
1

Optimal Solutions for Joint Beamforming and
Antenna Selection: From Branch and Bound to

Graph Neural Imitation Learning
Sagar Shrestha, Xiao Fu, and Mingyi Hong

Abstract—This work revisits the joint beamforming (BF) and
antenna selection (AS) problem, as well as its robust beamforming
(RBF) version under imperfect channel state information (CSI).
Such problems arise due to various reasons, e.g., the costly nature
of the radio frequency (RF) chains and energy/resource-saving
considerations. The joint (R)BF&AS problem is a mixed integer
and nonlinear program, and thus finding optimal solutions is
often costly, if not outright impossible. The vast majority of
the prior works tackled these problems using techniques such
as continuous approximations, greedy methods, and supervised
machine learning—yet these approaches do not ensure optimality
or even feasibility of the solutions. The main contribution of this
work is threefold. First, an effective branch and bound (B&B)
framework for solving the problems of interest is proposed.
Leveraging existing BF and RBF solvers, it is shown that the
B&B framework guarantees global optimality of the considered
problems. Second, to expedite the potentially costly B&B al-
gorithm, a machine learning (ML)-based scheme is proposed
to help skip intermediate states of the B&B search tree. The
learning model features a graph neural network (GNN)-based
design that is resilient to a commonly encountered challenge
in wireless communications, namely, the change of problem
size (e.g., the number of users) across the training and test
stages. Third, comprehensive performance characterizations are
presented, showing that the GNN-based method retains the global
optimality of B&B with provably reduced complexity, under
reasonable conditions. Numerical simulations also show that the
ML-based acceleration can often achieve an order-of-magnitude
speedup relative to B&B.

Index Terms—Beamforming, Antenna Selection, Global Opti-
mum, Machine Learning, Graph Neural Networks

I. INTRODUCTION

Beamforming lies at the heart of transmit signal design of
multiple antenna systems. In the past decade, a plethora of
beamforming algorithms have been proposed under various
scenarios; see, e.g., [1]–[7]. Among the most challenging
scenarios is the joint beamforming and antenna selection
(BF&AS) problem (see, e.g., [5]–[7]), which often arises
due to various reasons—such as the costly nature of radio
frequency (RF) chains [5], [8]–[10], energy consumption con-
siderations [11], [12], problem size reduction [13], overhead
minimization [14], and algorithm accommodations [15].

S. Shrestha and X. Fu are with the School of EECS, Oregon State
University. M. Hong is with the ECE Department, University of Minnesota.
(Corresponding Author: Xiao Fu)

The work of S. Shrestha and X. Fu is supported by National Science
Foundation (NSF) under Project CNS-2003082. Their work is also supported
by a gift from Intel through the MLWiNS program. The work of M. Hong is
supported by NSF CNS-2003033. His work is also supported by a gift from
Intel through the MLWiNS program.

Jointly designing the beamformers and selecting antennas
is a mixed integer and nonlinear program, which is known to
be NP-hard [16], [17]. A large portion of the literature tackles
this problem using continuous programming-based approxima-
tions. For example, [5]–[7], [18] used convex and nonconvex
group sparsity-promoting regularization to encourage turning
off antenna elements. However, the continuous approximations
are often NP-hard problems as well (especially when the
sparsity promotion is done via nonconvex quasi-norms as in
[5]), and thus it is unclear if they can solve the problem of
interest optimally. In addition, works using greedy methods to
assist antenna selection also exist (see, e.g., [16], [19]–[22]).
But the optimality of joint (R)BF&AS is still not addressed in
these works.

In recent years, machine learning (ML) approaches are
employed to handle the joint BF and AS problem. In [23], a
supervised learning approach was proposed. The basic idea is
to use a continuous optimization algorithm to produce training
pairs (i.e., channel matrices and sparse beamformers), and
then learn a neural network-based regression function using
such pairs. Similar ideas were used in [24], [25] with various
settings. This type of approach in essence mimics the training
pair-generating algorithms at best, and thus the optimality of
their solutions is again not guaranteed.
Contributions. In this work, we revisit the joint BF and AS
and its extension under imperfect channel state information
(CSI), namely, the joint robust beamforming (RBF) and AS
problem. We are interested in the unicast BF and RBF formu-
lations in [46] and [26], respectively. The goal is to satisfy the
users’ quality-of-service (QoS) constraints while minimizing
the power consumption, with only a subset of the antenna
elements activated. Our detailed contributions are as follows:
• Optimal Joint (R)BF&AS via Branch and Bound. Our
first contribution lies in an optimal computational framework
to attain the global optimal solutions to the joint (R)BF&AS
problems. To this end, we propose a Branch and Bound (B&B)
[27], [28] framework that is tailored for the problems of
interest. Our design leverages problem structures of unicast BF
and RBF, which allows for branching only on a subset of the
optimization variables—thereby having reduced complexity
and being effective. Unlike continuous optimization-based
approximations in [5]–[7], [18] whose solutions are often sub-
optimal or infeasible, the proposed B&B is guaranteed to
return an optimal solution.
• An ML-based Acceleration Scheme. B&B is known for
its relatively weak scalability. To improve efficiency, an idea

ar
X

iv
:2

20
6.

05
57

6v
2

 [
ee

ss
.S

P]
 3

0
Ja

n
20

23

2

from the ML community (see, e.g., [7], [30]) is to learn
a binary classifier offline using multiple problem instances.
The classifier determines whether or not any encountered
intermediate state of the B&B algorithm could be “skipped”,
as skipping these states saves computational resources and
expedites the B&B process. Generic ML learning functions
(e.g., support vector machines (SVM)) used in existing works
like [7], [31] do not reflect the problem structure in wireless
communications. In this work, we propose a graph neural
network (GNN) [32] based learning function designed to
exploit the physics of the (R)BF problem—which offers an
enhanced classification accuracy. More importantly, the GNN
is agnostic to the change of scenarios (e.g., problem size)
during training and testing. This feature is designed to meet
the need of wireless communication systems, as the number of
users served by a base station could change quickly in practice.
• Theoretical Understanding. We present comprehensive
performance characterizations for the proposed approaches. In
particular, we show that the ML-based acceleration retains the
global optimality of the B&B procedure with high probability,
under reasonable conditions. ML-based B&B acceleration has
limited theoretical studies, and the results were developed
under often overly ideal settings (e.g., convex classifier) [5],
[7]. There is a lack of understanding of the impacts of key
factors such as nonconvexity, limited training samples, and the
employed ML model’s structure. Our analysis takes important
aspects into consideration, such as the nonconvexity of the
GNN learning process, the GNN’s structure and complexity,
the GNN’s function approximation error, and the amount
of available samples. As a consequence, the analysis offers
insights to reveal key trade-offs in practice.

A shortened version was submitted to ICASSP 2023 [34].
The conference version included the B&B design and ML
acceleration for the perfect CSI case. The journal version ad-
ditionally presents the imperfect CSI case, the detailed analysis
of the B&B algorithm, the performance characterizations for
the ML acceleration, and more extensive simulations.
Related Works. B&B was proposed for beamforming prob-
lems in [35], [36], and antenna selection problems in [37]–
[39]. Particularly, the work in [35] considered a single group
multicast beamforming problem, the work in [38] consid-
ered a joint power allocation and antenna selection problem,
the work in [37] considered antenna selection-assisted rate
maximization in wiretap channels, and [10], [39] considered
receive antenna selection for sum rate maximization. How-
ever these are different from the QoS-constrained downlink
transmit beamfroming formulation considered in our work,
which requires new B&B designs. ML-based B&B accel-
eration so far has been mostly used for mixed integer and
linear programs (MILPs) in the ML community, e.g., [7], [8],
where the B&B design is standard. Such methods have also
been adopted in wireless communications in [31], [41] where
resource allocation tasks are framed as mixed integer and
nonlinear programs (MINPs). However, the joint (R)BF&AS
problem has not been considered. In addition, comprehensive
theoretical understanding to such ML-acceleration procedures
has been elusive.

Notation: x, x and X denote a scalar, a vector, and a
matrix, respectively. xn denotes the nth column of X . We
use the matlab notation X(n, :) to denote the nth row of
X . [N] denotes the set {1, 2, . . . , N}. ‖x‖2, ‖x‖∞, ‖X‖2,
‖X‖F , ‖X‖row−0 denote the vector `2 norm, vector `∞
norm, matrix spectral norm, matrix Frobenius norm, and the
number of non-zero rows in the matrix, respectively. Tr(X),
XH , and X> denote the trace, hermitian, and transpose of
X . |X | denotes the cardinality of the set X . E[·] denotes
the expectation operator. X � 0 denotes that X is positive
semi-definite matrix. X(S, :) with S ⊆ [N] denotes the
submatrix of X ∈ CN×M containing only the rows of X
contained in the set S. X−n denotes the submatrix of X with
the nth column removed. f(·) is C-Lipschitz continuous iff
‖f(x)− f(y)‖2 ≤ C‖x− y‖2.

II. BACKGROUND

Consider a classic single-cell downlink communication sce-
nario where the base station (BS) has N antennas [42], [46].
The BS serves M single antenna users. Denote wm ∈ CN

as the beamforming vector for serving user m. In this work,
our interest lies in a scenario where the BS only activates L
anntennas. Hence, we aim to select a subset A ⊆ {1, . . . , N}
such that |A| ≤ L and wm(i) 6= 0 only when i ∈ A. The
message signal for user m is represented by sm(t). Given the
channel hm ∈ CN between the BS and user m, the signal
received by user m can be expressed as follows:

ym(t) = hHmwmsm(t) +
∑
6̀=m

hHmw`s`(t) + nm,

where nm is zero-mean circular symmetric white Gaussian
noise with variance σ2

m. Assume w.l.o.g. that {sm(t)}Mm=1 are
mutually uncorrelated and temporally white with zero-mean
and unit-variance. Then, the total transmission power is given
by
∑M
m=1 ‖wm‖22 := ‖W ‖2F, where W = [w1, . . . ,wM].

The signal to interference and noise ratio (SINR) at the mth
receiver is expressed as:

SINRm =
|wH

mhm|22∑
` 6=m |wH

` hm|22 + σ2
m

. (1)

A. Unicast Beamforming and SOCP
One of the most popular formulations for beamforming is

the so-called QoS formulation [43]–[45] that tries to maintain
a pre-specified SINR level for all users. When hm is known,
the unicast BF problem can be formulated as follows:

minimize
W

‖W ‖2F (2a)

subject to
|wH

mhm|2∑
6̀=m |wH

` hm|2 + σ2
m

≥ γm, m ∈ [M]. (2b)

Problem (2) is called “unicast” BF because every user receives
its own message. Problem (2) appears to be nonconvex, but it
can be recast as a second-order cone program (SOCP):

Lemma 1 ([46]). Eq. (2b) can be equivalently written as a
second-order cone constraint:

1√
γmσ2

m

Re(wH
mhm) ≥

√∑
` 6=m

|wH
` hm|2 + 1, (3)

3

for all m ∈ [M]. Therefore, any algorithm for solving SOCP
can be used to solve (2) optimally.

B. Robust Beamforming and SDR
When the BS only has imperfect CSI, the following worst-

case RBF formulation is often considered [26], [42], [47]–[49]:

minimize
W

‖W ‖2F (4a)

subject to min
hm∈Um

|wH
mhm|2∑

` 6=m |wH
` hm|2 + σ2

m

≥ γm,

∀m ∈ [M], (4b)

where Um := {hm + em | ‖em‖2 ≤ εm}, hm is the
approximate channel vector available at the BS, and εm is
the bound on the approximation error. Problem (4) cannot be
directly converted to a convex program as in the perfect CSI
case (cf. Lemma 1). However, Problem (4) can be tackled by
a convex relaxation technique, namely, semidefnite relaxation
(SDR) [50]. Let Wm := wmw

H
m . Then the SDR of (4) is

given by

minimize
{Wm∈CN×N}Mm=1

M∑
i=1

Tr(Wm) (5a)

subject to min
hm∈Um

h
H

mWmhm∑
j 6=m h

H

mWjhm + σ2
m

≥ γm,

(5b)
Wm � 0, ∀m ∈ [M].

Note that (5) and (4) are equivalent if the constraint Wm =
wmw

H
m (or, rank(Wm) = 1) has not been relaxed. Problem

(5) can be further re-expressed as a standard semidefinite
program (SDP) using the S-Lemma; see details in [42].
Interestingly, this relaxation procedure turns out to be tight
under reasonable conditions:

Lemma 2 ([42, Theorem 1]). Suppose that Problem (4) is
feasible. Let Πm := I −H−m(HH

−mH−m)−1HH
−m be the

orthogonal complement projector of H−m. If

‖Πmhm‖22
ε2
m

> 1 +M + (M − 1

M
)γm,∀m, (6)

then the optimal solution of (4) can be obtained using SDR.

The condition in (6) means that if the downlink channels
associated with different users are sufficiently different, then
the SDR is tight.

C. Joint (R)BF&AS: Existing Approaches
The joint (R)BF&AS problem frequently arises in practice

for many reasons. For example, due to the the costly and
power-hungry nature of RF chains, in some antenna arrays, the
number of RF chains may be fewer than that of the antenna
elements [5], [8]–[10]. Furthermore, AS is also used for
energy-efficiency considerations [11], problem size reduction,
overhead control, and algorithm design accommodations—
see, e.g., [9], [13]–[15], [51] and the discussions therein. The
problem considered in this work is as follows:

minimize
W

‖W ‖2F (7a)

subject to C(wm,hm, εm, σm) ≥ γm, (7b)
‖W ‖row-0 ≤ L. (7c)

where the row-0 function ‖ · ‖row-0 counts the number of
nonzero rows in W and

C(wm,hm, εm, σm)

:=


|wH

mhm|2∑
` 6=m |wH

` hm|2+σ2
m
, if BF is considered,

minh∈Um
|wH

mhm|2∑
` 6=m |wH

` hm|2+σ2
m

, if RBF is considered.

Problem (7) is a non-convex combinatorial problem, and it
is NP-hard [17]. Some representative approaches for tackling
joint (R)BF&AS problems are as follows:

1) Continuous Approximations: In the literature, Prob-
lem (7) and other joint (R)BF&AS formulations are often
handled by continuous approximation. For example, a repre-
sentative continuous approximation technique was used in [5]
for handling a multicast version of (7). Using the idea from
[5], one can recast the unicast problem in (7) as a regularized
formulation as follows:

minimize
W

‖W ‖2F + λ‖W ‖row-0 (8)

subject to C(wm,hm, εm, σm) ≥ γm, m ∈ [M].

The idea in [5] is to approximate the row-0 function using
a group sparsity-inducing norm, namely, the `∞,1 norm, i.e.,
‖W ‖row-0 ≈

∑N
n=1 ‖W (n, :)‖∞ and its nonconvex counter-

part ‖W ‖row-0 ≈
∑N
n=1 log (‖W (n, :)‖∞ + ε) [52]. Similar

ideas were used in [18]. Such continuous approximations allow
the use of standard nonlinear program techniques to tackle
(8). However, as mentioned, these methods do not provide
any optimality guarantees. In addition, the feasiblity of W is
often not met by the approximate solutions.

2) Greedy Methods: A number of greedy approaches also
exist for tackling various formulations of the joint (R)BF&AS
problem; see, e.g., [16], [19]–[22]. The major idea is to activate
or shut down an antenna in every iteration using a certain
criterion that is often defined by the optimization problem’s
objective function—see an example in Sec. V-B1. Notably,
such greedy algorithms are not necessarily computationally
light, as will be seen in our simulations.

3) Supervised Learning: More recently, a number of
learning-based approaches are proposed to tackle the joint
(R)BF&AS problem; see, e.g., [23], [53], [54]. In [23], a
multicast version of (7) was considered. The idea is to use
an existing joint multicast BF&AS algorithm (e.g., the algo-
rithm from [5]) to generate “training pairs” {Ht, Ŵt}Tt=1 by
simulating a large number of problem instances, where t is
the instance index, Ŵt is a (row-sparse) solution produced by
the training pair-generating algorithm, and Ht is the channel
matrix of instance t. Note that the training pairs can take other
forms, e.g., {Ht, ẑt} where ẑt ∈ RM is a binary vector found
by the training pair-producing algorithm, indicating which

4

antenna is activated [23], [24]. Then, a deep neural network
(DNN) fθ(·) is trained via

θ̂ ← arg min
θ

1

T

T∑
t=1

`(Ŵt,fθ(Ht)), (9)

where θ represents the parameters of the DNN and `(x, y)
measures the divergence between x and y. When a new H is
seen in the test stage, one can use the learned DNN to predict
the solution, i.e., Ŵ = fθ̂(H). This “supervised learning”
idea is similar to a line of work in deep learning-based wireless
system design; see, e.g., [55], [56]. Notably, it cannot exceed
the performance of the algorithm that produces the training
pairs or ensure producing a feasible solution in the test stage.
Other deep learning-based ideas were seen in [25], [53], [54],
[57] using either supervised learning or unsupervised learning
variants, but similar challenges remain.

III. OPTIMAL JOINT (R)BF&AS VIA B&B

A natural idea for solving hard optimization problems is
to employ a global optimization technique, e.g., the B&B
procedure [27], [28], [58]. Designing a practically working
B&B algorithm is often an art—it normally involves judicious
exploitation of problem structures. That is, not every hard
problem enjoys an efficient B&B algorithm. Nonetheless, as
we will see, the special properties of BF and RBF allows for
an effective B&B design.

A. Preliminaries of B&B

We follow the notations from the tutorial in [58] to give
a brief overview of B&B’s design principles. Consider a
nonconvex problem:

minimize
x

f(x) (10a)

subject to x ∈ X . (10b)

where both the objective function and the constraint can be
nonconvex. Suppose that there is a partition of the space X =
X1 ∪ . . .∪XS , and that lower and upper bounds of f(x) over
each Xi are easier to find (relative to directly solving (10)).
Let Φlb(Xi) and Φub(Xi) be the algorithms that return lower
and upper bounds of the optimal solution of (10) over the set
Xi, respectively. Then, the following holds:

min
1≤i≤S

Φlb(Xi) ≤ Φ(X) ≤ min
1≤i≤S

Φub(Xi). (11)

where Φ(X) represents the optimal solution of (10) over the
feasible region X . A premise of the success of B&B is that
one could find a partition Xi for i = 1, . . . , S and a pair of
functions Φlb and Φub which can make the following hold:

min
1≤i≤S

Φub(Xi)− min
1≤i≤S

Φlb(Xi) ≤ ε (12)

where ε > 0 is a pre-specified error tolerance parameter.
The effectiveness of B&B relies on two key factors. First,

the design of the lower and upper bounding algorithms repre-
sented by Φlb(Xi) and Φub(Xi), respectively, plays a central
role. Second, the way of partitioning the space X also matters.
It often requires a problem-specific way to progressively and

(7b), (7c)

(7b), (7c),
W (n1, :) = 0

(7b), (7c),
W (n1, :) = 0,
W (n2, :) = 0

W (n2, :) = 0

(7b), (7c),
W (n1, :) = 0,
W (n2, :) ∈ CM

W (n2, :) ∈ CM

W (n1, :) = 0

(7b), (7c),
W (n1, :) ∈ CM

(7b), (7c),
W (n1, :) ∈ CM ,
W (n3, :) = 0

W (n3, :) = 0

(7b), (7c),
W (n1, :) ∈ CM ,
W (n3, :) ∈ CM

W (n3, :) ∈ CM

W (n1, :) ∈ CM

Fig. 1. Illustration of B&B tree for problem (7). Here ni ∈ [N] are the
branching variables selected at each node.

judiciously partition the constraint set X (usually from rough
to fine-grid), so that the difference in (12) could shrink
quicker than exhaustive search. Meeting either of the design
requirements is not necessarily easy. Moreover, the key designs
in B&B algorithms (e.g., the X partition strategies) are highly
problem-dependent; that is, there is hardly a “standard recipe”
for B&B algorithm design.

B. Proposed B&B for Joint (R)BF&AS

Problem (7) involves optimization in discrete and contin-
uous spaces in the constraints. Designing a B&B algorithm
for such problems can be difficult due to the large search
space that consists of both types of constraints. However, the
special structure of (R)BF in (7) allows us to efficiently obtain
bounds over the entire range of the values of the continuous
(beamforming) parameters once the discrete (antenna selec-
tion) parameters have been chosen; this will be clearer in (14)
and (15). As such, we only need to construct a B&B tree over
the discrete space.

1) B&B Tree Construction: We illustrate the idea of sys-
tematically partitioning the feasible region of Problem (7) in
Fig. 1. Here, N (`)

i denotes the feasible region corresponding to
the ith node at the `th level. In the sequel, we will use the term
“node” and the associated feasible region interchangeably. The
root is denoted as N (0), and we have

N (0) = {W | W satisfies (7b), (7c)}.

In the first level, the region represented by the root node is
split into two regions represented by two child nodes, namely,

N (1)
1 = {W | W (n1, :) = 0, W satisfies (7b), (7c)}
N (1)

2 = {W | W (n1, :) ∈ CM , W satisfies (7b), (7c)}.

where n1 ∈ [N] is an antenna index selected by a designed
antenna selection criterion (e.g., via random sampling). Up to
the first level of the tree, the status (“include (activate)” or
“exclude (shut down)”) of all antennas other than antenna n1

have not been decided.
Note that the nodes in the B&B tree could constitute a

partition in various forms. For example, for nodes in the same
level, we have

N (`)
1 ∪ . . . ∪N (`)

S`
= N (0),

5

where S` = 2` is the number of nodes in the `th level of the
tree. In addition, we have

N (`)
s = N (`+1)

s1 ∪N (`+1)
s2 , (13)

where s1 := 2(s − 1) + 1 and s2 := 2(s − 1) + 2 represent
the left and right children developed from N (`)

s in the full
tree. In fact, the children of N (`)

s in any level and N (`)
−s also

present a partition of the root node, where N (`)
−s is the union

of N (`)
1 , . . . ,N (`)

S`
with N (`)

s excluded.
The B&B algorithm starts from the first level to compute

lower and upper bounds of (7) over the node-defined regions.
Then, the B&B algorithm picks a node to “branch”, i.e., to
further partition oftentimes using a heuristic-based metric; see
[27]. Going deeper in the tree towards the final leaves will
allow us to progressively decide which antennas to activate or
shut off. Let t denote the iteration index of the B&B algorithm,
where an iteration corresponds to a branching (partitioning a
node) operation. Use P(t) to denote the collection of (s, `)
corresponding to the unbranched nodes. Then, the union of
N (`)
s ’s for (s, `) ∈ P(t) represents a partitioning of the root in

iteration t. In each iteration t, the stopping criterion in (12) is
evaluated. It follows that the following two quantities need to
be evaluated:

l
(t)
G = min

(s,`)∈P(t)
Φlb(N (`)

s), u
(t)
G = min

(s,`)∈P(t)
Φub(N (`)

s),

where l(t)G and u(t)
G are the global lower and upper bounds in

iteration t. In particular, the lower and upper bounds over the
newly created two child nodes need to be found—since other
nodes have been evaluated in a certain previous iteration. The
hope is that one would not need to visit all nodes of tree before
reaching the stopping criterion in (12).

2) Lower and Upper Bounds: In order to compute
Φlb(N (`)

s) and Φub(N (`)
s), let us define A(`)

s ⊆ [N] and
B(`)
s ⊆ [N]\A(`)

s to be the index sets of the antennas that
have been activated and shut down at node s in level `,
respectively. Note that A(`)

s ∪ B(`)
s ⊆ [N] constitute the set

of decided antennas at the node. Then, finding the upper and
lower bounds of ‖W ‖2F at this node amounts to finding those
of the following optimization problem:

minimize
W

‖W ‖2F (14)

subject to C(wm,hm, εm, σm) ≥ γm, ∀m,
W (n, :) = 0, ∀n ∈ B(`)

s ,

W (n, :) ∈ CM , ∀n ∈ A(`)
s ,

‖W ‖row−0 ≤ L, n ∈ [N].

For any given node N (`)
s , the lower bound can be obtained by

solving the following relaxation of (14):

Φlb(N (`)
s) = minimize

W
‖W ‖2F (15a)

subject to C(wm,hm, εm, σm) ≥ γm,∀m, (15b)

W (n, :) = 0, ∀n ∈ B(`)
s ,

where we have dropped ‖W ‖row−0 ≤ L. If Problem (15) is
not feasible, Φlb(N (`)

s) is set to +∞.

In the following lemma, we show that (15) can be optimally
solved for all nodes in the B&B tree. It also helps derive a
procedure for Φub(·).

Lemma 3. Regarding (15), the following hold:
(a) Consider the BF case where perfect CSI is given. Then,

(15) can be optimally solved by using SOCP.
(b) Consider the RBF case where imperfect CSI is given.

Assume that

‖Πmh̃m‖22
ε2
m

> 1 +M + (M − 1

M
)γm,∀m, (16)

where Πm := I− H̃−m(H̃H
−mH̃−m)−1H̃H

−m, holds for
H̃ ∈ {H(S, :)|∀S ∈ [N], |S| ≥ L}. Then, Problem (15)
can be optimally solved using SDR.

(c) Under the same conditions of (a) and (b), solving the
following gives a valid upper bound of (14) under the
BF and RBF cases, respectively:

Φub(N (`)
s) = minimize

W
‖W ‖2F (17a)

subject to C(wm,hm, εm, σm) ≥ γm,∀m, (17b)

W (n, :) = 0, ∀n ∈ B̃(`)
s ,

where B̃(`)
s = C(`)

s ∪ B(`)
s represents the set of N − L

antennas to be excluded, and C(`)
s ⊆ [N]\(A(`)

s ∪ B(`)
s)

is the index set of undecided antennas that have been
assigned the minimum power in the solution of (15). If
Problem (17) is not feasible, Φub(N (`)

s) is notationally
set to +∞.

The proof of Lemma 3 is relegated to Appendix B.
3) Node Selection and Branching: After (15) and (17) are

computed in iteration t, l(t+1)
G and u(t+1)

G are updated. If the
stopping criterion u(t)

G − l
(t)
G ≤ ε is not met, one needs to pick

a node in P(t) to further partition. To this end, we employ the
“lowest lower bound first” principle that is often used in the
literature [27]. To be specific, we pick a non-leaf node N (`?)

s?

such that

(`?, s?) ∈ arg min
(s,`)∈P(t)\Sleaf

Φlb(N (`)
s), (18)

where Sleaf := {(`, s) : |A(`)
s | = L, |B(`)

s | = N − L} is the
set of leaf nodes. To partition the region N (`?)

s? , we need to
pick an undecided antenna and decide whether to include or
exclude it in our solution. We select the antenna that has been
assigned the largest power among the undecided antennas in
iteration t, i.e.,

n? = arg max
i∈[N]\(A(`?)

s?
∪B(`?)

s?
)

‖W (`?)
s? (i, :)‖22, (19)

where W (`?)
s? := arg minW (15) at N (`?)

s? . Then, n? is used
to partition N (`?)

s? into two child nodes (i.e., excluding and
including antenna n? on top of the decided antennas in
N (`?)
s?). The associated include/exclude sets in the child nodes,
N (`?+1)
s?i

, i ∈ {1, 2}, are updated as follows:

B(`+1)
s?1

= B(`)
s? ∪ {n?}, A(`+1)

s?1
= A(`)

s? ,

A(`+1)
s?2

= A(`)
s? ∪ {n?}, B(`+1)

s?2
= B(`)

s? .

6

Note that if any of the child nodes, have L included or N−L
excluded antennas, we apply the following update:

B(`?+1)
s?i

= [N]\A(`?+1)
s?i

if |A(`?+1)
s?i

| = L

A(`?+1)
s?i

= [N]\B(`?+1)
s?i

if |B(`?+1)
s?i

| = N − L. (20)

This ensures that we do not generate any new nodes that do
not satisfy (7c). Finally, the two children replace N (`?)

s? in P(t)

to form P(t+1).
Note during the process, some nodes in the B&B tree can

be simply discarded, or, “fathomed”—as in the standard ter-
minologies of B&B [27]. After iteration t, one can potentially
find a set of (s′, `′) such that

Φlb(N (`′)
s′) > u

(t)
G .

The above means that N (`′)
s′ needs not to be further partitioned

in the next iteration. Hence, we can form a set F (t) in each
iteration, which only contains the nodes that need to be further
considered, i.e.,

F (t) =
{

(s′, `′) ∈ P(t)
∣∣∣ Φlb

(
N (`′)
s′

)
≤u(t)

G

}
This is arguably the most important for attaining efficiency
against exhaustive search. A summary of the B&B procedure
can be found in Appendix A.

4) An Alternative B&B Method: It is interesting to note
that there is often more than one way to come up with a B&B
procedure for a given problem. For example, a commonly
used approach for deriving B&B of mixed integer and linear
programs (MILPs), and more generally, subset selection prob-
lems (see, e.g., [31], [59]) can also be used for our problem
(7). The method is by introducing auxiliary Boolean variables.
Specifically, problem (7) can be expressed as follows:

minimize
W ,z

‖W ‖2F (21a)

subject to C(wm,hm, εm, σm) ≥ γm,
z ∈ {0, 1}N , (21b)

z>1 ≤ L,
‖W (n, :)‖2 ≤ Cz(n), ∀n ∈ [N].

where C < ∞ is a large positive constant and z(n) = 0
means that the nth antenna is excluded whereas z(n) = 1
indicates the opposite. The constraint in (21b) can be re-
laxed to be z ∈ [0, 1]N for finding the lower bound (see
Appendix C-B2 for details). In this procedure, the branching
operations are imposed on the new variable z [31], [59]. The
reason that we do not choose formulation (21) to design
B&B for our joint (R)BF&AS problem is that this approach
could be computationally (much) less efficient compared to
the proposed approach (see a proof in Theorem 1 in the
next subsection). The computational efficiency of our method
comes from the fact that the computation of upper and lower
bounds in (15) and (17) can be reused for many nodes; see the
proof of Theorem 1. However, it is not obvious if such kind
of computation reduction is still possible for the formulation
in (21).

C. Optimality

We show that the proposed algorithm will produce optimal
solutions for the problem of interest:

Theorem 1. Regarding the proposed B&B procedure (see
Appendix A), the following statements hold:
(a) When BF is considered, the proposed B&B solves (7)

optimally.
(b) When RBF is considered, if the conditions in Lemma 3(b)

are satisfied, the proposed B&B solves (7) optimally.
(c) The total number of SOCPs/SDRs solved by the proposed

B&B is upper bounded by

QCompute =

(
N

L

)
+

N−L+1∑
i=2

(
N − i
L− 1

)
.

The number of SOCPs/SDRs needed by the B&B asso-
ciated with the alternative formulation in Sec. III-B4 is
upper bounded by Q′Compute = 2

(
N
L

)
− 1.

The proof of Theorem 1 is in Appendix C. At the first
glance, it feels a bit surprising that the B&B algorithms
could use more than

(
N
L

)
SOCP/SDRs to find the optimal

solution, since this seems to be worse than exhaustive search.
This is because, in the worst case, B&B visits many more
intermediate states in the search tree—but exhaustive search
only visits the leaves. Nonetheless, in practice, B&B is often
much more efficient than exhaustive search since B&B does
not really exhaust all the nodes. Theorem 1 (c) spells out
the advantage of our B&B design relative to the more classic
B&B idea as in (21) from the MILP literature. Note that the
reduction of complexity shown in (c) could be substantial. For
example, when (N,L) = (12, 8), QCompute =660, whereas
Q′Compute =989. Hence, there is a potential saving of 339
SOCPs/SDRs (reduction by 34%) in the worst case.

Remark 1. Under approximate CSI, the conditions in Lemma
3(b) is the premise for our theorem to hold [cf. Theorem 1(b)].
When the condition is violated, it is possible that the SDR in
(14) might return solutions whose rank is higher than one
in theory—which would hinder the optimality of the B&B
procedure. Nonetheless, such higher-rank solutions were never
seen in our simulations—which is consistent with observations
from the literature [26], [42], [48], [49]. Our conjecture
is that the sufficient condition in Lemma 3(b) is far from
necessary. In rare cases where rank-one solutions do not exist
for (14), standard procedures like randomization [50] may be
resorted to for finding rank-one approximations.

IV. ACCELERATED JOINT (R)BF&AS VIA ML

The challenge of any B&B algorithm lies in the large
number of nodes in the tree. This means that in the worst
case, many SOCPs and SDRs need to be solved. An idea from
the ML community is to “train” a classifier to recognize the
relevant nodes, i.e., nodes that lead to leaves containing the
optimal solution [7]. If a node is deemed to be “irrelevant”,
the B&B algorithm would simply skip branching on this node,
and thus could save a substantial amount of time. In this
section, we will show that a similar idea can be used for

7

accelerating our B&B based joint (R)BF&AS algorithm—with
carefully designed neural models to meet the requirements
arising in wireless communications. More importantly, we will
present comprehensive performance characterizations, includ-
ing sample complexity and global optimality retention, which
are currently lacking in the existing literature.

A. Preliminaries: Node Classification and Imitation Learning

1) Node Classification: Let us denote

πθ : RP → [0, 1]

as the node classifier parameterized by θ, which returns the
probability of a node being relevant. Let

φ(N (`)
s) ∈ RP

be the mapping from a node to its feature representation.
When πθ(φ(N (`)

s)) < 0.5, then the node is deemed irrelevant.
Otherwise, the node is branched.

To train such a classifier, denote {(Ns, ys)}Ts=1 as the (node,
label) training data, where we have removed the level indices
of the nodes for notation simplicity. To create the training
pairs, one could run random problem instances of (7) using the
B&B procedure. Note that the label ys is annotated according
to the following rule:

ys =

{
1, As ⊆ A? and Bs ⊆ [N]\A?,
0, otherwise,

(22)

where As and Bs are the index sets of included and excluded
antennas at node s, respectively, and A? is the index set of
the active antennas of the optimal solution found by B&B of
the associated problem instance.

2) Imitation Learning: The simplest supervised learning
paradigm would learn πθ using the following risk minimiza-
tion criterion:

minimize
θ

1

T

T∑
s=1

L (πθ (φs) , ys) + r(θ), (23)

where φs := φ(Ns), L(x, y) is a certain loss function,
e.g., the logistic loss, and r(θ) is a regularization term, e.g.,
r(θ) = λ‖θ‖22. Unfortunately, such a supervised learning
approach often does not work well, since it ignores the fact
that the node generating process is sequential and interactive
with the node classifier in the test stage. In ML-based MILP,
the remedy is to adopt the imitation learning (IL) [5] approach,
where πθ is integrated in the training data generating process
[7]. To be more specific, the training data generation process
is done in a batch-by-batch manner with online optimization.
The IL training criterion is as follows (see Section IV-C for
data generation and training process):

θ(i+1) = (24)

arg min
θ

1

i

i∑
t=1

1

|Dt|
∑

(φs,ys)∈Dt

L (πθ(φs), ys) + r(θ),

Fig. 2. Illustration of the input graph representation for a node.

where Dt is the tth batch of training pairs. The learned model
parameter θ̂ is selected from θ(i)’s via the following:

θ̂ = arg min
θ∈{θ(i)}Ii=1

E(φs,ys) [L (πθ(φs), ys)] , (25)

where I is the total number of batches generated during the
training process. In practice, one can use a validation set
to approximate the above expectation. In the test stage, the
proposed B&B algorithm is run with the assistance of πθ̂.

The key of using IL to accelerate the proposed B&B for
joint (R)BF&AS is twofold, namely, a practical node classifier
tailored for wireless communications and a convergent online
training algorithm. We will detail our designs to address the
two requirements in the next subsections.

B. GNN-based Node Classifier for Joint (R)BF&AS

To design the node classifier, a critical consideration in
wireless communications is that the number of users to serve
could drastically change from time to time. This requires us
to design an ML model that is agnostic to such changes, as
re-training a model when change happens is not affordable.
Towards this end, we design a GNN-based node classifier [32].
Note that GNNs learn aggregation operators over a graph, and
thus is naturally robust to the change of entities on the graph.
We will leverage this property to design our node classifier.

To describe the GNN-based node classifier, we first define
a graph to represent N (`)

s . Fig. 2 illustrates the idea, where
the antennas and users represent the vertices, and the channel
represent the edge between the vertices. It is important to
design the features of the vertices and the edges, so that they
represent the essential information of the node N (`)

s . To be
specific, we let

xn ∈ RVa , n ∈ [N], xN+m ∈ RVu ,m ∈ [M], and

en,N+m ∈ RVe , n ∈ [N],m ∈ [M] (26)

represent the feature vectors of antenna n (a vertex), user m
(a vertex), and the channel between the antenna n and the user
m (an edge), respectively. Layer d of the GNN “aggregates”
the embedding of graph neighbors to update the uth vertex for
all u ∈ [M + N]. The definition of such aggregation can be
flexible. For example, in the message passing neural network
[60], the aggregation is done by the following:

q(d)
u = ξ(Z1q

(d−1)
u +

∑
v∈Eu

ξ(Z2q
(d−1)
v +Z3eu,v)), (27)

where q(0)
u = xu; Zi for i = 1, 2, 3 are the aggregation

operators of the GNN; ξ(·) represents the activation functions

8

of layer d; and Eu is the index set of all the one-hop neighbors
of vertex u on the graph. The output of the GNN is

πθ(φs) =
1

U

∑
u∈[U]

ζ
(
β>q(D)

u

)
, φs = φ(Ns) ∈ RP

where U = M + N is the total number of vertices;
φ(Ns) = [x>1, . . . ,x

>
N+M , e

>
1,N+1, . . . , e

>
N,N+M]>; and ζ(·)

is a sigmoid function. Here, the parameter to be optimized is
given by θ := [vec(Z1)>, vec(Z2)>, vec(Z3)>,β>]>.

Table I shows the detailed feature descriptions. We design
two types of features to represent the B&B nodes. To be spe-
cific, Type I features represent the features whose dimensions
are not affected by the problem size parameters N,M,L. For
example, Φlb is a Type I feature as it is always a scalar under
any (N,M,L). Type II features are those whose dimensions
change when (N,M,L) changes. For instance, the channel
matrix H ∈ CM×N is a Type II feature.

Appendix G details the conversion from the features in
Table I to xn and eu,v . Note that the special structure of
GNN allows us to employ both Type I and Type II features.
The reason is that the change of M,N and L only changes the
number of vertices/edges of the graph in Fig. 2. This does not
necessarily change Va, Ve and Vu that determines the size of
Zi [cf. Eq. (26)]—if xn and and en,m are designed properly
under the GNN framework (see Appendix G). However, if
one uses SVM as in [7] or other types of neural networks
(e.g., fully connected network (FCN) and convolutional neural
network (CNN)), Type II features are much less flexible to use.
We should remark that our feature design is not “optimal” in
any sense, but using Type II features arguably provides more
comprehensive information about the node and could often
enhance the node classification accuracy.

Table II shows numerical evidence to support our postulate.
There, different classifiers are trained by IL using problem
instances as described in Sec. V. The FCN has two hidden
layers with 32 hidden units in each layer, a sigmoid activation
function on the output layer, and ReLU activations on the
remaining layers. The architecture of the GNN is described in
Appendix F. The SVM and FCN could only use the Type I
features. The GNN with both types of features clearly offers
a lower node classification error.

Remark 2. In addition to being able to work with both
types of features, another important benefit of using GNN is
as folows: Since θ of the GNN model does not depend on
(N,M,L), the learned model can naturally work when the
numbers of users and antennas change, as long as Va, Vu,
and Ve remain the same. That is, the model trained on problem
instances with (N,M,L) can be seamlessly tested on cases
with (N ′,M ′, L′) 6= (N,M,L). This property of GNN will be
vital for applying the proposed method in real-world scenarios
where the problem size changes constantly (as the number of
users to be served by a BS changes all the time). It also helpd
scale up the proposed method for coping with large (N,M,L)
using a θ trained from small problem sizes, which could save
a substantial amount of computational resources.

We should emphasize that GNN is “insenstive” to the
change of problem size across training and testing. However,

TABLE I
FEATURE DESIGN FOR THE GNN BASED NODE CLASSIFIER.

Type I Features Type II Features
l
(t)
G A(`)

s

u
(t)
G B(`)s

Φlb(N (`)
s) [‖W`,s(1, :)‖22, . . . , ‖W`,s(N, :)‖22]

Φub(N (`)
s) H

` Wincumbent (see Algorithm 3)
1(Φub(N (`)

s)− u(t)G < ε). W`,s

|W`,s(:,m)Hhm|2.
Aggregate Interference using W`,s.

TABLE II
CLASSIFICATION ERROR (%) ATTAINED BY SVM, FCN AND GNN BASED

CLASSIFIER FOR CLASSIFYING RELEVANCE OF THE NODES.
γm = σm = 1, ε = 0.1.

Perfect CSI Approximate CSI
Problem sizes (4,3,2) (8,6,4) (4,3,2) (8,5,4)

(N,M,L)
SVM 8.49 16.67 7.17 11.67
FCN 6.93 13.95 26.95 10.18
GNN 7.26 12.23 6.62 8.49

drastic change of other aspects (e.g., channel model and
noise level) across the two stages does affect the performance
more substantially. In other words, beyond the problem size,
our GNN-based method still expects that the training and
testing data to share similar characteristics, as other machine
learning models do.

C. Data Generation and Online Training

We use an IL framework to train the GNN, which is summa-
rized in Algorithm 1. The framework is based on the online
learning method in [5]. The work in [5] was proposed for
convex learning criteria. Necessary modifications are made in
Algorithm 1 to accommodate our nonconvex learning problem.

Algorithm 1 consists of two steps in each iteration: data
collection and classifier improvement. In the ith iteration, the
accumulated dataset Di is obtained by solving B&B on R
problem instances using the current classifier learned from the
previous data batches, πθ(i) . Then, the classifier is retrained
using ∪it=1Di and

θ̂(i+1) = arg min
θ∈Θ

gi(θ) + r(θ)

where Θ specifies the constraints of the GNN parameters [cf.
Eq (29)]; the loss function gi(·) is defined as follows:

gi(θ) :=
1

i

i∑
t=1

1

|Dt|
∑

(φs,ys)∈Dt

L(πθ(φs), ys); (28)

additionally, we select r(θ) = −ψ>θ in which ψ is sampled
from exponential distribution in each iteration. This specific
choice of r(θ) plays an important role in our nonconvex
learning problem (where the nonconvexity arises due to the use
of GNN). To be more specific, such a random perturbation-
based r(θ) is advocated by recent developments from non-
convex online learning [6]. It was shown in [6] that using

9

Algorithm 1: Online GNN Learning

1 Input: I, R(number of training instances per batch), η;
2 D1 = {};
3 for i = 1 to I do
4 Sample ψ ∼ (Exp(η))B // Exp(η) is the

exponential distribution with pdf
p(x) = η exp(−ηx); θ(i) ∈ RB;

5 for r = 1 to R do
6 Generate problem instance Q;
7 if i=1 then
8 D(Q) ← run BB(Q) and label the nodes using optimal

solution;
9 else

10 D(Q) ← Algorithm_2(Q,πθ(i));
11 end
12 Di ← Di ∪ D(Q);
13 end
14 θ(i+1) =

arg minθ∈Θ
1
i

∑i
t=1

1
|Dt|

∑
(φs,ys)∈Dt

L(πθ(φs), ys)−
ψ>θ

15 end
16 Return θ̂ =

arg minθ∈θ1:I
1

|Dvalid
i |

∑
(φs,ys)∈Dvalid

i
[L(πθ(φs), ys)]

// where Dvalid
i validation batch i generated

by B&B with πθ(i)

Algorithm 2: Training Data Generation

1 Input: Q, πθ ;
// optimal solution and optimal selected

antenna subset to problem Q
2 (W ?,A?) = BB(Q); (see Algorithm 4 in Appendix A for BB)
3 Execute Line 2 to Line 7 in Algorithm 3; // Initialization
4 D ← {};
5 while B&B termination criteria is not met do
6 Execute Line 9 to Line 22 from Algorithm 3;
7 if N (`?)

s? is relevant then
8 D ← D ∪ {φ(`?)

s? , 0};
9 else

10 D ← D ∪ {φ(`?)
s? , 1};

11 end
12 end
13 Return D;

r(θ) = −ψ>θ ensures no-regret type convergence of non-
convex online learning. This property is a critical stepping
stone towards establishing learning guarantees of our GNN-
based framework. This will become clearer in the proofs of
Theorem 2.

The training data generation subroutine is given in Algo-
rithm 2. To generate Di, the algorithm first runs B&B on
a given problem instance to find the optimal solution. Next,
B&B is run again but with πθ(i) to generate nodes. The
training pairs (φs, ys) are annotated by utilizing the optimal
solution obtained in the first run.

The overall GNN-accelerated B&B procedure is summa-
rized in Algoirthm 3. The algorithm is termed as MachINe
learning-based joInt beaMforming and Antennas seLection
(MINIMAL) The node classifier is used in Line 11.

D. Performance Characterizations

Our goal is to characterize the performance of MINIMAL,
e.g., under what conditions (e.g., the amount of training

Algorithm 3: Main Algorithm: MINIMAL
1 Input: Problem instance (hm, σm, γm, εm), ∀m, trained pruning

policy πθ , relative error ε;
// Add the root node first

2 A(0)
1 ← {},B(0)1 ← {};

3 Select node using (18) for N (0)
1 ;

4 Wincumbent ← solution to (17);
5 l

(0)
G ← ‖W (0)

1 ‖2F , u(0)G ← ‖Wincumbent‖2F ;
6 F(0) ← {(0, 1)};
7 t← 0;
8 while |F(t)| > 0 and

∣∣∣u(t)
G
−l

(t)
G

∣∣∣/l(t)
G
> ε do

9 Select a non-leaf node (`?, s?) using (18);
10 Remove the selected node F(t) ← F(t)\N (`?)

s? ;
11 if πθ

(
φ

(`?)
s?

)
≥ 0.5 then

12 Select variable n? using (19);
13 Generate child nodes N (`?+1)

s?1
and N (`?+1)

s?2
using (13)

and append to F(t);
14 k ← arg mini∈{1,2} Φub

(
N (`?+1)

s?i

)
;

15 if Φub

(
N (`?+1)

s?
k

)
≤ u(t)G then

16 u
(t+1)
G ← Φub

(
N (`?+1)

s?
k

)
;

17 Wincumbent ← solution to (17) for N (`?+1)
s?
k

;
18 end
19 l

(t+1)
G ← min(`,s)∈F(t)Φlb

(
N (`)

s

)
;

20 end
21 F(t+1) ←

{
(s′, `′) ∈ F(t) | Φlb

(
N (`′)

s′

)
≤ u(t+1)

G

}
;

22 t← t+ 1;
23 end
24 Return Wincumbent;

samples and the complexity of the GNN) MINIMAL can
accelerate the proposed B&B without losing its optimality. To
our best knowledge, such performance characterization have
not been provided for ML-based B&B acceleration, even when
the learning problem is convex.

To proceed, we will use the following assumptions:

Assumption 1. Assume that the following statements about
the data features and the GNN in Sec. IV-B hold:

(a) The input features are bounded, i.e., ‖xu‖2, ‖eu,v‖2 ≤
Bx,∀u, v.

(b) The activation functions ξ(·) and ζ(·) are Cξ-Lipschitz
and Cζ-Lipschitz continuous, respectively. In addition,
ξ(0) = 0.

(c) Let L : R × R → [−BL, BL] be CL-Lipschitz in its first
argument, i.e., |L(x, y)− L(x′, y)| ≤ CL|x− x′|.

(d) The parameters of the GNN are bounded; i.e., ‖Zi‖2 ≤
BZ ,∀i ∈ {1, 2, 3} and ‖β‖2 ≤ Bβ.

Let us define the set of parameters Θ as follows:

Θ :=
{
θ = [vec(Z1)>, vec(Z2)>, vec(Z3)>,β>]> |
‖Zi‖2 ≤ BZ ,β ≤ Bβ, i ∈ {1, 2, 3}

}
. (29)

Using the above, we first characterize the generalization error
of the GNN with the following Lemma:

Lemma 4 (Generalization Error of GNN). Consider a GNN
πθ in Sec. IV-B and G = {φk, yk}Kk=1 of i.i.d. samples. Then,

10

for θ ∈ Θ, the following holds with probability at least 1− δ:

Gap(δ,K) (30)

:= E[L(πθ(φ), y)]− 1/K
∑

(φk,yk)∈G

L(πθ(φk), yk)

≤ 8CL
K

+
24CLBL√

K

√
(3E2 + E) log Λ + 3BL

√
log (2/δ)

2K
,

where α = ((1 + UCξ)CξBZ),

Λ = 1 + 12
√
EKBZmax{ΣZ1

,ΣZ2
,ΣZ3

,Bβ/BZΣβ},

ΣZ1
= CζBβUC

3
ξBZBx

α(D+1) − 2α+ 1

(α− 1)2
,ΣZ2 = UCξΣZ1 ,

ΣZ3 = CζBβUC
2
ξBZBx

αD − 1

α− 1
,

Σβ = CζBxα
D + CζUC

2
ξBZBx

αD − 1

α− 1
,

where the expectation is taken w.r.t. the distribution of
(φk, yk).

Note that our GNN generalization error bound is rather
different from some existing results, e.g., [62], as edge features
(i.e., eu,v) were not considered in their work. Lemma 4
can be used to understand the GNN’s performance with a
single batch. To characterize the node classification accuracy
of the GNN learned through the described imitation learning
algorithm, we need the following assumptions:

Assumption 2. Let supθ1,θ2∈Θ ‖θ1 − θ2‖∞ ≤ H , for some
H < ∞. Let all the loss functions gi(·) [cf. Eq. (28)] for
i = 1, . . . , I are G-Lipschitz continuous with respect to the
`1-norm, i.e. |gi(θ1)− gi(θ2)| ≤ G‖θ1 − θ2‖1,∀i.

Assumption 3. The minimal empirical loss over the aggre-
gated dataset is bounded by ν.

min
θ∈Θ

1

IJ

I∑
i=1

∑
(φs,ys)∈Di

Eψ[L(πθ(φs), ys)] ≤ ν.

Assumption 2 is not hard to meet if the data features and the
network parameters are bounded. Assumption 3 characterizes
the expressiveness of the GNN.

To present our main theory, we compute the expected
number of nodes that will be visited (with the associated
SOCPs/SDRs solved) by Algorithm 3 when run with πθ̂ in the
testing stage. Let us denote ρθ̂ as the probability with which
the classifier accurately classifies a node. Also denote S as the
set of all possible B&B trees that can be realized by Algorithm
3 under a given instance. Let Pr(s; θ̂), s ∈ S be the probability
with which a particular tree s is realized. Let Qs

θ̂
denote the

number of visited nodes in tree s. Let Qθ̂ = E[Qs
θ̂
] where

the expectation is taken over the probability mass function
Pr(s; θ̂), s ∈ S. In the following theorem, we characterize the
classification accuracy, ρθ̂, and present a bound on Qθ̂.

Theorem 2. Suppose that Assumptions 2-3 hold, and that the
GNN in MINIMAL is prameterized by θ̂ in (25). In addition,

assume that every single batch Di consists of i.i.d. samples,
and that Algorithm 1 is used for GNN learning. Then, we have

Qθ̂ ≤
2N
(

2ρθ̂ − ρ
N
θ̂

)
2ρθ̂ − 1

+ 1.

Further, when θ̂ is selected using (25), with a probability at
least 1− δ,

Ep
θ̂
,ψ

[
L
(
πθ̂(φs), ys

)]
(31)

≤ ν +O
(

1/I1/3
)

+ Gap

(
δ

2
, J

)√
2 log(2/δ)

I
.

Assume the logistic loss function L is employed. Then, the
node classification accuracy

ρθ̂ ≥ exp
(
−Ep

θ̂
,ψ

[
L
(
πθ̂(φs), ys

)])
.

In addition, MINIMAL returns an optimal solution with prob-
ability at least ρN

θ̂
.

The proof of Theorem 2 is relegated to Appendix E. This
result bounds the number of nodes visited by the proposed
algorithm under a given classification accuracy. It also char-
acterizes the classification accuracy that can be achieved by the
proposed training procedure. One can see that when the batch
size is large enough, Gap is close to zero. Additionally, when
the GNN is expressive (and thus ν is small) and the algorithm
is run for large enough iterations I , the accuracy of the clas-
sifier, i.e., ρθ̂, approaches 1 [cf. Eq. (31)]. Consequently, the
total number of nodes visited will be close to 2N +1 at most.
This shows linear dependence of the computational complexity
of the proposed method on N , which is a significant saving
compared to

(
N
L

)
for the exhaustive search.

Remark 3. We should remark that the results in Theorem 2
has a couple of caveats. First, we assumed that the samples in
each Di are i.i.d. If every node created by πθ(i) in Algorithm 2
is used, then the samples in Di are likely not i.i.d., as the nodes
in the same B&B tree are generated in a sequential manner.
Nonetheless, simple remedies can assist creating an i.i.d. batch
Di—e.g., by taking only one random node from a B&B tree.
This is inevitably more costly, and seems not to be necessary
in practice—as using nodes from Algorithm 2 for training
works fairly well in our simulations. Second, the expectation
based criterion (25) is only approximated in practice, e.g.,
via using empirical averaging. Characterizing the empirical
version of (25) can be done via concentration theorems in
a straightforward manner. However, this would substantially
complicate the expressions yet reveals little to no additional
insight. Hence, we leave it out of this work.

V. NUMERICAL RESULTS

In this section, we showcase the effectiveness of the
proposed B&B algorithm and its machine learning based
acceleration using numerical simulations. We use CVXPY
[63] which calls MOSEK [64] to solve the SOCPs/SDRs
in (15) and (17). The elements of Rayleigh fading channel
vectors {hm}Mm=1 are sampled independently from circularly
symmetric zero mean Gaussian distribution with unit variance.

11

0 5 10 15 20 25
iteration

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

ob
je

ct
iv

e

Perfect CSI Upper Bound
Perfect CSI Lower Bound
Approximate CSI Upper Bound
Approximate CSI Lower Bound

Fig. 3. Convergence of the global upper and lower bounds, computed by the
proposed B&B algorithm, to the optimal solution. Problem instance of size
(N,M,L) = (8, 4, 4).

Implementation of the proposed methods can be found on the
authors’ website1.

A. Evaluation of B&B for Joint (R)BF&AS

In Fig. 3, we verify the convergence of the proposed B&B
algorithm under both the perfect and the approximate CSI
cases. The figure shows the convergence of the global upper
and lower bounds (i.e., u(t)

G and l(t)G) computed by the proposed
B&B procedure for (N,M,L) = (8, 4, 4). One can see that
the global bounds converge to the optimal objective value in
both the perfect and approximate CSI case. This verifies our
optimality claim in Theorem 1. Note that the B&B algorithm
for both cases converges in less than 24 iterations (i.e., visiting
≤ 48 nodes). This is much less than the worst-case complexity
of B&B, i.e., visiting 139 nodes. The empirical complexity
is also better than the worst-case complexity of exhaustive
search, which is 70 node visits in this case.

Table III gives a closer look at the effectiveness of the
proposed B&B framework. Specifically, Table III shows the
performance of the proposed B&B procedure for various
problem sizes, compared to the exhaustive search strategy
for the perfect CSI case. The result is averaged over 30
Monte Carlo trials. One can see that the B&B algorithm
can constantly attain reduced complexity, in terms of the
number of nodes visited (i.e., the number of SOCPs solved).
In particular, when the number of users is relatively small,
the B&B can attain an around 8-fold acceleration (cf. the case
where (N,M,L) = (12, 2, 8)). Similar results can be seen in
Table IV, where the imperfect CSI case is considered.

Table V compares our B&B and the alternative B&B using
the formulation (21) in the perfect CSI case. One can see that
the proposed procedure consistently solves fewer SOCPs. This
supports Theorem 1 (c).

B. Evaluation of ML-accelerated B&B for Joint (R)BF&AS

In this section, we demonstrate the efficacy of MINIMAL.

1https://github.com/XiaoFuLab/Antenna-Selection-and-Beamforming-wit
h-BandB-and-ML.git

TABLE III
PERFORMANCE OF THE PROPOSED B&B ALGORITHM FOR VARIOUS

PROBLEM SIZES IN THE PERFECT CSI CASE COMPARED TO THE
EXHAUSTIVE SEARCH. σ2

m = 1.0, γm = 1.0,∀m ∈ [M].

Problem size Proposed B&B Exhaustive Search
(N,M,L) Time SOCPs Time SOCPs

(8, 2, 4) 1.58 34.07 2.95 70
(8, 3, 4) 2.29 40.67 2.58 70
(8, 4, 4) 3.30 47.30 4.53 70
(8, 5, 4) 5.31 63.27 5.46 70
(8, 6, 4) 8.24 82.93 6.10 70
(10, 2, 6) 2.28 50.20 9.11 210
(10, 4, 6) 6.47 88.37 14.75 210
(10, 6, 6) 14.55 141.80 20.00 210
(10, 8, 6) 24.56 186.90 25.59 210
(12, 2, 8) 2.95 65.53 21.39 495
(12, 4, 8) 10.57 137.80 33.45 495
(12, 6, 8) 21.89 211.87 46.53 495
(12, 8, 8) 37.69 279.67 62.46 495

(12, 10, 8) 69.48 398.40 80.94 495

TABLE IV
PERFORMANCE OF THE PROPOSED B&B ALGORITHM FOR VARIOUS

PROBLEM SIZES IN THE APPROXIMATE CSI CASE COMPARED TO THE
EXHAUSTIVE SEARCH. σ2

m = 1.0, γm = 1.0, ∀m ∈ [M].

Problem size Proposed B&B Exhaustive Search
(N,M,L) Time SDPs Time SDPs

(8, 2, 4) 7.09 31.60 12.71 70
(8, 3, 4) 15.09 39.37 21.25 70
(8, 4, 4) 28.39 49.00 32.58 70

(10, 2, 6) 19.49 65.27 51.38 210
(10, 4, 6) 80.47 85.73 133.38 210
(10, 6, 6) 236.26 137.37 262.10 210
(10, 8, 6) 520.81 180.13 452.76 210
(12, 2, 8) 26.83 62.80 157.62 495
(12, 4, 8) 175.45 122.13 471.54 495

TABLE V
NUMBER OF SOCPS SOLVED BY TWO B&B STRATEGIES.

σ2
m = 1.0, γm = 1.0, ∀m ∈ [M].

Problem size) (4,2,2) (8,4,6) (8,6,6) (10,5,6)
(N,M,L)

Proposed B&B 6.86 16.73 22.63 117.67
Alternative Using (21) 8.06 24.66 33.8 159.6

1) Baselines: A number of baselines are as follows:
Supervised Learning: We follow the supervised learning (SL)
ideas in [23], [24] to train a neural network for antenna
selection (cf. Sec. II-C). Specifically, we use the proposed
B&B algorithm to generate training pairs with optimal an-
tenna selection as the labels, i.e., {Ht, zt}Tt=1, where zt is
a binary vector representing optimal antenna selection for the
tth training instance. The learned deep model predicts a vector
z which may not satisfy ‖z‖0 ≤ L, and thus we take the
L elements that have the largest magnitude as in [23]. For
this baseline, we use an fθ that is a 3-layer neural network,
where the first two layers are convolutional layers with ReLU
activations and the last layer is a fully connected layer with
sigmoid activation.
Greedy Method: A plethora of greedy algorithms exist for
different variants of joing BF&AS problems; see, e.g., [16],
[19]–[22]. We design a greedy baseline for (7) following the
general idea of [19], which is described as follows: (i) Let

12

H = {1, . . . , N} denote the set of all antennas (set to active
initially). (ii) Solve SOCPs with H̃−n = H\{n},∀n ∈ H.
Let Ĥ−n̂ correspond to the smallest objective value. Then, set
H = H\n̂. (iii) Repeat (ii) if |H| > L; otherwise return H.

We call this method Greedy. Note that Greedy’s compu-
tational burden is not necessarily light, as a total amount of
O(N2) SOCPs have to be solved (e.g., ≈ 1000 SOCPs have
to be solved for N = 32).
Continuous Approximation: As the third baseline, we use
the continuous optimization-based idea in [5] and modify it
to solve the unicast cases in this work. Although [5] did not
explore their method for the approximate CSI case, we note
that the same idea can be used after proper modifications to
the subproblems (i.e., using the S-lemma to come up with an
SDR formulation of the subproblem). We term this method
iteratively reweighted convex relaxation-based optimization
(IrCvxOpt).

Following the implementation instruction of [5], we run
IrCvxOpt for at most 30 iterations with its bisection-based
λ-tuning method for 30 iterations as well. The algorithm is
stopped if the relative change of the reweighting matrix is
smaller than 10−4 or a solution comprising of ≤ L antennas
is found. If the algorithm returns > L antennas, we select the
L antennas from the returned antennas that is assigned the
maximum power in the returned beamforming solution Ŵ .
All of the evaluation metrics (see Sec V-B3) are computed
using the final L antennas and Ŵ output by the algorithms.

2) Training Setups: We use a GNN tailored for our
beamforming setting (see details in Appendix F). We set
(R, I) = (30, 20) in Algorithms 1-2. The loss function L is
selected to be the binary cross-entropy loss, i.e., L(x, y) =
−y log(x) − (1 − y) log(1 − x). In batch i, the parameters
of the classifier is initialized with θ(i), and updated using the
Adam algorithm [65] for 10 epochs, where the sample size of
Adam is set to be 128. The initial step size of Adam is set
to 0.001. As described in Section IV-A2, we select θ̂ from
θ(1), . . . ,θ(I) using 30 validation problem instances using a
sample average version on (25).

In order to account for the class imbalance (number of
relevant nodes usually much smaller than number of irrelevant
nodes in the training set), we apply a larger positive weight on
the “positive” training pairs. Further, premature/early pruning
of the B&B tree (i.e., when ` is small) should be dis-
couraged as it is more risky. Hence, we weight each term
L(πθ(i)(φ

(`)
s), y

(`)
s) using (q1[y

(`)
s = 1] + 1) 1

` , where q ∈ R
offsets the imbalance ratio, and 1[·] denotes the indicator
function. We select q = 11 via trial and error, and use the
same q in all experiments.

3) Evaluation Metrics: We define the optimality gap
(Ogap) as follows:

Ogap :=
‖Ŵ ‖2F − ‖W ?‖2F

‖W ?‖2F
× 100%,

where W ? is the optimal solution provided by the B&B
algorithm and Ŵ is the solution provided by an algorithm
under test. We also define the runtime speedup as follows:

speedup :=
Run-time of B&B (seconds)

Run-time of method under test (seconds)
.

TABLE VI
PERFORMANCE OF ALGORITHMS FOR N ≤ 16 CASES WITH PERFECT CSI.

σ2
m = 0.1, γm = 10.0, ∀m ∈ [M].

Problem Size Metric MINIMAL Greedy IrCvxOpt SL
(N,M,L)

(6, 3, 3)
Ogap 0.00 1.18 20.54 64.39

speedup 1.73 0.92 4.68 17.70
SOCPs 10.25 15.00 6.65 1

(8, 4, 4)
Ogap 0.0 0.83 20.19 38.08

speedup 2.72 1.35 6.40 40.52
SOCPs 14.9 26.0 12.05 1

(10, 5, 5)
Ogap 0.85 2.83 68.34 -

speedup 4.10 2.46 8.47 -
SOCPs 28.05 40.00 22.60 -

(12, 6, 6)
Ogap 2.16 3.43 234.88 -

speedup 5.87 4.72 10.96 -
SOCPs 49.00 57.00 27.90 -

(16, 8, 8)
Ogap 2.94 6.59 159.28 -

speedup 12.39 23.88 78.62 -
SOCPs 234.50 100.00 29.00 -

TABLE VII
OBJECTIVE VALUES, ‖W ‖2F , ATTAINED BY THE ALGORITHMS FOR

N ≥ 32 CASES WITH PERFECT CSI. σ2
m = 0.1, γm = 10.0, ∀m ∈ [M].

Problem Size MINIMAL Greedy IrCvxOpt
(N,M,L)

(32, 12, 12) 4.35 21.73 12.44
(64, 16, 16) 5.23 61.66 72.73
(128, 8, 8) 1.86 22.45 3.13

(128, 16, 16) 4.60 40.29 163.93

4) Results: Table VI shows the performance of all methods
under γm = 10.0, σ2

m = 0.1,∀m ∈ [M] for cases where
N ≤ 16. Results are averaged over 20 random test instances.
One can see that MINIMAL consistently attains a very small
Ogap (< 3% for all cases), whereas the baselines have much
larger Ogaps. The SL method only requires solving a single
SOCP, as the antenna selection part is done by the learned
fθ̂. However, the solution quality is not acceptable, indicating
that the learned neural network for AS performs poorly.
Notably, in our simulations, we observed that SL needs a
large amount of problem instances to generate its training
data for a given (N,M,L). For example, under the settings in
Table VI, T = 12, 000 instances were used for SL, but only
600 instances were used for the proposed method.

Table VII shows the performance of the algorithms in cases
where N ≥ 32. Note that generating training samples for SL
is too costly in these case, and thus we drop this baseline
in this table. This is because for each (N,M,L), one has to
re-train fθ from scratch under SL—but generating training
examples for large size N is not affordable. For the proposed
algorithm, we use the GNN trained on smaller problem size,
i.e., (N,M,L) = (16, 8, 8) (cf. Remark 2), which allows us
to avoid re-training. In this simulation, we test all methods
under limited computational budget (i.e., every method is
allowed to use up to 2N SOCPs), for controlling the runtime.
Unlike the previous cases where the Ogap is presented, we
could only compare the objective values in this simulation, as
obtaining the optimal solution is very costly. One can see that
the proposed method attains objective values that are often-
times order-of-magnitude smaller than those of the baselines.
IrCvxOpt sometimes attains small objective values (e.g.,

13

TABLE VIII
PERFORMANCE OF ALGORITHMS UNDER APPROXIMATE CSI.

σ2
m = 0.1, γm = 10.0, εm = 0.02, ∀m ∈ [M].

Problem Size Metric MINIMAL Greedy IrCvxOpt SL
(N,M,L)

(8, 4, 4)
Ogap 0.09 1.27 4.97 21.97

speedup 3.54 1.43 10.64 47.08
SDRs 13.30 26.00 4.70 1.0

(10, 5, 5)
Ogap 2.04 2.20 10.72 -

speedup 4.19 1.90 18.89 -
SDRs 23.90 40.00 7.75 -

(16, 8, 8) ‖W ‖2F 2.93 24.39 3.15 -
SDRs 34.00 34.00 18.25 -

TABLE IX
PERFORMANCE OF ALGORITHMS UNDER VARIOUS γm’S WITH

APPROXIMATE CSI. (N,M,L) = (8, 4, 4),
εm = 0.02, σ2

m = 0.1,∀m ∈ [M].

γm(dB) Metric MINIMAL Greedy IrCvxOpt
(# feasible ins.)

30.00 Ogap 0.40 4.63 17.76
(50) # feasible solutions 50 50 44

33.01 Ogap 0.51 11.21 45.07
(40) # feasible solutions 40 39 32

34.77 Ogap 0.00 19.02 133.88
(25) # feasibile solutions 25 25 21

36.02 Ogap 0.00 72.19 31.65
(10) # feasible solutions 10 10 7

when (N,M,L) = (128, 8, 8)), but the performance is not
consistent across different cases.

Table VIII shows the performance of the algorithms under
imperfect CSI using the RBF constraints. For (N,M,L) =
(16, 8, 8), we use the model trained on (N,M,L) = (10, 5, 5),
and limit the number of SDRs to 2N . Similar to the
perfect CSI case, the proposed method attains the small-
est Ogap/objective value compared to all baselines. The
IrCvxOpt again sometimes outputs acceptable results, but
could not maintain consistently good performance over all
cases.

Table IX tests the algorithms’ ability of finding feasible
solutions of (7). Note that finding a feasible solution for
QCQP problems is often highly nontrivial [66]. As making
‖W ‖row−0 ≤ L [cf. Eq. (7c)] can be easily done via
simple post-processing (e.g., by thresholding some rows of the
solution W to zeros), we primarily examine if the algorithms
could find W ’s that satisfy the SINR specifications in (7b).
To be specific, the algorithms are tested using various γm’s.
Naturally, higher values of γm may make all the SINR con-
straints hard to satisfy. We run 50 random trials. One can see
that under γm =30dB, all the problem instances have at least
a feasible solution for (7b). Both MINIMAL and Greedy can
find solutions that are feasible for all instances, but MINIMAL
enjoys a much smaller Ogap. When γm grows, the problem
admits fewer infeasible instances. However, MINIMAL always
returns a feasible solution, as long as the instance has one.
Greedy also works fine for finding feasible solutions, but the
Ogap becomes much larger when γm increases. IrCvxOpt
is less competitive in terms of both Ogap and feasibility.

VI. CONCLUSION AND DISCUSSION

In this work, we revisited the joint beamforming and
antenna selection problem under perfect and imperfect CSI

and proposed a machine learning-assisted B&B algorithm to
attain its optimal solution. Unlike the vast majority of existing
algorithms that rely on continuous optimization to approximate
the hard mixed integer and nonconvex optimization problem
without optimality guarantees, our B&B algorithm leverages
the special properties of joint (R)BF&AS to come up with
optimal solutions. More importantly, we proposed a GNN-
based machine learning method to help accelerate the B&B al-
gorithm. Our analysis showed that the design ensures provable
acceleration and retains optimality with high probability, under
proper GNN design and given a sufficiently enough sample
size. To our best knowledge, this is the first comprehensive
characterization for ML-based B&B. Our GNN design also
easily handles a commonly seen challenge in communications,
namely, the problem size change across training and test sets,
without visible performance losses. Simulations corroborated
our design goals and theoretical analyses.

Moving forward, a natural question is if the proposed ML-
accelerated B&B method can be extended to offer efficient
and optimal solutions to other joint (R)BF&AS criteria, e.g.,
those in [1], [4]–[7], [67]. This can in principle be done, but
the caveat lies in designing an effective B&B algorithm for the
problem of interest. In our case, our B&B design leveraged
the fact that (7) is optimally solvable when given a fixed set
of antennas, which is a property that not all the joint BF&AS
formulations enjoy—e.g., the multicast version of (7) cannot
be handled by a similar B&B. Therefore, a meaningful future
direction is to consider such more challenging cases and come
up with a ML-assisted (near)-optimal method.

REFERENCES

[1] M.-H. Golbon-Haghighi, “Beamforming in wireless networks,” InTech
Open, pp. 163–192, 2016.

[2] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beam-
forming for physical-layer multicasting,” IEEE Trans. Signal Process.,
vol. 54, no. 6, pp. 2239–2251, 2006.

[3] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson,
and B. Ottersten, “Convex optimization-based beamforming,” IEEE
Signal Process. Mag., vol. 27, no. 3, pp. 62–75, 2010.

[4] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi,
“Outage constrained robust transmit optimization for multiuser MISO
downlinks: Tractable approximations by conic optimization,” IEEE
Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, 2014.

[5] O. Mehanna, N. D. Sidiropoulos, and G. B. Giannakis, “Joint multicast
beamforming and antenna selection,” IEEE Trans. Signal Process.,
vol. 61, no. 10, pp. 2660–2674, 2013.

[6] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for
green cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp.
2809–2823, 2014.

[7] M. S. Ibrahim, A. Konar, and N. D. Sidiropoulos, “Fast algorithms for
joint multicast beamforming and antenna selection in massive MIMO,”
IEEE Trans. Signal Process., vol. 68, pp. 1897–1909, 2020.

[8] J. C. Marinello, T. Abrão, A. Amiri, E. de Carvalho, and P. Popovski,
“Antenna selection for improving energy efficiency in XL-MIMO sys-
tems,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 305–13 318,
2020.

[9] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,”
IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, 2004.

[10] Y. Gao, H. Vinck, and T. Kaiser, “Massive MIMO antenna selection:
Switching architectures, capacity bounds, and optimal antenna selection
algorithms,” IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1346–1360,
2017.

[11] C. Jiang and L. J. Cimini, “Antenna selection for energy-efficient MIMO
transmission,” IEEE Wireless Commun. Lett., vol. 1, no. 6, pp. 577–580,
2012.

14

[12] A. Arora, C. G. Tsinos, S. Chatzinotas, B. Ottersten et al., “Analog
beamforming with antenna selection for large-scale antenna arrays,” in
Proc. IEEE ICASSP, 2021, pp. 4795–4799.

[13] A. F. Molisch, M. Z. Win, Y.-S. Choi, and J. H. Winters, “Capacity of
MIMO systems with antenna selection,” IEEE Trans. Wireless Commun.,
vol. 4, no. 4, pp. 1759–1772, 2005.

[14] A. Liu and V. K. Lau, “Joint power and antenna selection optimization in
large cloud radio access networks,” IEEE Trans. Signal Process., vol. 62,
no. 5, pp. 1319–1328, 2014.

[15] M. Sadek, A. Tarighat, and A. H. Sayed, “Active antenna selection
in multiuser MIMO communications,” IEEE Trans. Signal Process.,
vol. 55, no. 4, pp. 1498–1510, 2007.

[16] A. Konar and N. D. Sidiropoulos, “A simple and effective approach
for transmit antenna selection in multiuser massive MIMO leveraging
submodularity,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4869–
4883, 2018.

[17] A. Civril and M. Magdon-Ismail, “On selecting a maximum volume sub-
matrix of a matrix and related problems,” Theoretical Computer Science,
vol. 410, no. 47-49, pp. 4801–4811, 2009.

[18] A. Ahmed, S. Zhang, and Y. D. Zhang, “Antenna selection strategy for
transmit beamforming-based joint radar-communication system,” Digital
Signal Process., vol. 105, p. 102768, 2020.

[19] R. Chen, J. G. Andrews, and R. W. Heath, “Efficient transmit antenna
selection for multiuser MIMO systems with block diagonalization,” in
IEEE GLOBECOM, 2007, pp. 3499–3503.

[20] M. O. Mendonca, P. S. Diniz, T. N. Ferreira, and L. Lovisolo, “Antenna
selection in massive MIMO based on greedy algorithms,” IEEE Trans.
Wireless Commun., vol. 19, no. 3, pp. 1868–1881, 2019.

[21] M. Ding, S. Liu, H. Luo, and W. Chen, “MMSE based greedy antenna
selection scheme for AF MIMO relay systems,” IEEE Signal Process.
Lett., vol. 17, no. 5, pp. 433–436, 2010.

[22] H. F. Mahdi, A. T. Alheety, N. A. Hamid, and S. Kurnaz, “Quantization-
aware greedy antenna selection for multi-user massive MIMO systems,”
Progress in Electromagnetics Research C, 2021.

[23] M. S. Ibrahim, A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Learning-
based antenna selection for multicasting,” in Proc. IEEE SPAWC, 2018,
pp. 1–5.

[24] T. X. Vu, S. Chatzinotas, V.-D. Nguyen, D. T. Hoang, D. N. Nguyen,
M. Di Renzo, and B. Ottersten, “Machine learning-enabled joint antenna
selection and precoding design: From offline complexity to online
performance,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3710–
3722, 2021.

[25] A. M. Elbir and K. V. Mishra, “Joint antenna selection and hybrid
beamformer design using unquantized and quantized deep learning
networks,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1677–
1688, 2019.

[26] G. Zheng, K.-K. Wong, and T.-S. Ng, “Robust linear MIMO in the down-
link: A worst-case optimization with ellipsoidal uncertainty regions,”
EURASIP J. Adv. Signal Process., vol. 2008, pp. 1–15, 2008.

[27] J. Clausen, “Branch and bound algorithms-principles and examples,”
Depart. Comput. Sci., University of Copenhagen. [Online]. Available:
http://www2.imm.dtu.dk/courses/04232/TSPtext.pdf

[28] A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

[29] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch
and bound algorithms,” in Proc. NeurIPS, vol. 27, 2014, pp. 3293–3301.

[30] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al.,
“Solving mixed integer programs using neural networks,” arXiv preprint
arXiv:2012.13349, 2020.

[31] M. Lee, G. Yu, and G. Y. Li, “Learning to branch: Accelerating resource
allocation in wireless networks,” IEEE Trans. Veh. Technol., vol. 69,
no. 1, pp. 958–970, 2019.

[32] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2008.

[33] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. AISTATS,
2011, pp. 627–635.

[34] S. Shrestha, X. Fu, and M. Hong, “Towards efficient and optimal joint
beamforming and antenna selection: A machine learning approach,”
submitted to IEEE ICASSP, 2023.

[35] C. Lu and Y.-F. Liu, “An efficient global algorithm for single-group
multicast beamforming,” IEEE Trans. Signal Process., vol. 65, no. 14,
pp. 3761–3774, 2017.

[36] C. Lu, Y.-F. Liu, and J. Zhou, “An enhanced SDR based global algorithm
for nonconvex complex quadratic programs with signal processing
applications,” IEEE Open J. Signal Process., vol. 1, pp. 120–134, 2020.

[37] C. Ouyang, Z. Ou, L. Zhang, and H. Yang, “Optimal transmit antenna
selection algorithm in massive MIMOME channels,” in Proc. IEEE
WCNC, 2019, pp. 1–6.

[38] Y. Li, M. Sheng, X. Wang, Y. Shi, and Y. Zhang, “Globally optimal an-
tenna selection and power allocation for energy efficiency maximization
in downlink distributed antenna systems,” in Proc. IEEE GLOBCOM,
2014, pp. 3856–3861.

[39] Y. Gao, W. Jiang, and T. Kaiser, “Bidirectional branch and bound based
antenna selection in massive MIMO systems,” in Proc. IEEE PIMRC,
2015, pp. 563–568.

[40] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Proc. NeurIPS, vol. 32, 2019.

[41] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “LORM: Learning
to optimize for resource management in wireless networks with few
training samples,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp.
665–679, 2019.

[42] W.-K. Ma, J. Pan, A. M.-C. So, and T.-H. Chang, “Unraveling the rank-
one solution mystery of robust MISO downlink transmit optimization:
A verifiable sufficient condition via a new duality result,” IEEE Trans.
Signal Process., vol. 65, no. 7, pp. 1909–1924, 2017.

[43] F. Rashid-Farrokhi, K. R. Liu, and L. Tassiulas, “Transmit beamforming
and power control for cellular wireless systems,” IEEE J. Sel. Areas
Commun., vol. 16, no. 8, pp. 1437–1450, 1998.

[44] E. Visotsky and U. Madhow, “Optimum beamforming using transmit
antenna arrays,” in Proc. IEEE VTC, vol. 1, 1999, pp. 851–856.

[45] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and
max-min fair transmit beamforming to multiple co-channel multicast
groups,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1268–1279,
2008.

[46] M. Bengtsson and B. Ottersten, “Optimum and suboptimum transmit
beamforming,” in Handbook of antennas in wireless communications.
CRC press, 2001.

[47] S.-J. Kim, A. Magnani, A. Mutapcic, S. P. Boyd, and Z.-Q. Luo, “Robust
beamforming via worst-case SINR maximization,” IEEE Trans. Signal
Process., vol. 56, no. 4, pp. 1539–1547, 2008.

[48] E. Song, Q. Shi, M. Sanjabi, R.-Y. Sun, and Z.-Q. Luo, “Robust
SINR-constrained MISO downlink beamforming: When is semidefinite
programming relaxation tight?” EURASIP J. Wireless Commun. Netw.,
vol. 2012, no. 1, pp. 1–11, 2012.

[49] T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Worst-case robust multiuser
transmit beamforming using semidefinite relaxation: Duality and impli-
cations,” in Proc. IEEE ASILOMAR, 2011, pp. 1579–1583.

[50] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Proc. Mag.,
vol. 27, no. 3, pp. 20–34, 2010.

[51] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,”
IEEE Microw. Mag., vol. 5, no. 1, pp. 46–56, 2004.

[52] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted ` 1 minimization,” J. Four. Analy. Appl., vol. 14, no. 5, pp.
877–905, 2008.

[53] J. Joung, “Machine learning-based antenna selection in wireless com-
munications,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2241–2244,
2016.

[54] J. Chen, S. Chen, Y. Qi, and S. Fu, “Intelligent massive MIMO antenna
selection using monte carlo tree search,” IEEE Trans. Signal Process.,
vol. 67, no. 20, pp. 5380–5390, 2019.

[55] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power
control scheme based on convolutional neural network,” IEEE Commun.
Lett., vol. 22, no. 6, pp. 1276–1279, 2018.

[56] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interference
management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–
5453, 2018.

[57] B. Lin, F. Gao, S. Zhang, T. Zhou, and A. Alkhateeb, “Deep learning-
based antenna selection and CSI extrapolation in massive MIMO sys-
tems,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7669–7681,
2021.

[58] S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for
EE364b, Stanford University, pp. 2006–07, 2007.

[59] D. Bertsimas, A. King, and R. Mazumder, “Best subset selection via a
modern optimization lens,” The Annals of Statistics, vol. 44, no. 2, pp.
813–852, 2016.

15

[60] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. ICML, 2017,
pp. 1263–1272.

[61] N. Agarwal, A. Gonen, and E. Hazan, “Learning in non-convex games
with an optimization oracle,” in Proc. COLT, 2019, pp. 18–29.

[62] V. Garg, S. Jegelka, and T. Jaakkola, “Generalization and representa-
tional limits of graph neural networks,” in Proc. ICML, 2020, pp. 3419–
3430.

[63] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” JMLR, vol. 17, no. 83, pp. 1–5,
2016.

[64] MOSEK ApS, “MOSEK optimization suite.”
[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. ICLR, 2015.
[66] O. Mehanna, K. Huang, B. Gopalakrishnan, A. Konar, and N. D.

Sidiropoulos, “Feasible point pursuit and successive approximation of
non-convex QCQPs,” IEEE Signal Process. Lett., vol. 22, no. 7, pp.
804–808, 2014.

[67] L. Dai, S. Sfar, and K. Letaief, “Optimal antenna selection based on
capacity maximization for MIMO systems in correlated channels,” IEEE
Trans. Commun., vol. 54, no. 3, pp. 563–573, 2006.

APPENDIX A
PROPOSED B&B PROCEDURE

The proposed B&B procedure is essentially Algorithm 3
without any pruning of the nodes based on node classifier.
The B&B procedure is outlined in Algortihm 4

Algorithm 4: BB
1 Input: Problem instance (hm, σm, γm, εm), ∀m, trained pruning

policy πθ , relative error ε;
// Add the root node first

2 A(0)
1 ← {},B(0)1 ← {};

3 Select node using (18) for N (0)
1 ;

4 Wincumbent ← solution to (17);
5 l

(t)
G ← ‖W (0)

1 ‖2F , u(0)G ← ‖Wincumbent‖2F ;
6 F(0) ← {(0, 1)};
7 t← 0;
8 while |F(t)| > 0 and

∣∣∣u(t)
G
−l

(t)
G

∣∣∣/l(t)
G
> ε do

9 Select a non-leaf node (`?, s?) using (18)
10 Remove the selected node F(t) ← F(t)\N (`?)

s? ;
11 Select variable n? using (19);
12 Generate child nodes N (`?+1)

s?1
and N (`?+1)

s?2
using (13) and

append to F(t);
13 k ← arg mini∈{1,2} Φub

(
N (`?+1)

s?i

)
;

14 if Φub

(
N (`?+1)

s?
k

)
≤ u(t)G then

15 u
(t+1)
G ← Φub

(
N (`?+1)

s?
k

)
;

16 Wincumbent ← solution to (17) for N (`?+1)
s?
k

;
17 end
18 l

(t+1)
G ← min(`,s)∈F(t)Φlb

(
N (`)

s

)
;

19 F(t+1) ←
{

(s′, `′) ∈ F(t) | Φlb

(
N (`′)

s′

)
≤ u(t+1)

G

}
;

20 t← t+ 1;
21 end
22 Return Wincumbent;

APPENDIX B
POOF OF LEMMA 3

(a) The BF setting implies that C(wm,hm, εm, σm) is from
(2b). Then, the equivalence of (2b) and (3) implies that (15)
for any node N (`)

s can be optimally solved using SOCP. Hence
Lemma 3(a) holds due to Lemma 1.

(b) Note that (15) with B(`)
s is equivalent to (4) with anten-

nas restricted to the set [N]\B(`)
s . Hence, when the condition

in (16) is satisfied for H([N]\B(`)
s , :), then (15) with B(`)

s can
be optimally solved using SDR due to Lemma 2. Further, the
B&B procedure ensures that |B(`)

s | ≤ N − L,∀(s, `). Hence,
the set {H(S, :)|S ∈ [N], |S| ≥ L} includes all possible
instances of (15) encountered during the B&B procedure.
Therefore, Lemma 3(b) holds.

(c) Note that |B̃(`)
s | = N−L. Hence, the solution of Problem

(17) satisfies the constraint (7c). Further, due to Lemma 3 (a)
and (b), Problem (17) can be optimally solved using SOCP
and SDR for the BF and RBF cases, respectively. Hence,
Φub(N (`)

s) is a valid upper bound of the optimum of (7).

APPENDIX C
PROOF OF THEOREM 1

A. Proof of (a) and (b)
Note that if the SOCP and SDR return optimal solutions to

every leaf node of the B&B tree, then the B&B procedure
is ensured to find the optimal solutions of the the joint
BF/RBF&AS problems. The reason is that the B&B tree only
has a finite number of leaves.

For the BF setting with perfect CSI, the subproblem at a
leaf node (`, s) can be expressed as

minimize
W

‖W ‖2F (32)

subject to
|wH

mhm|2∑
6̀=m |wH

` hm|2 + σ2
m

≥ γm, ∀m ∈ [M]

W (n, :) = 0, ∀n ∈ B(`)
s ,

where |B(`)
s | = N−L. Since ‖W ‖row−0 ≤ L is automatically

satisfied, it is omitted. Problem (32) can be rewritten as

minimize
W

(`)
s

‖W (`)
s ‖2F (33)

subject to
|wH

mhm|2∑
6̀=m |wH

` hm|2 + σ2
m

≥ γm, ∀m ∈ [M]

where W (`)
s = W ([N]\B(`)

s , :), and we let wm = W
(`)
s (:,m)

by slightly abusing the notation. Since Problem (33) can be
recast as a convex problem as detailed in (3), the solution to
the above is indeed optimal.

Similarly, under the RBF setting with imperfect CSI, the
subproblem at a leaf node can be written as

minimize
W

‖W ‖2F (34)

subject to min
hm∈Um

h
H

mWmhm∑
j 6=m h

H

mWjhm + σ2
m

≥ γm,

W (n, :) = 0, ∀n ∈ B(`)
s ,

where |B(`)
s | = N − L. Problem (34) can be further rewritten

as

minimize
W

(`)
s

‖W (`)
s ‖2F (35)

subject to min
hm∈Um

h
H

mWmhm∑
j 6=m h

H

mWjhm + σ2
m

≥ γm,

16

Fig. 4. Illustration of a B&B tree (where no nodes are fathomed).

where W (`)
s and wm are defined as in (33), and hm =

H
(`)
s (:,m) with H(`)

s = H([N]\B(`)
s , :) (recall that Um :=

{hm+e|‖e‖2 ≤ εm}). Using the condition in Theorem 1 (b),
and invoking Lemma 3, one can see that (35) can be solved
optimally using SDR.

B. Proof of (c)

1) Amount of SOCPs/SDRs Solved by Proposed B&B: In
our B&B procedure, (15) and (17) are equivalent for any node
and its right child node, i.e.,

Φlb

(
N (`)
s

)
= Φlb

(
N (`+1)
s2

)
,Φub

(
N (`)
s

)
= Φub

(
N (`+1)
s2

)
.

The first equation is because B(`)
s = B(`+1)

s2 and the second
because B̃(`)

s ,∀(`, s) in (17) is determined using the solution
to (15). Hence, one can avoid redundant computations in the
nodes by storing and reusing the results of (15) and (17). Using
this observation, we derive an upper bound of the number of
SOCPs/SDRs that need to be solved by the B&B.

Consider a B&B tree where none of the nodes are fathomed
(Fig. 4). Note that there are QLeaf =

(
N
L

)
leaf nodes (squares

in Fig. 4). Therefore, there are QTotal = 2
(
N
L

)
− 1 nodes in

total (all circles and squares). Each non-leaf node (circles) is
branched into a right child node and a left child node. Hence,
there are QRight =

(
N
L

)
− 1 right child nodes (shaded solid

circles and squares) and QLeft =
(
N
L

)
− 1 left child nodes

(unshaded solid circles and squares).
The constraints of the SOCPs/SDRs corresponding to the

leaf nodes can be different from that of its parent even if they
correspond to a right child node, i.e., shaded squares. This
is because of the update step in (20) for the leaf nodes. To
explain, a right child node, N (`)

s , is converted into a leaf node
if L of the decided antennas are included, i.e., |A(`)

s | = L.
For this node, B(`)

s = [N]\A(`)
s , i.e., all remaining undecided

antennas are excluded. Since B(`)
s will be different from that of

its parent node, the solutions of (15) and (17) can be different
from that of its parent node.

Therefore, only the non-leaf right child nodes (shaded solid
circles) can reuse previously stored upper bound and lower
bound solutions from their parents. Let QRightLeaf denote
the number of right child leaf nodes (shaded squares). Then,
the total number of nodes whose associated SOCPs/SDRs
that need to be solved in the worst case is QCompute =
QTotal −QRight +QRightLeaf .

To count QRightLeaf , notice that the right and left child
nodes of a parent node correspond to ‘including’ and ‘exclud-
ing’ an antenna, respectively. A parent node is branched into

a right child leaf node if it contains exactly L − 1 included
antennas and fewer than or equal to N − L − 1 excluded
antennas. This implies that there can be fewer than or equal
to (L − 1) + (N − L − 1) = N − 2 decided antennas.
Hence, a right child leaf node is created whenever a node has
≤ N −2 decided antennas, where L−1 of them are included,
is branched. Therefore, we have the following holds:

QRightLeaf =

(
N − 2

L− 1

)
+

(
N − 3

L− 1

)
+ · · ·+

(
L− 1

L− 1

)
=

N−L+1∑
i=2

(
N − i
L− 1

)
.

Consequently,

QCompute =

(
N

L

)
+

N−L+1∑
i=2

(
N − i
L− 1

)
.

Note that QCompute nodes may correspond to 2QCompute

SOCPs/SDRs (cf. (15) and (17) for each node). However, for
the leaf nodes (15) and (17) are identical. Hence there are only
QCompute −

(
N
L

)
instances of (15). Moreover, there can be at

most
(
N
L

)
instances of (17), since

(
N
L

)
correspond to selecting

L out of N antennas. Therefore, there are at most QCompute

SDRs/SOCPs solved by the B&B procedure.
2) The SOCPS/SDRs Needed in B&B for Problem (21):

To complete the proof, let us examine the number of
SOCPs/SDRs that are needed to exhaust the B&B tree of the
formulation in (21).

A node problem of (21), for the node N (`)
s is as follows:

minimize
W ,z

‖W ‖2F (36)

subject to C(wm,hm, εm, σm) ≥ γm,
z ∈ {0, 1}N , z>1 ≤ L,
z(n) = 0, n ∈ B(`)

s , z(n) = 1, n ∈ A(`)
s ,

‖W (n, :)‖2 ≤ Cz(n), ∀n ∈ [N].

The lower bound is obtained by solving the convex relaxation
of the above, i.e., z ∈ {0, 1} is relaxed to z ∈ [0, 1]N . One
can see that the lower bounds obtained at the parent node and
both child nodes may be different.

It is because (36) depends upon both A(`)
s and B(`)

s and
each child node will differ from its parent in one of the two
sets, i.e, B(`+1)

s1 6= B(`)
s and A(`+1)

s2 6= A(`)
s . The above implies

that the number of SOCPs/SDRs with B&B using (36) has an
upper bound of Q′Compute = 2

(
N
L

)
− 1 (specially, with

(
N
L

)
instances of (17) and

(
N
L

)
− 1 instances of (15)).

Due to page limitations, the proofs of Lemmas 4-6 and
Theorem 2, the details of the GNN design, and the details
of node feature design can be found in the supplementary
materials (download under “Media” of the IEEE Xplore
page of this paper). They can also be found online at
https://arxiv.org/abs/2206.05576.

17

Supplementary Material of “Optimal Solutions for
Joint Beamforming and Antenna Selection: From Branch
and Bound to Machine Learning”

Sagar Shrestha, Xiao Fu, and Mingyi Hong

APPENDIX D
PROOF OF LEMMA 4

We use the empirical Rademacher complexity of the GNN
class to assist finding the expected risk’s error, which is a
classic way of establishing generalization bounds [1]–[3]. To
proceed, let us define the sets

Xφ :=
{
φ =

[
x>1, . . . ,x

>
U , e
>
1,1, . . . , e

>
U,U

]∣∣ ‖xu‖2, ‖eu,v‖2 ≤ Bx,∀u, v ∈ [U]
}
,

XZ := {Z ∈ RE×E |‖Z‖2 ≤ BZ}, and

Xβ := {a ∈ RE | ‖a‖2 ≤ Bβ}.

First, consider the following lemma:

Lemma 5 ([1, Theorem 3.1]). Let T be a family of functions
mapping from Xφ × {0, 1} to [−b, b]. Assume G consists of
K i.i.d. samples {φk, yk}Kk=1. With probability at least 1− δ
over the samples G, for any τ ∈ T ,

E[τ(φ, y)]− 1

K

∑
(φk,yk)∈G

τ(φk, yk) ≤ 2R̂G(T) + 3b

√
log 2/δ

2K
,

where R̂G(T) is the empirical Rademacher complexity [1] of
the set T with respect to the samples G.

Let us define the set T := {(φ, y) 7→ L(πθ(φ), y) | θ ∈
Θ}, a class of functions that maps from Xφ × {0, 1} to
[−BL, BL]. Then, applying Lemma 5 to T over the set G
ensures that with probability at least 1− δ over G, ∀θ ∈ Θ,

E[L(πθ(φ), y)]− 1

K

∑
i∈[K]

L(πθ(φi), yi)

≤ 2R̂G(T) + 3BL

√
log 2/δ

2K
, (37)

In the following, we derive an upper bound on R̂G(T). To
this end, we instead define a set Π := {φ 7→ πθ(φ)|θ ∈ Θ},
and derive R̂G(Π). With this, we can use Talagrand’s Lemma
[1, Lemma 4.2] to obtain R̂G(T) as R̂G(T) = CLR̂G(Π).

In order to derive R̂G(Π), we use Dudley’s entropy integral
[2, Lemma A.5], which provides an upper bound on the em-
pirical Rademacher complexity by using the covering number
of Π. To clarify, a µ-cover of Π is any set C ⊆ Π such that
∀πθ ∈ Π, ∃πθ̃ ∈ C such that

max
φ∈Xφ

∣∣πθ(φ)− πθ̃(φ)
∣∣ ≤ µ.

Similarly, the covering number of the set Π at scale µ is
denoted by N(Π, µ) and defined as the minimum cardinality
of a µ-cover set of Π. The following lemma summarizes the
Dudley’s entropy integral that uses the covering number of a
set to bound its empirical Rademacher complexity.

Lemma 6 ([2, Lemma A.5]). Given samples G of size K, the
empirical Rademacher complexity of the set Π with respect to
the samples G is upperbounded as follows:

R̂G(Π) ≤ inf
a>0

(
4a√
K

+
12

K

∫ √K
a

√
logN(Π, µ)dµ

)
. (38)

To proceed with the derivation of log(N(Π, µ)), we first
characterize the Lipschitz constants of the GNN with respect to
its parameters. Consider parameters θ and θ̃, which correspond
to (Z1,Z2,Z3,β) and (Z̃1, Z̃2, Z̃3, β̃), respectively. Let q(d)

u

and q̃(d)
u denote the embeddings learned for the uth vertex at

the end of dth layer of the GNN with parameters θ and θ̃,
respectively. Then, for any input φ, the absolute difference
between the outputs of the two GNNs can be written as∣∣πθ(φ)− πθ̃(φ)

∣∣ (39)

=

∣∣∣∣∣∣ 1

U

∑
u∈[U]

(
ζ(β>q(D)

u)− ζ(β̃>q̃(D)
u)

)∣∣∣∣∣∣
≤ 1

U

∑
u∈[U]

Cζ

∣∣∣β>q(D)
u − β̃>q(D)

u + β̃>q(D)
u + β̃>q̃(D)

u

∣∣∣
≤ Cζ

U

∑
u∈[U]

(∥∥∥q(D)
u

∥∥∥
2

∥∥∥β − β̃∥∥∥
2

+Bβ

∥∥∥q(D)
u − q̃(D)

u

∥∥∥
2

)
.

First, we can bound ‖q(D)
u ‖2 as follows:∥∥∥q(D)

u

∥∥∥
2

=

∥∥∥∥∥ξ
Z1q

(D−1)
u +

∑
(u,v)∈E

ξ
(
Z2q

(D−1)
v +Z3eu,v

)− ξ(0)

∥∥∥∥∥
2

≤ Cξ‖Z1‖2
∥∥∥q(D−1)

u

∥∥∥
2

+ C2
ξ

∑
(u,v)∈E

(
‖Z2‖2

∥∥∥q(D−1)
v

∥∥∥
2

+ ‖Z3‖2 ‖eu,v‖2
)

≤ CξBZ
∥∥∥q(D−1)

u

∥∥∥
2

+ C2
ξU max

v

(
BZ

∥∥∥q(D−1)
v

∥∥∥
2

+BZBx

)
.

Solving the recursion from the final inequality, we obtain∥∥∥q(D)
u

∥∥∥
2
≤ αDBx + UC2

ξBZBx
αD − 1

α− 1
, (40)

where α = ((1 + UCξ)CξBZ).
Next, we bound Γ

(D)
u :=

∥∥∥q(D)
u − q̃(D)

u

∥∥∥
2

from (39) as
follows:

Γ(D)
u

=

∥∥∥∥∥ξ
Z1q

(D−1)
u +

∑
(u,v)∈E

ξ
(
Z2q

(D−1)
v +Z3eu,v

)
− ξ

Z̃1q̃
(D−1)
u +

∑
(u,v)∈E

ξ
(
Z̃2q̃

(D−1)
v + Z̃3eu,v

)∥∥∥∥∥
2

18

≤ Cξ
∥∥∥Z1q

(D−1)
u − Z̃1q̃

(D−1)
u

∥∥∥
2

+ UC2
ξ max

v

(∥∥∥Z2q
(D−1)
v − Z̃2q̃

(D−1)
v

∥∥∥
2

+
∥∥∥Z3 − Z̃3

∥∥∥
2
Bx

)
≤ Cξ

(∥∥∥q(D−1)
u

∥∥∥
2

∥∥∥Z1 − Z̃1

∥∥∥
2

+BZΓ(D−1)
u

)
+ UC2

ξ max
v

(∥∥∥q(D−1)
v

∥∥∥
2

∥∥∥Z2 − Z̃2

∥∥∥
2

+BZΓ(D−1)
v

+Bx

∥∥∥Z3 − Z̃3

∥∥∥
2

)
.

Solving the recursion in the last inequality, and using Γ
(0)
u =

0,∀u, we get

Γ(D)
u ≤ Σ̃Z1

∥∥∥Z1 − Z̃1

∥∥∥
2

+ Σ̃Z2

∥∥∥Z2 − Z̃2

∥∥∥
2

+ Σ̃Z3

∥∥∥Z3 − Z̃3

∥∥∥
2
,

where Σ̃Z1
= UC3

ξBZBx
α(D+1) − 2α+ 1

(α− 1)2
,

Σ̃Z2 = U2C4
ξBZBx

α(D+1) − 2α+ 1

(α− 1)2
,

Σ̃Z3 = UC2
ξBZBx

αD − 1

α− 1
.

Using the above bound on Γ
(D)
u in (39), we get∣∣πθ(φ)− πθ̃(φ)

∣∣ ≤ Σβ

∥∥∥β − β̃∥∥∥
2

+ ΣZ1

∥∥∥Z1 − Z̃1

∥∥∥
2

+ΣZ2

∥∥∥Z2 − Z̃2

∥∥∥
2

+ ΣZ3

∥∥∥Z3 − Z̃3

∥∥∥
2
, (41)

where Σβ = CζBxα
D + CζUC

2
ξBZBx

αD−1
α−1 , ΣZ1

=

CζBβΣ̃Z1
, ΣZ2

= CζBβΣ̃Z2
, and ΣZ3

= CζBβΣ̃Z3
.

Eq. (41) implies that for any θ ∈ Θ, the existence of θ̃ in the
cover set such that |πθ(φ)− πθ̃(φ)| ≤ µ can be satisfied by
ensuring the existence of (β̃, Z̃1, Z̃2, Z̃3) such that the right
hand side of (41) ≤ µ. Hence, if we construct µ/4Σβ-cover
of Xβ, and µ/4ΣZi

-cover of XZ , ∀i ∈ {1, 2, 3}, the Cartesian
product of the four sets correspond to a µ-cover of Π. Hence,
the covering number of Π at scale µ can be upper bounded
by the product of the covering numbers of the four sets as
follows:

N (Π, µ) ≤ N

(
Xβ,

µ

4Σβ

)
×

3∏
i=1

N

(
XZ ,

µ

4ΣZi

)
. (42)

In addition, the covering number for XZ and Xβ can be upper
bounded using [3, Lemma 8] and [4], respectively, as follows:

N(XZ , µ) ≤

(
1 +

2
√
EBZ
µ

)E2

,N(Xβ, µ) ≤
(

3Bβ
µ

)E
Using the above bounds in (42), we get

N (Π, µ) ≤
(

12BβΣβ
µ

)E
×

3∏
i=1

(
1 +

8
√
EBZΣZi

µ

)E2

≤

1 +
12
√
EBZmax

{
Bβ
BZ

Σβ,ΣZ1 ,ΣZ2 ,ΣZ3

}
µ

3E2+E

.

Finally, we can use Lemma 6 to obtain a bound on R̂G(Π).
To this end, we upper bound the integral on the right hand side
of (38) as follows:∫ √K

a

√
logN(Π, µ)dµ ≤

√
K
√

logN(Π, a).

The above inequality holds because
√

logN(Π, µ) increases
monotonically with the decrease of µ. Taking a = 1/

√
K, we

get the following:

R̂G(Π) ≤ 4

K
+

12
√

3E2 + E√
K

×√
log

(
1 + 12

√
EKBZmax

{
Bβ
BZ

Σβ,ΣZ1 ,ΣZ2 ,ΣZ3

})
.

Combining the above with R̂G(T) ≤ CLR̂G(Π) and substi-
tuting in (37), we get the final result.

APPENDIX E
PROOF OF THEOREM 2

Proof of Theorem 2 can be divided into two parts. In the first
part we bound the expected loss under of the learned GNN. For
this we will use the proof idea from [5]. However, the proof
technique in [5] hinges on the convexity of their online learn-
ing problem. Hence, we make appropriate modifications to
accommodate our non-convex GNN-based learning problem.
In the second part, using the expected loss, we characterize
the number of nodes needed to be visited by Algorithm 3 for
solving a given problem instance optimally.

A. Expected Loss of Algorithm 1

Note that the online learning algorithm in Algorithm 1 is a
no-regret algorithm. The definition of regret is as follows:

Definition 1 (Regret). Regret of an online algorithm that
produces a sequence of policies θ1:I = {θ(1),θ(2), . . . ,θ(I)}
is denoted by RegI . It is the average loss of all policies with
respect to the best policy in hindsight, i.e.,

RegI :=
1

I

I∑
i=1

1

|Di|
∑

(Φs,ys)∈Di

[L(πθ(i)(φs), ys)]

−min
θ∈Θ

1

I

I∑
i=1

1

|Di|
∑

(Φs,ys)∈Di

[L(πθ(φs), ys)].

Definition 2 (No-regret Algorithm). A no-regret algorithm is
an algorithm that produces a sequence of policies θ1:I such
that the average regret goes to 0 as N goes to ∞:

RegI ≤ γI and lim
I→∞

γI → 0.

For strongly convex L, the work in [5] shows that Algorithm
1 is a no-regret algorithm with η = ∞, i.e., ψ = 0 (recall
that η is the parameter of the exponential distribution, i.e.,
ψ ∼ Exp(η), where Exp(η) := η(exp(−η))). However, for
non-convex L we cannot guarantee that Algorithm 1 is a no-
regret algorithm [6]. But with 0 < η <∞, under Assumption
2, Algorithm 1 was shown to be a no-regret algorithm [6].

19

Lemma 7. [6, Theorem 1] When Assumption 2 holds, the
regret after N iterations can be bounded by:

Eψ∼Exp(η)[RegI] ≤ γI ≤ O(1/I1/3).

Finally, the following lemma establishes the expected loss
of the policy returned by Algorithm 1.

Lemma 8. For Algorithm 1, with probability at least 1− δ,

min
θ∈θ1:I

E(φs,ys)∼pθ,ψ[L(πθ(φs), ys)]

≤ min
θ∈Θ

1

I

I∑
i=1

1

J

∑
(φs,ys)∈Di

Eψ[L(πθ(φs), ys)]

+ γI + Gap

(
δ

2
, J

)√
2 log(2

δ)

I
. (43)

Proof: Define ωi,∀i ∈ [I] as:

ωi :=Ep
θ(i)

,ψ[L(πθ(i)(φs), ys)]

− 1

J

∑
(φs,ys)∈Di

Eψ[L(πθ(i)(φs), ys)].

Next, we use Lemma 4 to obtain a bound on ωi,∀i; i.e., with
probability at least 1− δ/2, the following holds simultaneously
for ωi,∀i ∈ [I] : ωi ≤ Gap

(
δ
2 , J

)
. Consequently, Ωi :=∑i

t=1 ωt, i = {1, . . . , I} forms a martingale sequence, i.e.,
E[Ωi|Ω1, . . . ,Ωi−1] = Ωi−1. Also, we have |Ωi+1 − Ωi| ≤
Gap(δ/2, J),∀i ∈ [I−1] with probability 1−δ/2. Next, consider
the following lemma:

Lemma 9 (Azuma-Hoeffding’s Inequality). Let X0, . . . , XI

be a martingale sequence and |Xi − Xi−1| ≤ ci. Then with
probability 1− δ,

Pr(XI −X0 ≥ ε) ≤ exp

(
−ε2

2
∑I
i=1 c

2
i

)
.

Using Lemma 9, we have the following holds with proba-
bility of at least (1− δ/2)2 ≥ 1− δ,

ΩI ≤ Gap

(
δ

2
, J

)√
2I log(2/δ). (44)

Now, consider the following inequality:

min
θ∈θ1:I

Epθ,ψ[L(πθ(φs), ys)]

≤ 1

I

I∑
i=1

Epθi Eψ[L(πθ(i)(φs), ys)]

=
1

I

I∑
i=1

1

J

∑
(φs,ys)∈Di

Eψ[L(πθ(i)(φs), ys)] +
1

I

I∑
i=1

ωi.

Hence, with probability of at least 1− δ, we have

min
θ∈θ1:I

Epθ,ψ[L(πθ(φs), ys)]

(a)

≤ min
θ∈Θ

1

I

I∑
i=1

1

J

∑
(φs,ys)∈Di

Eψ[L(πθ(φs), ys)] +O(1/I1/3)

+ Gap

(
δ

2
, J

)√
2 log(2/δ)

I

(b)

≤ ν +O(1/I1/3) + Gap

(
δ

2
, J

)√
2 log(2/δ)

I
,

where (a) is by Lemma 7 and (44), and (b) is obtained via
using Assumption 3.

When the loss function L is selected to be binary cross-
entropy loss, i.e.,

L(x, y) = −y log(x)− (1− y) log(1− x),

1−e−L(x,y) corresponds to the classification error. Therefore,
classification accuracy for any θ, i.e., ρθ is given by

ρθ = Epθ,ψ[exp(−L(πθ(φs), ys))].

Note that θ̂ = arg minθ∈θ1:I Epθ,ψ[L(πθ(φs), ys)]. Next,
we characterize ρθ̂. To that end, the following follows from
Lemma 8.

exp(Epθ,ψ[−L(πθ(φs), ys)])

≥ exp

(
−ν −O(1/I1/3)− Gap

(
δ

2
, J

)√
2 log(2/δ)

I

)
=⇒ ρθ̂ = Epθ,ψ[exp(−L(πθ(φs), ys))]

(b)

≥ exp

(
−ν −O(1/I1/3)− Gap

(
δ

2
, J

)√
2 log(2/δ)

I

)
,

where (b) follows from Jensen’s inequality.

B. B&B expected number of nodes and optimality

Let εFP denote the false positive error rate, i.e., the proba-
bility of classifying an irrelevant node as relevant. Also define
εFN denote the false negative error rate, i.e., the probability of
classifying a relevant node as irrelevant. Then the expected
number of branches generated by using pruning policy on
B&B was derived in [7]:

Lemma 10 ([7, Theorem 1]). Assume that the node selection
method in (18) ranks an irrelevant node higher than a rele-
vant node with probability εr. Then the expected number of
branches (number of non-leaf nodes) is

Qθ̂ − 1

2
≤
((

1− εFN

1− 2εrεFP
+

εFN

1− 2εFP

)
εrεFP

N∑
n=0

(1− εFN)n

+(1− εFN)N+1 (1− εr)εFP

1− 2εFP
+ 1

)
N,

Our node selection strategy is the lowest lower bound first
as detailed in Section III. In the worst case scenario, εr = 1.
Therefore, using Lemma 10, the expected number of branches
is

≤ N

(
1− ρθ̂
2ρθ̂ − 1

N∑
n=0

ρn
θ̂

+ 1

)
(c)
= N

(
1− ρN+1

θ̂

2ρθ̂ − 1
+ 1

)

=
N(2ρθ̂ − ρ

N
θ̂

)

2ρθ̂ − 1
.

Since the expected number of branches correspond to the
expected number of non-leaf nodes, the total number of nodes
in the tree is ≤ 2N(2ρ

θ̂
−ρN

θ̂
)

2ρ
θ̂
−1 +1. Next, we we characterize the

probability that Algorithm 3 provides the optimal solution. To

20

this end, observe that there is only one relevant node at any
depth n of the B&B algorithm. The probability of not pruning
a relevant node is ≥ ρθ̂. Therefore, the probability of not
pruning a relevant node at any depth of the branch and bound
tree is ≥ ρN

θ̂
(since N is the maximum depth of the tree).

Hence, the probability of obtaining an optimal solution is at
least ρN

θ̂
.

APPENDIX F
GNN DESIGN IN SIMULATIONS

In this section, we detail the GNN architecture used in
the experiments. The GNN is designed to accommodate the
unequal input feature dimensions for antennas and users. We
enhance the expressiveness GNN by letting different layers to
have different aggregation matrices in our experiments. The
initial embeddings of a common size E are obtained using a
single layer fully connected neural network, i.e.,

q(0)
n = ReLU(Z1xn), q

(0)
N+m = ReLU(Z2xm)

eu,v = ReLU(Z3ẽu,v).

where Z1 ∈ RE×Va , Z2 ∈ RE×Vu , Z3 ∈ RE×Ve , and ReLU :
RE → RE deontes elementwise nonlinear function such that
ReLU(x) = max{x, 0}.

The first layer of GNN only updates the antenna vertices,
i.e., qn, n ∈ [N], as follows

q(1)
n = Z9

(
ReLU

(
Z8q

(0)
n +

M∑
m=1

Z7

(
ReLU

(
Z6q

(0)
n +

Z5q
(0)
N+m +Z4en,N+m

))))
,∀n ∈ [N]

q
(1)
N+m = q

(0)
N+m,∀m ∈ [M].

The second layer only updates the user vertices as follows

q
(2)
N+m = Z15

(
ReLU

(
Z14q

(1)
N+m +

N∑
n=1

Z13

(
ReLU

(
Z12q

(1)
N+m

+Z11q
(1)
n +Z10en,N+m

))))
,∀m ∈ [M]

q(2)
n = q(1)

n ,∀n ∈ [N].

Such “split updating” of different nodes’ embeddings in two
layers has been advocated in [8] for the type of graph structure
used in this work (i.e., a bipartite graph). Moreover, there is
a potential saving in the computational cost in both training
and testing [9] compared to updating all nodes’ embeddings
in each layer.

Finally, πθ(φ) is computed using the q(2)
N+m,∀m ∈ [M] as

follows:

πθ(φ) = Sigmoid

(
1

M

M∑
m=1

β>ReLU(Z16q
(2)
N+m)

)
,

where Z4, . . .Z16 ∈ RE×E , β ∈ RE , and Sigmoid : R → R
is the sigmoid function, i.e., Sigmoid(x) = 1

1+exp(−x) .

APPENDIX G
CONSTRUCTION OF INPUT FEATURES (φ(N (`)

s))

We assign the features tabulated in Table I among the ele-
ments of the following sets: {xi | i ∈ [N]}, {xN+i | i ∈ [M]},
and {ei,N+j | i ∈ [N], j ∈ [M]}. Specifically, the Type II
features that can be represented with a vector of dimension N
(i.e., A(`)

s , and B(`)
s , [‖W`,s(1, :)‖22, . . . , ‖W`,s(N, :)‖22]) are

assigned to the elements of {xi | i ∈ [N]} as follows:

xi(1) =

{
1, if i ∈ A(`)

s

0, otherwise,
xi(2) =

{
1, if i ∈ B(`)

s

0, otherwise, and

xi(3) = ‖W`,s(i, :)‖22.

Similarly, the Type II features that can be represented by
a vector of dimension M (i.e., W`,s(:,m)Hhm and the
aggregated interference under W`,s) are assigned to be the
elements of {xN+i | i ∈ [M]} as follows:

xN+i(1) =
∣∣W`,s(:, i)

Hhi
∣∣2 , xN+i(2) =

∑
j 6=i

∣∣W`,s(:, j)
Hhi

∣∣2 .
The remaining Type II features can be represented by a
vector of dimension NM , and are assigned to the elements of
{ei,N+j | i ∈ [N], j ∈ [M]} as follows:

(ei,N+j(1), ei,N+j(2), ei,N+j(3)) = (Re(H(i, j)),

Im(H(i, j)), |H(i, j)|)
(ei,N+j(4), ei,N+j(5), ei,N+j(6)) = (Re(Wincumbent(i, j)),

Im(Wincumbent(i, j)), |Wincumbent(i, j)|)
(ei,N+j(7), ei,N+j(8), ei,N+j(9)) = (Re(W`,s(i, j)),

Im(W`,s(i, j)), |W`,s(i, j)|),

where Re(·) and Im(·) returns the real and imaginary part of
the complex number.

Finally, the Type I features are assigned to the set
{xN+i | i ∈ [M]} as follows:

(xN+i(3), xN+i(4), . . . , xN+i(8))

= (l
(t)
G , u

(t)
G ,Φlb(N (`)

s),Φub(N (`)
s), `,1(Φub(N (`)

s)− u(t)
G < ε)).

REFERENCES

[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine
learning. MIT press, 2018.

[2] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” in Proc. NeurIPS, vol. 30, 2017.

[3] M. Chen, X. Li, and T. Zhao, “On generalization bounds of a family of
recurrent neural networks,” in Proc. AISTATS, 2019.

[4] D. Pollard, “Empirical processes: Theory and applications,” NSF-CBMS
Reg. Conf. Ser. Prob. Stat., vol. 2, pp. i–86, 1990.

[5] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. AISTATS,
2011, pp. 627–635.

[6] N. Agarwal, A. Gonen, and E. Hazan, “Learning in non-convex games
with an optimization oracle,” in Proc. COLT, 2019, pp. 18–29.

[7] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch
and bound algorithms,” in Proc. NeurIPS, vol. 27, 2014, pp. 3293–3301.

[8] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Proc. NeurIPS, vol. 32, 2019.

[9] M. Nassar, “Hierarchical bipartite graph convolution networks,” arXiv
preprint arXiv:1812.03813, 2018.

