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Learning Resilient Radio Resource Management
Policies with Graph Neural Networks

Navid NaderiAlizadeh, Mark Eisen, and Alejandro Ribeiro

Abstract—We consider the problems of user selection and
power control in wireless interference networks, comprising
multiple access points (APs) communicating with a group of
user equipment devices (UEs) over a shared wireless medium. To
achieve a high aggregate rate, while ensuring fairness across all
users, we formulate a resilient radio resource management (RRM)
policy optimization problem with per-user minimum-capacity
constraints that adapt to the underlying network conditions via
learnable slack variables. We reformulate the problem in the
Lagrangian dual domain, and show that we can parameterize
the RRM policies using a finite set of parameters, which can be
trained alongside the slack and dual variables via an unsuper-
vised primal-dual approach thanks to a provably small duality
gap. We use a scalable and permutation-equivariant graph neural
network (GNN) architecture to parameterize the RRM policies
based on a graph topology derived from the instantaneous chan-
nel conditions. Through experimental results, we verify that the
minimum-capacity constraints adapt to the underlying network
configurations and channel conditions. We further demonstrate
that, thanks to such adaptation, our proposed method achieves a
superior tradeoff between the average rate and the 5th percentile
rate—a metric that quantifies the level of fairness in the resource
allocation decisions—as compared to baseline algorithms.

Index Terms—Wireless power control, interference channels,
resilient radio resource management, Lagrangian duality, primal-
dual learning, unsupervised learning, graph neural networks.

I. INTRODUCTION

As 5G network deployments are underway across the
world and research studies have already begun on future
6G technologies, wireless devices and services are becoming
more ubiquitous, leading to wireless communication networks
that are becoming increasingly complex. These networks will
provide connectivity to devices ranging from sensors and cell
phones to vehicles, drones, and mixed-reality headsets, shifting
the paradigm of how things connect together. This will give
rise to ultra-dense deployment scenarios, where a massive
number of transmissions compete to obtain access to a limited
amount of wireless resources.
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To deal with these challenges, there has been a plethora of
work on the problem of radio resource management (RRM),
where the goal is to efficiently and optimally allocate the
limited time/frequency/spatial resources across the wireless
network. The approaches proposed in the literature use a
wide variety of techniques in optimization, information, and
game theories in order to attack various RRM sub-problems,
including power control, link scheduling, cell association, sub-
carrier assignment, and beamforming [3]–[10].

Nevertheless, the aforementioned RRM problems in their
most general forms are typically NP-hard, implying that as
the network size increases, it becomes more challenging to
derive exact optimal solutions to them [11], [12]. That is why
most prior work in the literature devises approximate solutions
in various regimes of system parameters. With the success of
machine learning, and particularly deep learning, over the past
few years, learning-based algorithms have emerged to solve
challenging problems in wireless communications, including
for resource management [13]. As a prominent example, for
the class of power allocation problems, several approaches
have been proposed using tools from supervised, unsupervised,
self-supervised, and reinforcement learning, as well as meta-
learning and graph representation learning [14]–[29].

A large portion of the prior work on learning-based RRM
have considered unconstrained optimization of network-wide
objective functions, e.g., sum-rate, without any requirements
for fair allocation of resources across the network. More
recently, the authors in [15], [25] considered robust for-
mulations of the RRM problem, where arbitrary constraints
can be included in the optimization problem, such as per-
user minimum-capacity requirements. However, in wireless
networks, channel conditions fluctuate from time to time and
from topology to topology. Therefore, even for a constant
number of transmitters and receivers within a given network
area, a fixed and strict minimum-capacity constraint may not
be satisfiable for some of the receivers with poor channel
conditions and is hard to define a priori.

In this paper, we intend to take one step further, and learn
resilient RRM policies that can adapt the system requirements
in a controlled way if the network conditions are so extreme
that the original constraints render the RRM problem infea-
sible. In particular, we consider the joint RRM problems of
power control and user selection in a wireless interference
network, where the goal is to maximize a network-wide utility
function, while ensuring all users in the network are treated
fairly. We introduce a resilient RRM formulation, where the
ergodic long-term average rate of each user is forced to be
lower-bounded by an adaptive minimum-capacity constraint,
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which is learned via an optimized slack variable [30], [31].
We reformulate the aforementioned constrained optimiza-

tion problem in the Lagrangian dual domain, and propose a
gradient-based primal-dual algorithm to learn optimal RRM
policies and their associated optimal constraint slacks, as well
as the dual variables corresponding to each constraint in the
original optimization problem. We demonstrate how the search
over infinite-dimensional RRM policies can be replaced by
optimization over a finite set of parameters that can be used
to parameterize the RRM polices. Under mild assumptions, we
prove that such a parameterization only leads to a negligible
duality gap, hence enabling us to use the aforementioned
primal-dual approach to iteratively update the RRM policy
parameters over the course of training. We use a scalable
graph neural network (GNN) architecture to parameterize the
primal RRM policies, based on a graph topology induced by
the underlying instantaneous channel conditions.

We numerically evaluate the performance of our proposed
method on a range of system configurations, and show the
superior scalability and transferability of the proposed GNN
parameterization as compared to baseline methods. We also
show how the resilient formulation of the RRM problem trains
the per-user slack variables to adapt to the underlying network
topology, increasing in value for users in poor network con-
ditions, hence relaxing their minimum-capacity constraints.

The rest of this paper is organized as follows. In Section II,
we present the system model and formulate the problem. In
Section III, we describe the Lagrangian dual formulation and
the proposed primal-dual framework. In Section IV, we show
how the RRM policies can be parameterized using a shared
GNN architecture. In Section V, we present our experimental
results. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless interference network with a set
of m access points, or APs, {APi}mi=1 and a set of n user
equipment devices, or UEs, {UEj}nj=1, where the APs intend
to communicate with the set of UEs across the network. Before
communication begins, an AP-UE association procedure takes
place, where each UE gets associated with a unique AP
to be served by. We assume that this association procedure
effectively partitions the network into a set of m disjoint cells.
In particular, denoting the set of UEs associated with APi by
Ri ⊆ {1, . . . , n}, we have

Ri 6= ∅,∀i ∈ {1, . . . ,m}, (1a)

Ri ∩Rj = ∅,∀(i, j) ∈ {1, . . . ,m}2 s.t. i 6= j, (1b)
m⋃
i=1

Ri = {1, . . . , n}, (1c)

where (1a) implies that each AP has at least one associated
user, (1b) implies that no user is associated with more than
one AP, and (1c) suggests that the sets of associated users
to different APs cover all the users across the network. For
a given user UEj , we let [j] denote the index of its unique
associated AP.

The channel gain between each access point APi and each
user UEj in the network is a random variable denoted by hij .

We collect all the channel gains across the network in a matrix,
denoted by H ∈ H ⊆ Cm×n, drawn from an underlying
distribution DH. Assuming that all transmissions occur at the
same time and on the same frequency band, they will cause
interference on each other. Therefore, each AP needs to set
its transmit power so as to optimize a global, network-wide
objective, such as sum-throughput. Moreover, assuming that
each AP can serve a single user at each time step, it also needs
to decide on which user to serve from its set of associated
users. Given a maximum transmit power of Pmax, we denote
the vector of power allocation variables by p ∈ [0, Pmax]m,
whose ith component, pi, represents the transmit power allo-
cated to APi. We also let γ ∈ {0, 1}n denote the vector of
user selection decisions, whose jth component, γj , indicates
whether UEj has been selected to be served by its associated
AP[j]. Then, the signal-to-interference-plus-noise ratio (SINR)
at each user UEj can be written as

SINRj(H,p,γ) =
γj
∣∣h[j]j∣∣2 p[j]

N +
∑m
i=1, i 6=[j] |hij |2pi

, (2)

where N denotes the noise variance. The Shannon capacity of
the link between AP[j] and UEj is then given by

fj(H,p,γ) = log2(1 + SINRj(H,p,γ)). (3)
Due to the aforementioned short-term fading phenomenon,

channel realizations vary over time, implying that the power
allocation variables also need to be modified temporally. This
motivates considering an ergodic average rate xj , which is
limited by the ergodic Shannon limit EH[fj(H,p,γ)], to
capture the throughput experienced by each user UEj over
a long period of time assuming that the underlying fading
random process is stationary [32]–[35]. This is motivated
by prior studies on optimizing the ergodic performance and
characterizing the ergodic capacity regions of time-varying
wireless networks, which are well-established problems in
the queuing and information theory literature [36]–[38]. The
goal is to determine power allocation and user selection
policies, p(H) and γ(H), that take as input an instanta-
neous channel realization H and determine the power levels
p(H) = [p1(H) . . . pm(H)]T and user selection decisions
γ(H) = [γ1(H) . . . γn(H)]T , respectively.1

We formulate the joint power allocation and user selection
problem, which we refer to as the radio resource management
(RRM) problem, as follows, where we seek to maximize a
concave utility U(x), i.e.,

max
p,γ,x

U(x), (4a)

s.t. x ≤ EH [f(H,p(H),γ(H))] , (4b)
x ≥ fmin, (4c)

p(H) ∈ [0, Pmax]m, γ(H) ∈ ΓRn,m. (4d)

1The implementation of the power allocation and user selection policies,
p(H) and γ(H), requires the knowledge of channel state information (CSI)
at the transmitter side (i.e., CSIT), where the APs have knowledge of the CSI
of i) their signal links to their associated users, ii) their outgoing interference
links to other users, and iii) the incoming interference caused by other APs
to their associated users. Such a CSIT assumption can be realized using
feedback links, where the users periodically measure and feedback their
received signal/interference powers to the corresponding APs.
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In (4d), the user selection constraint set, ΓRn,m, is defined as

ΓRn,m :=

γ(H) ∈ {0, 1}n
∣∣∣∣∣∣
∑
j∈Ri

γj(H) = 1,∀i ∈ {1, . . . ,m}

.
Observe that in (4c), we specify a constraint on the long-

term capacity for the ith user to be at least fi,min. These
minimum capacity constraints are included so as to avoid al-
locating all resources to “cell-center” users, which experience
higher average signal-to-interference ratio (SIR) levels, hence
balancing the RRM policies to treat “cell-center” and “cell-
edge” users (i.e., those with low average SIR values) fairly.
We further constrain the user selection policy in (4d) to ΓRn,m,
where each AP is only allowed to serve one of its associated
users at each time step. Note that the formulation in (4) allows
for an access point APi to not serve any of its associated users
at a given time step by setting its transmit power to zero,
regardless of the user selection decisions {γj(H)}j∈Ri .

A. Resilient Radio Resource Management

A fundamental challenge exists in tackling the RRM prob-
lem in (4) due to the potentially unknown or ill-defined
minimum-capacity constraints in (4c). Indeed, solving (4)
directly requires explicit a priori knowledge of the minimum-
rate requirements, fmin. However, such requirements may not
be known in practice. Even if these requirements are specified,
e.g., by a certain application, they may be infeasible in certain
network configurations, i.e., outside the network’s information-
theoretic ergodic capacity region, due to the complex interfer-
ence patterns between concurrent transmissions.

We address this problem by introducing a slack term z for
the constraints, and instead find the optimal RRM policies
under the loosened constraints [30], [31]. If for a given user,
the original minimum capacity of fi,min is too strict and
not achievable due to poor signal and/or strong interference
levels, the additional slack zi will address such infeasibility by
making the constraint adapt to network conditions. However,
any increase in slack zi will render a solution further from the
intended solution of (4), since an arbitrarily large slack will
render the corresponding constraint irrelevant. We, therefore,
impose an additional cost on the slack vector z, resulting in
the resilient formulation of (4), defined as

max
p,γ,x,z

U(x)− α

2
‖z‖22, (5a)

s.t. x ≤ EH [f(H,p(H),γ(H))] , (5b)
x ≥ fmin − z, (5c)

p(H) ∈ [0, Pmax]m,γ(H) ∈ ΓRn,m, z ≥ 0. (5d)

We denote the optimal value of (5) by P ∗. In (5), along
with optimizing the RRM policies p and γ and ergodic
average rates x, we also optimize the value of the slack
z that optimally trades off the additional utility obtained
from relaxing the constraint and the additional cost from the
slack itself weighted by α ≥ 0. The resilient problem is
necessarily feasible as z can always be made large to render
(5c) satisfied. Indeed, the optimal slack z must be at least
as large as the difference between the user-selected goals

fmin and the fundamental minimum rates achievable under the
given network configuration. By imposing a negative utility
on large values of z, the optimization of slack variables will
implicitly loosen (5c) only enough to maximize a tradeoff
between the resulting utility U and the fairness achieved via
stricter minimum-capacity constraints.

Remark 1 (Fairness Measures) Note that using minimum-
capacity constraints is only one way of enforcing and quan-
tifying fairness, and in general, one can consider a broader
family of fairness measures respecting the fundamental fair-
ness axioms [39]. Moreover, in many practical wireless sys-
tem settings, users have to satisfy certain minimum-capacity
requirements to be admitted into the network. Our proposed
resilient formulation can effectively prevent this from hap-
pening by sacrificing other users’ rates by a small amount,
hence contributing to the fairness of the resulting allocation
of resources across the network.

Remark 2 (Negative Slack Values) Note that in (5d), we
have constrained the slack values to be non-negative, i.e., z ≥
0. However, certain network configurations might exist with
favorable channel conditions, in which the original minimum-
capacity constraints can be readily satisfied. In such cases,
the restriction on non-negative slack values can be relaxed to
enable negative slacks that can further tighten the constraints
and enhance the per-user rates. Note that such higher rates
can also be encouraged via a monotonically-increasing utility
U in (5a), such as sum-rate, as we will use later in this paper.

III. PROPOSED PRIMAL-DUAL LEARNING FRAMEWORK

A. Lagrangian Dual Formulation

To address the existence of constraints in (5), we refor-
mulate the resilient problem in the Lagrangian dual domain.
Despite the non-convexity of the capacity function in (3) ren-
dering the resilient program non-convex, it is known that under
mild conditions on the channel distributions (in particular, the
distributions having no point of positive probability, i.e., being
non-atomic), the RRM problem exhibits zero duality gap [40].
We can then proceed with the following reformulation without
any loss in optimality.

To derive the Lagrangian dual problem, we first introduce
the Lagrangian function, with non-negative dual multiplier
functions λ ∈ Rn+ and µ ∈ Rn+ associated with each constraint
in (5), as

L(p,γ,x, z,λ,µ)

= U(x)− α

2
‖z‖22 − λT [x− EH [f(H,p(H),γ(H))]]

− µT [fmin − z− x] . (6)

The Lagrangian in (6) provides a single, unconstrained ob-
jective function, which we can optimize using gradient-based
methods. In particular, we seek to maximize over the so-called
primal functions p,γ,x, z, while subsequently minimizing
over the dual functions λ,µ, i.e.,

D∗ := min
λ,µ

max
p,γ,x,z

L(p,γ,x, z,λ,µ). (7)
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The dual minimization in (7) is considered over all non-
negative valued functions while the primal maximization is
considered over functions of forms given in (5d). Note that
the Lagrangian needs to include terms corresponding to the
constraints in (5d). However, alternatively, we can enforce
these constraints by choosing proper model output functions
(e.g., via sigmoid, softmax, and ReLU functions as we will
demonstrate later in the paper), which effectively removes
the need for including them explicitly in the Lagrangian
and reduces the number of required dual parameters. Due
to the aforementioned zero duality gap property of the RRM
problem, the solution to (7) incurs no loss in optimality relative
to the original resilient problem in (5), i.e., D∗ = P ∗.

While the dual formulation in (7) removes the complexity
of constraints present in (5), it remains a challenging and
often intractable problem to solve in practice. Solving (7)
requires a saddle-point functional optimization—i.e., such
optimal policies need to be defined for each possible state H
and, therefore, (7) can be considered as an infinite-dimensional
optimization problem. We address this issue via a parame-
terized dual-based framework for solving the resilient RRM
problem in (5), or more specifically, its dual version in (7).

B. Parameterization of the Primal RRM Policies

We propose to tackle the statistical regression problem
in (7) via parameterization, where we replace the infinite-
dimensional functional optimization with optimization over
a set of parameters of predetermined form. Recall that, in
the given problem, we seek to find optimal RRM policies
that, once trained, can be generalized to unseen configurations
during system operation. We thus replace each of the primal
RRM policies g(·) with a respective parameterization g(·;θg)
that is fully specified by a finite-dimensional parameter vector
θg ∈ Rqg . With this substitution, we obtain the following
parameterized Lagrangian function,

Lθ(θp,θγ ,x, z,λ,µ):=L(p(·;θp),γ(·;θγ),x, z,λ,µ), (8)

where we have used as inputs to the standard Lagrangian in (6)
the parameterized RRM policy definitions. The parameterized
dual resilient problem is subsequently defined as

D∗θ := min
λ,µ

max
θp,θγ ,x,z

Lθ (θp,θγ ,x, z,λ,µ) . (9)

Unlike the unparameterized dual problem in (7), the pa-
rameterized dual problem in (9) does not exhibit null duality
gap due to the non-convexity of the constraint (5b). Thus,
its relation to the original resilient problem in (5) is not
immediately evident. However, a connection can be made
between these two problems by considering a particular class
of parameterizations that are sufficiently dense in their rep-
resentational abilities. We make the following definition of
so-called near-universal parameterizations:

Definition 1 A parameterization g(·;θg) with θg ∈ Θ is a
near-universal parameterization of degree ε > 0 for functions
in F if, for any f ∈ F , ∃θg ∈ Θ such that

EH ‖f(H)− g(H;θg)‖∞ ≤ ε. (10)

Using Definition 1, we may in fact bound the difference
between the optimal value obtained via (9) and the optimal
value obtained via (5) despite the non-convexities present in
the problem when we utilize near-universal parameterizations
to represent the primal RRM policies. In proving this result, we
need to introduce some restrictions to the problem formulation
that we state as assumptions next.

Assumption 1 The probability distribution DH is non-atomic
inH, i.e., for any set E ⊆ H of nonzero probability, there exists
a nonzero probability strict subset E ′ ⊂ E of lower probability,
0 < EH(I (E ′)) < EH(I (E)).

Assumption 2 Slater’s condition holds for (5). Especially,
there exist variables x0, p0(H), and γ0(H) and a strictly
positive scalar constant σ > 0 such that

EH [f(H,p0(H),γ0(H))]− x0 ≥ σ1. (11)

Assumption 3 The expected performance function
E [f(H,p(H),γ(H))] is expectation-wise Lipschitz on p(H)
and γ(H) for all fading realizations H. Specifically, for any
pair of power allocation policies p1(H),p2(H) ∈ [0, Pmax]m

and user selection policies γ1(H),γ2(H) ∈ ΓRn,m, there are
constants Lp and Lγ such that

E‖f(H,p1(H),γ(H))− f(H,p2(H),γ(H))‖∞
≤ LpE‖p1(H)− p2(H)‖∞, (12)

E‖f(H,p(H),γ1(H))− f(H,p(H),γ2(H))‖∞
≤ LγE‖γ1(H)− γ2(H)‖∞. (13)

Assumptions 1–3 place a set of mild assumptions on the
scope of (5) and necessary for the subsequent analysis. As-
sumption 1 states that there are no points of strictly positive
probability in the distribution DH, which is a reasonable
assumption provided that the channel fading states observed in
practice take on a continuum of values. Assumption 2 simply
states that service demands can be provisioned with some
slack, which is generally realizable in (5) via sufficiently small
x and large z. Assumption 3 is a continuity statement on each
of the dimensions of the expectation of the utility function
U and the rate function f—we point out this is weaker than
general Lipschitz continuity.

As previously mentioned, the duality gap of the original
unparameterized problem in (5) is known to be null, implying
D∗ = P ∗ [40]. This result does not directly apply to the
parameterized dual problem in (9) due to the restriction of
the optimization to a finite-dimensional space of learning
parameters. However, given validity of Assumptions 1–3 and
using a parameterization that is near-universal in the sense of
Definition 1, we show that the duality/parameterization gap
|D∗θ − P ∗| between problems (5) and (9) is small, as we
formally state next.

Theorem 1 Consider the resilient RRM problem in (5) and
its parameterized Lagrangian dual in (9), in which each of
the parameterizations g(·;θg) is near-universal with degree
εg in the sense of Definition 1 for both primal RRM policies
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Algorithm 1 Primal-Dual Learning of Resilient RRM Policies

1: Input: Primal and dual learning rates (ηp, ηγ , ηx, ηz, ηλ, ηµ), # time steps per configuration T .
2: Initialize RRM policy parameters (θp

0 ,θ
γ
0 ).

3: Initialize primal and dual variables (x0, z0,λ0,µ0) = (0,0,0,0).
4: Draw a sequence of T fading states {Ht}Tt=1 according to DH.
5: k ← 0.
6: while not converged do
7: Update primal RRM policy parameters (see (17)-(18)).
8: Update ergodic long-term average rate and slack variables (see (19)-(20)).
9: Update dual policy parameters (see (21)-(22)).

10: k ← k + 1.
11: end while
12:
(
θ∗

p
,θ∗

γ
,x∗, z∗,λ∗,µ∗

)
← (θp

k ,θ
γ
k ,xk, zk,λk,µk).

13: Return: Final primal and dual policy parameters and variables
(
θ∗

p
,θ∗

γ
,x∗, z∗,λ∗,µ∗

)
.

g ∈ {p,γ}. If Assumptions 1–3 hold, then the dual value D∗θ
is bounded as

P ∗ − εpLf
∥∥∥λ̃∗∥∥∥

1
≤ D∗θ ≤ P ∗, (14)

where λ̃
∗

= [λ∗;µ∗] denotes the optimal dual variables in
(7), εp = max{εp, εγ}, and Lf = max{Lp, Lγ}.

Proof: See Appendix A. �

In Theorem 1, we establish that the solution found via
the parameterized dual problem in (9) is close to that of
the original unparameterized resilient RRM problem in (5)
when near-universal parameterizations are used to represent
the primal RRM policies. The degree of this difference is pro-
portional to the degree of near-universality used in the learning
parameterization. This allows us to use stochastic primal-
dual methods that operate directly on the finite-dimensional,
unconstrained problem in (9), as we discuss next.

C. Unsupervised Empirical Primal-Dual Learning

Since we do not have access to the underlying fading
distribution DH, we resort to an empirical formulation of the
Lagrangian function (8), where the expectation is replaced by
an empirical sample mean. In particular, we draw a sequence
of T fading samples {Ht}Tt=1 according to the distribution
DH. This leads to the empirical parameterized Lagrangian

L̂θ (θp,θγ ,x, z,λ,µ)

= U(x)− α

2
‖z‖22

− λT
[
x− ÊH [f(H,p(H;θp),γ(H;θγ))]

]
− µT [fmin − z− x] , (15)

where for any function F : H → R, we define

ÊH [F(H)] :=
1

T

T∑
t=1

F(Ht). (16)

We can now derive the updates over an iteration in-
dex k for each of the primal and dual parameters/variables
by either adding or subtracting the partial gradient of

L̂θ (θp,θγ ,x, z,λ,µ) with respect to that variable. For power
allocation and user selection policies, this gives us the updates,

θp
k+1 = θp

k + ηp∇θp

{
λT ÊH [f(H,p(H),γ(H))]

}
, (17)

θγ
k+1 = θγ

k + ηγ∇θγ

{
λT ÊH [f(H,p(H),γ(H))]

}
, (18)

where ηp, ηγ > 0 denote learning rates corresponding to
the primal RRM policy parameters variables θp and θγ ,
respectively. Moreover, the ergodic average rate and slack
variables are, respectively, updated as

xk+1 = xk + ηx (∇xk {U(xk)}+ µk − λk) , (19)
zk+1 = [zk + ηz (µk − αzk)]+ , (20)

where ηx, ηz > 0 respectively denote the learning rates
corresponding to the ergodic average rate and slack variables
x and z, and [·]+ := max(·, 0). Finally, we descend on the
dual variables using the associated partial gradients of the
Lagrangian, i.e.,

λk+1 =
[
λk − ηλ

(
xk − ÊH [f(H,p(H),γ(H))]

)]
+
, (21)

µk+1 = [µk − ηµ (fmin − zk − xk)]+ , (22)

where ηλ, ηµ > 0 respectively represent learning rates corre-
sponding to the dual variables λ and µ.

The primal-dual gradient updates in (17)-(22) successively
move the primal and dual variables towards the maximum and
minimum points of the Lagrangian dual function, respectively.
The complete resilient primal-dual learning algorithm is sum-
marized in Algorithm 1. Observe that the proposed method
is unsupervised in the sense that we update the primal, slack,
and dual variables so as to optimize the objective function and
constraints in (5) directly rather than with labeled solutions.

Remark 3 (Generalization Across Configurations) It is
important to note that the original and resilient problem
formulations in Section II, alongside the primal-dual learning
method in Algorithm 1, train the parameterized RRM
policies to operate only on a single network configuration,
i.e., realization of the placement of APs and UEs, the
corresponding long-term fading state, and the user-AP
association topology. However, in practice, we need the
learned RRM policy parameterizations to generalize to novel
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scenarios, unseen during the training process. Therefore,
the problem we are actually interested in is that of finding
RRM policies that optimize the performance of a family of
configurations, so that the trained policies can generalize
across configurations once training is complete. We defer
the details of training resilient RRM policies over a family
of configurations, including the corresponding problem
formulation and practical considerations, to Appendix B.

Remark 4 (Structured Parameterizations) Observe that, in
the formulation of the parameterized dual problem in (9) and
the subsequent primal-dual algorithm, we make an implicit
assumption that the chosen parameterizations properly adhere
to the same structure imposed on the unparameterized policies.
That is, the primal policy parameterizations take values of as-
sociated forms in (5d). Selecting appropriate parameterizations
thus requires consideration of these imposed structures, which
can typically be enforced by standard output layer functions
(e.g., sigmoid, Softmax, ReLU, etc.)—see Section IV-B for
details as applied to the RRM problem.

IV. PARAMETERIZING RESILIENT RRM POLICES VIA
GRAPH NEURAL NETWORKS

The choice of parameterization functions is critical in
achieving optimal RRM policies with good practical perfor-
mance when solving (5). Fully-connected deep neural net-
works (DNNs) are a proper choice here, due to their univer-
sality property, which states that given enough depth and/or
width, they have sufficient expressive power to approximate
any function with any desired accuracy [15], [41]. However,
despite their theoretical properties, such a parameterization
does not scale well—as the parameter dimension (particularly
in the input and output layers) grows with number of APs and
UEs in the network, i.e., m and n—and more critically does
not generalize over varying network topologies.

In this section, we discuss and develop a graph neural
network (GNN) architecture suitable for solving the RRM
problem in networks of any size. In particular, we propose to
use GNNs as parameterizations for the primal RRM policies
outlined in Section III. Broadly speaking, GNNs can be
viewed as a generalization of convolutional neural network
(CNN) architectures, whose popularity and practical bene-
fits stem largely from their significantly reduced parameter
dimension relative to traditional DNNs, their invariance to
input size, and their so-called permutation equivariance. GNNs
generalize the convolutional operations performed in CNNs
with a convolution performed on arbitrarily structured data
[42]–[45]. Moreover, certain GNN architectures are known
to satisfy the near-universality assumption in Definition 1
for the class of continuous, equivariant functions [46], thus
making them suitable for achieving small error in duality gap.
Note that GNN architectures have been previously used in the
literature in the context of resource management in wireless
network (see, e.g., [13], [19], [24], [25]). However, in this
work, we specifically leverage GNN-based parameterizations
in conjunction with an unsupervised resilient formulation of
the RRM problem as outlined in Sections II-III, which has not
been done in prior work.

1

ℛ! (Associated to AP2)ℛ" (Associated to AP1)

2

3

4

5

Fig. 1: The weighted directed graph G in a network with m = 2 APs and
n = 5 UEs, where the sets of associated users for the two APs are given by
R1 = {1, 2} and R2 = {3, 4, 5}. The self-loops (in green) represent the
signal edges, while the edges between each two pairs of connected users (in
orange) represent the interference edges.

A. Graph Construction

We consider the data structure in the form of a directed
graph G = (V, E , w), where V denotes the set of graph nodes,
connected by directed edges in E , and w : E → R is a function
that determines the edge weights. More specifically, we define
V = {1, . . . , n}, where each node represents a user. As for
the edges, we define E to include two edge types:
• Signal edges. These are self-loops from each node to itself

that represent the direct link between each user and its
serving AP. In particular, for each user UEj , j ∈ {1, . . . ,m},
with the associated AP[j], there is an edge from node j to
itself, i.e., (j, j) ∈ E , with its weight being a function of
the channel gain between AP[j] and UEj , i.e., w(j, j) =
e(h[j]j), where e : C→ R is an arbitrary function.

• Interference edges. These are edges representing the in-
terference caused by each AP at its un-associated users.
Specifically, for each two distinct users UEj and UEj′ with
distinct serving APs (i.e., [j] 6= [j′]), there is an edge from
node j to node j′, i.e., (j, j′) ∈ E , with its weight being
w(j, j′) = e(h[j]j′).
Figure 1 illustrates an example of the graph G in a network

with m = 2 APs and n = 5 UEs, where the sets of users
served by AP1 and AP2 are given by R1 = {1, 2} and R2 =
{3, 4, 5}, respectively. Based on the graph G, we use a GNN
architecture for implementing the primal RRM policies, which
we discuss next.

Remark 5 (Graph Sparsification) While it is reasonable to
keep all the signal edges in the graph, whether strong or weak,
it is also possible to make the graph sparser and structurally
asymmetric by removing a subset of interference edges corre-
sponding to “weak” interference links in the original network,
as for example done in [1]. Defining and identifying such
“weak” interference links is, in and of itself, an interesting
research question, and sufficient conditions for information-
theoretic optimality of treating interference as noise (e.g., as
proposed in [8], [47]) can be leveraged to that end.

B. GNN Architecture

For each node v ∈ V , let y0
v ∈ RF0 denote the initial

feature vector corresponding to node v, where F0 represents
the number of initial features per node. These feature vectors
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then go through multiple rounds, i.e., layers, of message
passing and aggregation along the edges of the graph G.
Letting L denote the number of such layers, for every layer
l ∈ {1, . . . , L}, we represent the feature vector of each node
v by ylv ∈ RFl , where Fl denotes the number of features
per node at layer l. Each such feature vector is derived as
an aggregation of the features of node v and its neighbors
from the previous layer, as well as its incoming edge weights
(including its self-loop), i.e.,

ylv = Ψl
(
yl−1v , w(v, v),

{
yl−1u , w(u, v)

}
u∈Nv

;θl
)
, (23)

where Ψl(·;θl) denotes a potentially non-linear aggregation
function, parameterized through a set of parameters θl , and
Nv is defined as the set of neighbors of node v, i.e.,

Nv := {u ∈ V \ {v} : (u, v) ∈ E}. (24)

Each aggregation layer in (23) enables each node to receive
information about nodes which are one more hop away of
itself. It is clear from the proposed graph construction in
Section IV-A that using L ≥ 2 layers can propagate infor-
mation from each node to every other node in the graph.
After L layers, each node will have a final feature vector
sv := yLv ∈ RFL , which we refer to as its node embedding.
Note that as the graph edge weights depend on the channel
gains, implementing the GNN and deriving the node embed-
dings requires either iterative message passing among UEs and
APs, or having a global entity, which has access to the entire
set of channel gains across the network and is able to derive
the node embeddings in a centralized manner.

We use the aforementioned architecture as the parame-
terization for the primal power control and user selection
policies. In particular, we use a single GNN as a backbone, i.e.,
feature extractor, which derives the node embeddings that are
subsequently used by both the power control and user selection
policies in parallel. Such embeddings have been shown to pro-
vide semantically-meaningful information when trained and
evaluated on wireless power allocation problems [17], [26].
This helps significantly reduce the total number of parameters
as opposed to having a separate, independent GNN for each
of the two RRM policies. More precisely, after L aggregation
layers as in (23), and obtaining the resulting node embeddings
for all the nodes in the graph, i.e., {sv}v∈V , we define the
power control and user selection policies as follows:
• Power control. For each APi, i ∈ {1, . . . ,m}, we derive

its transmit power level as

pi(H) = Pmax · σ

 1

|Ri|
bTp

∑
j∈Ri

sj

 , (25)

where σ(·) denotes the sigmoid function σ(x) = 1
1+e−x ,

and bp ∈ RFL is a parameter vector mapping the average
node embeddings of the users associated to APi to a scalar,
which is then converted to its allocated transmit power. It is
evident from (25) that the resulting allocated power levels
satisfy the transmit power constraint pi(H) ∈ [0, Pmax].

• User selection. For each APi, i ∈ {1, . . . ,m} with the set of
associated users Ri, the estimated user selection probability

for user UEj , j ∈ Ri is derived as

γj(H) = SoftmaxRi
(
bTγ sj/τ

)
=

exp
(
bTγ sj/τ

)∑
k∈Ri exp

(
bTγ sk/τ

) , (26)

where bγ ∈ RFL is a parameter vector and τ ∈ R+

denotes a temperature hyperparameter. Using the Softmax
operation in (26) ensures that

∑
j∈Ri γj(H) = 1. However,

this will lead to soft scheduling decisions, as (26) effec-
tively converts the user node embeddings to a scheduling
probability distribution over the set of users associated with
each AP. One way to satisfy the hard scheduling constraint
γj(H) ∈ {0, 1} is to use a small-enough temperature τ → 0,
which in turn “cools” the resulting distribution and reduces
its entropy, mimicking an arg max operation, i.e.,

γj(H)
τ→0−−−→ I

(
bTγ sj = max

k∈Ri
bTγ sk

)
, (27)

where I(·) denotes the indicator function. Such low tem-
perature values, however, might lead to unstable gradients
when updating the policy parameters as in (18). In this
paper, we use a more stable alternative, which is to treat
the values of {γj(H)}j∈Ri in (26) as a categorical user
scheduling distribution. Then, we sample a user based on
this probability distribution (i.e., each APi selects one user
from Ri to serve at each step, with the probability of
selecting UEj , j ∈ Ri, given by γj(H) in (26)), leading
to the binary/hard user scheduling decisions {γ̂j(H)}j∈Ri .
This allows us to replace the user selection policy update
in (18) with a policy gradient update [15],

θγ
k+1 = θγ

k + ηγÊH

[(
λT f̂(H)

)
∇θγ log πγ,γ̂(H)

]
,

(28)

where f̂(H) = f(H,p(H), γ̂(H)) represents the observed
performance function, and πγ,γ̂(H) is defined as

πγ,γ̂(H) :=

m∏
i=1

∏
j∈Ri

γj(H)γ̂j(H), (29)

which represents the joint probability of the selected users
by all the APs across the network. Such updates form
the basis for the REINFORCE method in the reinforce-
ment learning literature [48]–[50]. We leave other choices
for implementing the user selection policy that may also
avoid potentially high variances of policy gradients (e.g., an
annealing schedule for the temperature hyperparameter, or
using the Gumbel-Softmax distribution and the reparame-
terization trick [51], [52]) for future work.

V. EXPERIMENTAL EVALUATION

A. Wireless Network Settings

We consider wireless networks with m ∈ {4, 6, 8, 10} APs
and n ∈ {40, 60, 80, 100} UEs, dropped randomly within
a 500m × 500m square area. We drop the APs and UEs
uniformly at random within the network area, and ensure
minimum pairwise distances of 35m and 10m for each AP-AP
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and AP-UE pair, respectively. The long-term channel model
consists of a log-normal shadowing component with 7 dB
standard deviation, as well as a standard dual-slope path-loss
model [53], [54], which defines the path-loss at distance d as

PL(d) =

{
K0d

α1 if d ≤ dbp,
K0

dα2

d
α2−α1
bp

o.w. (30)

In (30), we set K0 = 39 dB, dbp = 100m, α1 = 2, and
α2 = 4. We also model the short-term Rayleigh fading using
the sum of sinusoids (SoS) technique [55] with a pedestrian
speed of 1m/s. The bandwidth is set to 10 MHz, the noise
power spectral density is assumed to be −174 dBm/Hz, and
the maximum transmit power is taken to be Pmax = 10 dBm.

We adopt a max-SINR user association strategy [56], where
the set of users associated to each APi, i ∈ {1, . . . ,m}, is
defined as

Ri =

{
j ∈ {1, . . . , n} : i = arg max

i′∈{1,...,m}
|h`i′j |2

}
, (31)

where h`i′j denotes the long-term channel gain between be-
tween APi′ and user UEj . Note that max-SINR association
may be suboptimal in certain scenarios, especially in the pres-
ence of load-balancing issues across different APs. Learning
optimal user-AP association strategies using GNN architec-
tures is, in and of itself, an interesting resource allocation
research problem, where the decisions are made over longer
periods of time as opposed to the RRM problems considered
in this paper. We leave studying such learning-based user-AP
association algorithms as future work.

Once user association is complete, each configuration is run
for 200 time steps, with each time step representing 1ms. We
use the first 100 time steps as a warm-up period to stabilize the
user rates, in which all APs use full transmit power Pmax and
serve their associated users in a round-robin fashion, and we
then use the second T = 100 time steps to train and evaluate
the models. Note that given the aggregate time horizon of
200ms that we consider, the slow speed of the users (resulting
in a total of 20cm displacement per user), and the large
network area, the impact on the user positions and, therefore,
the user-AP association is negligible. Therefore, we assume
that the user-AP association does not change over the course
of the 200 time steps under study for each configuration.

B. Learning Parameters

In order to implement the primal RRM policies using a
GNN parameterization, we use the local extremum operator
proposed in [57], where the aggregation layer (23) is given by

ylv = µ

yl−1v θl1 +
∑

u:(u,v)∈E

w(u, v)
(
yl−1v θl2 − yl−1u θl3

) .

Here, θl1, θl2, and θl3 are learnable parameters, all in RFl−1×Fl ,
and µ(·) represents a LeakyReLU non-linearity (with a neg-
ative slope of 10−2). Note that with the aforementioned
GNN parameterization, the sets of parameters for the power
control and user selection policies are given by θp =

(
{θl1,θ

l
2,θ

l
3}Ll=1,bp

)
and θγ =

(
{θl1,θ

l
2,θ

l
3}Ll=1,bγ

)
, re-

spectively. We use L = 2 hidden layers, each with 64 features,
i.e., F1 = F2 = 64, and we set the temperature hyperparameter
for the user selection policy to τ = 10.

We use the normalized channel gains in dB to determine
the edge weights. In particular, for a given channel matrix H
and for a signal/interference element hij in H, we define the
edge weight function e(·) as

e(hij) =
log
(
Pmax|hij |2/N

)(∑m
i′=1

∑n
j′=1 [log (Pmax|hi′j′ |2/N)]

2
)1/2 . (32)

As for the initial node features, we use a scalar feature for
each node, i.e., F0 = 1, and set it to the proportional-fairness
(PF) ratio of the corresponding user. In particular, at each
time step t, for each user UEj , j ∈ {1, . . . , n}, we define
the initial node feature vector of node j at that time step as
y0
j (t) = [PFj(t)], where

PFj(t) := f̂j(t)/f̄j(t). (33)

In (33), f̂j(t) denotes the estimated rate of user UEj at time
step t, defined as

f̂j(t) = log2

(
1 +

Pmax

∣∣h[j]j∣∣2
N + Pmax

∑m
i=1, i 6=[j] |hij |2

)
, (34)

and f̄j(t) denotes the exponential moving-average rate of user
UEj at time step t, which is recursively updated as

f̄j(t) = (1− β)f̄j(t− 1) + βfj(t), (35)

with fj(t) denoting the actual achieved rate of the user at
time step t, and β ∈ [0, 1] denoting the inverse averaging
window length. In our experiments, we set β = 0.05. Resource
management based on the PF ratios have been proven to lead
to fair resource allocation decisions across the network [58].

We utilize a sum-rate network utility function U(x) =∑n
i=1 xi, set the minimum capacity to fi,min = 1 bps/Hz for

all users in all scenarios, and use a value of α = 10−2 as the
slack norm regularization parameter.

As mentioned in Remark 3 and Appendix B, to make the
learned policies generalizable, we train the GNN parameters
over a family of configurations. In particular, during training,
we use 256 training configurations and 128 validation con-
figurations. We train the primal and dual parameters/variables
over a total of 400 epochs using a batch size of 64. After
each training epoch, we evaluate the trained RRM policies on
the 128 validation configurations and save the policies that
lead to the highest 5th percentile rate. During the evaluation
phase, we test the saved policies on a separate family of
128 test configurations. We initialize the primal RRM policy
learning rates as ηp = ηγ = 10−3 and the rest of the learning
rates as ηx = ηz = ηλ = ηµ = 1. Every 50 epochs, we
decrease all of the learning rates by 1

2 . We implement the
entire training and evaluation procedures using the PyTorch
Geometric library [59].2

2Our code is available at https://github.com/navid-naderi/
Resilient_RRM_GNN.

https://github.com/navid-naderi/Resilient_RRM_GNN
https://github.com/navid-naderi/Resilient_RRM_GNN
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Fig. 2: Power control comparison of the proposed method with GNN-based baselines in terms of (a) mean rate and (b) 5th percentile rate for networks with
m = n ∈ {6, 8, 10, 12} AP-UE pairs, where for each scenario, m and n were the same during training and evaluation.

C. Baseline Methods

We consider two state-of-the-art unsupervised learning-
based baselines using GNN parameterizations, namely
WCGCN [24] and REGNN [25], for the problem of power
control. We also compare the performance of our proposed
method under joint power control and user selection with three
non-learning-based baselines, namely full reuse (where all APs
transmit with full power at each time step), WMMSE [4], and
ITLinQ [7], [60]. For the latter baselines, we use a PF-based
user selection policy, where at each time step, for each AP,
the associated user with the maximum PF ratio is selected.

D. Performance on Identical Training and Evaluation Settings

In this section, for the learning-based methods, the evalua-
tion results for any wireless network size (i.e., the number of
APs and UEs) are based on the models trained with the same
wireless network size.

1) Power Control Only (m = n): We first consider
networks with equal numbers of APs and UEs, in which user
selection decisions are trivial, as only one user is associated
to each AP. Therefore, the RRM problem boils down to power
control. Figure 2 shows the performance of our proposed
method compared to the GNN-based baseline algorithms for
networks with m = n ∈ {6, 8, 10, 12} AP-UE pairs. As the
figure shows, thanks to the resilient formulation, our proposed
method is able to outperform both GNN-based baselines in
terms of the mean and 5th percentile rates.

2) Joint Power Control and User Selection (m < n): Fig-
ure 3 compares the performance of the proposed method and
the non-learning-based baseline methods in terms of mean and
5th percentile rates for networks with m ∈ {4, 6, 8, 10} APs
and n = 40 UEs. As the results show, while underperforming
ITLinQ and WMMSE in terms of mean rate, the proposed
method significantly outperforms all baselines in terms of
the 5th percentile rate. This demonstrates how the resilient

formulation of the RRM problem leads to a considerably fairer
resource allocation across all the users, balancing the rates
achieved by “cell-center” and “cell-edge” users.

To cast more light on the role of the slack variable in the
primal-dual learning process, Figure 4 illustrates the evolution
of the average slack variable during the training procedure
for different values of m. As the number of APs, i.e., m,
increases, each of the n = 40 users has a higher probability
of being served by a closer AP, hence the network will be less
interference-limited. This is precisely reflected in Figure 4,
where the average slack variable converges to a smaller value
for networks with a larger number of APs, hence leading to
stricter minimum-capacity requirements.

E. Transferability to Larger Network Sizes

While the results in Section V-D demonstrated the per-
formance of the proposed method for similar training and
evaluation network sizes, as we mentioned in Section IV, one
of the main benefits of GNNs is their size invariance. In other
words, a GNN trained on a given network size can be evaluated
on any arbitrary network size. Thus, here we evaluate the
transferability of the trained RRM policies, i.e., how policies
trained on smaller networks perform in larger configurations.

In Figure 5, we consider the RRM policies trained on
networks with m = 4 APs and n = 40 UEs. Once training
is complete, we then freeze those policies, i.e., keep their
parameters unchanged, and evaluate them on networks with
n ∈ {40, 60, 80, 100} UEs and m = n/10 APs. As the figure
shows, the proposed method transfers significantly well to
graphs of more than twice the size, maintaining its 5th per-
centile rate gains over the baseline methods. This demonstrates
the inherent capability of GNN parameterizations that make
the resulting models insensitive to the underlying network
size, as opposed to regular DNN-based parameterizations,
which become unusable if the network size during execution
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Fig. 3: Comparison of the proposed method with non-learning-based baselines in terms of (a) mean rate and (b) 5th percentile rate for networks with
m ∈ {4, 6, 8, 10} APs and n = 40 UEs, where for each scenario, the value of m was kept fixed during training and evaluation.
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Fig. 4: Evolution of the average slack variable during training for networks
with m ∈ {4, 6, 8, 10} APs and n = 40 UEs.

is different from the ones on which the policies have been
trained.

F. Interpretation of Slack Values as a Function of Underlying
Network Conditions

Our main motivation for the resilient formulation of the
RRM problem was to learn RRM policies that adaptively
relax the minimum-capacity constraints for users that are not
in desirable channel conditions. To verify that the trained
policies have indeed learned such relaxations properly, we can
visualize the learned slack variables as a function of network
conditions for each user in the training set.

To that end, we consider the primal-dual training procedure
in networks with m = 4 APs, and n = 40 UEs. For each
user UEj , j ∈ {1, . . . , n}, in each configuration, we retrieve
its final slack level zj , alongside three other quantities that
reflect its channel conditions, namely:

• its large-scale signal-to-noise (SNR), Pmax

∣∣∣h`[j]j∣∣∣2 /N ;

• its dominant large-scale interference-to-noise ratio (INR),
maxi 6=[j] Pmax

∣∣h`ij∣∣2 /N ; and,
• its dominant large-scale signal-to-interference ratio (SIR),∣∣∣h`[j]j∣∣∣2 /maxi 6=[j]

∣∣h`ij∣∣2.

Figure 6a shows a scatter plot of the slack values as a func-
tion of the large-scale SIR in dB, normalized as in (32). As the
figure shows, the slack values have a general downward trend
with increased SIR, which is as expected: users with higher
large-scale SIR levels have more favorable channel conditions
and, therefore, need less relaxation for their corresponding
minimum-capacity constraints. Moreover, Figure 6b illustrates
an interpolated heatmap of the slack value as a function of the
normalized SNR and dominant INR levels. The learned slack
values are generally largest around the origin (low SNR levels)
or the identity line (low SIR levels), which shows how the
resilient formulation of the RRM problem provides a granular
control over the minimum-capacity requirements for different
users across the network.

VI. CONCLUDING REMARKS

We considered the problem of downlink power control and
user selection in wireless interference networks with multiple
interfering access points (APs), which intend to serve multiple
users. To balance fairness across users while maximizing their
average achieved rate, we formulated a constrained optimiza-
tion problem with per-user minimum-capacity requirements.
We showed how the aforementioned radio resource man-
agement (RRM) policies can be made resilient through the
introduction of slack variables, which relax the minimum-
capacity constraints for users in poor network conditions. We
reformulated the problem in the Lagrangian dual domain and
introduced parameterizations for the RRM policies to resolve
the challenge of infinite-dimensional functional optimization.
We specifically used a graph neural network (GNN) parameter-
ization for the RRM policies, and we proposed a primal-dual
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Fig. 5: Transferability of the proposed method, where the model trained on networks with m = 4 APs and n = 40 UEs is evaluated on larger network
configurations. The transferability performance of the proposed method is compared with non-learning-based baselines in terms of (a) mean rate and (b) 5th

percentile rate.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Normalized SIR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ac

k 
(z)

 (b
ps

/H
z)

(a)

0.00 0.02 0.04 0.06 0.08 0.10
Normalized SNR (dB)

0.00

0.02

0.04

0.06

0.08

0.10
No

rm
ali

ze
d 

do
m

in
an

t I
NR

 (d
B)

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ac

k 
(z)

 (b
ps

/H
z)

(b)

Fig. 6: (a) Scatter plot of the per-user slack values versus the normalized signal-to-interference ratio (SIR) levels, and (b) heatmap of (interpolated) per-user
slack values as a function of the normalized signal-to-noise ratio (SNR) and the dominant interference-to-noise ratio (INR). Both plots are based on final
slack values for the proposed model trained on networks with m = 4 APs and n = 40 UEs. The SIR in (a) and the dominant INR in (b) reflect only the
strongest interferer at each user. The SNR, INR, and SIR values are calculated based on the long-term fading states.

approach to train the GNN parameters, as well as the remain-
ing primal and dual variables, via iterative stochastic gradient
updates. Experimental results demonstrated the superiority of
our proposed algorithm compared to baseline methods in terms
of the trade-off between average and 5th percentile user rates,
even in scenarios where the network size during evaluation was
more than twice as large as the ones seen during training. We
further showed how the resulting slack variables adapt them-
selves to the underlying network configuration, increasing in
value—thereby relaxing the minimum-capacity constraints—
for users with unfavorable channel conditions.

In this work, we assumed that we have access to the full

channel state information across the network to accurately
calculate the Shannon capacity values. It would be interesting
to study how our proposed method can be implemented in
the real world, using noisy and/or quantized values of channel
gains, attained through, e.g., periodic channel quality indicator
(CQI) feedback. We leave such practical considerations for
transferring our method to real-world wireless networks as
future work.
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APPENDIX A
PROOF OF THEOREM 1

For notational convenience, we begin by restating the La-
grangian in (8) in a more compact form. To do so, we first
define the collected unparameterized primal policies, primal
variables, and dual variables as p̃(H) := [p(H);γ(H)],
x̃ := [x; z], and λ̃ = [λ;µ]. Further define θp := [θp;θγ ]
to collect the RRM policy parameters. We can write the
Lagrangian then as

Lθ(θp, x̃, λ̃) = F(x̃)− λ̃
T
G(x̃;θp). (36)

Observe we have further compacted the objective and con-
straint functions in F(x̃) := U(x) − α

2 ‖z‖
2
2 and G(x̃;θp) :=

[x−EH[f(H,p(H;θp),γ(H;θγ))]; fmin−z−x], respectively.
The optimal parameterized dual value D∗θ is given by the

solution of the dual problem

D∗θ = min
λ̃

max
θp,x̃

[
F(x̃)− λ̃

T
G(x̃;θp)

]
. (37)

Given the fact that p̃(H;θp) defines a subset of policies
contained in the unparameterized class of policies in (5), the
inner minimization in (37) can be upper bounded by

D∗θ ≤ min
λ̃

max
p̃,x̃

[
F(x̃)− λ̃

T
G(x̃, p̃)

]
, (38)

where G(x̃, p̃) := [x−EH[f(H,p(H),γ(H))]; fmin− z−x].
The term on the right hand side of (38) indeed constitutes the
unparameterized dual problem in (7). Due to strong duality
of the original resilient RRM problem formulation—see [40,
Theorem 1]—we know that D∗ = P ∗ and obtain the upper
bound on D∗θ in (14).

We proceed to derive the lower bound on D∗θ . We add and
subtract λ̃

T
G(x̃, p̃) to and from the right hand side of (37):

D∗θ = min
λ̃

max
θp,x̃

{[
F(x̃)− λ̃

T
G(x̃, p̃)

]
−
[
λ̃
T

(G(x̃;θp)− G(x̃, p̃))
]}

(39)

= min
λ̃

max
x̃

{[
F(x̃)− λ̃

T
G(x̃, p̃)

]
−min

θp

[
λ̃
T

(G(x̃;θp)− G(x̃, p̃))
]}

,

(40)

where (40) is true since the first term on the right hand
side of (39) does not involve θp. Define the term ∆θ :=

λ̃
T

(G(x̃;θp)− G(x̃, p̃)), we can continue (40) as

D∗θ = min
λ̃

max
x̃

{[
F(x̃)− λ̃

T
G(x̃, p̃)

]
−min

θp
∆θ

}
(41)

≥ min
λ̃

max
x̃

{[
F(x̃)− λ̃

T
G(x̃, p̃)

]
−min

θp
|∆θ|

}
. (42)

We proceed to find an upper bound for |∆θ|. Using Hölder’s
inequality, we can write

|∆θ| ≤
∥∥∥λ̃∥∥∥

1
‖G(x̃;θp)− G(x̃, p̃)‖∞ . (43)

A further upper bound can be made from (43) by applying
Lipschitz continuity of G in Assumption 3 to obtain

|∆θ| ≤ Lf
∥∥∥λ̃∥∥∥

1
EH ‖p̃(H;θp)− p̃(H)‖∞ , (44)

where Lf := max{Lp, Lγ}. To upper bound the minimum
of |∆θ| over θp, consider that p̃(·;θp) is a near-universal
parameterization of degree εp := max{εp, εγ}. From (10),
the parameterized primal policy can approximate p̃(H) to at
least a degree of εp. From this we obtain

min
θp
|∆θ| ≤ εpLf

∥∥∥λ̃∥∥∥
1
. (45)

Combining (45) with (42), we have

D∗θ ≥ min
λ̃

max
x̃

{[
F(x̃)− λ̃

T
G(x̃, p̃)

]
− εpLf

∥∥∥λ̃∥∥∥
1

}
(46)

= min
λ̃

max
x̃

[
F(x̃)− λ̃

T
(G(x̃, p̃) + εpLf1)

]
, (47)

where in (47), 1 denotes the vector of all 1’s and the equality

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=S1jE5L5gl


14

holds due to the definition of the `1-norm and the fact that the
dual variables are non-negative. Since (47) holds for all p̃, we
have

D∗θ ≥ min
λ̃

max
p̃,x̃

[
F(x̃)− λ̃

T
(G(x̃, p̃) + εpLf1)

]
. (48)

Note that the right hand side of (48) is the dual value of a
perturbed version of the problem in (5), where the constraints
are perturbed by εpLf1. Since this perturbed problem also has
null duality gap, we can use the perturbation inequality in [61,
§5.6.2] to further bound (48) as

D∗θ ≥ P ∗ − λ̃
∗T

(εpLf1) (49)

= P ∗ − εpLf
∥∥∥λ̃∗∥∥∥

1
. (50)

This completes the proof. �

APPENDIX B
TRAINING OVER A FAMILY OF CONFIGURATIONS

As mentioned in Remark 3, in practice, we train the
RRM policies over a family of random network configurations
N ∈ N . Each configuration, drawn from an underlying dis-
tribution DN, represents a random placement of transmitters
and receivers and models the long-term channel components
stemming from signal attenuation due to the physical distance
between the transmitters and receivers, alongside deviations
due to obstacles in the environment. We reformulate the
resilient RRM formulation in (5) as

max
p,γ,x,z

EN

[
U(x(N))− α

2
‖z(N)‖22

]
, (51a)

s.t. x(N) ≤ EH [f(H,p(H),γ(H))|N] , DN-a.e. (51b)
x(N) ≥ fmin − z(N), DN-a.e. (51c)

p(H) ∈ [0, Pmax]m,γ(H) ∈ ΓRn,m, z(N) ≥ 0, (51d)

where the ergodic average rate x and the slack term z
are now configuration-dependent. Moreover, in (51c)-(51d),
DN-a.e. implies that the constraints should be satisfied for
almost all large-scale fading configurations N drawn from
the distribution DN. Introducing non-negative dual multiplier
functions λ : N → Rn+ and µ : N → Rn+, we can derive the
corresponding Lagrangian function as

L(p,γ,x, z,λ,µ)

= EN

[
U(x(N))− α

2
‖z(N)‖22

− λ(N)T [x(N)− EH [f(H,p(H),γ(H))|N]]

− µ(H`)T [fmin − z(N)− x(N)]

]
. (52)

As for the primal-dual learning algorithm, we now draw
a set of B network configurations {Nb}Bb=1 according to
the distribution DN, and we further draw B × T fading
samples {Hb,t}B,Tb=1,t=1 according to the distribution DH. For
any functions F : N → R and F ′ : H → R, we define

ÊN [F(N)] :=
1

B

B∑
b=1

F(Nb), (53)

ÊH [F ′(H)|Nb] :=
1

T

T∑
t=1

F ′(Hb,t). (54)

Then, the primal RRM policy parameters will be updated as

θp
k+1 = θp

k + ηpδ
p
k , (55)

θγ
k+1 = θγ

k + ηγδ
γ
k , (56)

where δpk , and δγk are defined as

δpk = ÊN

[
∇θp

{
λ(N)T ÊH [f(H,p(H),γ(H))|N]

}]
,

δγk = ÊN

[
∇θγ

{
λ(N)T ÊH [f(H,p(H),γ(H))|N]

}]
.

As the remaining primal and dual policies are not parameter-
ized, we update the primal and dual variables corresponding
to each training configuration separately. In particular, for any
b ∈ {1, . . . , B}, let (xb, zb,λb,µb) respectively denote the
ergodic average rate, slack and dual variables corresponding
to the bth configuration, i.e.,

(xb, zb,λb,µb) = (x(Nb), z(Nb),λ(Nb),µ(Nb)) .

Then, for the bth configuration, b ∈ {1, . . . , B}, we update the
ergodic average rate and slack variables as

xb,k+1 = xb,k + ηxδ
x
b,k, (57)

zb,k+1 =
[
zb,k + ηzδ

z
b,k

]
+
, (58)

where δxb,k and δzb,k are defined as

δxb,k = ∇xb,k {U(xb,k)}+ µb,k − λb,k.

δzb,k = µb,k − αzb,k.

Finally, we update the dual variables as

λb,k+1 =
[
λb,k − ηλδλb,k

]
+
, (59)

µb,k+1 =
[
µb,k − ηµδ

µ
b,k

]
+
, (60)

where δλb,k and δµb,k are defined as

δλb,k = xb,k − ÊH [f(H,p(H),γ(H))|Nb] ,

δµb,k = fmin − zb,k − xb,k.
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