL to accelerate the proposed B&B for
joint (R)BF&AS is twofold, namely, a practical node classifier
tailored for wireless communications and a convergent online
training algorithm. We will detail our designs to address the
two requirements in the next subsections.

B. GNN-based Node Classifier for Joint (R)BF&AS

To design the node classifier, a critical consideration in
wireless communications is that the number of users to serve
could drastically change from time to time. This requires us
to design an ML model that is agnostic to such changes, as
re-training a model when change happens is not affordable.
Towards this end, we design a GNN-based node classifier [32].
Note that GNNs learn aggregation operators over a graph, and
thus is naturally robust to the change of entities on the graph.
We will leverage this property to design our node classifier.

To describe the GNN-based node classifier, we first define
a graph to represent ./\/'5((). Fig. 2 illustrates the idea, where
the antennas and users represent the vertices, and the channel
represent the edge between the vertices. It is important to
design the features of the vertices and the edges, so that they
represent the essential information of the node Ns(z). To be
specific, we let

x, €RY nec[N], xximcR", mc[M], and

enNi+m € RV n € [N],m € [M] (26)

represent the feature vectors of antenna n (a vertex), user m
(a vertex), and the channel between the antenna n and the user
m (an edge), respectively. Layer d of the GNN ‘“aggregates”
the embedding of graph neighbors to update the uth vertex for
all w € [M + NJ. The definition of such aggregation can be
flexible. For example, in the message passing neural network
[60], the aggregation is done by the following:

q\V =£(Z1q\" + > E(ZaqV + Zseun)), (27
vEE,
where q&o) = x,; Z; for © = 1,2,3 are the aggregation

operators of the GNN; £(-) represents the activation functions



of layer d; and &, is the index set of all the one-hop neighbors
of vertex u on the graph. The output of the GNN is

mo(d) =7 S0 ¢(FaP). 6. = S(N:) € R

ue[U]
where U = M + N is the total number of vertices;
_ T T T T T.
dWN;) = [5317-~va+Ma61,N+1v~~~aeN,N+1\ﬂ ; and ¢()

is a sigmoid function. Here, the parameter to be optimized is
given by 0 := [vec(Z,)",vec(Zs)",vec(Z3)", B']".

Table I shows the detailed feature descriptions. We design
two types of features to represent the B&B nodes. To be spe-
cific, Type I features represent the features whose dimensions
are not affected by the problem size parameters N, M, L. For
example, Py, is a Type I feature as it is always a scalar under
any (N, M, L). Type II features are those whose dimensions
change when (NN, M, L) changes. For instance, the channel
matrix H € CM*N is a Type 1I feature.

Appendix G details the conversion from the features in
Table I to x,, and e, ,. Note that the special structure of
GNN allows us to employ both Type I and Type II features.
The reason is that the change of M, N and L only changes the
number of vertices/edges of the graph in Fig. 2. This does not
necessarily change V,, V. and V,, that determines the size of
Z; [cf. Eq. (26)]—if =, and and e, ,,, are designed properly
under the GNN framework (see Appendix G). However, if
one uses SVM as in [7] or other types of neural networks
(e.g., fully connected network (FCN) and convolutional neural
network (CNN)), Type II features are much less flexible to use.
We should remark that our feature design is not “optimal” in
any sense, but using Type II features arguably provides more
comprehensive information about the node and could often
enhance the node classification accuracy.

Table II shows numerical evidence to support our postulate.
There, different classifiers are trained by IL using problem
instances as described in Sec. V. The FCN has two hidden
layers with 32 hidden units in each layer, a sigmoid activation
function on the output layer, and ReL.U activations on the
remaining layers. The architecture of the GNN is described in
Appendix F. The SVM and FCN could only use the Type I
features. The GNN with both types of features clearly offers
a lower node classification error.

Remark 2. In addition to being able to work with both
types of features, another important benefit of using GNN is
as folows: Since 0 of the GNN model does not depend on
(N, M, L), the learned model can naturally work when the
numbers of users and antennas change, as long as V,, V.,
and V, remain the same. That is, the model trained on problem
instances with (N, M, L) can be seamlessly tested on cases
with (N', M’ L") # (N, M, L). This property of GNN will be
vital for applying the proposed method in real-world scenarios
where the problem size changes constantly (as the number of
users to be served by a BS changes all the time). It also helpd
scale up the proposed method for coping with large (N, M, L)
using a 0 trained from small problem sizes, which could save
a substantial amount of computational resources.

We should emphasize that GNN is “insenstive” to the
change of problem size across training and testing. However,

TABLE I
FEATURE DESIGN FOR THE GNN BASED NODE CLASSIFIER.

Type I Features Type II Features
1@ Agf)

i« [
ug> B§ )
N (Wea(L)12, - [Wea (N, )]
q)ub(N.s@)) H
4 Wincumbent (see Algorithm 3)
1(@u, M) — oD < o). W,..

[We s(:, m)HhmF.
Aggregate Interference using Wy .

TABLE 11
CLASSIFICATION ERROR (%) ATTAINED BY SVM, FCN AND GNN BASED
CLASSIFIER FOR CLASSIFYING RELEVANCE OF THE NODES.
Ym = om = 1,6 =0.1.

Perfect CSI Approximate CSI
Problem sizes
(N, M, L) (4.32) | 8,64) | (432 | (854)
SVM 8.49 16.67 7.17 11.67
FCN 6.93 13.95 26.95 10.18
GNN 7.26 12.23 6.62 8.49

drastic change of other aspects (e.g., channel model and
noise level) across the two stages does affect the performance
more substantially. In other words, beyond the problem size,
our GNN-based method still expects that the training and
testing data to share similar characteristics, as other machine
learning models do.

C. Data Generation and Online Training

We use an IL framework to train the GNN, which is summa-
rized in Algorithm 1. The framework is based on the online
learning method in [5]. The work in [5] was proposed for
convex learning criteria. Necessary modifications are made in
Algorithm 1 to accommodate our nonconvex learning problem.

Algorithm 1 consists of two steps in each iteration: data
collection and classifier improvement. In the ith iteration, the
accumulated dataset D; is obtained by solving B&B on R
problem instances using the current classifier learned from the
previous data batches, mg:). Then, the classifier is retrained
using Ui_;D; and

é\(i—i-l) — : ’ 7] 0

arg min gi(6) +r(6)
where @ specifies the constraints of the GNN parameters [cf.
Eq (29)]; the loss function g;(-) is defined as follows:

1<~ 1
o=
=1 (

Z L(mo(Ps),Ys);

¢bs,ys)ED:

additionally, we select 7(6) = —)'8 in which 1) is sampled
from exponential distribution in each iteration. This specific
choice of r(@) plays an important role in our nonconvex
learning problem (where the nonconvexity arises due to the use
of GNN). To be more specific, such a random perturbation-
based (@) is advocated by recent developments from non-
convex online learning [6]. It was shown in [6] that using



Algorithm 1: Online GNN Learning

Algorithm 3: Main Algorithm: MINIMAL

1 Input: I, R(number of training instances per batch), n;
2 Dl = {},
3 fori=11t I do

4 Sample ¥ ~ (Exp(n))B // Exp(n) is the
exponential distribution with pdf
p(z) = nexp(—nx); 6@ € RP;
5 for r=11t R do
6 Generate problem instance Q;
7 if i=/ then
8 D(Q « run BB(Q) and label the nodes using optimal
solution;
9 else
10 ‘ DQ) Algorithm_2(Q,1re(;));
11 end
12 D, + D; U D@,
13 end
14 o+l —
arg mingce % Sy ﬁ Z(dxs,ys)GDt L(me(Ps),ys) —
%'
15 end
16 Return 6 =
argmingco, ,, @%"I Z(d,s’ys)evzxalid [L(mo(ds),ys)]
// where D;’alid validation batch ¢ generated

by B&B with T (i)

Algorithm 2: Training Data Generation

1 Input: Q, 7g;
// optimal solution and optimal selected
antenna subset to problem Q
2 (W*, A*) = BB(Q); (see Algorithm 4 in Appendix A for BB)
3 Execute Line 2 to Line 7 in Algorithm 3; // Initialization

4 D« {}h

5 while B&B termination criteria is not met do

6 Execute Line 9 to Line 22 from Algorithm 3;
7 if st ) is relevant then

8 | DeDU{e!) 0

9 else

10 | DeDU{e!) 1)

11 end

12 end

13 Return D;

r(0) = —"0 ensures no-regret type convergence of non-

convex online learning. This property is a critical stepping
stone towards establishing learning guarantees of our GNN-
based framework. This will become clearer in the proofs of
Theorem 2.

The training data generation subroutine is given in Algo-
rithm 2. To generate D;, the algorithm first runs B&B on
a given problem instance to find the optimal solution. Next,
B&B is run again but with mgu) to generate nodes. The
training pairs (¢s,ys) are annotated by utilizing the optimal
solution obtained in the first run.

The overall GNN-accelerated B&B procedure is summa-
rized in Algoirthm 3. The algorithm is termed as MachINe
learning-based joInt beaMforming and Antennas seLection
(MINIMAL) The node classifier is used in Line 11.

D. Performance Characterizations

Our goal is to characterize the performance of MINIMAL,
e.g., under what conditions (e.g., the amount of training

1 Input: Problem instance (R, 0m, Ym,Em ), Vm, trained pruning
policy 7, relative error ;
// Add the root node first
0 0
2 ALY« (1,8« (
3 Select node using (18) for Nl(o);
Wincumbent ¢ solution to (17);
0 0 0

518 e W12, 0l ¢ [[Wincumbent |33
6 FO «— {(0,1)};
7 t+0;
8
9

N

while | 7| > 0 and |8 ~17]/1) > € do

Select a non-leaf node (£*,s*) using (18);
10 Remove the selected node F () ]-'(t)\./\/;(f );
u | if e (¢ff; >) > 0.5 then
12 Select variable n* using (19);
13 Generate child nodes Ns(f 1 and /\/S(iZ + using (13)
1 2
and append to F(%);

14 k «+ in, N,

argmin;e £1 23} Pup s* 5
15 if @, (Néffurl)) < ug) then

k *
16 ungl) — D (Ns(f +1));
k 1)
17 Wincumbent < solution to (17) for NS* .
Sk
18 end
. £
19 Zg+1> — mm(&s)e}-(t)@m (Ns( >);
20 end
/

n | FOD {0y e FO oy, (V) <ulTV Y
22 t+—t+1;

23 end
24 Return Wipcumbent

samples and the complexity of the GNN) MINIMAL can
accelerate the proposed B&B without losing its optimality. To
our best knowledge, such performance characterization have
not been provided for ML-based B&B acceleration, even when
the learning problem is convex.

To proceed, we will use the following assumptions:

Assumption 1. Assume that the following statements about
the data features and the GNN in Sec. IV-B hold:

(a) The input features are bounded, i.e., ||Ty]|2,||€u |2 <
By, Vu,v.

(b) The activation functions &(-) and {(-) are Cg-Lipschitz
and Ce¢-Lipschitz continuous, respectively. In addition,
£(0)=0.

(¢) Let L:R xR — [=Bg, Bz] be Cr-Lipschitz in its first
argument, i.e., |L(z,y) — L(z',y)| < Crlz — 2.

(d) The parameters of the GNN are bounded; i.e., ||Z;||2 <
Bz,Vi € {1,2,3} and B2 < Bg.
Let us define the set of parameters @ as follows:
e = {0 = [Vec(Zl)T, vec(Zg)T, vec(Zg,)T7 ,@T]T \
1Zill2 < Bz.B < Bg,i € {1,2,3}}. (29)

Using the above, we first characterize the generalization error
of the GNN with the following Lemma:

Lemma 4 (Generalization Error of GNN). Consider a GNN
mg in Sec. IV-B and G = {¢k, yx } 1, of i.i.d. samples. Then,



for 8 € O, the following holds with probability at least 1 —§:

Gap(d, K)
= E[L(me(d),y)] — /K Z L(mo(Pr), yr)

(¢r,yx)€EG
805 24C£BL 10g(2/5)
< —= 4 —= E?2 + E)logA B —_—
<5t NG V(3E? + E)log A + 3B, Y a

where o = ((1+UC¢)Ce¢Bz),

(30)

A=1+12VEKBzmax{¥z,,%z,,%z,, B5/B:3},
aP+) 20 41
(a—1)

D_1

o
EZ3 = CCBﬂUCEBZBmﬁ’

Yz, = CcBgUC{Bz B, Yz, =UCeYz,,

D
-1

where the expectation is taken w.rt. the distribution of

(Dr, Yr)-

Note that our GNN generalization error bound is rather
different from some existing results, e.g., [62], as edge features
(i.e., ey,,) were not considered in their work. Lemma 4
can be used to understand the GNN’s performance with a
single batch. To characterize the node classification accuracy
of the GNN learned through the described imitation learning
algorithm, we need the following assumptions:

Assumption 2. Let supg, g,co |01 — 02||cc < H, for some
H < oo. Let all the loss functions g;(-) [cf. Eq. (28)] for
i = 1,...,1 are G-Lipschitz continuous with respect to the
61-1’107711, ie. |gz(01) — gb(02)| S GHOI — 02||1,Vi.

Assumption 3. The minimal empirical loss over the aggre-
gated dataset is bounded by v.

E¢[£(7r9(¢s)ays)] <.
1=1 (¢s,ys)ED;

Assumption 2 is not hard to meet if the data features and the
network parameters are bounded. Assumption 3 characterizes
the expressiveness of the GNN.

To present our main theory, we compute the expected
number of nodes that will be visited (with the associated
SOCPs/SDRs solved) by Algorithm 3 when run with 7w in the
testing stage. Let us denote pg as the probability with which
the classifier accurately classifies a node. Also denote S as the
set of all possible B&B trees that can be realized by Algorithm
3 under a given instance. Let Pr(s; 0), s € S be the probability
with which a particular tree s is realized. Let Q% denote the
number of visited nodes in tree s. Let Q5 = E[Q3] where
the expectation is taken over the probability mass function
Pr(s;0),s € S. In the following theorem, we characterize the
classification accuracy, pg, and present a bound on Q.

Theorem 2. Suppose that Assumptions 2-3 hold, and that the
GNN in MINIMAL is prameterized by 0 in (25). In addition,

assume that every single batch D; consists of i.i.d. samples,
and that Algorithm 1 is used for GNN learning. Then, we have

2N (2[)9 — péV)

1.
2p5—1 +

Qg <

Further, when 0 is selected using (25), with a probability at
least 1 — 9,

Ep§7¢ [£ (ﬂ§(¢s)v ys)}
21og(2/0)

<v+0 (1/[1/3) + Gap (g,J) —7

Assume the logistic loss function L is employed. Then, the
node classification accuracy

pg = exp (—Epgp (£ (75(0s),5)]) -

In addition, MINIMAL returns an optimal solution with prob-
ability at least pg.

€1y

The proof of Theorem 2 is relegated to Appendix E. This
result bounds the number of nodes visited by the proposed
algorithm under a given classification accuracy. It also char-
acterizes the classification accuracy that can be achieved by the
proposed training procedure. One can se