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Abstract—Emerging communication networks are envisioned
to support massive wireless connectivity of heterogeneous devices
with sporadic traffic and diverse requirements in terms of latency,
reliability, and bandwidth. Providing multiple access to an in-
creasing number of uncoordinated users and sharing the limited
resources become essential in this context. In this work, we revisit
the random access (RA) problem and exploit the continuous
angular group sparsity feature of wireless channels to propose
a novel RA strategy that provides low latency, high reliability,
and massive access with limited bandwidth resources in an all-
in-one package. To this end, we first design a reconstruction-
free goal-oriented optimization problem, which only preserves
the angular information required to identify the active devices.
To solve this, we propose an alternating direction method of
multipliers (ADMM) and derive closed-form expressions for
each ADMM step. Then, we design a clustering algorithm that
assigns the users in specific groups from which we can identify
active stationary devices by their angles. For mobile devices, we
propose an alternating minimization algorithm to recover their
data and their channel gains simultaneously, which allows us to
identify active mobile users. Simulation results show significant
performance gains in terms of active user detection and false
alarm probabilities as compared to state-of-the-art RA schemes,
even with limited number of preambles. Moreover, unlike prior
work, the performance of the proposed blind goal-oriented
massive access does not depend on the number of devices.

Index Terms—Massive random access, goal-oriented inverse
problems, reconstruction-free inference, Internet of Things,
machine-type communications, MIMO systems, convex optimiza-
tion, atomic norm minimization.

I. INTRODUCTION

UBIQUITOUS wireless connectivity and its continuous
evolution will increasingly play a critical role in peo-

ple’s everyday life in the upcoming years. The unprecedented
growth of Internet of Thing (IoT) devices in beyond 5G
(B5G) and 6G communication systems will create various new
applications and services: smart cities and home automation
by intelligent appliances, smart manufacturing in factories
for providing informed decisions to the robotics, autonomous
vehicles for smart transportation, health care monitoring for
better care choices and remote surgery, delivering smart edu-
cation for students, to name a few. Targeting the emergence
of these applications, 5G and B5G/6G specifications have
identified two inevitable use cases for machine-type user
equipment (UE)s in IoT, namely ultra reliable, low latency
communication (URLLC) and massive machine-type commu-
nication (mMTC). These two features will co-exist in IoT,
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enabling data transmission from myriads of UEs anywhere
and anytime [1], [2].

Random access (RA) is a key yet challenging component of
the communication process between UEs and base station (BS)
in wireless networks, and particularly in emerging generations
(5G and B5G/6G). The conventional RA strategy that has
commonly been employed in human-type communications is
grant-based (GB) RA [3], which consists of four main stages.
In the first stage, each active UE randomly selects one of
the predefined preambles from a pool of orthogonal preamble
sequences and sends it to the BS. In the second stage, the BS
allocates resources to the activated preambles and sends an
RA response as a grant for transmitting in the next stage. In
the third stage, each UE that has received a response from the
BS sends a connection request message in order to demand
resources for data transmission. When there is no collision for
the preambles, the BS sends a contention resolution message in
the fourth stage to notify active UEs of the resources pending
for data transmission. In case multiple UEs select the same
preamble and resources, the BS detects the collision and does
not respond to the affected UEs in the fourth stage; these
UEs have to restart the RA process after waiting a random
time. The number of available orthogonal preambles is directly
proportional to the size of channel coherence block, which is
limited. Therefore, under grant-based RA, in addition to the
issue of significant signaling overhead, the number of active
UEs that can be granted access to the network is limited by
the number of preambles. Although several contention-based
strategies have recently been proposed to reduce the collision
probability (e.g., see [4], [5]), they have severe limitations and
may not be used in mMTC scenarios for several reasons: (i)
mMTC is expected to operate in crowded traffic scenarios due
to a massive number of devices involved; (ii) MTC/IoT UEs
are often battery-operated with limited power and bandwidth;
(iii) device activity patterns are sporadic and at a certain time,
only few devices are active, i.e, are in sleep mode most of the
time and are sporadically activated to send data, and (iv) due
to short data payloads and low latency requirements, random
access and data transmission have to be performed together.

Recently, an alternative RA strategy, named grant-free (GF),
has been proposed for mMTC in 5G communication systems
[6]–[23]. Unlike grant-based access, active UEs in grant-free
access do not have to wait for a response/grant from the
BS to send their data payloads; instead, data packets are
transmitted without reserving channel resources in a time di-
vision multiplexing (TDM) manner. Furthermore, unlike GB-
RA where preambles are randomly selected at each time slot,
preambles in GF-RA serve as the identifier (ID) of UEs during

ar
X

iv
:2

20
5.

07
09

2v
1 

 [
cs

.I
T

] 
 1

4 
M

ay
 2

02
2



2

all time slots. This strategy leads to a significant reduction
in the access delay of mMTC UEs. Exploiting orthogonal
preambles in GF access results in the same aforementioned
issues for GB access. A key limitation is that it is not
practical or feasible to assign unique orthogonal preambles to
a massive number of UEs during all time slots due to limited
channel coherence time. For that, several works consider non-
orthogonal preambles in GF (e.g., [7], [12]). While using
non-orthogonal preambles can reduce the collision probability,
it also degrades the performance of active user detection
(AUD) and channels estimation (CE). It is shown in [24]
that exploiting non-orthogonal preambles does not necessarily
lead to higher access rate than its orthogonal counterpart.
Moreover, using a large number of non-orthogonal preambles,
which is a necessity for such type of methods, is not well
suited for mMTC due to limited bandwidth requirements.
There are also strategies combining grant-free and grant-based,
known as semi-GF [25]. Semi-GF improves the performance
compared to GF, while exhibiting lower signaling overhead
and latency compared to GB. Nevertheless, semi-GF cannot
support massive access and connectivity.

Given the aforementioned limitations, the quest for a ran-
dom access method that supports massive access without
preamble collision while simultaneously ensuring not increas-
ing the number of preambles and signaling overhead remains
open. This is a timely problem of primary theoretical and
practical relevance and is the main motivation of this work.
This has not yet been explored in the literature of RA.
We summarize below the latest RA works and their issues,
categorizing them into three groups as follows:

‚ Compressed sensing (CS). Several RA methods, such as
[12], [15], [16], [26], employ one of the well known
algorithms in CS known as approximate message passing
(AMP) to promote the discrete angular sparsity of MIMO
channels. [12] proposes to use an AMP variant that jointly
performs both the tasks of active user detection and CE.
When the number of preambles (i.e., time resources) is
very large, AMP provides acceptable results, however it
performs poorly when the number of preambles is low.
Channel and noise distributions in AMP are not arbitrary
and should follow specific predefined rules to work
properly. A large pilot (training) overhead is required,
making AMP resource wasteful. There is also a very
recent work [20] in this regard based on continuous CS
that performs the tasks of AUD and CE; however, it
remains computationally intractable when the number of
devices exceeds a certain number (e.g., K ą 30) and is
suitable for settings with limited number of users.

‚ Covariance-based AUD [11], [13], [14], [27]–[29]. This
type of RA performs only AUD and not CE. It is based
on calculating the covariance of measurement matrix.
Based on the covariance measurement matrix, a maxi-
mum likelihood (ML) method is then used to detect the
active devices. Again, channel and noise distributions
should follow specific rules and cannot be arbitrary.
The complexity increases with the number of devices. It
only considers the sparsity of MTC devices and not the

inherent features of channels, e.g., the continuous angular
sparsity. Moreover, a huge number of antennas is required
for these methods to work properly.

‚ Deep learning (DL) [21]–[23]. A number of works
use deep neural networks to approximate the mapping
between the received and transmitted signals for joint
AUD and CE. This type of works usually requires a
prohibitively large amount of training data, which indeed
takes a very long time to collect and label, and seems
to be hard to obtain in practice due to the sporadic
traffic of MTC devices. Apart from that, when the system
parameters change for example in subsequent coherence
intervals, DL spends severe amount of resources and
computational complexity to retrain the system, which
is extremely burdensome and does not scale for fulfilling
the stringent latency requirements of B5G systems.

A. Our Approach and Contributions

A unique, novel feature of our proposed random access
strategy, coined blind goal-oriented detection (BGOD), is that
it incorporates all characteristics of B5G requirements in all-
in-one package. Our method builds upon the assumption that
MIMO channels exhibit angular continuous group sparsity
features. This implies that only few number of components
in the angular domain contribute to the channel of each UE
and the angles of arrival (AoAs) corresponding to each UE lie
alongside each other in a group, as shown in Figure 1(a) (the
interested reader is referred to [26] for detailed description of
this feature). We first design a general optimization problem
that promotes the angular group sparsity features of the
channels corresponding to all UEs. This optimization problem
is highly challenging and costly in terms of computational
complexity when the number of UEs is very large (as is the
case for massive access in B5G/6G wireless networks), and
actually computationally intractable or infeasible in practice.
Our first goal is to design a simple reconstruction-free frame-
work that only identifies all active UEs, bypassing the difficult
task of data recovery (DR) and CE for massive UEs. To this
end, we design a novel goal-oriented optimization problem that
does not keep information on the UEs’ messages and complex
channel coefficients, but it provides instead a way to obtain
a goal-oriented continuous function whose maximum value
interestingly reveals the angle information of all active UEs.
We then design a clustering algorithm to place these angles
into several groups and find the ID of active UEs via their
angles. This is indeed the case when UEs are stationary (e.g.,
smart metering MTC devices) and the angles of each UE, e.g.,
the line of sight (LoS) angle, are known to the BS prior to the
RA process. For the case where UEs are moving or their angles
are not known to the BS in advance, we design an alternating
minimization (AM) method to recover both the messages and
the complex channel coefficients corresponding to active UEs.
The ID of each active user is contained in its data payload.
By the proposed strategy, the ID and data payloads of active
UEs and the channels can be fully obtained blindly.

The novel features and the main contributions of our work
are summarized as:
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1) Massive connectivity. Interestingly, the proposed goal-
oriented optimization problem does not depend on the
number of total users, whereas the complexity of our
clustering scheme does depend on the number of active
UEs. Therefore, a massive number of devices with
sporadic traffic can access to the network. Actually, the
higher the number of antennas at the BS, the more
active UEs can access the network. To the best of our
knowledge, this is the first work where the RA strategy
is independent of the number of devices.

2) High reliability. Employing massive number of anten-
nas at the BS and orthogonal preambles at the devices
leads to precise detection of the angles and facilitates
reliable data recovery. The lower the maximum length
of groups (known as angular spread), the fewer observa-
tions are required at the BS for exact recovery of angles.
Interestingly, devices that selected the same orthogonal
preambles (due to limitation in channel coherence time)
can still be distinguished by their different angles. The
possibility that two active users exist at the same time
with the same preamble and with the same continuous
angles is very low and can be ignored.

3) Low latency. We design an alternating direction method
of multipliers (ADMM) in order to directly and rapidly
obtain the goal-oriented continuous function by a few
measurements obtained at the BS. The proposed algo-
rithm is very fast and may fulfil the low latency re-
quirement of B5G/6G systems. Moreover, the proposed
algorithm operates in a blind way, i.e, the BS does not
need to use pilots for channel estimation and does not
need to coordinate with users in advance. This makes our
RA strategy very fast without any extra access latency.
Since there are no collisions of active users in our
method, there is no need for any contention resolution
step. Therefore, as shown in Figure 1(c), the proposed
RA strategy is performed in only one step and with very
low access delay.

4) Limited resources. The goal-oriented feature introduced
in this work opens up the possibility of spending as few
orthogonal preambles as possible in a blind way, which
results in significant resource saving. There is no need to
use known pilots for channel estimation and the devices
can transmit only their data. This feature is important
for MTC/IoT devices, which are battery-operated and
operate using limited bandwidth and low power.

B. Organization

The remainder of this paper is structured as follows. Section
II introduces the considered wireless system model with its
specific features. In Section III, we present the proposed
blind goal-oriented RA approach, which consists of four steps:
goal-oriented optimization III-A, ADMM III-B, active UE
identification III-C, and message recovery III-D. In Section IV
we assess the performance of our algorithm and compare it
with state-of-the-art RA schemes using numerical experiments.
Finally, Section V concludes the paper.

(a) (b)

(c)

Fig. 1. (a) Continuous angular group sparsity in the uplink channel. Only
Ka “ 3 UEs are active and the maximum number of physical groups are
considered to be three (Lmax :“ maxk Lk “ 3). (b) The angular spread of
each UE with respect to the BS. (c) Proposed blind massive access scheme.
Bottom image: The BS has full access to the angle information of fixed
devices. Top image: UEs are moving and send random preambles to the BS,
which accounts for their identification.

C. Notations

We use boldface lower and uppercase letters for vectors
and matrices, respectively. The i-th element of a vector x and
the pi, lq element of a matrix X are respectively denoted by
xi and Xpi,lq. The notation j is employed to represent the
imaginary unit. The real and imaginary parts of a complex-
valued matrixA “ AR`jAI P Cn1ˆn2 are shown byAR and
AI , respectively, and A :“ AR´ jAI denotes the conjugate.
For vector x P Cn and matrix X P Cn1ˆn2 , the `2 norm
and Frobenius norm are defined as }x}2 :“ p

řn
i“1 |xpiq|

2q
1
2

}X}F :“
b

řn1

i“1

řn2

j“1 |Xpi, jq|
2, respectively. X ľ 0

means that X is a positive semidefinite matrix. PΩp¨q is a
operator transforming an arbitrary matrix to a reduced matrix
with rows indexed by Ω. xA,By :“

řn1

i“1

řn2

l“1Ai,lBi,l is the
inner product of two complex-valued matrices A P Cn1ˆn2

and B P Cn1ˆn2 . The Toeplitz matrix T pvq is defined as

T pvq “

»

—

—

—

–

v1 v2 . . . vN
v2 v1 . . . vN´1

...
...

. . .
...

vN vN´1 . . . v1

fi

ffi

ffi

ffi

fl

(1)

where the pi, lq-th element is given by T pvqpi,lq “
"

vi´l`1 i ě l
vl´i`1 i ă l

*

. 1Ω is a vector of size RN which has

1s on the indices corresponding to the set Ω and zero else-
where. diagpxq is a diagonal matrix whose main diagonal
has elements of x P RN . e1 P RN is the canonical vector
whose first element is 1 and zero elsewhere, i.e., e1p1q “
1, e1piq “ 0, i “ 2, ..., N . x d y P CN is the element-wise
operation of two vectors x P CN and y P CN and its i-th
element is given by xiyi. The element-wise inequality for two
vectors x P RN and y P RN is represented by x ě y which
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means xi ě yi, i “ 1, ..., N . E and P denote expectation and
probability, respectively.

II. SYSTEM MODEL

We consider a wireless system in which a BS equipped
with uniform linear array (ULA) of N antennas is serving a
large number K of single-antenna UEs out of which Ka are
active denoted by the set SAU. We assume a block fading
channel, which remains constant over the coherence time T
and varies smoothly between adjacent coherence blocks. The
channel vector in the frequency domain from k-th UE to the
BS can be represented by [30], [31], [32, Equ. 7]:

hk “

ż π

0

αkpθqapθqdθ (2)

where αkpθq is the channel gain of user k corresponding to
the direction θ and apθq is the array response vector of BS
defined by

apθq “ 1?
N
r1, e´j2π

d
λ cospθq, ..., e´j2π

d
λ pN´1q cospθqsT (3)

where λ and d are the carrier wavelength and antenna spacing,
respectively. We further assume that there is limited local
scattering around the BS and the channel gains αkpθq are
constrained to lie in a small region pθmin

k , θmax
k q known as

angular spread and composed of Lk ! N spatial angles of
arrival (AoA) [12], [13], [33] (see Figures (a) and (b) of 1).
Thus, (2) can be rewritten as

hk “
Lk
ÿ

l“1

αkl apθ
k
l q “: Akα

k P CNˆ1 (4)

where αkl accounts for the gain of the l-th path, θkl is the
AoA of the l-th path for the k-th user, αk :“ rαk1 , ..., α

k
Lk
sT

and Ak :“ rarpθ
k
1 q, ...,arpθ

k
Lk
qs P CNˆLk . We consider the

case where the BS has partial observations, i.e., only signals
received by M out of N antennas, indexed by Ω Ď t1, ..., Nu
(|Ω| “ M ), are observed and the rest can be used for other
purposes, e.g., serving the UEs at the other side of BS. By
considering φk P CT as the information transmitted by k-
th user including both preamble and data, the received signal
after T time slots at the BS is given by [7], [19]:

YΩ “ PΩpY q “ PΩ

˜

ÿ

kPSAU

hkφ
H
k

¸

`E

:“
ÿ

kPSAU

PΩpXkq `E P CMˆT (5)

where E P CMˆT is the additive noise matrix, which has arbi-
trary distribution with }E}F ď η and SAU Ď t1, ...,Ku is the
set of active users. Inspired by [34]–[36], each matrix Xk :“
řLk
l“1 α

k
l apθ

k
l qφ

H
k is a superposition of Lk building blocks

(referred to as atoms) of the form apθkl qφ
H
k . Define the set of

building blocks as an atomic set Ak “ tapθqφ
H
k , θ P p0, πqu.

Each Xk is composed of a sparse set of atoms in A.

III. BLIND MASSIVE RANDOM ACCESS

In this section, we present the proposed massive blind
random access strategy, which consists of four main stages:

1) goal-oriented optimization
2) ADMM
3) identification of active UEs
4) joint data recovery (DR) and channel estimation (CE).

It is worth mentioning that the first three steps are sufficient
to identify active UEs distinguishable by their AoAs, e.g.,
stationary MTC UEs. The above four steps are summarized
in Algorithm 1.

A. Goal-oriented Optimization

In (5), we have a system of equations with a very large
number of unknowns (i.e., KNT ) and only MT observations
at the BS. Leveraging the degrees of freedom of the problem
in (5), which is

ř

kPSAU
pLk ` T q, motivates us to use a

general optimization problem that encourages the features
corresponding to all UEs simultaneously similar to what `0
functional offers to encourage sparsity feature in conventional
CS. Capitalizing on the results from continuous compressed
sensing (CS) (see e.g., [35]–[40]), such general optimization
framework is as follows:

min
ZkPCNˆT

k“1,...,K

K
ÿ

k“1

}Zk}Ak,0 s.t.}Y ´
K
ÿ

k“1

PΩpZkq}F ď η (6)

where }Zk}A,0 :“ inf
 

Lk : Zk “
řLk
l“1 c

k
l apθ

k
l qφ

H
k , c

k
l ą

0,apθkl qφ
H
k P Ak

(

is the atomic `0 function that computes
the least number of atoms needed to describe Zk by the atoms
in the atomic set Ak and

řK
k“1 }Zk}Ak,0 is a function that

promotes
řK
k“1 Lk. We reformulate (6) into an equivalent

form called LASSO-type and add a regularization term to
ensure consistency of the measurements given by:

min
ZkPCNˆT

k“1,...,K

K
ÿ

k“1

}Zk}Ak,0 `
γ

2
}Y ´ Y ‹}2F

s.t. Y ‹ “
K
ÿ

k“1

PΩpZkq (7)

where γ ą 0 is a regularization parameter that makes a
balance between the noise energy and the angular sparsity
feature with a role similar to η ą 0 in (6). Nevertheless, the
optimization problem (7) is NP-hard and intractable in general.
It is therefore beneficial to work with the nearest tractable
convex optimization problem whose objective function is a
convex relaxation of that in (7) and is stated as follows:

min
ZkPCNˆT

k“1,...,K

Y ‹
PCMˆT

K
ÿ

k“1

}Zk}Ak `
γ

2
}Y ´ Y ‹}2F

s.t. Y ‹ “
K
ÿ

k“1

PΩpZkq (8)

where the atomic norm } ¨ }Ak is the best convex surrogate
for the number of atoms composing Zk (i.e., } ¨ }Ak,0) and
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is defined as the minimum of the `1 norm of the coefficients
forming Zk:

}Zk}Ak :“ inftt ą 0 : Zk P tconvpAkqu “

inft
Lk
ÿ

l“1

ckl : Zk “
Lk
ÿ

l“1

ckl apθ
k
l qφ

H
k , c

k
l ą 0,apθkl qφ

H
k P Aku

(9)

where convpAq is the convex hull of A. Despite convexity
of the objective function in (7), it remains computationally
intractable due to the continuous nature of the angles θks. The
objective of this work is to identify the AoAs corresponding
to active users. The following theorem provides a novel
reconstruction-free optimization problem, which contains only
the information of AoAs corresponding to active users and
ignores the message information and the channel coefficients
corresponding to massive number of UEs. In fact, this theorem
provides a goal-oriented framework of solving (8), in which
the goal is only restricted to active user detection, i.e., finding
the AoAs corresponding to the active users. Before stating
this theorem, we first need to define the minimal wrap-around
distance (also called minimum separation) between angles as

∆ :“ min
k“1,...,K

min
i‰q

| cospθki q ´ cospθkq q| (10)

where the absolute value only in the latter relation is evaluated
over the unit circle, e.g., |0.01´ 0.09| “ 0.02.

Theorem 1. Let c1 :“
maxk“1,...,K }φk}2?

N
. Suppose that the

continuous AoAs of active users do not have any intersections
with each other, which indeed implies that at each given
time, two users with the same continuous AoAs should not
be active. Consider V P CMˆT as the dual matrix variable
corresponding to the primal variable Y ‹ in the following
optimization problem:

min
vPCN ,ZPCNˆT

Y ‹
PCMˆT ,WPCTˆT

Repv1q ` ReptrpW qq `
γ

2
}Y ´ Y ‹}2F

s.t.
„

T pvq Z
ZH W



ľ 0 ,Y ‹ “ ´2c1PΩpZq. (11)

Then, the AoAs corresponding to the active users are uniquely
identified provided that ∆ ą 1

N by finding the angles that
maximize the `2 norm of the goal-oriented dual polynomial
qGpθq as follows:

pθkl “ arg max
θPp0,πq

}qGpθq}2, l “ 1, . . . , Lk, k P SAU (12)

where qGpθq “ pPAdj
Ω pV qqHapθq.

Proof. See Appendix A. �

Discussion: The above theorem shows that all necessary
information required for identifying active users is contained
in the goal-oriented dual polynomial qGpθq. Figure 2 shows a
typical example of the `2 norm of the goal-oriented function
}qGpθq}2. The active devices can be identified by finding the
angles that maximizes }qGpθq}2. The proposed optimization
problem (11) is independent of the number of devices K
and can be solved for instance using CVX [41] (CVX calls

Fig. 2. The `2 norm of the goal-oriented dual polynomial function
}qGpθq}2. The angles for which }qGpθq}2 achieves its maximum determine
the angles of active UEs.

for SDPT3 solvers). To obtain }qGpθq}2, we need the matrix
dual solution V . Most of the CVX solvers return the dual
variables along with the primal variables. However, solving
this optimization problem is highly challenging, in particular
for massive MIMO communications where the BS is equipped
with a very large number of antennas N . Thus, the SDPT3
solver of CVX cannot reach to a solution. In order to solve this
this issue, we design a fast ADMM method (see Section III-B),
which significantly reduces the computational complexity and
is tailored to problems encountered in massive access.

Remark 1. (Relation between detection accuracy and N ) The
higher the number of BS antennas N , the easier the minimum
separation condition ∆ ą 1

N gets, thus the peaks of }qGpθq}2
can be identified more clearly and }qGpθq}2 provides more
information about active devices.

Remark 2. (Relation between detection accuracy and T ) The
more time resources are employed at the MTC devices, the
more information can be provided by }qGpθq}2, resulting in
easier identification of active devices.

Remark 3. (Detection accuracy versus K and Ka) The
accuracy and the complexity of the proposed framework do not
depend on the number of devices K. For moving UEs (only),
the higher the number of active devices, the more difficult
distinguishing which angles correspond to them is, and as a
result, the detection becomes harder.

B. Proposed ADMM

Solving the optimization problem (11) with SDPT3 is
prohibitive when N and T are very large. For that, we
propose here an ADMM algorithm that can be executed in
a significantly faster time. The general idea is to first form an
augmented Lagrangian function for the optimization problem
and then to split it into a sum of separable functions. In fact,
each step of ADMM involves finding a local minimum on
a variable [42]. The steps are repeated until some stopping
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criteria is satisfied. To apply this method, we first find an
augmented version of (11) by incorporating an intermediate
variable Ψ into (11) in order to decouple the semidefinite con-
straint from the affine constraints. This leads to the following
equivalent problem:

min
vPCN ,ZPCNˆT

WPCTˆT

ΨPCN`TˆN`T

Repv1q ` ReptrpW qq `
γ

2
}Y ` 2c1PΩpZq}

2
F

s.t.

„

T pvq Z
ZH W



“

„

Ψ0 Ψ1

ΨH
1 Ψ



:“ Ψ (13)

Ψ ľ 0. (14)

The augmented Lagrangian function for (13) is given as

Lρpv,W ,Z,Λ,Ψq “ Repv1q ` ReptrpW qq

`
γ

2
}Y ` 2c1PΩpZq}

2
F

`Re

C

„

Λ0 Λ1

Λ1 Λ



,

„

Ψ0 Ψ1

ΨH
1 Ψ



´

„

T pvq Z
ZH W



G

`
ρ

2

›

›

›

›

›

„

Ψ0 Ψ1

ΨH
1 Ψ



´

„

T pvq Z
ZH W



›

›

›

›

›

2

F

(15)

where ρ ą 0 is a regularization parameter and Λ “
„

Λ0 Λ1

Λ1 Λ



is the Lagrangian dual multiplier. Denoting the t-th

step of Ψ and Λ by Ψt and Λt, ADMM successively updates
the following steps to minimize the Lagrangian function Lρ:

pvt`1,W t`1,Zt`1q “ arg min
vPCN ,WPCTˆT ,

ZPCNˆT

Lρpv,W ,Z,Λt,Ψtq

(16)

Ψt`1 “ arg min
Ψľ0

Lρpvt,W t,Zt,Λt,Ψq (17)

Λt`1 “ Λt ` ρ

˜«

Ψt`1
0 Ψt`1

1

pΨt`1
1 qH Ψ

t`1

ff

´

„

T pvt`1q Zt`1

pZt`1qH W t`1



¸

,

(18)

where t indicates the iteration number. To make the method
practical, we need to obtain efficient implementations for all
of the steps. Obviously, the Lagrangian function Lρ is convex
with respect to Z and W . Hence, we can obtain closed-form
update solutions for Z and W by setting the partial derivative
of Lρ equal to zero as follows:

BLρ
BZ

“ 2c1γPAdj
Ω pY ` 2c1PΩpZqq ´ 2Λ1 ´ 2ρpΨ1 ´Zq “ 0

(19)
BLρ
BW

“ I ´Λ´ ρpΨ´W q “ 0 (20)

which lead to closed-form relations

Zt`1 “

ˆ

4c21γP
Adj
Ω PΩ`2ρIN

˙´1ˆ

2Λt1`2ρΨt
1´2γc1PAdj

Ω Y

˙

(21)

W t`1 “ Ψ
t
`

Λ
t
´ I

ρ
(22)

where PΩ and PAdj
Ω are matrix forms of the linear operators

PΩ and PAdj
Ω which by using MATLAB notations are obtained

as

PΩ “DpΩ, :q, P
Adj
Ω “Dp:,Ωq (23)

in which D “ diagp1Ωq P RNˆN . The closed-form expres-
sion for v is provided in the following lemma:

Lemma 1. Let g P RN be a vector whose elements are gp1q “
1
N and gpkq “ 1

2pN´k`1q , k ‰ 1. Define C P RNˆN as a
matrix composed of ´1s on the lower triangular parts and 1s
elsewhere, i.e., Ck,l “ ´1, k ą l and Ck,l “ 1, k ď l. Then,
the optimal vector vt`1 P CN in the pt ` 1q-th iteration of
ADMM that minimizes Lρ is given by

vt`1 “ g d

˜

´
e1

ρ
` T AdjpΨR

0 q ` T Adj
1 pΨI

0q`

T AdjpΛR
0 `C dΛI

0q

ρ

¸

, (24)

where T1pzq :“ C ˝T pzq for an arbitrary vector z P CN and
T Adj

1 is the adjoint operator of T1.

Proof. See Appendix E. �

The update of Ψ requires to compute a projection onto the
cone of positive semidefinite Hermitian matrices which can be
regarded as the most costly part and is provided below:

Ψt`1 “ arg min
Ψľ0

›

›

›

›

›

„

Ψ0 Ψ1

ΨH
1 Ψ



´

„

T pvq Z
ZH W



`
1

ρ

„

Λ0 Λ1

Λ1 Λ



›

›

›

›

›

2

F

. (25)

The relation (25) can be solved by computing the eigenvalue

decomposition of
„

T pvq Z
ZH W



´ Λ
ρ and retaining only the

directions corresponding to positive eigenvalues. By perform-
ing the steps (21), (24), (25) and (18) iteratively, the dual
matrix multiplier Λ1 P CNˆT is found. However, according
to Theorem 1, to achieve the AoAs corresponding to the active
users, we need an estimate for the dual matrix V P CMˆT .
In the following lemma whose proof is provided in Appendix
G, we find a closed-form relation that clearly specifies the
connection between these variables.

Lemma 2. The dual solution corresponding to the primal
variable Y ‹ denoted by V P CNˆT is linked with the
dual matrix multiplier Λ1 P CNˆT obtained in the proposed
ADMM algorithm in Subsection III-B via the following closed-
form relation

PAdjpV q “
Λ1

c1
. (26)

C. Identification of Active Users

Once PAdjpV q is found using Lemma 2, we can use the
relation (12) in Theorem 1 to estimate the active angles
corresponding to the active devices. Although we have now
full access to the angles, there is still ambiguity in which
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angles corresponds to which active user. Applying a clustering
algorithm, we can place angles into several clusters, each of
which represents the angles of an active device. If the number
of active devices Ka is known beforehand (an assumption
widely used in the literature, e.g., [12]), the k-means clustering
algorithm can be employed with known number of clusters.
When Ka is not known, which seems to be more reasonable
in practice, we can use elbow clustering method [43], which
chooses the optimal number of clusters by identifying a sharp
elbow (knee point) in the graph of explained variations versus
clusters. The key idea is that adding another cluster does
not provide much better modeling of the angles. The elbow
clustering algorithm provides the angles estimate tpθku

xKa
k“1 in

pKa clusters as follows

rtpθku
xKa
k“1,

pKa, tpLku
xKa
k“1s “ elbowppθq. (27)

The number of clusters provides an estimate of Ka and the
number of angles within the k-th cluster gives an estimate of
pLk.

If the devices are stationary and the BS have full information
on the angles (for instance only the line of sight (LoS) angle)
of each device before random access, then the BS can exactly
understand at this stage which device is active and may provide
an estimate for SAU, denoted by pSAU, and the RA task is
finished. If angle information of the devices is not provided
or devices do not remain stationary in a known place, the BS
can still identify the active users by recovering their unique
preambles; this is explained in the next subsection.

D. Joint Data Recovery and Channel Estimation

To recover the preamble and data of each device, we
employ an alternating minimization scheme, in which an
initial estimate of φk is first generated and the following
optimization is then solved as a means to find the complex
channel amplitudes:

rpα1, ..., pαKas “ arg min
αk1 ,...,α

k
pLk
,

k“1,...,xKa

}Y ´
ÿ

kP pSAU

pLk
ÿ

l“1

αkl PΩpappθ
k
l q

pφHk q}F

(28)

which can be obtained by

pαk “ pPΩAkq
:Y φ:k (29)

where Ak :“ rapθk1 q, ...,apθ
k
pLk
qs P CNˆpLk and φ:k is the k-

th column of the pseudo inverse of Φ :“ rφT1 , ...,φ
T
xKa
sT P

CxKaˆT denoted by Φ:.
Having now an estimate of pαk, we can update the estimate

pφk by solving

r pφ1, ..., pφ
xKa
s “ arg min

φ1,...,φ
xKa

φkě0

}Y ´
ÿ

kP pSAU

pLk
ÿ

l“1

pαkl PΩpappθ
k
l qφ

H
k q}F

(30)

where the non-negative constraint φk ě 0 is included to
remove any ambiguities caused by multiplications of two

elements, as well as to uniquely identify the preamble and data
of UEs. The latter optimization problem leads to the following
closed-form relation

pΦ “

´

B:Y
¯

`
P CxKaˆT (31)

where B :“ rPΩA1 pα
1, ...,PΩA

xKa
pα
xKas P CMˆxKa and p¨q`

keeps the non-negative parts of a matrix as they are and
makes zero elsewhere. By performing steps (29) and (31)
alternatively, the data and complex channel coefficients are
uniquely found within few iterations. Since the transmitted
data contains the unique user ID, the active user indices are
obtained after recovering the users’ data φks.

The pseudocode of the proposed method, which summarizes
the aforementioned steps, is provided in Algorithm 1.

Algorithm 1 Blind Goal-Oriented Detection (BGOD)

Require: Y P CMˆT , iterADMM
max , iterAMmax

1: Initialize the iteration index as t “ 0.
2: Initialize the data vectors as φk „ CN p0, IT q, k “

1, ...,Ka.
3: Set Ψ0 “ Λ0 “ 0.
4: while t ď iterADMM

max do
5: Obtain Zt`1, W t`1 and vt`1 according to (21) and

(24),
6: Compute the eigenvalue decomposition of the matrix

„

T pvq Z
ZH W



´ Λ
ρ in (25) and set all non-negative

eigenvalues to zero in order to obtain Ψt`1 in (25).
7: Update the dual Lagrange matrix multiplier Λt`1

according to (18).
8: tÑ t` 1
9: end while

10: Obtain PAdjp pV q using Lemma 2.
11: Localize the angles by discretizing θ on a fine grid up

to a desired accuracy and identify where the `2 norm
of the polynomial qGpθq achieves to its maximum as in
Theorem 1.

12: Perform the elbow method:
rtpθkukP pSAU

, pKa, tpLkukP pSAU
s “ elbowppθq .

13: for it=1 to iterAMmax do
14: Compute the complex channel coefficients pαk using

(29).
15: Compute the data estimate via (31).
16: end for
Return: pSAU, txθkukP pSAU

, txφkukP pSAU
, txαkukP pSAU

, pKa “

| pSAU|, tpLkukP pSAU
, phk “

ř
pLk
l“1 pα

k
l ap

pθkl q, k P
pSAU.

IV. SIMULATION RESULTS

In this section, we provide numerical results to assess the
performance of BGOD and compare it with state-of-the-art
RA schemes, namely covariance-based [11], [14], [28] and
AMP approaches [12]. For that, we designed optimal pilot
settings and distributions for these works, as exactly mentioned
in their references. This is a challenging (or unfair) setting
for our proposed scheme, since φks serve as pilots for the
aforementioned methods considered perfectly known at the
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BS, while in the proposed BGOD, φks are users’ data and are
fully unknown to the BS. The RA performance is quantified
in terms of detection and false alarm probabilities, defined
by Pd “

E|SAU
Ş

pSAU|

Ka
and Pfa “

E| pSAUzSAU|

K´Ka
, respectively,

where | pSAUzSAU| counts the number of elements in pSAU

that are not present in SAU. Channel estimation and data
recovery performance is evaluated by the normalized mean
square error (NMSE) provided respectively by NMSECE “

E
}xHE´HE}F
}HE}F

and NMSEDR “ E
} pΦE´ΦE}F
}ΦE}F

. Here, HE P

CNˆK and xHE P CNˆK are extended matrices with columns
hk, k P SAU and phk, k P pSAU, respectively, and are zero
elsewhere. Similarly, ΦE P CKˆT and pΦE P CKˆT are
extended matrices whose rows in the indices SAU and pSAU

are given by Φ P CKaˆT and pΦ P CxKaˆT , respectively,
and are zero elsewhere. To calculate Pd, Pfa and NMSE,
we perform 50 Monte Carlo iterations in our experiments. The
computational complexity is also averaged over 50 realizations
in all experiments. The regularization parameter γ is set to
1
σ2 , where σ2 “ E|Ei,l|

2,@i, l is the variance of each noise
element. We define the signal to noise ratio (in dB) by
SNR “ 10 log10p

}PΩpXq}
2
F

MTσ2 q. To fully exploit the BS antenna
capabilities, which is also the case in AMP and covariance-
based methods, we assume first that the BS observes the output
of all of its antennas, i.e., Ω “ t1, ...Nu with M “ N .

Figure 3 shows the effect of the number N of BS antennas
on the performance, with parameters K “ 100, Ka “ 3,
Lmax “ 3, and SNR “ 30dB, when the least number of
time resources are employed at the devices (i.e., T “ 1).
We observe that the detection probability of BGOD tends
to one while the false alarm probability gets zero for in-
creasing N . In contrast, AMP [12] performs poorly in that
case while the covariance-based method [11], [14] does not
provide acceptable detection performance. Figure 4 depicts
the performance in a scenario where the number Ka of
active devices increases while everything else is kept fixed
at N “ 64, K “ 100, Lmax “ 3, T “ 1, and SNR “ 30dB.
BGOD shows superior performance in terms of detection and
false alarm probability compared to AMP and covariance-
based methods. However, the computational complexity of
BGOD is slightly higher than existing RA approaches. In
Figure 5 we study the effect of increasing the time resources
T , while keeping the other parameters fixed, as N “ 64,
K “ 100, Ka “ 3, Lmax “ 3, and SNR “ 50dB.
Although the detection performance of AMP and covariance-
based methods improves when the number of known pilots
increases, it remains inferior compared to BGOD, whose
computational complexity though increases with T . It should
be mentioned that the additional computational complexity
comes from the fact that BGOD simultaneously performs
active device detection, channel estimation and data recovery,
while AMP does only active detection and channel estimation,
and covariance-based carries out only active detection. Figure
7 shows the effect of the number M of observed elements
at the BS for N “ 128, T “ 1, SNR “ 30dB, Lmax “ 3,
Ka “ 20, and K “ 500. We see that observing only few
array elements is sufficient to achieve very good detection
performance. Moreover, the complexity is not affected by M

(a) (b)

Fig. 3. Detection performance comparison between the proposed BGOD
method and AMP and covariance-based schemes versus the values of N for
K “ 100,Ka “ 3, Lmax “ 3, T “ 1, and SNR “ 30dB. (a) Detection
accuracy (b) Computational complexity.

(a) (b)

Fig. 4. Detection performance comparison between the proposed BGOD
method and AMP and covariance-based methods versus the number of active
devices Ka for N “ 64,K “ 100, Lmax “ 3, T “ 1, and SNR “ 30dB.
(a) Detection accuracy (b) Computational complexity.

when BGOD starts to detect active devices perfectly.
Finally, we evaluate CE and DR performance of BGOD.

In Figure 8, we observe that BGOD estimates very well the
channels corresponding to the active users while AMP method
exhibits poor CE performance. Note that this result is obtained
for AMP knowing in advance all pilot sequences φks with
optimal distribution settings as in [12], whereas BGOD works
in a blind way and not only estimates channels but also
recovers the data of active users simultaneously. This also
justifies the additional time BGOD requires, as seen at the
right side in Figure 8.

V. CONCLUSION

In this work, we have proposed a novel random access
strategy for massive connectivity in future wireless networks.
Our scheme is based on a reconstruction-free optimization
task, for which we have proposed goal-oriented optimization
that helps in finding a relevant continuous function containing
sufficient information to obtain the active users identity. In
fact, we have proposed a method to achieve the goal of
active user detection without reconstructing the corresponding
channels and messages, which makes our strategy independent
of the number of devices involved. Simulation results have
shown the significant performance gains that can be achieved
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(a) (b)

Fig. 5. Detection performance comparison between the proposed BGOD
method and AMP and covariance-based schemes versus the number of pream-
bles T for N “ 64,K “ 100,Ka “ 3, Lmax “ 3, and SNR “ 50dB. (a)
Detection accuracy (b) Computational complexity.

(a) (b)

Fig. 6. Detection performance comparison between the proposed BGOD
method and AMP and covariance-based schemes versus the number of devices
K for N “ 128,Ka “ 5, T “ 1, Lmax “ 3, and SNR “ 30dB. (a)
Detection accuracy (b) Computational complexity.

when using our strategy compared to existing state-of-the-
art schemes. This makes the proposed blind goal-oriented
random access a promising candidate for supporting massive
connectivity in future wireless networks.

APPENDIX A
PROOF OF THEOREM 1

To prove the theorem, we first obtain the dual problem of
(8) in the following: (proved in Appendix B.)

max
V PCNˆT

RexV ,Y yF ´
1

2γ
}V }2F

s.t. }pPAdj
Ω pV qqHapθkq}2}φk}2 ď 1

@θk P p0, πq, k “ 1, ...,K (32)

where PAdj
Ω is the adjoint operator of PΩ defined as

pPAdj
Ω pV qqpi,lq “

"

Vpi,lq i P Ω
0 o.w.

*

@i, l “ 1, ..., N. (33)

There are K continuous constraints in the above problem,
each of which indeed contains infinite number of constraints.
This makes the optimization problem highly challenging. In
what follows, we state a lemma which converts these infinite
constrains into a finite number of linear matrix inequalities,
which is tractable using off-the-shell solvers.

(a) (b)

Fig. 7. Random access performance of our proposed method versus the
number M of observed arrays at the BS. Figures (a) and (b) show detection
accuracy and computational complexity, respectively.

(a) (b)

Fig. 8. CE and DR performance of our proposed method versus the time
resources T for N “ 128,K “ 100,Ka “ 5, Lmax “ 3, and SNR “

30dB. CE performance is compared with AMP and the DR performance of
BGOD is shown with cross-dash line. Figures (a) and (b) show accuracy and
computational complexity, respectively. The computational complexity of our
algorithm relates to both CE and DR simultaneously, whereas only CE is
performed in AMP.

Lemma 3. Let V P CMˆT and c1 :“
maxk“1,...,K }φk}2?

N
, then

}pPAdj
Ω pV qqHapθkq}2}φk}2 ď 1 @θk P p0, πq, k “ 1, ...,K

(34)

holds if and only if there exists a Hermitian matrixQ P CNˆN
such that

„

Q PAdj
Ω pV qc1

pPAdj
Ω pV qqHc1 IT



ľ 0, xΘq,Qy “ 1q“0,

q “ ´N ` 1, ..., N ´ 1, (35)

where Θq is the elementary Toeplitz matrix with ones on the
q-th diagonal and zero elsewhere.

Proof. See Appendix C �

By using this result, the dual problem can be stated in the
following equivalent form:

max
V PCMˆT

QPCNˆN

RexV ,Y yF ´
1

2γ
}V }2F

„

Q PAdj
Ω pV qc1

pPAdj
Ω pV qqHc1 IT



ľ 0,

xΘq,Qy “ 1q“0, q “ ´N ` 1, ..., N ´ 1. (36)

This problem is a semidefinite programming. Now, we can
find the dual of (36) to obtain a problem that is suitable for
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applying a low complexity ADMM algorithm. First, we write
the Lagrange dual function regarding the problem (36)

L “ inf
V ,Q

´RexV ,Y yF `
1

2γ
}V }2F ´ v1p1´ xΘ0,Qyq`

`

N
ÿ

q“2

vqxΘq´1,Qy `
N
ÿ

q“2

vqxΘ´q`1,Qy

´

C

„

Γ Z
ZH W



,

„

Q PAdj
Ω pV qc1

pPAdj
Ω pV qqHc1 IT



G

, (37)

where W P CTˆT , Γ P CNˆN , Z P CNˆT and v P CN are
dual multipliers corresponding to the problem (36). To prevent
(37) from getting unbounded, it immediately follows that

Γ “ v1Θ0 `

N
ÿ

q“2

vqΘq´1 ` vqΘ´q`1 “ T pvq (38)

where the last part comes from [44, Equations 2.25, 2.26]. By
taking derivative of L with respect to V , we have that

pV “ γpY ` 2c1PΩpZqq (39)

which by replacing it into the objective function and forming
the dual problem of (36), we achieve (11). To identify the
angles corresponding to active users, we leverage an adapted
version of the results in [35, Equation 2.2] and [45, Proposition
1] (which is indeed for a single device) to conclude that the
angles corresponding to the k-th active user can be identified
by finding angles for which the `2 norm of the dual polynomial
qkpθq “ pPAdj

Ω pV qqHapθq}φk}2 achieves one. Extending this
result to all active users, we can identify all of the angles
corresponding to all of the active users by finding locations
where }qGpθq}2 in (12) maximizes.

APPENDIX B
DERIVATION OF THE DUAL PROBLEM

By writing the Lagrangian function of the convex optimiza-
tion problem (8), we have:

LpZ1, ...,ZK ,Y
‹,V q “

K
ÿ

k“1

}Zk}Ak `
γ

2
}Y ´ Y ‹}2F`

Re xY ‹ ´
K
ÿ

k“1

PΩpZkq,V y. (40)

Minimizing L in (40) with respect to Zks and Y ‹ gives the
following:

inf
tZkuKk“1

K
ÿ

k“1

”

}Zk}Ak ´ RexPΩpZkq,V y
ı

`

inf
Y ‹

γ

2
}Y ´ Y ‹}2F ` Re xY ‹,V y

pIq
“

inf
tZkuKk“1

K
ÿ

k“1

}Zk}Akp1´ }P
Adj
Ω pV q}dAkq`

inf
Y ‹

γ

2
}Y ´ Y ‹}2F ` RexY ‹,V y

pIIq
“ inf

Y ‹

γ

2
}Y ´ Y ‹}2F`

RexY ‹,V y “ Re xY ,V y ´
1

2γ
}V }2F (41)

where in the first optimization in pIq, we used the relation

RexPΩpZkq,V y “ RexZk,PAdj
Ω pV qy ď }Zk}Ak}P

Adj
Ω pV q}dAk ,

(42)

which comes from the Hölder’s inequality. As the upper bound
in the Hölder’s inequality is achievable, the infimum in the first
term of pIq reaches its lower bound. Here, } ¨ }dAk is the dual
norm associated with } ¨ }Ak defined as

}PAdj
Ω pV q}dAk :“ sup

}Z}Akď1

xPAdj
Ω pV q,Zy “ sup

θkPp0,πq,φk

xPAdj
Ω pV q,apθkqφ

H
k y “ sup

θkPp0,πq,φk

xpPAdj
Ω pV qqHapθkq,φky

“ sup
θkPp0,πq,φk

}pPAdj
Ω pV qqHapθkq}2}φk}2 (43)

where in the last step above, we used again Hölder’s inequality.
In order to have a bounded objective function in (41), we

should have }PAdj
Ω pV q}dAk ď 1 for all k “ 1, ...,K making

the objective function in the first optimization in (41) equal
to zero, thus leading to the equality pIIq. By minimizing the
objective function in pIIq with respect to Y ‹, we achieve Y ‹ “
Y ´ V

γ and after replacing into the objective function (41),
the Lagrangian function reads as xY ,V y´ 1

2γ }V }
2
F . Thus, the

resulting dual problem becomes in the form of the following
optimization:

max
V PCNˆT

RexV ,Y yF ´
1

2γ
}V }2F

s.t. }PAdj
Ω pV q}dAk ď 1, k “ 1, ...,K. (44)

Combining (43) and (44), leads to (32).

APPENDIX C
PROOF OF LEMMA 3

First, we begin with the fact that the constraints

}pPAdj
Ω pV qqHapθkq}2}φk}2 ď 1 @θk P p0, πq, k “ 1, ...,K

(45)

are equivalent to

}pPAdj
Ω pV qqHapθkq}2 max

k“1,...,K
}φk}2 ď 1 @θk P p0, πq,

(46)

which then by defining the notation c1 and (3) can be rewritten
as follows:
T
ÿ

i“1

ˇ

ˇ

ˇ

N
ÿ

l“1

pPAdj
Ω pV qqpl,iqc1e´j2πpl´1q cospθq

ˇ

ˇ

ˇ

2

ď 1, @θ P p0, πq.

(47)

Defining the i-th column of PAdj
Ω pV q as

ai :“ c1rpPAdj
Ω pV qqp1,iq, ..., pPAdj

Ω pV qqpN,iqs
T and

fpθq :“ r1, ..., ej2πpN´1q cospθqsT , (47) can be reformulated as

T
ÿ

i“1

|fpθqHai|
2 ď 1, (48)

which implies that the polynomial 1´fpθqH
řT
i“1 aia

H
i fpθq

is non-negative. Based on [44, Theorem 1.1], there exists a
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polynomial q1pθq :“
řN
i“1 bie

´j2πpi´1q cospθq “ fpθqHb for
some b P CN such that

1´ fpθqH
T
ÿ

i“1

aia
H
i fpθq “ |q1pθq|

2 “ fpθqHbbHfpθq.

(49)

SetQ “
řT
i“1 aia

H
i `bb

H . Since bothQ andQ´
řT
i“1 aia

H
i

are positive semidefinite, using Schur complement lemma [46,
Appendix A.5.5] leads to the semidefinite constraint

„

Q PAdj
Ω pV qc1

pPAdj
Ω pV qqHc1 IT



ľ 0. (50)

Further, by (49), we have:

fHpθqQfpθq “ xQ,fpθqfHpθqy “ 1,@θ P p0, πq. (51)

This can be further simplified to

xQ, T pfpθqqy “ xT AdjpQq,fRpθqy ´ jxT AdjpC dQq,f Ipθqy

@θ P p0, πq (52)

where fRpθq and f Ipθq are the real and imaginary parts
of fpθq, respectively. C is a matrix composed of ´1s on
the lower triangular elements and 1s elsewhere, i.e., Ck,l “
´1, k ă l and Ck,l “ 1, k ě l. Satisfying (52) for all θ is
only possible when

pT AdjpQqq1 “ 1 (53)

pT AdjpQqqk “ 0, (54)

pT AdjpC dQqqk “ 0 (55)
k “ 2, . . . , N. (56)

Using the result of Lemma 4, we have that (53) simplifies to
N
ÿ

i“1

Qpi, iq “ 1. (57)

For (54) and (55) to hold, we should have
N
ÿ

i“k

Re Qpi´ k ` 1, iq “ 0 (58)

and
N
ÿ

i“k

Qpi´ k ` 1, iq “
N
ÿ

i“k

Qpi, i´ k ` 1q, (59)

which leads to
N
ÿ

i“k

Im Qpi´ k ` 1, iq “ 0. (60)

Combining (60) and (58) gives
řN
i“kQpi ´ k ` 1, iq “

řN
i“kQpi, i´ k ` 1q “ 0, which along with the relation (57)

could be all simply written as

xΘq,Qy “ 1q“0, q “ ´N ` 1, ..., N ´ 1. (61)

Conversely, if (35) holds, then by Schur complement lemma
[46, Appendix A.5.5], we have

Q´
T
ÿ

i“1

aia
H
i ľ 0 (62)

and (61). Thus, by (62), we may write

T
ÿ

i“1

|fpθqHai|
2 “ fpθqH

´

T
ÿ

i“1

aia
H
i

¯

fpθq ď fpθqHQfpθq

“ xQ,fpθqfpθqHy “ xQ, T pfpθqqy. (63)

Using (68), we can proceed (63) by writing

xQ, T pfpθqqy “ xT AdjpQq,fRpθqy ´ jxT AdjpC dQq,f Ipθqy.
(64)

Due to the relation xΘq,Qy “ 1q“0, q “ ´N ` 1, ..., N ´ 1,
it follows that

pT AdjpQqq1 “ 1 (65)

pT AdjpQqqk “ 0, k “ 2, . . . , N (66)

pT AdjpC dQqqk “ 0, k “ 2, . . . , N, (67)

which gives xQ, T pfpθqqy “ 1 by (52). Thus, we have
řT
i“1 |fpθq

Hai|
2 ď 1, which is equivalent to (34).

APPENDIX D
PROOF OF LEMMAS 4 AND 5

For an arbitrary complex-valued vector v P CN , the Toeplitz
matrix T pvq defined in (1) can be splitted into its real and
imaginary components as

T pvq “ T pvRq ` jC d T pvIq. (68)

As it is observed from the latter relation, the Toeplitz operator
T : CN Ñ CNˆN is not a linear operator in general. Thus,
obtaining the adjoint operator requires splitting the input space
of the Toeplitz operator into real and complex-valued, in
which cases it is linear and we can obtain its adjoint operator.
Therefore, for an arbitrary complex-valued matrix A P CNˆN
and the real-valued vector vR P RN , the adjoint operator T ˚
is obtained from the following formula

xT pvRq,Ay “ xvR, T AdjpAqy. (69)

The left-hand side of (69) can be written as

N
ÿ

i,l“1
iďl

Ai,lv
R
|i´l|`1 `

N
ÿ

i,l“1
iąl

Ai,lv
R
|i´l|`1

paq
“

N
ÿ

i“1

i
ÿ

k“maxt1,i´N`1u

Ai,i´k`1vk`

N
ÿ

l“1

i
ÿ

q“maxt1,i´N`1u

Al´q`1,lv
R
q

pbq
“

vR1

N
ÿ

i“1

Ai,i `
N
ÿ

k“2

vRk

´

N
ÿ

i“k

Ai,i´k`1 `Ai´k`1,i

¯

(70)

where in (a) we use change of variables k “ i ´ l ` 1 and
q “ l ´ i ` 1, for the first and second terms, respectively,
and in (b), we change the order of summation and determine
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the lower and upper limit of summation correspondingly.
Combining (69) and (70), we get the following result

pT AdjpAqq1 “
N
ÿ

i“k

Ai,i

pT AdjpAqqk “
N
ÿ

i“k

Ai,i´k`1 `Ai´k`1,i, k “ 2 : N. (71)

The proof of Lemma 5 proceeds in a similar manner. First, by
the definition of the operator T1, it follows that

T1pvq “

»

—

—

—

–

v1 v2 . . . vN
´v2 v1 . . . vN´1

...
...

. . .
...

´vN ´vN´1 . . . v1

fi

ffi

ffi

ffi

fl

. (72)

Using the relation (69) for T1, we can derive the adjoint
operator for arbitrary real-valued vector vI by using the
following relation

xT1pv
Iq,Ay “ xvI , T Adj

1 pAqy. (73)

Proceeding with the left-hand side and leveraging the same
reasons as in (70), leads to

N
ÿ

i,l“1
iďl

Ai,lv
I
|i´l|`1 ´

N
ÿ

i,l“1
iąl

Ai,lv
I
|i´l|`1

pIq
“

N
ÿ

i“1

i
ÿ

k“maxt1,i´N`1u

Ai,i´k`1v
I
k´

N
ÿ

l“1

i
ÿ

q“maxt1,i´N`1u

Al´q`1,lv
I
q

pIIq
“

vI1

N
ÿ

i“1

Ai,i `
N
ÿ

k“2

vIk

´

N
ÿ

i“k

Ai,i´k`1 ´Ai´k`1,i

¯

(74)

where a change of summation order is used in the last part.
Combining (74) and (73), we reach to the result of (82).

APPENDIX E
PROOF OF LEMMA 1

Define v :“ vR ` jvI . To prove the result, we first rewrite
the Lagrangian function Lρ in (15) and only keep the terms
related to v as other terms do not affect the minimization over
v. Thus, we have

Lρpvq “ vR1 ´ RexΛ0, T pvqy `
ρ

2
}Ψ0 ´ T pvq}2F . (75)

By splitting into real and imaginary parts and using (68), it
follows that

Lρpvq “ vR1 ´ Re

ˆ

xT AdjpΛ0q,v
Ry

˙

`

Re

ˆ

jxT AdjpC dΛ0q,v
Iy

˙

`
ρ

2
}ΨR

0 ´ T pvRq}2F`
ρ

2
}ΨI

0 ´C d T pvIq
looooomooooon

“:T Adj
1 pvIq

}2F , (76)

which can be further simplified to

Lρpvq “ vR1 ´ xT AdjpΛR
0 q,v

Ry´

xpC dΛR
0 q,v

Iy `
ρ

2
}ΨR

0 ´ T pvRq}2F`
ρ

2
}ΨI

0 ´C d T pvIq
looooomooooon

“:T Adj
1 pvIq

}2F . (77)

Taking derivative of Lρ with respect to vR, we have

BLρ
BvR

“ e1 ´ T AdjpΛR
0 q ´ ρT AdjpΨR

0 ´ T pvRqq “ 0. (78)

Moreover, taking the derivative of Lρ with respect to vI , we
reach to the following expression

´T AdjpC dΛI
0q ´ ρT

Adj
1 pΨI

0 ´ T1pv
Iqq “ 0. (79)

Simplifying (78) and (79) requires to characterize T Adjp¨q and
T Adj

1 p¨q, which is done in the following lemmas and proved
in Appendix D.

Lemma 4. Let A P CNˆN be an arbitrary complex matrix.
The adjoint operator of the Toeplitz operator T denoted by
T Adj : CNˆN Ñ C is obtained by

pT AdjpAqq1 “
N
ÿ

i“1

Ai,i, (80)

pT AdjpAqqk “
N
ÿ

i“k

`

Ai,i´k`1 `Ai´k`1,i

˘

, k ‰ 1. (81)

Lemma 5. Consider the operator T1p¨q : CN Ñ CNˆN ,
which for any arbitrary vector v is defined as T1pvq :“
C ˝ T pvq where C P CNˆN is a matrix composed of ´1s on
lower triangular parts and 1s elsewhere, i.e.,Ck,l “ ´1, k ă l
and Ck,l “ 1, k ě l. Then, the adjoint operator of T1 denoted
by T Adj

1 for any arbitrary matrix A P CNˆN is obtained as

pT Adj
1 pAqq1 “

N
ÿ

i“1

Ai,i, (82)

pT Adj
1 pAqqk “

N
ÿ

i“k

`

Ai´k`1,i ´Ai,i´k`1

˘

, k ‰ 1. (83)

From Lemmas 4 and 5, we can also obtain the expressions
T AdjpT pzqq and T Adj

1 pT1pzqq, which are given in the follow-
ing corollary and proved in Appendix F.

Corollary 1. Consider the operators T p¨q and T1p¨q which
are defined in (1) and (72), respectively. Then, for an arbitrary
z P CN , the following relations hold

T AdjpT pzqq1 “ T Adj
1 pT1pzqq1 “ Nv1

T AdjpT pzqqk “ T Adj
1 pT1pzqqk “ 2RepvkqpN ´ k ` 1q.

(84)

Leveraging the results provided in Lemmas 4, 5 and Corol-
lary 1, we can proceed (78) and (79) as follows

vR “ g d

ˆ

´
e1

ρ
` T AdjpΨR

0 `
ΛR

0

ρ
q

˙

(85)
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and

vI “ g d

ˆ

T Adj
1 pΨI

0q `
T AdjpC dΛI

0q

ρ

˙

, (86)

which can be combined to achieve

v “ g d

˜

´
e1

ρ
` T AdjpΨR

0 q ` T Adj
1 pΨI

0q`

T AdjpΛR
0 `C dΛI

0q

ρ

¸

. (87)

APPENDIX F
PROOF OF COROLLARIES

Using the relations in Lemmas 4 and 5, i.e., (80) and (82),
we have that for an arbitrary vector v P CN

pT AdjT pvqq1 “
N
ÿ

i“1

T pvqpi,iq “
N
ÿ

i“1

v1 “ Nv1, (88)

pT AdjT pvqqk “
N
ÿ

i“1

T pvqpi,i´k`1q ` T pvqpi´k`1,iq “

N
ÿ

i“k

vk ` vk “ 2RepvkqpN ´ k ` 1q. (89)

Moreover, for T Adj
1 pT1pvqq, we have

pT Adj
1 T pvqq1 “

N
ÿ

i“1

T pvqpi,iq “
N
ÿ

i“1

v1 “ Nv1, (90)

pT AdjT pvqqk “
N
ÿ

i“1

T pvqpi,i´k`1q ´ T pvqpi´k`1,iq “

N
ÿ

i“k

vk ´ p´vkq “ 2RepvkqpN ´ k ` 1q. (91)

APPENDIX G
PROOF OF LEMMA 2

To prove the result, we first borrow a useful lemma from
[36], which states that for any Z P CNˆT

}Z}A‹
“ min
vPCN ,EPCTˆT

Re
´v1

2
`

trpEq

2

¯

(92)
„

T pvq Z
ZH E



ľ 0. (93)

Suppose that pZ is the optimal solution of the goal-oriented op-
timization problem in (11), which is alternatively the optimal
solution of

min
Z

2}Z}A‹
`
γ

2
}Y ` 2c1PΩpZq}

2
F “: JpZq. (94)

Since the objective function is convex, we must have 0 P

BJp pZq which leads to

B} ¨ }A‹
p pZq “ ´γc1PAdj

Ω pY ` 2c1PΩp pZqq. (95)

Also, the definition of subdifferential function imposes the
following relation for any arbitrary Z:

}Z}A‹
ě } pZ}A‹

` xZ ´ pZ,´γc1PAdj
Ω pY ` 2c1PΩp pZqqy.

(96)

This also implies that

inf
Z

«

}Z}A‹
` xZ, γc1PAdj

Ω pY ` 2c1PΩpZqqy

ff

ě

} pZ}A‹
` x pZ, γc1PAdj

Ω pY ` 2c1PΩp pZqqy. (97)

The minimization problem in the relation (97) remains
bounded only when

}γc1PAdj
Ω pY ` 2c1PΩpZqqy}

d
A‹
ď 1 (98)

which indeed leads to

} pZ}A‹
“ ´x pZ, γc1PAdj

Ω pY ` 2c1PΩp pZqqy. (99)

By replacing (99) into Jp¨q function in (94), we have that

Jp pZq “
γ

2
}Y ` 2c1PΩp pZq}

2
F ´ 2γc1

A

PΩp pZq,

Y ` 2c1PΩp pZq
E

“ γ
A

Y ,Y ` 2c1PΩp pZq
E

´
γ

2
}Y ` 2c1PΩp pZq}

2
F . (100)

By leveraging strong duality in convex optimization, the ob-
jective function of the primal (94) and dual (32) optimizations
must be equal. Hence, by combining (100) and (32), we can
find out that

pV “ γpY ` 2c1PΩpZqq. (101)

In addition, by minimizing the Lagrangian function L0 and
ignoring the ρ term (as ρ is only for ADMM algorithm), we
have 2γc1PAdj

Ω pY ` 2c1PΩpZqq ´ 2Λ1 “ 0, which by (101)
leads to

2c1PAdj
Ω p pV q ´ 2Λ1 “ 0 (102)

and proves the final result.
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