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Bandlimited signal reconstruction from
leaky integrate-and-fire encoding using POCS
Nguyen T. Thao, Member, IEEE, Dominik Rzepka and Marek Miśkowicz, Senior Member, IEEE

Abstract—Leaky integrate-and-fire (LIF) encoding is a model
of neuron transfer function in biology that has recently attracted
the attention of the signal processing and neuromorphic comput-
ing communities as a technique of event-based sampling for data
acquisition. While LIF enables the implementation of analog-
circuit signal samplers of lower complexity and higher accuracy
simultaneously, the core difficulty of this technique is the retrieval
of an input from its LIF-encoded output. In this article, we study
this problem in the context of bandlimited inputs, by extracting
the most abstract features of an LIF encoder as a generalized
nonuniform sampler. In this view, the LIF output is seen as the
transformation of the input by a known linear operator. We
show that the signal reconstruction method of projection onto
convex sets (POCS) converges to a weighted pseudo-inverse of
this operator. This allows perfect recovery under uniqueness of
reconstruction, minimum-norm reconstruction under incomplete
sampling, as well as a noise shaping of time quantization that
outperforms standard pseudo-inversion. On the practical side,
a single iteration of the POCS method can be used to improve
any estimate whose LIF samples are not consistent with those
of the input, and a rigorous discrete-time implementation of
this iteration is proposed that does not require a Nyquist-rate
representation of the signals.

Index Terms—integrate and fire, leakage, bandlimited sig-
nals, nonuniform sampling, event-based sampling, time-encoding
machine, time quantization, weighted pseudo-inverse, POCS,
contraction.

I. INTRODUCTION

Integrate-and-fire (IF) encoding is a biologically-inspired
model for mapping a continuous-time stimulus to a spike
train. As opposed to traditional pulse-code modulation (PCM)
in data conversion, which outputs a sequence of amplitude
values, the input information that an IF encoder provides
is in the timing of its output spikes. It specifically fires an
impulse whenever the integral of the stimulus reaches a given
threshold (see Fig. 1). Time encoding is attracting more and
more interest in data acquisition [1], [2], [3], [4], [5], [6],
[7], [8] as the downscaling of semiconductor integration is
increasing time precision while resulting in less amplitude
accuracy [9]. This is also part of the trend on event-based
sampling [10] with more general objectives such as having
acquisition activity dependent on input activity for power
efficiency. What has made time encoding a difficult orientation
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Fig. 1. Encoding process of LIF (bipolar configuration with c = 0).

is the non-trivial digital postprocessing it requires to convert
the time information back to an explicit description of the
input. This direction of research took off with the pioneering
work of Lazar and Tóth in [11] which introduced an iterative
algorithm that perfectly recovers bandlimited inputs encoded
by asynchronous Sigma-Delta modulators (ASDM). This was
simultaneously extended to IF encoding by Lazar in [12]. The
present paper has two simultaneous goals:

1) Identify a general class of possible digital postprocessing
methods for time encoding, by placing this problem in the
broader framework of generalized nonuniform sampling
[13].

2) Develop and test the resulting postprocessing methods
on leaky integrate-and-fire (LIF) encoding, which gener-
alizes the application of ASDM and IF to time encoding.

Leakage is a factor that was originally included in the
IF model of a neuron to reflect the firing dynamics of the
biological nervous systems with higher fidelity [14]. Interest
in the processing of LIF encoded signals is expected to grow
with the development of neuromorphic hardware [15], [16],
[17], [18]. In data acquisition, leakage is simultaneously an
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artifact that is omnipresent in circuit integrators [19], [20],
[21].

At this stage, two iterative algorithms have been established
for the bandlimited recovery of time encoded signals. The
pioneering method of [11] on ASDM-based time encoding
requires some strict conditions of unique reconstruction. It
was soon adapted to LIF encoding by Lazar in [22]. The
alternative method of projection onto convex sets (POCS) was
more recently introduced to ASDM encoding in [23], with the
advantage of unconditional convergence including the situation
of incomplete sampling, and the possibility of multiplierless
FIR implementations. The basic contributions of the present
paper are the following:

(a) Extend the POCS method to LIF encoding, and com-
pare its performance theoretically and numerically with
Lazar’s method.

(b) Identify the fundamental algorithmic principle behind of
these two methods to either understand their limitations
or see their potentials for generalizations in nonuniform
sampling.

(c) With the invalidity of Fourier analysis due to time-varying
processing, grow insight on the fundamental properties
of these methods at the abstract level of linear algebra in
Hilbert spaces.

The article is organized as follows. We start the paper
from the historical perspective of signal reconstruction in
LIF encoding specifically. After giving the exact description
of an LIF encoder in Section II together with our signal
assumptions and notation, we review some background in
one-step bandlimited input estimation from LIF samples in
Section III. This includes a deterministic technique proposed
in [24] and a classic statistical approach of neural research
[25], [26], [27]. In Section IV, we progressively introduce the
POCS method as a basic technique to improve any bandlimited
estimate that is not consistent with the input, i.e., that does not
reproduce the same integral values as the input at the original
firing instants. Numerical experiments show that the one-step
methods of Section III are systematically improved in this pro-
cess. Now, by alternating this local estimate improvement with
bandlimitation, the POCS method systematically converges to
an estimate that is simultaneously bandlimited and consistent
[28], [29]. This leads to perfect reconstruction when the LIF
output uniquely characterizes the input among the bandlimited
signals. The numerical experiments also compare the conver-
gence behavior of the POCS method and Lazar’s iterative
algorithm. While these two methods have a similar behavior in
absence of leakage, Lazar’s method appears to diverge at least
when the leakage time constant is of the order of the Nyquist
period even with an average density of firing instants that is
50% above the Nyquist rate. The purpose of Sections V, VI
and VII is to compare these two methods at a higher theoretical
level. Section V first formalizes the LIF encoding process as
providing generalized samples of the input in the form of
its inner-products with given kernel functions. This abstract
view was previously introduced in [13]. The collection of
these samples is further presented as the transformation of the
input through a linear operator S, which we call the sampling

operator. As S is in general not invertible, one naturally thinks
of using a pseudo-inverse of it. This idea was previously
raised in [30] in the form of pseudo-inversion of a single
matrix. However, while this is a conceptually well-defined
reconstruction scheme, no numerical method was suggested
for this pseudo-inversion, in a context where the matrix size
could be virtually infinite. We show in Section V that the
POCS iteration limit actually achieves a weighted pseudo-
inverse of S. This is done under weak assumptions on the
encoder, allowing for example any integration kernel function,
in place of the exponential leakage function of LIF encoding.
We end this section with a reference to the work of [31] that
considered for the first time sampling pseudo-inversion, in a
context of incomplete point sampling. In Section VI, we show
that both the POCS and Lazar’s methods actually belong to the
larger family of contraction algorithms [32, §1.2] for solving
a linear equation. This points their similarities as well as
their differences in convergence at a more fundamental level,
and gives more insight on the experimental results of Section
IV. In Section VII, we study their behavior with respect
to sampling noise in oversampling situations. This involves
some non-standard analysis of time-varying noise shaping in
nonuniform sampling in general. For practical evaluations, we
focus in particular on errors due to time quantization, which
is the counterpart of amplitude quantization in traditional data
acquisition. We obtain the dramatic result that the weighted
pseudo-inverse of the POCS method outperforms the standard
pseudo-inverse in filtering this type of noise. As the POCS
and Lazar’s methods are theoretically defined on continuous-
time signals, we finally present in Section VIII a rigorous
discretization of their iterations that does not involve Nyquist-
rate resampling.

II. SIGNAL AND SYSTEM SETTINGS

A. LIF system

For a given input signal x(t), the bipolar version of LIF
outputs an impulse train sequence of the type

p(t) =
N∑
n=1

εnδ(t− tn) (1)

where (tn)1≤n≤N is an increasing sequence of positive in-
stants and (εn)1≤n≤N is a sequence of signs. These two
sequences are recursively defined by

tn := min
{
t > tn−1 :

∣∣∣ ∫ t

tn−1

e−α(t−s)(x(s) + c
)

ds
∣∣∣ = θ

}
(2)

and ∫ tn

tn−1

e−α(tn−s)
(
x(s) + c

)
ds = εnθ (3)

starting from t0 = 0, where α ≥ 0, c ≥ 0 and θ > 0 are known
constants. Fig. 1 gives an illustration of this process with c =
0. Unipolar LIF is the particular case where x(t)+c ≥ 0. Since
all integral values are non-negative in this case, the absolute-
value function can then be removed from (2) and εn = +1 for
all n in (3).
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For convenience, we will use the following notation
throughout the paper,

N :=
{

1, · · ·, N},

∀t ∈ R, Aτu(t) :=

∫ t

τ

e−α(t−s)u(s) ds, τ ∈ R, (4)

xc(t) := x(t) + c.

Then, (2) and (3) respectively take the simple forms of

tn = min
{
t > tn−1 : |Atn−1x

c(t)| = θ
}
, n ∈ N (5)

Atn−1
xc(tn) = εnθ, n ∈ N. (6)

Qualitatively speaking, LIF consists in detecting after each fir-
ing instant tn the next crossing of Atnx

c(t) with the levels ±θ.
LIF can thus be seen as a generalized version of level crossing
sampling (LCS) [33], [34], [35], where the thresholded signal
is a dynamically changing integrated version of the input.

B. Signal setting

All signals in this paper are assumed to be in the space
L2(D) of real square-integrable functions on D, where D
is either R or [0, T ]. This space is equipped with the inner-
product

〈u, v〉 :=

∫
D

u(t)v(t) dt, (7)

which induces the norm ‖u‖ := 〈u, u〉1/2. Fourier transform
is defined in both cases of domain D, with the difference that
the frequency values are discrete and multiple of 2π/T when
D = [0, T ] from the Fourier series of T -periodic signals.

For convenience, we assume that all bandlimited signals
have Nyquist period 1 (which can always be achieved by a
change of time unit). The baseband is then comprised of the
frequencies ω ∈ [−π, π]. We call B the space of such signals.
In the finite time case, we assume that T is a multiple of the
Nyquist period, and hence an integer. We denote by ũ(t) the
bandlimited version of any signal u(t) ∈ L2(D). In the case
D = R, we have

ũ(t) = ϕ(t) ∗ u(t)

where ϕ(t) := sin(πt)/(πt) (8)

and ∗ is the convolution operation. In the case D = [0, T ],
we also have this expression assuming that ϕ(t) is the peri-
odic sinc function (or Dirichlet kernel) and ∗ is the circular
convolution operation over [0, T ] (we assume that T is an odd
integer for the proper formation of the Dirichlet kernel).

The bounded domain D = [0, T ] is used in practice to
designate the time window of signal acquisition. Given the
decay of the sinc function, the T -periodic bandlimited signals
asymptotically match the bandlimited signals of L2(R) as one
looks at the time instants of [0, T ] that get away from the
boundaries. But given that T is in practice virtually infinite
compared to the considered Nyquist period, the boundary
effects are typically neglected. Meanwhile, D = [0, T ] the-
oretically makes B of finite dimension (as a matter of fact,
equal to T given our assumptions), which allows us to define
the situations of critical sampling and oversampling from
nonuniform samples.

III. ONE-STEP BANDLIMITED ESTIMATION

A. Basic linear reconstruction

In one-step bandlimited estimation, one looks at xc(t) as
the input to the LIF encoder (in other words, one thinks of the
constant component c as part of the input). Using the output
of the encoder, the goal is then to construct a bandlimited
signal u(t) that minimizes ‖u−xc‖2, which we call the mean-
squared error (MSE) of u(t). A basic approach is to start
searching for an estimate u(t) that yields the same output
as xc(t) through the same LIF encoder. With the sequences
(tn)n∈N and (εn)n∈N obtained from the encoding of x(t),
this amounts to requiring u(t) to satisfy both (5) and (6)
recursively. Note that (5) amounts to inequality constraints
while (6) is an equality. The latter amounts to providing for
each n ∈ N a sample of an affine transformation of x(t). In
the framework of generalized nonuniform sampling, we will
simply be interested in estimates u(t) that are consistent with
the equality constraint of (6), i.e., such that

∀n ∈ N, Atn−1
u(tn) = εnθ. (9)

The simplest way to obtain such an estimate is to take the
signal

u0(t) :=
∑
n∈N

εnθ δ(t− tn). (10)

Indeed, if one thinks of
∫ b
a
v(s)ds as the integral of v(s) from

a+ to b+, then u0(t) is easily seen to satisfy (9). But as u0(t)
is not bandlimited, one adopts as final approximation of x(t)
its bandlimited version

ũ0(t) = ϕ(t) ∗ u0(t) =
∑
n∈N

εnθ ϕ(t− tn).

In this process, ũ0(t) is likely to lose consistency. But we will
keep this simple reconstruction as reference.

B. Relation to the prior work of [24]

With D = R, the work of [24] can be interpreted as starting
from u0(t) as an initial estimate but proposing a different
bandlimited transformation of it as final approximation of x(t).
The authors consider the global operator

∀t ∈ R, Au(t) := A−∞u(t) =

∫ t

−∞
e−α(t−s)u(s) ds

to take advantage of the following features:
• A commutes with bandlimitation since it is a convolution

operator,
• A is invertible of inverse A−1v(t) = v′(t) + α v(t),
• an estimate u(t) that is 0 for all t ≤ 0 can be shown

to satisfy (9) if and only if Au(tn) = Au0(tn) for all
n ∈ N.

Then, they propose to estimate x(t) with a signal û0(t) such
that Aû0(t) is a bandlimited approximation of Au0(t). A
downside of their approach, however, is that they specifically
take the Nyquist-rate aliased version of Au0(t)

Aû0(t) =
∑
k∈Z

Au0(k)ϕ(t− k) (11)
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under our setting of Nyquist period 1. While this enables
the simple derivation of û0(t) as

∑
k∈ZAu0(k)ψ(t − k)

where ψ(t) := A−1ϕ(t) = ϕ′(t) + αϕ(t), the aliasing
in (11) is expected to be significant as Au0(t) is typically
non-bandlimited given its jumps at the instants (tn)n∈N. In
contrast, Aũ0(t) yields the aliasing-free relation

Aũ0(t) = ϕ(t) ∗Au0(t)

since A commutes with bandlimitation. Not only is ũ0(t) sub-
stantially simpler to implement than û0(t), but the numerical
experiments of Section III-D also confirm its higher accuracy
as an estimate of xc(t).

C. Optimal data-driven convolutional reconstruction

Note that the bandlimited estimate ũ0(t) is of the form

u(t) = f(t) ∗ p(t)

where p(t) is defined in (1) and f(t) is specifically chosen to
be θ ϕ(t). A basic direction is to look for better reconstructions
in this larger family of signals. This has been a basic approach
of neural research to estimate the stimulus of a neuron from its
output spike train. As the exact transfer function of a neuron is
unknown, this direction of research has been considered based
on statistics of effective input-output pairs of the neuron [25]
[26, §2.3]. This method has been explicitly applied on LIF in
[27, §4.3.3] as demonstration. Assuming that x(t) is a random
process and p(t) is the resulting response of the LIF encoder,
the goal is to find the function fopt(t) that minimizes

E
(∥∥f(t) ∗ p(t)− xc(t)

∥∥2
)
. (12)

This is a Wiener filtering problem. Calling U(ω) the Fourier
transform of u(t), it is known (see for example [36, (7.3.2)])
that

Fopt(ω) =
E
(
S(ω)∗Xc(ω)

)
E
(
|S(ω)|2

) , (13)

for all ω in the baseband, and Fopt(ω) = 0 otherwise since
fopt(t) must obviously be bandlimited. This leads to the
definition of the new estimate

uopt(t) := fopt(t) ∗ p(t) =
∑
n∈N

εn fopt(t− tn). (14)

The MSE of uopt(t) is of course expected to be smaller than
that of ũ0(t). This is at the price of having the input-output
statistics of the system. But it will be interesting to know for
reference how much MSE reduction can be achieved with this
method, as done in the next section.

When c > 0, note that xc(t) cannot be in L2(R). In this
case, (12) and (13) are at least well defined with D = [0, T ].
With the theoretical setting of D = R, (12) and (13) can still
be used provided that the constant components are removed
from the analysis, thus making uopt(t) optimal only up to a
constant component.
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Fig. 2. MSE of û0(t), ũ0(t) and uopt(t) for various leakage values α in
the unipolar and bipolar cases.

D. Numerical experiments

We show in Fig. 2 the MSE results we got numerically
for the bandlimited reconstruction estimates û0(t), ũ0(t) and
ũopt(t) with various leakage values α in the unipolar and
bipolar cases. The numerical difficulty is to eliminate the
boundary effects so that the true MSE from steady state can be
extracted. We do this by working with bandlimited inputs that
are periodic over 61 Nyquist periods. This enables the exact
implementation of the sinc filter without boundary deviations.
We adjust the threshold θ so that the number of firing instants
per Nyquist period is in average equal to 1.5. We call this
number the oversampling ratio. The MSE of each estimate
is averaged over 100 zero-mean bandlimited inputs whose
Nyquist-rate samples are drawn randomly and uniformly in
[−0.7, 0.7]. We use c = 1 and c = 0 in the unipolar and
the bipolar cases, respectively. We take as 0 dB reference
the averaged value of ‖x‖2. We derive the optimal filter
fopt(t) of linear reconstruction based on the statistics of 1000
bandlimited input thus randomly drawn. Given our periodic
input setting, it is not possible to test the estimate û0(t) in the
absolute leakage-free case α = 0 since the operator A does not
converge. To simulate zero leakage, we set α to 0.03, which
is close enough to 0 while allowing numerically a reliable
convergence of A. Our observations are as follows:

1) Accurate signal reconstruction is more difficult as leakage
increases.

2) ũ0(t) is a better estimate than û0(t) in all cases. The
improvement is particularly strong in the leakage-free
unipolar case.

3) As expected, the estimate uopt(t) is in all cases as good
as or better than ũ0(t).

4) The experiment tends to show that ũ0(t) is optimal as a
convolutional reconstruction with the leakage-free unipo-
lar configuration. Indeed, not only ũ0(t) is close to uopt(t)
in MSE in the unipolar case with α = 0.03, but Fopt(ω)
also appears to be numerically close to the constant θ
in [−π, π]. We attribute its remaining difference with the



5

ideal constant to boundary effects together with a leakage
that is not exactly 0.

5) The estimates û0(t) and ũ0(t) are basically useless in the
unipolar case with leakage α ≥ 1.5 as their MSE’s are of
the same order of (if not larger than) the input’s squared
sum.

IV. RECONSTRUCTION BY POCS
The signal estimation methods presented until now remain

of limited accuracy as can be seen in the results of Fig.
1. This can be explained by a limited use of the analytical
information contained in (6). An early observation is that
little is done in these methods to make the bandlimited
estimates consistent with this information. This was already
mentioned concerning ũ0(t). Meanwhile, the estimate uopt(t)
only focused on a convolutional improvement of ũ0(t) while
the LIF encoder is neither linear nor time invariant. We show
in this section that there is a systematic way to improve
any estimate that is not consistent. The POCS method is an
algorithm that combines this improvement mechanism with the
bandlimitation requirement, to converge to an estimate that is
both bandlimited and consistent with iterative MSE reductions.

A. LIF encoder as generalized sampler

The starting point is to rigorously reformulate the signal
problem in the Hilbert space L2(D). This leads us to look at
x(t) as the input to the LIF encoder while thinking of c as
a parameter of the encoder. In this context, the MSE of an
estimate u(t) will refer to ‖u− x‖2. Next, (6) is restated as

∀n ∈ N, Atn−1
x(tn) = θn := εnθ −Atn−1

c(tn) (15)

where c(t) := c for all t. Let us introduce the notation

In := [tn−1, tn) and ∆tn := tn − tn−1, n ∈ N.

From (4), (15) can be rewritten as

∀n ∈ N, 〈hn, x〉 = θn (16)

where 〈·, ·〉 was defined in (7),

hn(t) := e−α(tn−t) 1In(t) (17)

and 1In(t) is the indicator function of the time interval In. In
(16), Atn−1

x(tn) is better seen as a linear functional mapping
x(t) into a single scalar value θn that fulfills the role of sample
of x(t), according to the generalized framework of sampling
[13]. The function hn(t) is the associated sampling kernel
function. The sample value θn is explicitly given by

θn = εnθ − c
∫ tn

tn−1

e−α(tn−s)ds = εnθ −
c

α
(1− e−α∆tn).

Now, another contribution of this presentation is the orthog-
onality that results from 〈·, ·〉. Induced by this inner-product,
the norm ‖ · ‖ satisfies the Pythagorean theorem which, in a
stronger form, lies in the equivalence

〈u, v〉 = 0 ⇔ ‖u+ v‖2 = ‖u‖2 + ‖v‖2 (18)

for any u(t), v(t) ∈ L2(D). This will be the key to MSE
reductions as seen in the next section.

B. Set theoretic estimation

Another way to state the property of (16) is to say that x(t)
belongs to the set

C = C(θ) :=
{
u(t) ∈ L2(D) : ∀n ∈ N, 〈hn, u〉 = θn

}
(19)

where θ symbolizes the sequence (θn)n∈N. We call the ele-
ments of C the estimates of L2(D) that are consistent with the
sampling of x(t) in the sense of (16). We will use the short
notation C when there is no ambiguity about the considered
sequence θ. We alluded in Section III-A to the difficulty to
find a bandlimited signal that is simultaneously consistent.
Whenever an estimate u(t) is in L2(D) but not in C, there
is in fact a systematic procedure to reduce its MSE. This is
due to the outstanding property that C is an affine subspace of
L2(D) (i.e., a translated linear subspace) which is moreover
closed (since it is of finite codimension). As a generalization
from closed linear subspaces, every signal u(t) ∈ L2(D) has
an orthogonal projection PCu(t) onto C in the sense of 〈·, ·〉,
which is the unique element of C such that

∀v(t) ∈ C,
〈
u− PCu, PCu− v

〉
= 0. (20)

Due to (18), this is equivalent to

∀v(t) ∈ C, ‖u− v‖2 = ‖u−PCu‖2 + ‖PCu− v‖2. (21)

This gives the alternative characterization that PCu(t) is the
element v(t) of C that minimizes ‖u− v‖, i.e., that is closest
to u(t) in the MSE sense. As x(t) ∈ C, (21) also implies with
v(t) = x(t) that

‖PCu− x‖ ≤ ‖u− x‖

with a strict inequality when u(t) /∈ C since ‖u−PCu‖ > 0 in
(21). In other words, PCu(t) is a better estimate of x(t) than
u(t).

C. Projection implementation

It remains to find the explicit expression of PC . What makes
its derivation easy is the outstanding property that (hn(t))n∈N
is an orthogonal family of functions in L2(D) since their time
supports do not overlap.

Proposition 4.1: Let C = C(θ) be defined by (19) for any
orthogonal family of functions (hn(t))n∈N of L2(R). Then
for all u(t) ∈ L2(R),

PCu(t) = u(t) +
∑
n∈N

(θn − 〈hn, u〉)
hn(t)

‖hn‖2
. (22)

Proof: Let q(t) be the right hand side of (22). Since
〈hm, hn〉 = 0 for any distinct m,n ∈ N, then 〈hm, q〉 =
〈hm, u〉+ (θm − 〈hm, u〉) = θm for any m ∈ N. So q(t) ∈ C.
For any v(t) ∈ C, 〈hn, q − v〉 = θn − θn = 0 for all n ∈ N.
Since u(t)− q(t) =

∑
n∈N αnhn(t) for some coefficients αn,

then 〈u− q, q − v〉 = 0. Thus q(t) = PCu(t).
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D. POCS algorithm

We can see from (22), that the correcting term of PCu(t)
is a piecewise exponential function, which is non-bandlimited.
By considering the filtered version

MPu(t) := ϕ(t) ∗ PCu(t) (23)

where ϕ(t) is the sinc function of (8), we further reduce
the error of PCu(t) with x(t) (the subscript P in MP has
been chosen in reference to the POCS method that will be
introduced later on). We thus obtain the error reductions

‖MPu− x‖ ≤ ‖PCu− x‖ ≤ ‖u− x‖ (24)

where at least one of the two inequalities is strict when u(t) /∈
B ∩ C, i.e., when u(t) is not simultaneously bandlimited and
consistent (note that u(t) ∈ C\B implies that PCu(t) = u(t) /∈
B). For repetitive improvements, this suggests the use of the
algorithm

u(k+1)(t) := MP u
(k)(t), k ≥ 0. (25)

As a common mathematical notation, one writes

u(k)(t) = Mk
P u

(0)(t), k ≥ 0.

From the set theoretic viewpoint, ϕ(t)∗v(t) is nothing but the
orthogonal projection of v(t) onto B, which is a closed linear
subspace of L2(D). Thus,

MP = PBPC .

Thus, the estimates u(k)(t) are obtained by alternating orthog-
onal projections between C and B. This is a particular case of
the method of projection onto convex sets (POCS) [28], [29].
We know that ‖u(k)− x‖ is strictly decreasing with k as long
as u(k)(t) is not in B∩C. In fact, it is known that u(k)(t) must
eventually converge to an element of B ∩ C. Moreover, as B
and C are convex sets that are more specifically affine spaces,

u(∞)(t) := lim
k→∞

Mk
Pu

(0)(t) = PB∩C u
(0)(t) (26)

where the limit is in the sense of L2(D). Thus, u(∞)(t) is the
element of B ∩ C that is closest to the initial estimate u(0)(t)
in the MSE sense. Finally, it follows from (22) and (23) that

MPu(t) = u(t) +
∑
n∈N

(θn − 〈hn, u〉)
h̃n(t)

‖hn‖2
(27)

for all u(t) ∈ B.

E. Numerical experiments

Under the same experimental conditions as in Fig. 2,
we compare in Fig. 3 the MSE of estimates from various
iterative methods starting from one of the following two initial
estimates:

z(t) := 0 or u−copt(t) := uopt(t)− c

remembering that uopt(t) is an estimate of xc(t) = x(t) + c.
The tested iterates are specifically

Mk
L z(t), Mk

P z(t), Mk
Pu
−c
opt(t)
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Fig. 3. MSE performance of the iterates Mk
L z(t), Mk

Pz(t), Mk
Pu
−c
opt(t) at

the oversampling ratio ρ = 1.5, as well as Mk
Pz(t) at the oversampling ratio

ρ = 2.

where ML is the mapping of the first iterative algorithm of
bandlimited reconstruction for LIF proposed by Lazar in [22]
(the subscript L in ML has been chosen in reference to the
name of Lazar). The mapping ML is explicitly defined by

MLu(t) := u(t) +
∑
n∈N

(
θn−〈hn, u〉

)
ϕ(t−τn) (28)

where τn := (tn−1+tn)/2 and ϕ(t) is defined in (8). Further
details on Lazar’s method will be given in Section VI. These
iterates are all tested on the same LIF outputs with an average
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(a) (b) (c)

I −RS

operator norm spectral
radius

α ∆max POCS Lazar’s method

0 1.8 0.79 0.77 0.76

unipolar 1.5 4.3 1− 3·10−3 1.19 1.0002

4 5.5 1− 2·10−6 1.12 1.03

0 2.8 1− 4·10−3 1.76 1− 4·10−3

bipolar 1.5 3.2 1− 2·10−4 1.25 1.008

4 5.1 1− 8·10−7 1.13 1.03

TABLE I

density of firing instants of ρ = 1.5 with respect to the
Nyquist period. The iterates Mk

P z(t) are additionally tested at
the oversampling ratio ρ = 2. Our observations are as follows.

1) Mk
L z(t) is outperformed by Mk

P z(t) at ρ = 1.5, except in
the leakage-free unipolar case where it yields a similar
MSE. Moreover, Mk

L z(t) diverges with k in the leaky
cases. These are evidently cases where the sufficient
condition for convergence derived in [22] is not met in
spite of the oversampling.

2) By applying Mk
P to u−copt(t), one sees an example where

the POCS method can be used to improve an estimate
that is provided by another method. At the same time,
one obtains a head start in MSE reduction compared to
Mk

P z(t), which is particularly substantial in the leaky
unipolar cases. This however requires the availability of
input-output encoding statistics.

3) From the iterates Mk
P z(t), we see by how much the POCS

convergence is accelerated by increasing the sampling
density from 1.5 to 2. The acceleration is particularly dra-
matic with the leakage-free unipolar configuration, where
the number of iterations necessary to reach approximately
an MSE of -35dB is reduced by a factor of 3.

4) The rate of convergence of the POCS method is seen to
slow down with the increase of the biggest gap ∆max :=
maxn∈N ∆tn between the firing instants, whose average
over the trials is reported in Table I. This gap appears to
increase with larger leakage, but also when going from
the unipolar to the bipolar configuration in the case of
zero leakage.

More theoretical comparisons between the POCS and Lazar’s
methods are performed in Sections VI and VII.

V. NONUNIFORM SAMPLING PSEUDO-INVERSION

Until now, we have mostly focused on the algorithmic
aspects of the POCS method with iterative MSE decrease,
guaranteed convergence and numerical observations. There are
however a number of pending questions: in what fundamental
way do the POCS method and Lazar’s algorithm differ from
each other? what is the meaning of the POCS iteration limit
when reconstruction is not unique and/or when the sampling
is corrupted by noise? There is in fact a whole theoretical

background of linear algebra in Hilbert spaces to be used to
address these questions. The sampling data of (16) theoreti-
cally amounts to providing the image of x(t) through a linear
operator S from B to RN . We show in this section that the
POCS iteration converges to a certain pseudo-inverse of S,
which will help answer the above question in the present and
the next two sections.

But another motivation is to bring new insight to the prob-
lem of signal reconstruction in LIF encoding by placing it in a
more general and abstract context of generalized nonuniform
sampling. This allows a more fundamental and unified analysis
of this problem which simultaneously connects it with existing
research from the past [31] as well as points the potential of
the present techniques for future generalizations.

A. Generalized sampling

We saw that the explicit information the IFS encoder
provides about its input x(t) lies in the inner-product values
of (16). For a generalized study of signal reconstruction, we
can present (16) in the form

∀n ∈ N, 〈sn, x〉 = θn (29)

where sn(t) ∈ B for all n ∈ N. Indeed

∀u(t) ∈ B, 〈hn, u〉 = 〈h̃n, u〉 (30)

since 〈hn − h̃n, u〉 = 0 by orthogonality in the frequency
domain. Thus (16) is equivalent to (29) with sn(t) := h̃n(t) ∈
B for all n ∈ N. But for general analysis, we will only assume
that (sn(t))n∈N is some known sequence of functions of B.
The presentation of (29) as generalized samples of x(t) was
previously introduced in [13]. Depending on the properties of
(sn(t))n∈N, we will have various conclusions on the potential
signal reconstructions.

B. Sampling operator and inversion

Consider the linear operator

S : B → RN
u(t) 7→

(
〈sn, u〉

)
n∈N

. (31)

This is usually called an analysis operator in frame theory
[37]. We will specifically call it a sampling operator in this
paper. Using the vector notation θ = (θn)n∈N, (29) tells us
that

Sx(t) = θ. (32)

To retrieve x(t), one then basically needs to “invert” S.
However, S is not invertible when reconstruction is not unique.
All that can be rigorously defined is the set of consistent
estimates

S−1(θ) :=
{
u(t) ∈ B : Su = θ

}
. (33)

The first step is to characterize this set for any given θ ∈ RN .
Clearly,

S−1(θ) 6= ∅ ⇔ θ ∈ ran(S)
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where ran(S) denotes the range of S. This is automatically
the case when θ is precisely defined by (32). Whenever non-
empty, S−1(θ) has some basic characterization from linear
algebra (see [38, §7.2] and [37, §2.5] for various contexts),
which we provide and prove in the next proposition for our
specific assumptions and notation. This is based on the linear
span S of (sn(t))n∈N,

S := span(sn(t))n∈N.

Proposition 5.1: For any θ ∈ ran(S),
(i) S−1(θ) contains a unique solution xθ(t) in S,

(ii)
S−1(θ) = xθ(t) + S⊥ (34)

where S⊥ is the orthogonal complement of S in B,
(iii) xθ(t) is the minimum-norm element of S−1(θ).

Proof: For any u ∈ B and v ∈ S−1(θ),

u ∈ S−1(θ) ⇔ S(u−v) = Su− Sv = θ − θ = 0

⇔ 〈sn, u−v〉 = 0,∀n ∈ N ⇔ u− v ∈ S⊥. (35)

As by assumption S−1(θ) 6= ∅, let xθ := PSv0 ∈ S for an
arbitrary v0 ∈ S−1(θ). Since xθ − v0 ∈ S⊥, (35) implies
that xθ ∈ S−1(θ). For any u ∈ S ∩ S−1(θ), (35) implies
that u − v0 ∈ S⊥ and hence u = PSv0 = xθ. This proves
(i). Meanwhile, (ii) follows from (35) with v = xθ ∈ S. As
u = xθ + (u − xθ) where xθ ∈ S and u − xθ ∈ S⊥ for any
u ∈ S−1(θ), it follows from the Pythagorean theorem that
‖u‖2 ≥ ‖xθ‖2. This proves (iii).

C. Sampling pseudo-inverse
In absence of an inverse for S, a classic approach to the

estimation x(t) is to consider the Moore-Penrose pseudo-
inverse S† of S [39, §6.11]. For any θ ∈ RN ,

S†θ := argmin
u(t)∈D(θ)

‖u‖ (36)

where D(θ) :=
{
u(t) ∈ B : ‖Su− θ‖ is minimized

}
with a norm ‖·‖ in RN that is induced by some chosen inner-
product 〈·, ·〉 of RN (while using the same notation of norm
and inner-product as in B, it is the argument that removes any
ambiguity). Since ‖ · ‖ in RN is induced by 〈·, ·〉, ‖Su − θ‖
is minimized for a given θ ∈ RN if and only if Su is equal
to the orthogonal projection Pran(S)θ of θ onto ran(S) in the
sense of 〈·, ·〉. Thus, we also have

D(θ) = S−1(θ̄) where θ̄ := Pran(S)θ. (37)

Since θ̄ ∈ ran(S), it follows from Proposition 5.1 (iii) that

S†θ = xθ̄(t). (38)

The default approach is to take ‖ · ‖ in RN equal to the
Euclidean norm ‖ · ‖2. In this case, we specifically denote the
pseudo-inverse by S†2 . Otherwise, when ‖ · ‖ is induced by
some arbitrary inner-product 〈·, ·〉 of RN , it can be shown
that there exists an N×N positive definite matrix W such
that ‖θ‖ = ‖Wθ‖2 for all θ ∈ RN . In this situation, S† can
be seen as an extension of the definition of weighted pseudo-
inverse introduced in [40] for matrices.

D. Limit of POCS iteration

In Section IV-D, we introduced the POCS method to recon-
struct x(t) from its sample vector Sx(t) = θ where the kernel
functions of S are

sn(t) := h̃n(t), n ∈ N (39)

and (hn(t))n∈N can be any orthogonal family of L2(R) (see
Proposition 4.1). LIF encoding is the particular case where
hn(t) is defined by (17), which we will not necessarily assume
here. In practice, the orthogonality of the functions (hn(t))n∈N
is achieved as soon as their time supports do not overlap. This
allows for example to replace the exponential factor in (17)
by any function of time. An estimate of x(t) was obtained in
(26) by infinite iteration of the mapping MP defined in (27).
The goal here is to show that the limit of this iteration starting
from a zero initial estimate leads to a weighted pseudo-inverse
of S. This result will be needed in particular when analyzing
the POCS method under sampling noise in Section VII.

Proposition 5.2: Let θ = (θn)n∈N be any element of RN ,
u(0)(t) be some initial estimate in S, and u(k)(t) := Mk

Pu
(0)(t)

where MP is defined by (27) for the considered (θn)n∈N. Then,

u(∞)(t) = S†Pθ (40)

where S†P is the pseudo-inverse of S with respect to the norm
‖ · ‖P in RN induced by the weighted inner-product

〈c, c′〉P :=
∑
n∈N

cnc′n
‖hn‖2

, c, c′ ∈ RN . (41)

Proof: S†P satisfies the properties of Section V-C with
‖ · ‖ = ‖ · ‖P and 〈·, ·〉 = 〈·, ·〉P, which we assume here.
For any given θ ∈ RN , we denote by Mθ

P the mapping MP

defined in (27) to highlight its dependence with (θn)n∈N. So
explicitly, u(∞) = limk→∞(Mθ

P )ku(0).
Assume that θ ∈ ran(S). It follows from (37) and Propo-

sition 5.1 (ii) (19) that

D(θ) = S−1(θ) = xθ + S⊥ = B ∩ C

where the last equality is obtained by comparing (19) and (33)
based on (31), (39) and (30). So, on the one hand, S†Pθ = xθ
by Proposition 5.1 (i). On the other hand, xθ = PB∩Cu

(0) since
u(0)− xθ ∈ S and B ∩ C = xθ + S⊥. One finally concludes
that S†Pθ = u(∞) from (26).

Consider now any θ ∈ RN . Let θ̄ := Pran(S)θ. Since
Pran(S)θ̄ = θ̄, it is clear from (38) that S†Pθ̄ = S†Pθ.
Let Qθ := M θ̄

P − Mθ
P . It is easy to derive from (27) that

Qθu =
∑
n∈N(θ̄n− θn)h̃n/‖hn‖2. We deduce that

〈Qθu, v〉 =
∑
n∈N(θ̄n−θn)〈h̃n, v〉/‖hn‖2 = 〈θ̄−θ, Sv〉P = 0

for all u, v ∈ B, since θ̄−θ ⊥ ran(S). Thus, Mθ
P = M θ̄

P .
Then, u(∞) = limk→∞(M θ̄

P )ku(0) = S†Pθ̄ = S†Pθ where the
second equality results from the fact that θ̄ ∈ ran(S).
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(a) (b) (c)

S  B S = B
ran(S) = RN ran(S)  RN

(sn(t))n∈N in B independent basis overcomplete

S surjective bijective injective

ρ := N/ dimB < 1 = 1 > 1

sampling incomplete critical oversampling

uniqueness of
reconstruction

no yes

sampling-noise
filtering

not possible possible

TABLE II

E. Sampling situations

The power of pseudo-inversion is that it defines an inversion
procedure of S in all possible sampling situations. We show
in Table II these various situations. We say that reconstruction
is unique when S−1(θ) is a singleton (i.e., contains a unique
element) for any θ ∈ ran(S). The main structure of Table II
is justified by the following proposition.

Proposition 5.3: The following statements are equivalent:
(i) S−1(θ) is a singleton for some θ ∈ ran(S),

(ii) S−1(θ) is a singleton for all θ ∈ ran(S),
(iii) S is injective, i.e., Su = 0 only when u = 0,
(iv) S = B.

Proof: (iv) is equivalent to S⊥ = {0}. One then easily
sees from (34) the equivalences between (iv), (i) and (ii). The
equivalence between (ii) and (iii) is a basic result of linear
algebra.

In Table II we have omitted the case where S and ran(S) are
simultaneously proper subspaces of B and RN , respectively,
which is unlikely to happen in data acquisition. In absence
of this pathological case, N ≥ dimB is a necessary and
sufficient condition for uniqueness of reconstruction. This is
the case where D = [0, T ] with T ≤ N , since dim(B) = T
given our setting of Nyquist period 1 in Section II-B. When
N < dimB, we say that the sampling is incomplete. The
term of “uniqueness of reconstruction” specifically applies to
the situation of noise-free sampling. Noise-corrupted sampling
will be studied in Section VII.

F. Early use of pseudo-inverse in nonuniform sampling

The problem of reconstructing x(t) from samples Sx(t) =
θ with S of the type (31) was first considered in Yen’s
pioneering paper [31] for the point-sampling operator

S : B → RN
u(t) 7→

(
u(tn)

)
n∈N

. (42)

This indeed takes the form of (31) with

sn(t) := ϕ(t− tn), n ∈ N

where ϕ(t) in the sinc function defined in (8), since

∀u(t) ∈ B, 〈sn, u〉 = (ϕ ∗ u)(tn) = u(tn). (43)

In the context of bandlimited functions in L2(R) assumed
in [31], the functions (sn(t))n∈N are independent but not
complete in B. This falls in the case (a) of incomplete sampling
in Table II, where reconstruction is not unique. Yen focused
on the minimum-norm reconstruction. By means of Lagrange
multipliers, the solution of this reconstruction was found in
[31, eq.(10)] to be

x̂(t) :=
∑
n∈N

cn ϕ(t− tn) where c := Φ−1θ

and Φ is the N×N matrix of coefficients ϕ(tn−tm) for n,m ∈
N. It can be seen that

x̂(t) = S†θ

as follows. After observing that ϕ(tn− tm) = sm(tn) =
〈sn, sm〉 due to (43), one can see that Φ = SS∗ where
S∗ is adjoint of S (see equ. (1.4) and (1.5) of [37] with
S = T ∗, which implies that S∗ = T ). One eventually finds
that x̂(t) = S∗(SS∗)−1θ. It then follows from [37, equ.(2.11)]
that x̂(t) = S†θ given that ran(S) = RN since (sn(t))n∈N
are independent. Note that the norm ‖ · ‖ in RN for which
S† is defined here need not be specified since D(θ) in (37) is
systematically equal to S−1(θ).

VI. FRAMEWORK OF CONTRACTION ALGORITHMS

In Section IV-E, we compared numerically the POCS
method with the prior algorithm designed by Lazar in [11],
[22]. The purpose of this section is to analyze these two
methods at a more theoretical level. We show in particular
that they actually belong to a single class of algorithms
based on contraction mappings. This gives additional tools
to understand the difference between these two methods in
convergence properties.

A. Class of algorithms

As can be seen in (27) and (28), the POCS and Lazar’s
methods are both based on a recursion of the type

u(k+1)(t) = Mu(k)(t) (44)
where
Mu(t) := u(t) +

∑
n∈N

(
θn−〈sn, u〉

)
rn(t), u(t) ∈ B. (45)

While the functions (sn(t))n∈N are imposed by the encoder
(given by (39) and (17) in LIF encoding), the functions
(rn(t))n∈N depend on the method. The intuition behind this
iteration is as follows. For an early intuition about the design
of this mapping, note the following.

Remark 6.1:
(i) Every function u(t) ∈ S−1(θ) is a fixed point of M .

(ii) If the sequence (u(k)(t))k≥0 is convergent, then its limit
u(∞)(t) is a fixed point of M .

Evidently, (ii) does not imply that u(∞)(t) ∈ S−1(θ). How-
ever, this can be ensured with some additional requirement on
M . A typical condition that one tries to create is the following.
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Condition 6.2:
(i) span(rn(t))n∈N = S,

(ii) M is a contraction in S, i.e., there exists γ ∈ [0, 1) such
that

∀u(t), v(t) ∈ S, ‖Mu−Mv‖ ≤ γ‖u− v‖. (46)

Note that (i) implies that S is invariant under M as can be
seen in (45), so that the contraction property is usable. The
contraction mapping theorem [32, §1.2] then implies that M
has a unique fixed point fM (t) in S.

Proposition 6.3: Let θ = (θn)n∈N be any element RN
and M be defined by (27) for the considered (θn)n∈N while
satisfying Condition 6.2. Then

(i) M has a unique fixed point fM (t) in S.
(ii) For any initial estimate u(0)(t) in S, the iterates u(k)(t) :=

Mku(0)(t) tend to

u(∞)(t) = fM (t) (47)

with the following error decay

‖u(∞) − u(k)‖ ≤ γk‖u(∞) − u(0)‖, k ≥ 0. (48)

(iii) If θ ∈ ran(S), then fM (t) = xθ(t).

Proof: (i) This is a result of the contraction mapping
theorem [32, §1.2] within the space S.

(ii) We have ‖fM − u(k+1)‖ = ‖MfM − Mu(k)‖ ≤
γ‖fM − u(k)‖ from (46). This leads to ‖fM − u(k)‖ ≤
γk‖fM − u(0)‖ by induction. This proves (47) as γ ∈ [0, 1),
and hence (48).

(iii) Given that θ ∈ ran(S), the function xθ defined in
Proposition 5.1 is in S while being a fixed point of M due to
Remark 6.1 (i). So fM = xθ.

The following gives as a consequence a sufficient condition
for perfect reconstruction.

Proposition 6.4: Under the conditions of Proposition 6.3,
assume moreover that S = B and θ = Sx(t). Then, regardless
of the initial estimate u(0)(t) ∈ B,

u(∞)(t) = x(t).

Proof: Since S = B, it follows from the statements (ii)
and (iii) of Proposition 6.3 that u(∞)(t) = fM (t) = xθ(t). But
due to Proposition 5.3, S−1(θ) must be a singleton. Since both
xθ(t) and x(t) are in S−1(θ), xθ(t) = x(t).

While Proposition 6.3 gave standard results on contractions
within S, the next proposition shows that Condition 6.2 ensures
the convergence of the iterates u(k)(t) of (44) for any initial
estimate u(0)(t) in B.

Proposition 6.5: Assume the conditions of Proposition 6.3
with the difference that u(0)(t) is any initial estimate in B.
Then, the iterates u(k)(t) := Mku(0)(t) tend to

u(∞)(t) = fM (t) + u(0)(t)− PSu
(0)(t) (49)

with the error decay of (48).

Proof: Let v(k+1) := Mv(k) for k ≥ 0 starting from
v(0) := PSu

(0) ∈ S. We know by Proposition 6.3 (ii) that
v(∞) = fM . Let us show that

u(k) = v(k) + d where d := u(0)− PSu
(0). (50)

This is clearly true at k = 0. Because d ∈ S⊥, then 〈sn, d〉 = 0
for all n ∈ N. It is then easy to see that M(v(k) + d) =
M(v(k)) + d = v(k+1) + d. This allows a recursive proof of
(50) for k ≥ 0. This leads to (49). As (48) is satisfied by v(k),
it is also satisfied by u(k) by mere translation by d.

B. Linear operator analysis

The next step is to find a more explicit expression of
Condition 6.2. For the chosen functions (rn(t))n∈N, consider
the linear operator

R : RN → B
(cn)n∈N 7→

∑
n∈N

cn rn(t)
(51)

which is usually called a synthesis operator in frame theory
[37]. Using the vector notation θ = (θn)n∈N, M takes the
form

Mu(t) = u(t) +R
(
θ − Su(t)

)
= (I −RS)u(t) +Rθ (52)

where I designates the identity operator on B. Thus, M is an
affine mapping of linear part I−RS. In this case, one simply
obtains

Mu−Mv = (I −RS)(u− v).

Under Condition 6.2 (i), I−RS leaves S invariant. Then, (46)
is realized with γ := ‖I−RS‖S, where for any linear operator
A on a subspace V,

‖A‖V := sup
u∈V\{0}

‖Au‖
‖u‖

.

This value of γ is more specifically the smallest possible value
satisfying (46). Thus, M is a contraction in S if and only
if ‖I − RS‖S < 1. After noticing that span(rn(t))n∈N =
ran(R), then Condition 6.2 takes the following form.

Condition 6.6: ran(R) = S and ‖I −RS‖S < 1.

C. POCS method

We now return to the sampling kernel functions of (39)
which lead to the sampling operator

Su(t) :=
(
〈h̃n, u〉

)
n∈N, u(t) ∈ B (53)

where (hn(t))n∈N is any orthogonal family of L2(R). From
(27), the mapping MP of the POCS iteration is the particular
case of M in (45) where rn(t) := h̃n(t)/‖hn‖2, remembering
again the identity (30). With (52), MP then yields the compact
expression

MPu(t) = (I −RPS)u(t) +RPθ, u(t) ∈ B
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where

RPc :=
∑
n∈N

cn h̃n(t)/‖hn‖2, c ∈ RN . (54)

The following result was proved in [23, §IV.A]1.

Proposition 6.7: Let S and RP be defined by (53) and (54)
for any given orthogonal family (hn(t))n∈N of L2(R). Then,

‖I −RPS‖S < 1.

As ran(RP) = span(h̃n(t))n∈N = S, then S and RP satisfy
Condition 6.6. We thus retrieve with Proposition 6.3 the fact
from Proposition 5.2 that u(k)(t) := Mk

Pu
(0)(t) is systemati-

cally convergent for any u(0)(t) ∈ S. By linking (47) and (40),
we find in particular that

u(∞)(t) = fMP
(t) = S†Pθ. (55)

We emphasize here that the convergence is independent of the
conditions of sampling (see Table II).

In the experimental conditions of Fig. 3 for the oversam-
pling ratio ρ = 1.5, we have reported the numerical values of
‖I − RPS‖S in column (a) of Table I. Note here that S = B
as can be seen in Table II since ρ > 1. More specifically, we
have calculated the average γ of ‖I − RPS‖S over the 1000
trial inputs for each sampling configuration. We can see that
γ < 1 in all cases of column (a). We also observe that the
closer γ is to 1, the slower the MSE decay is in Fig. 3.

D. Lazar’s method

Lazar’s method is also applicable to the sampling operator
S of (53) but with functions (hn(t))n∈N that are specifically
defined by (17). Under this restriction, the mapping ML used
by this algorithm and defined in (28) is the particular case
of M in (45) where rn(t) := ϕ(t−τn) and ϕ(t) is the
sinc function defined in (8). With (52), ML then yields the
expression

MLu(t) = (I −RLS)u(t) +RLθ, u(t) ∈ B

where
RLc :=

∑
n∈N

cn ϕ(t−τn), c ∈ RN . (56)

The leakage-free case (α = 0 in (17)) was first analyzed in
[11] in the context of ASDM encoding. Based on mathematical
results of [41], it was proved with N = Z and D = R that

‖I −RLS‖B ≤ ∆max := sup
n∈Z

∆tn. (57)

Thus, by adjusting the IF encoding parameters so that ∆max <
1, then Condition 6.6 is satisfied by S and RL with S = B.
As a first remark, this algorithm is only applicable in the
situation of unique reconstruction (cases (b) and (c) of Table
II where S = B). The second remark is that ∆max < 1 is an
even more restrictive condition. In finite dimension at least,
only the average of ∆tn needs to be less than 1 for unique
reconstruction.

1The result of [23] includes relaxation coefficients λi, which in the present
case are all equal to 1.

Now, ∆max < 1 is only a proved sufficient condition for
Lazar’s method to converge. Even though ∆max > 1 in all
cases of Table II, we saw in Fig. 3 that Lazar’s iteration is
still convergent when α = 0 in both unipolar and bipolar
configurations. Using the same procedure as for the POCS
method, we have reported in column (b) of Table I the average
γ of ‖I − RLS‖B. This value does appear to be less than 1
(and similar to the POCS value) in the leakage-free unipolar
case. Surprisingly, γ is larger than 1 in the leakage-free bipolar
case. The convergence can however still be explained as the
spectral radius of I−RLS is less than 1 in this case (see [42,
p.506]), as reported in column (c) of the table.

In the presence of leakage, an upper bound to ‖I − RS‖S
was later proposed in [22]. It was however expressed as an
intricate function of the sequence (∆tn)n∈Z together with
other parameters of the internal LIF encoder. Independently
of the exact expression of this upper bound, Table I (b) shows
numerically that ‖I −RLS‖S > 1 in all leaky cases. Even the
spectral radius of I − RLS is larger than 1 in these cases as
seen in Table I (c).

VII. UNIQUE RECONSTRUCTION AND NOISE BEHAVIOR

In the previous section, we showed that the POCS and
Lazar’s methods consist in an iteration of the type

u(k+1)(t) = Mu(k)(t) := (I −RS)u(k)(t) +Rθ, k ≥ 0.
(58)

When S = B, θ = Sx(t) and Condition 6.6 is satisfied, we
know from Proposition 6.4 that u(∞)(t) = x(t), thus achieving
perfect reconstruction. Note that this result is independent of
the choice of synthesis operator R as long as Condition 6.6
is satisfied. In practice however, the sampling vector θ is in
general corrupted by noise,

θ = Sx(t) + e (59)

for some error vector e. By injecting this vector θ into (58),
one expects to obtain a deviated reconstruction u(∞)(t) =
x(t) + e(t) for some error function e(t). If e ∈ ran(S), no
error reduction is possible since e is undistinguishable from
the samples of an actual bandlimited input component. This
is always the case when ran(S) = RN as reported in Table
II (a-b). But when ran(S)  RN , different operators R may
result in different deviations e(t) with error vectors e that
are not in ran(S). We study this dependence in this section,
and apply our analysis to the POCS and Lazar’s methods
with particular attention to time-quantization noise. As the
condition ran(S)  RN corresponds to the case of Table II (c),
we assume from now on that

S = B.

A. General limit of contraction algorithm

Assuming Condition 6.6 and S = B, we know from Propo-
sition 6.3 (ii) that, regardless of the initial estimate u(0)(t) ∈ B,
u(k)(t) converges to the unique fixed point fM (t) of M in B.
Our present goal is to find an explicit expression of u(∞)(t)
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in terms of S, R and θ. As a fixed point of M , it is easy to
see from (52) that u(∞)(t) satisfies the equation

RS u(∞)(t) = Rθ.

But Condition 6.6 with S = B implies that ‖I − RS‖B < 1.
As a result of the Neumann series [43, §2.3], it is then known
that RS is invertible. Therefore,

u(∞)(t) = Ŝθ

where Ŝ := (RS)−1R. (60)

Like R, Ŝ is a linear operator from RN to B, with however
the specific property that

ŜS = (RS)−1RS = I.

This makes Ŝ a left inverse of S. This is precisely the required
property for perfect reconstruction as

θ = Sx(t) ⇒ Ŝθ = ŜSx(t) = x(t). (61)

This makes the restriction of Ŝ to ran(S) independent of R.
However, due to the expression of Ŝ in (60), one will expect
Ŝθ to depend on R when θ /∈ ran(S).

B. Left inversion and noise

When θ is given by (59), then

u(∞)(t) = Ŝθ = ŜSx(t) + Ŝe = x(t) + Ŝe. (62)

The question is which left inverse Ŝ is optimal for minimizing
‖Ŝe‖. A common approach for this question is to look at
the pseudo-inverse S† of S defined in (36) for a given inner-
product 〈·, ·〉 in RN . The first observation is to see that S†

is a left inverse of S. Indeed, when θ = Sx, it follows from
(37) that D(θ) = S−1(θ) which is reduced to x(t) due to
Proposition 5.3 given that S = B. So S†Sx = S†θ = x.
The second observation is the special action of S† on a noise
vector e. Consider the orthogonal decomposition

e = ein + eout where (ein, eout) ∈ ran(S)× ran(S)⊥

where ran(S)⊥ is the orthogonal complement of ran(S) in
RN with respect to 〈·, ·〉. Since ein ∈ ran(S) and S is injective,
there exists a unique function ein(t) ∈ B such that

Sein(t) = ein.

Although ein is thought of a noise component, it is qual-
itatively undistinguishable from the samples of an actual
bandlimited input. Next, regardless of the left inverse Ŝ,
Ŝein = ŜSein(t) = ein(t). Thus,

Ŝe = ein(t) + Ŝeout. (63)

The magnitude of ‖Ŝeout‖ depends on the choice of Ŝ.

Proposition 7.1: Let Ŝ be a left inverse of S. Then,

∀eout ∈ ran(S)⊥, Ŝeout = 0 ⇔ Ŝ = S†. (64)

Proof: S†θ can be equivalently presented as the unique
function u(t) ∈ B such that Su is the orthogonal projection
Pran(S)θ of θ onto ran(S) with respect to 〈·, ·〉, the uniqueness

resulting from the injectivity of S. If eout ∈ ran(S)⊥, then
Pran(S)eout = 0, so S†eout = 0. This proves the backward
implication of (64). For the forward implication, the left hand
side of (64) implies that Ŝ coincides with S† on ran(S)⊥.
But Ŝ also coincides with S† on ran(S) since (Ŝ − S†)S =
ŜS − S†S = I − I = 0. So Ŝ = S†.

In the traditional view of uniform sampling, ein and eout

are nothing but the in-band and the out-of-band components
of e, respectively. A left inverse Ŝ can be interpreted as a
discrete-time lowpass filter followed by a sinc reconstruction
that guarantees perfect recovery in absence of noise. Any out-
of-band sample noise that is not completely eliminated results
in aliasing. In our generalized framework of nonuniform sam-
pling, the aliasing component is Ŝeout in (63). It is completely
eliminated with Ŝ = S†.

C. Application to LIF samplings

Assuming the LIF sampling operator defined by (53) and
(17), the left inverses obtained by the POCS and Lazar’s
methods are

ŜP := (RPS)−1RP and ŜL := (RLS)−1RL

where RP and RL are given in (54) and (56), respectively. The
goal is to compare ŜP and ŜL in terms of noise behavior. By
connecting (40) and (55) with M = MP, we actually have

ŜP = S†P.

We recall that S†P is the pseudo-inverse of S with respect to
the norm ‖ · ‖P in RN induced by 〈·, ·〉P defined in (41).
Thus, the POCS method is better than Lazar’s algorithm in
eliminating the out-of-band noise components in the specific
orthogonality sense of 〈·, ·〉P. A central question is whether this
inner-product is relevant. By default, one would tend to use
the standard pseudo-inverse S†2 relative to the canonical inner-
product of RN , which we introduced at the end of Section
V-C. We discuss this issue next.

D. Qualitative analysis

In this problem of sampling-noise reduction, there is a
fundamental difference between uniform and nonuniform sam-
pling. In the former case, there is a direct connection between
the `2-norm in the sample space (which is the Euclidean norm
in finite dimension) and the L2-norm of the continuous-time
signals, via Parseval’s identity. In this case, S†2 is exactly the
needed pseudo-inverse. In practice, the impact of noise has an
equal weight in each sample with respect to reconstruction.
But this ceased to be true when the sampling is nonuniform.
In the case of (53), it is intuitive that adding an error to a
sample 〈h̃n, x〉 has less impact on the reconstruction of x(t)
when ‖h̃n‖ is larger. It appears that the norm ‖ · ‖P takes
a better account of this biased sensitivity as can be seen in
the expression of 〈·, ·〉P in (41). The ultimate test will be to
perform real numerical experiments on the left inverses ŜL,
S†P and S†2 under practical cases of sampling noise.
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E. Noise from time quantization

The most intrinsic type of noise that time-encoding ma-
chines are subject to is from time quantization. The dis-
cretization of continuous values is inevitable in analog-to-
digital conversion, except for the new situation here that it
is performed in the time dimension instead of the traditional
amplitude dimension. However, the resulting sampling errors
can still be presented in the form of amplitude errors as implied
by (59). The key here is to systematically define S out of
the quantized instants (tn)n∈N output by the encoder, via the
intermediate constructions of (53) and (17). Because these
instants are deviated versions of the true instants (tn)n∈N of
(2), then the mathematical value of Sx(t) becomes a deviated
version of θ, which we can write in the form θ − e where e
is unknown and viewed as noise. This leads to (59). While
S no longer reproduces the internal sampling mechanism
of the encoder before quantization, we emphasize that it is
deterministically constructed from the known output of the
encoder. All errors in this approach lie in the vector e.

F. Experimental results

We show in Fig. 4 the MSE of the iterates Mk
P z(t) and

Mk
L z(t) resulting from time quantization with the leakage-

free unipolar configuration of LIF in the same experimental
conditions as in Fig. 2, with however an oversampling ratio
of 8. We perform the experiments with various quantization
resolutions of (tn)n∈N. We say that the resolution is b-bit when
the quantization step size is the Nyquist period divided by
2b. The averaged values of ‖S†Pe‖2 and ‖ŜLe‖2 are extracted
from the plot by looking at the MSE limits of Mk

P z(t) and
Mk

L z(t) as k increases, according to (62). We also represent
in dotted lines the MSE of S†Pθ which we calculate by direct
computer implementation of S†P for each bit resolution. The
plots show that the MSE of both Mk

P z(t) and Mk
L z(t) tends

to that of S†Pθ. This is expected for Mk
P z(t) as a result of

(62) with Ŝ := ŜP = S†P. This however comes as an inter-
esting result for Mk

L z(t), which shows that Lazar’s method
has a similar behavior to the POCS method towards time
quantization. When zooming into the values of the plots, we
actually observe that the POCS method outperforms Lazar’s
iteration by approximately 0.1 dB in MSE decrease at every
bit resolution.

But the more dramatic result is seen in Fig. 5 where,
under the same experimental conditions, the MSE of S†Pθ is
seen to be lower than that of S†2θ by 4 to 5 dB for all the
tested bit resolutions. This tends to show the relevance of the
weighted inner-product 〈·, ·〉P for capturing time-quantization
noise. This does not imply that S†P is the optimal left inverse
for time-quantization noise. But this at least points that the
standard pseudo-inverse S†2 is not the appropriate left inverse
for this type of encoding system.

VIII. DISCRETIZATION OF THE ITERATIVE ALGORITHMS

We recall from Section VI that the POCS and Lazar’s
methods consist in an iteration of the type

u(k+1)(t) = Mu(k)(t)
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where M is given in (45). The heavy part in the computa-
tion of M is the continuous-time inner-product 〈sn, u〉. As
the argument u(t) is bandlimited, this inner-product can be
computed in discrete-time using the Nyquist-rate samples of
u(t). But this makes (45) a complicated operation as it requires
a uniform sampling to obtain the coefficients of (rn(t))n∈N in
(45) which are themselves not uniformly distributed in time
and not at the same rate as the Nyquist clock. Together with in-
tricate algebra, this requires in practice the implementation of
complicated buffering systems. There are however techniques
to tackle these issues, which we present next.

A. Zero initial estimate

We recall from (58) that u(k)(t) satisfies a recursion of the
type

u(k+1)(t) = (I−RS)u(k)(t) +Rθ. (65)
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With u(0)(t) = 0, one easily sees by induction that u(k)(t)
remains in ran(R) for all k ≥ 0. This implies the existence
of a sequence (c(k))k≥0 of vectors in RN such that

u(k)(t) = Rc(k), k ≥ 0.

Then, (65) is equivalent to

Rc(k+1) = (I−RS)Rc(k) +Rθ

= R
(
(I−SR)c(k) + θ

)
. (66)

Inversely, consider the recursive iteration of the following
system

c(k+1) := (I−SR)c(k) + θ, (67a)
u(k)(t) := Rc(k) (67b)

for k ≥ 0 starting from c(0) = 0. Then, (67a) guarantees (66),
which is equivalent to (65) based on (67b) with u(0)(t) = 0. In
practice, if one aims at the qth iterate u(q)(t), one simply needs
to iterate q times the purely discrete-time transformation of
(67a) starting from c(0) = 0, then perform the discrete-time to
continuous-time conversion of (67b) only once at k = q. Now,
in (67a), the mapping SR is nothing but the linear operator
on RN of matrix coefficients

SR =
[
〈sm, rn〉

]
(m,n)∈N2

. (68)

One does not escape from having continuous-time inner-
products as seen here. However, as these values do not depend
on the iterates, they are to be calculated only once before the
iteration.

B. Precomputation of the matrix coefficients

We derive the coefficients of (68) for the application of LIF
signal reconstruction by POCS. We recall in this case that
sn(t) := h̃n(t) and rn(t) := h̃n(t)/‖hn‖2, which yields

〈sm, rn〉 = 〈hm, h̃n〉 / ‖hn‖2

remembering again the identity (30). Defining

Tmn :=

∫ tm

tn

dt = tm − tn, (69)

we prove in Appendix A the following two results.

Proposition 8.1: For any given function f(t), let fn(t) :=
f(t− tn). Then,〈

hm, sn
〉

= g(Tmn )− e−α∆tmg(Tm−1
n ) (70)

where

g(t) :=

∫ t

0

eα(s−t)f(s)ds. (71)

Corollary 8.2:

〈hm, h̃n〉 = e−α∆tn
(
g(Tmn−1)− e−α∆tmg(Tm−1

n−1 )
)

−
(
g(Tmn )− e−α∆tmg(Tm−1

n )
)

(72)

where

g(t) :=
1

α

∫ t

0

sinh(α(t− s))ϕ(s) ds. (73)

The above function g(t) only depends on the leakage coef-
ficient α. It can be precomputed and numerically stored in a
lookup table. The computation of (72) in terms of (tn)n∈N then
becomes simple, and only needs to be performed once before
the iteration. For the complete determination of 〈sm, rn〉, we
need to derive ‖hn‖2 that yields

‖hn‖2 =

∫ tn

tn−1

e−2α(tn−t)dt = 1
2α

(
1− e−2α∆tn

)
. (74)

C. General initial estimate

There are several situations where it is more desirable to
start the POCS iteration with a nonzero initial estimate u(0)(t).
Fig. 3 showed reduced MSE results with u(0)(t) = u−copt(t)
for given iteration numbers k. When reconstruction is not
unique, one may also wish to choose for u(0)(t) some empirical
guess of x(t), as the limit u(∞)(t) is known from (26) to
be the element of B ∩ C that is closest to u(0)(t). This
technique of initial guess was previously used in [35] for
POCS signal reconstruction from input level crossings. The
simple implementation of Section VIII-A can be used up
to some space translation. This is specifically performed as
follows.

Proposition 8.3: For any given u(0)(t) ∈ B, consider the
functions u(k)(t) recursively output by the system

c(k+1) := (I−SR)c(k) + θ̂, (75a)
u(k)(t) := Rc(k) + u(0)(t) (75b)

for k ≥ 0 starting from c(0) = 0 with θ̂ := θ − Su(0). Then
u(k)(t) satisfies (65) for all k ≥ 0.

Proof: Let v(k)(t) := u(k)(t)− u(0)(t). Then

(I−RS)v(k) +Rθ = (I−RS)u(k) +Rθ − (I−RS)u(0)

= u(k+1) − u(0) +RSu(0) = v(k+1) +RSu(0).

Thus, v(k+1) = (I−RS)v(k) +Rθ̂. From the results of Section
VIII-A, we thus know that v(k) = Rc(k) where c(k) is
recursively defined by (75a) starting from c(0) = 0 since
v(0) = 0. This leads to (75b).

However, a price to pay for starting the iteration from any
u(0)(t) is the required derivation of Su(0) = (〈sn, u(0)(t)〉)n∈N
for the construction of θ̂ involved in (75a). Its computation
complexity depends on u(0)(t). If for example one chooses

u(0)(t) =
∑
n∈N

εn f(t− tn)

for some function f(t), like in (14), then

〈hm, u(0)(t)〉 =
∑
n∈N

εn 〈hm, fn〉

where fn(t) := f(t − tn). Then, the inner-products 〈hm, fn〉
are given in (70).
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D. Future research

An important aspect of the implementation is yet to be
investigated. The matrix SR involved in the discrete-time
implementation of the POCS algorithm in (67a) of (75a) has
a size N that is virtually infinite compared to the practical
windows of signal processing. A truncation of SR automati-
cally needs to be considered for the realistic implementation
of these iterations, with expected performance degradations.
Given the decay of the inner-products 〈hm, h̃n〉 as |m−n|
increases, this is similar to the problem of FIR filter win-
dowing. The difficulty here is that the filter is both time-
varying and iterated. Some empirical truncation experiments
have been performed in [23] in the leakage-free case of signal
reconstruction from ASDM outputs. But, beyond a needed
generalization to leaky integration, this study deserves deeper
theoretical investigations to be considered for future research.

IX. CONCLUSION

While LIF encoding is commonly viewed as a neuron-
inspired system that transforms continuous-time signals into
spike trains, we approached the problem of bandlimited signal
reconstruction from LIF outputs from the more general and
abstract perspective of nonuniform sampling. In this view, each
output spike gives the knowledge of an inner-product of the
input with a kernel function that can be determined from the
characteristics of the encoder. With the complete output of
the LIF encoder, one thus has access to the transformation of
the input by a known linear operator S, which we call the
sampling operator. This more abstract picture allows to see
better what exact information is available about the input in the
LIF encoded output and outperform existing one-step input es-
timation techniques. We studied two iterative algorithms which
mathematically achieve some type of inversion of S, Lazar’s
method [11], [22] and the POCS method that were previously
demonstrated on ASDM-based time encoding machines. While
Lazar’s method requires quite strict conditions to converge,
such as a certain degree of oversampling and low leakage,
the POCS method was shown to converge in all situations of
sampling and leakage, including incomplete sampling. When
the two methods converge simultaneously, they appear to have
a similar behavior towards time-quantization noise, which is
the most intrinsic type of noise in time encoding.

A simultaneous contribution of the paper was to perform
this analysis at the most basic algebraic level of nonuniform
sampling. This was the opportunity to point out the special
difficulty of time-varying signal processing analysis caused
by nonuniformity. As one outcome, it was found that the
POCS method achieves a weighted pseudo-inverse of S that
outperforms the standard Moore-Penrose pseudo-inverse in
terms of time-quantization noise reduction. But the broad
framework analysis was also the opportunity to see what aspect
of the discussed methods has a potential for generalizations.
For example, the type of POCS method presented in this
paper remains applicable with any integrating kernel function
in place of the leakage function of LIF encoding. Although
the POCS and Lazar’s methods are defined on continuous-
time signals, their iterations can be rigorously implemented in

discrete-time in synchronization with the firing instants and
without Nyquist-rate resampling, up to the use of a lookup
table.

A point of investigation left for future research is the
practical implementation of the POCS method by approximate
time-varying FIR filters.

APPENDIX

A. Proofs of Proposition 8.1 and Corollary 8.2

1) Preliminary:
Lemma A.1: For any function f(t),

(hm ∗ f)(t) = e−α∆tm `(t−tm−1)− `(t−tm) (76)

where

`(t) :=

∫ t

0

eα(t−s)f(s)ds.

Proof: It follows from (17) that

(hm ∗ f)(t) =

∫ tm

tm−1

eα(s−tm)f(t− s)ds

=

∫ t−tm−1

t−tm
eα(t−s−tm)f(s)ds

= e−α∆tm

∫ t−tm−1

0

eα(t−tm−1−s)f(s)ds

−
∫ t−tm

0

eα(t−tm−s)f(s)ds.

2) Proof of Proposition 8.1: We have

〈hm, fn〉 = (hm ∗ f̂)(tn) where f̂(t) := f(−t).

By applying (76) and (69), we obtain〈
hm, fn

〉
= e−α∆tm`(Tnm−1)− `(Tnm) (77)

where `(t) :=

∫ t

0

eα(t−s)f̂(s)ds

= −
∫ −t

0

eα(t+s)f(s)ds = −g(−t)

and g(t) is given in (71). Then, (77) leads to (70).

3) Proof of Corollary 8.2: From (76), we have

h̃n(t) = (hn ∗ ϕ)(t) = e−α∆tn`n−1(t)− `n(t)

where `n(t) := `(t− tn) and `(t) :=

∫ t

0

eα(t−s)ϕ(s)ds,
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so that
〈
hm, h̃n

〉
= e−α∆tn

〈
hm, `n−1

〉
−
〈
hm, `n

〉
. It then

follows from (70) that〈
hm, h̃n

〉
= e−α∆tn

(
g(Tmn−1)− e−α∆tmg(Tm−1

n−1 )
)

−
(
g(Tmn )− e−α∆tmg(Tm−1

n )
)

where g(t) :=

∫ t

0

eα(s−t)`(s)ds

=

∫ t

0

eα(2s−t)
∫ s

0

e−ατϕ(τ)dτds

=

[
eα(2s−t)

2α

s∫
0

e−ατϕ(τ) dτ

]t
s=0

−
t∫

0

eα(2s−t)

2α e−αsϕ(s) ds

=
1

2α

∫ t

0

eα(t−τ) ϕ(τ) dτ − 1

2α

∫ t

0

e−α(t−s) ϕ(s) ds

=
1

α

∫ t

0

sinh(α(t− s))ϕ(s) ds.
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