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Abstract—In this work, we propose ultra-low-complexity design
solutions for multi-group multicast beamforming in large-scale
systems. For the quality-of-service (QoS) problem, by utilizing
the optimal multicast beamforming structure obtained recently
in [2], we convert the original problem into a non-convex weight
optimization problem of a lower dimension and propose two fast
first-order algorithms to solve it. Both algorithms are based on
successive convex approximation (SCA) and provide fast iterative
updates to solve each SCA subproblem. The first algorithm uses
a saddle point reformulation in the dual domain and applies the
extragradient method with an adaptive step-size procedure to find
the saddle point with simple closed-form updates. The second
algorithm adopts the alternating direction method of multipliers
(ADMM) method by converting each SCA subproblem into a
favorable ADMM structure. The structure leads to simple closed-
form ADMM updates, where the problem in each update block can
be further decomposed into parallel subproblems of small sizes,
for which closed-form solutions are obtained. We also propose
efficient initialization methods to obtain favorable initial points that
facilitate fast convergence. Furthermore, taking advantage of the
proposed fast algorithms, for the max-min fair (MMF) problem,
we propose a simple closed-form scaling scheme that directly uses
the solution obtained from the QoS problem, avoiding the conven-
tional computationally expensive method that iteratively solves the
inverse QoS problem. We further develop lower and upper bounds
on the performance of this scaling scheme. Simulation results show
that the proposed algorithms offer near-optimal performance with
substantially lower computational complexity than the state-of-the-
art algorithms for large-scale systems.

Index Terms—Multicast beamforming, optimal beamforming
structure, large-scale optimization, extragradient algorithm, alter-
nating direction method of multipliers, low complexity.

I. INTRODUCTION

Content distribution through wireless multicasting has been

increasingly popular among new wireless services and applica-

tions and is expected to dominate future wireless traffic. Multi-

antenna multicast beamforming is an efficient transmission tech-

nique to support high-speed content distribution to multiple user

groups simultaneously. With massive multiple-input multiple-

output (MIMO) being the essential technology for future net-

works [3], it is critical for multicast beamforming solutions to

be scalable to meet the ultra-low complexity requirement for

large-scale systems.

Downlink multicast beamforming has been studied for tra-

ditional multi-antenna systems in various scenarios, such as

single-group or multi-group multicasting [4]–[6], multi-cell

networks [7], [8], relay networks [9], [10], and cognitive

radio networks [11], [12]. Multicast beamforming problems
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are challenging to solve, as they are generally non-convex

and NP-hard [4]. Semi-definite relaxation (SDR) has been a

prior state-of-the-art method considered in the existing works

[13]. For traditional multi-antenna systems with relatively small

problem sizes, SDR provides a good approximate solution [4]–

[6], [8]. However, SDR is not a scalable method for large-

scale problems, where the computational complexity becomes

very high and the performance deteriorates significantly as the

problem size grows.

With the increasing number of transmit antennas, successive

convex approximation (SCA) [14] has become a more attractive

approach for solving the multi-group multicast beamforming

problems due to its computational and performance advantages

over SDR [15]–[17]. SCA-based methods convexify the non-

convex problem into a sequence of convex approximation sub-

problems, where the convex subproblems are typically solved

by the interior-point method (IPM) [18]. However, IPM is a

second-order algorithm. For computing a multicast beamform-

ing solution in large-scale massive MIMO systems, using IPM

still results in a relatively high computational complexity.
Following this, several methods have been proposed to further

reduce the computational complexity at each SCA iteration. For

the single-group case, first-order methods have been proposed

to solve the convex subproblems [19], [20]. However, these

methods are not directly applicable to multiple groups with

inter-group interference. For the multi-group scenario with per-

antenna power constraints, the alternating direction method

of multipliers (ADMM) [21] has been considered for solving

the subproblem in each SCA iteration. In [22], zero-forcing

pre-processing for interference elimination has been proposed

to reduce the multi-group case to a single-group equivalent

problem, for which SCA is applied. These methods provide

much lower complexity than the original SCA-based method.

However, since the dimension of beamforming vectors is dic-

tated by the number of antennas, the computational complexity

of these methods still grows with the number of antennas in

polynomial time. This renders these methods still computa-

tionally costly for massive MIMO systems. Alternatively, for

multi-cell systems, low-complexity beamforming schemes using

weighted maximum ratio transmission (MRT) in combination

with SDR have been developed, where only the weights, one

for each user, need to be optimized, and thus the size of the

optimization problem is reduced [23], [24]. Despite all the

above advancements in computational algorithms, they do not

optimally utilize the multicast beamforming structure.
The optimal multi-group multicast beamforming structure has

been recently obtained in [2]. It is shown that the optimal

solution is a weighted minimum mean-square error (MMSE)

filter with an inherent low-dimensional structure for the un-

known weights to be computed. With this structure, the mul-

ticast beamforming problem can be transformed into a weight

optimization problem of a much lower dimension, independent
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of the number of antennas. As a result, the solution can be

computed with significantly lower computational complexity, no

longer growing with the number of antennas [2]. Thus, it offers

design opportunities for computationally efficient algorithms for

large-scale massive MIMO systems. However, [2] still adopted

the conventional IPM-based SCA method for the weight opti-

mization, whose computational complexity still does not scale

well with the total number of users. Our goal in this work is

to develop scalable first-order fast algorithms for large-scale

systems that exploit both the optimal beamforming structure

and optimization techniques.

Multicast beamforming problems considered in all the

above-mentioned works typically are cast into two problem

formulations: a quality-of-service (QoS) problem for trans-

mit power minimization with signal-to-interference-and-noise

(SINR) guarantees for all users, or a max-min fair (MMF)

problem for maximizing the minimum SINR among all users

subject to a transmit power budget. Although both types of

problems are non-convex and NP-hard, the MMF problem is

more complicated to solve than the QoS problem. Typically,

the solution to the MMF problem is obtained through iteratively

solving its inverse QoS problem along with a bi-section search

over the value of minimum SINR [2], [5], [6], [17], [21].

This additional layer of bi-section iterations results in high

computational complexity for the MMF problem in large-scale

systems. Therefore, developing a low-complexity method to

obtain a good solution for the MMF problem is also critically

important.

Besides the above-mentioned works on algorithm develop-

ment for multicast beamforming design, asymptotic multicast

beamforming in massive MIMO systems has been analyzed in

[25], [26] without inter-group interference consideration, and

in [2] with inter-group interference consideration. Multicast

beamforming has also been investigated for energy efficiency

maximization [27] and for joint unicast and multicast trans-

mission in massive MIMO systems [28], [29]. For overloaded

systems with fewer antennas than the users, the rate-splitting-

based multicast beamforming strategies have been proposed

[30]–[32]. These studies address different problems from the

one considered in our work.

A. Contributions

In this paper, for downlink multi-group multicast beam-

forming in large-scale massive MIMO systems, we propose

two fast first-order algorithms for the QoS problem, which

are scalable in both antenna and user dimensions. Utilizing

the optimal multicast beamforming structure, we convert the

original QoS problem into a non-convex weight optimization

problem of a much lower dimension. We then develop two fast

algorithms to solve this weight optimization problem to obtain

our multicast beamforming solution. The two algorithms are

SCA-based methods, referred to as the extragradient-based SCA

(ESCA) and ADMM-based SCA (ASCA). They are developed

using two different first-order optimization techniques. Using

these algorithms, we also propose a simple closed-form scaling

scheme for solving the MMF problem. The main novelty and

contribution of this work are summarized below:

• We propose ESCA to solve each SCA subproblem in the

dual domain. In particular, we construct a saddle point

reformulation of the dual problem, which can be further

cast as a variational inequality problem for us to apply the

extragradient method [33] to find the saddle point. Instead

of directly considering the primal problem, our approach

explores the dual problem where the extragradient method

can be used efficiently, and we obtain simple closed-form

gradient updates in each updating step, which is the key for

our algorithm to compute the solution with low complexity.

Furthermore, to avoid finding the Lipschitz constant of the

gradient function to set the step size, which is generally

difficult to obtain, we adopt a prediction-correction procedure

for an adaptive step size in each update to ensure convergence

to the saddle point for the optimal solution. We also consider

two initialization methods, a fast extragradient-based initial-

ization method and an SDR-based method, for generating

favorable initial feasible points for ESCA to facilitate fast

convergence.

• We also propose a fast ADMM-based algorithm for the SCA

subproblems, referred to as ASCA. We transform each SCA

subproblem into a favorable form to construct the ADMM

procedure with two ADMM updating blocks. In particular,

the structure of the transformed problem leads to simple

updates in each ADMM update block, where the problem in

each update block can be further decomposed into parallel

subproblems of small sizes, each of which yields a closed-

form solution. Thus, ASCA takes advantage of the closed-

form updates in the ADMM procedure for fast computation

and is guaranteed to converge to the optimal solution. The

similar procedure is used to provide a ADMM-based fast

initialization method to facilitate fast convergence of the

algorithm.

• Taking advantage of the proposed fast algorithms for the

QoS problems, we propose a simple closed-form scaling

scheme to obtain a multicast beamforming solution for the

MMF problem. The scheme directly scales the beamforming

solution obtained from the QoS problem to meet the transmit

power budget. It thus has substantially lower computational

complexity than the conventional method of iteratively solv-

ing the inverse QoS problem with bi-section search. We also

provide lower and upper bounds on the performance of the

scaling scheme.

• Simulation results demonstrate that both ESCA and ASCA

with their initialization methods provide near-optimal perfor-

mance for the QoS problem. Their computational complexity

is substantially lower than the state-of-the-art algorithms for

large-scale systems as the number of antennas and users

increases, demonstrating the algorithm scalability in large-

scale systems. Between the two algorithms, ASCA is prefer-

able with faster computation for small to moderately large

systems where the number of antennas is less than 300 and

the number of users per group is less than 20, while ESCA

provides faster computation for larger systems. In addition,

the proposed scaling scheme for the MMF problem is shown

to result in only a mild loss to the optimal performance as the

number of antennas becomes large but substantially faster to

compute the solution.

We note that a multicast beamforming problem under per-

antenna power constraints has been considered in [21], where

an ADMM-based algorithm has been proposed. Besides the

problem being different from ours, the optimal beamforming

structure is not considered there, and the iterative algorithm tar-
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gets directly computing the beamforming vector. The resulting

algorithm in [21] has three ADMM updating blocks, while our

ASCA contains two ADMM blocks. In general, different from

the existing algorithms [19]–[24], our proposed two algorithms,

ESCA and ASCA, exploit both optimal multicast beamforming

structure and the numerical optimization techniques, which

lead to the simple closed-form updating steps to compute the

multicast beamforming solution with ultra-low computational

complexity for large-scale systems.

B. Organization and Notations

The rest of this paper is organized as follows. Section II

presents the system model and problem formulation for multi-

group multicast beamforming. Section III reviews the optimal

multicast beamforming structure and the SCA method. In Sec-

tions IV and V, we present two fast algorithms, ESCA and

ASCA, for the QoS problem. In Section VI, we propose a simple

closed-form scaling scheme to find the solution for the MMF

problem. Simulation results are provided in Section VII, and

the conclusion is presented in Section VIII.

Notations: Hermitian, transpose, and conjugate are denoted

as (·)H , (·)T , and (·)∗, respectively. The real and imaginary

parts of a complex number are denoted as Re{·} and Im{·},
respectively. The Euclidean norm of a vector is denoted as ‖ ·‖.
The notation x < 0 indicates element-wise non-negative. The

identity matrix is denoted as I. The notation z ∼ CN (0,C)
means z is a complex Gaussian random vector with zero mean

and covariance C. The non-negative real Euclidean space is

denoted as R+.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink multi-group multicast beamforming

scenario, where the base station (BS) equipped with N antennas

provides service for G user groups. Each group receives a

common message that is independent of the messages to other

groups. Denote the set of group indices by G , {1, · · · , G}.
Assume that there are Ki single-antenna users in group i,
and the set of user indices in the group is denoted by Ki ,
{1, · · · ,Ki}, i ∈ G. Define the total number of users in all

groups as Ktot ,
∑G

i=1Ki.

Let hik ∈ CN×1 be the channel vector from the BS to user k
in group i, for k ∈ Ki, i ∈ G. Let wi ∈ CN×1 be the multicast

beamforming vector for group i ∈ G. The received signal at

user k in group i is given by

yik = wH
i hiksi +

∑

j 6=i

wH
j hiksj + nik

where si is the data symbol transmitted to group i with

E
(
|si|2

)
= 1, and nik is the receiver additive white Gaussian

noise with zero mean and variance σ2. The received SINR at

user k in group i is expressed as

SINRik =
|wH

i hik|2∑
j 6=i |wH

j hik|2 + σ2
.

The transmit power at the BS is given by Pt ,
∑G

i=1 ‖wi‖2.

Two types of problem formulations are typically considered

for the multicast beamforming design. The QoS problem is to

minimize the transmit power while meeting the received SINR

target at each user, which is formulated as

Po :min
w

G∑

i=1

‖wi‖2 s.t. SINRik ≥ γik, k ∈ Ki, i ∈ G (1)

where w , [wH
1 , · · · ,wH

G ]H , and γik is the SINR target

for user k in group i. The other problem formulation is the

(weighted) MMF problem, which is to maximize the minimum

(weighted) SINR among all users subject to the transmit power

constraint at the BS:

So : max
w

min
i,k

SINRik

γik
s.t.

G∑

i=1

‖wi‖2 ≤ P (2)

where P is the transmit power budget at the BS, and γik > 0,

∀i, k, here serves as the weight to control the grade of service

or fairness among users. It is well-known that both Po and

So are non-convex and NP-hard. The existing works have

proposed various computational optimization methods to find

good suboptimal solutions. We will first focus on the QoS

problem Po and develop two fast first-order algorithms to obtain

the solutions for Po. Then, we discuss how to use the proposed

algorithms to solve the MMF problem efficiently.

III. OPTIMAL MULTICAST BEAMFORMING STRUCTURE

AND THE SCA METHOD

The optimal multicast beamforming structure has been ob-

tained recently in [2]. Under this structure, problem Po is

transformed into an equivalent weight optimization problem of

a much lower dimension that is independent of the number of

antennas. This leads to a significant computational saving and

provides opportunities for efficient algorithm designs for mas-

sive MIMO systems. To facilitate our algorithm development

later, we briefly describe the optimal multicast beamforming

structure obtained in [2], the transformed weight optimization

problem, and the SCA method for the problem.

A. Optimal Multicast Beamforming Structure

It is shown in [2] that the optimal solution to Po is a weighted

MMSE filter given by

wo
i = R−1(λo)Hia

o
i , i ∈ G (3)

where Hi , [hi1, · · · ,hiKi
] ∈ CN×Ki is the channel matrix

for group i, aoi ∈ CKi×1 is the optimal weight vector for group

i, and R(λo) , I+
∑G

i=1

∑Ki

k=1 λ
o
ikγikhikh

H
ik ∈ CN×N is the

(normalized) noise plus weighted channel covariance matrix,

with λo ∈ RKtot×1 containing the optimal Lagrangian multi-

pliers {λoik} associated with the SINR constraints in (1). The

kth weight element aoik in aoi indicates the relative significance

of user k’s channel hik in the overall group-channel direction

Hia
o
i .

To determine wo in (3), we need to numerically compute

both λo and {aoi }. The parameter λo can be approximately

computed by the simple fixed-point iterative method proposed

in [2]. Given λ, based on the optimal solution structure wo
i in

(3), the original problem Po is transformed into the following

equivalent weight optimization problem for {ai}

P1 : min
a

G∑

i=1

‖Ciai‖2
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s.t.
|aHi fiik|2∑

j 6=i |aHj fjik |2 + σ2
≥ γik, k ∈ Ki, i ∈ G (4)

where a , [aH1 , · · · , aHG ]H , Ci , R−1(λ)Hi ∈ CN×Ki ,

fjik , CH
j hik ∈ CKj×1, k ∈ Ki, i, j ∈ G. Different from the

original problem Po with GN variables, the converted problem

P1 has Ktot variables, which does not depend on the number

of antennas N . The problem dimension of P1 is much smaller

than that of Po in massive MIMO systems with Ki ≪ N .

The inherent structure of the optimal multicast beamforming

solution in (3) paves the way for developing low-complexity

fast algorithms for multicast beamforming design in large-scale

massive MIMO systems.

B. Obtaining Weights {ai} via SCA

The weight optimization problem P1 is still a non-convex NP-

hard problem. The SCA method can be adopted to solve P1,

which is guaranteed to converge to the local minimum [14].

Specifically, given any auxiliary vector vi ∈ CKi×1, i ∈ G,

based on the inequality (ai − vi)
Hfiikf

H
iik(ai − vi) ≥ 0, we

have |aHi fiik|2 ≥ 2Re{aHi fiikf
H
iikvi} − |vH

i fiik|2. Replacing

the numerator of the SINR expression in (4) by the right-hand

side (RHS) of the above inequality, we convexify the SINR

constraint and change P1 to the following convex optimization

problem

P1SCA(v) :min
a

G∑

i=1

‖Ciai‖2

s.t. γik
∑

j 6=i

|aHj fjik|2 + |vH
i fiik|2 + γikσ

2

− 2Re{aHi fiikf
H
iikvi} ≤ 0, k ∈ Ki, i ∈ G

where v , [vH
1 , · · · ,vH

G ]H . Note that the solution to P1SCA(v)
is always feasible to P1. By updating v with the solution a to

P1SCA(v), we iteratively solve P1SCA(v) until convergence.

Since P1SCA(v) is convex, it can be solved by IPM available

through standard convex solvers. However, IPM is a second-

order algorithm (i.e., based on the Hessian matrix of the objec-

tive function), whose best computational complexity is O(K3.5
tot )

and worst is O(K4
tot). Thus, iteratively solving P1SCA(v) via

IPM still incurs relatively high computational complexity for

large-scale systems when Ki is large. To address this, for the

rest of this paper, we develop two fast first-order algorithms to

solve P1SCA(v) that maintain a low complexity in computing

the solution for large-scale systems.

IV. EXTRAGRADIENT-BASED SCA ALGORITHM

A. Dual Saddle Point Reformulation

For the purpose of computation, we rewrite problem

P1SCA(v) using the real and imaginary parts of each com-

plex quantity. Define xi , [Re{ai}T , Im{ai}T ]T , yi ,
[Re{vi}T , Im{vi}T ]T . Also, define

Ai ,

[
Re{Ci} −Im{Ci}
Im{Ci} Re{Ci}

]
, F̃jik ,

[
Re{fjik} −Im{fjik}
Im{fjik} Re{fjik}

]

for k ∈ Ki, i, j ∈ G. Then, we have ‖Ciai‖2 = ‖Aixi‖2 and

|aHj fjik |2 = ‖xT
j F̃jik‖2 = xT

j Fjikxj , where Fjik , F̃jikF̃
T
jik ,

for k ∈ Ki and j, i ∈ G. Define x , [xT
1 , · · · ,xT

G]
T and

y , [yT
1 , · · · ,yT

G]
T . With these new variables, P1SCA(v) can

be equivalently expressed as

P r
1SCA(y) : min

x

G∑

i=1

‖Aixi‖2

s.t. yT
i Fiikyi +γik

∑

j 6=i

xT
j Fjikxj − 2yT

i Fiikxi + γikσ
2 ≤ 0,

k ∈ Ki, i ∈ G. (5)

We first describe the class of variational inequality problems

[34] below.

Definition 1 (Variational Inequality). Given Z ⊆ Rn and a

mapping ψ : Z → Rn, the variational inequality is to find z ∈ Z
satisfying ψ(z)T (z′−z) ≥ 0, ∀ z′ ∈ Z . Operator ψ(·) is said to

be monotone on Z if [ψ(z)−ψ(z′)]T (z−z′) ≥ 0, ∀ z, z′ ∈ Z .

The problem is monotone if operator ψ(·) is monotone.

The projection methods belong to a class of iterative algo-

rithms that solve the monotone variational inequality problems

[34]. At each iteration, a projection method uses the updating

step to compute the point (i.e., the value of the optimization

variable) and then projects it onto the feasible set of the

problem to ensure the updated point is feasible. Note that the

projection method may not be an efficient method. In general,

the projection methods are only computationally cheap when

the projection is easy to compute.

Note that P r
1SCA(y) is convex, and the objective function is

differentiable. Let operator ψ(x) be the gradient of the objec-

tive function of P r
1SCA(y). Following the optimality criterion

for a convex optimization problem, ψ(x) is monotone, and

thus P r
1SCA(y) is a monotone variational inequality problem.

However, it is difficult to find a closed-form expression for

the projection onto the feasible set of P r
1SCA(y). Thus, directly

applying the projection method to solve P r
1SCA(y) is not com-

putationally attractive. To overcome this difficulty, we resort to

the Lagrange dual problem of P r
1SCA(y).

Define φik(x) , yT
i Fiikyi + γik

∑
j 6=i x

T
j Fjikxj −

2yT
i Fiikxi + γikσ

2 and φi(x) , [φi1(x), . . . , φiKi
(x)]

T
, for

k ∈ Ki, i ∈ G. The Lagrangian of P r
1SCA(y) is given by

L(x,η) =
G∑

i=1

(
‖Aixi‖2 + ηT

i φi(x)
)

(6)

where ηik ≥ 0 is the dual variable associated with constraint

(5), and η ,
[
ηT
1 , · · · ,ηT

G

]T
with ηi , [ηi1, · · · , ηiKi

]
T

. The

Lagrange dual problem of P r
1SCA(y) is given by

Dr
1SCA(y) : max

η<0

min
x

G∑

i=1

(
‖Aixi‖2 + ηT

i φi(x)
)
.

Let xo and ηo be the primal and dual optimal solutions

for P r
1SCA(y). Since P r

1SCA(y) is convex and Slater’s condition

holds, the strong duality holds. It follows that uo , (xo,ηo) is

a saddle point of the Lagrangian L(x,η) [18]. Define operator

g(u) as

g(u) = g(x,η) ,

[
∇xL(x,η)
−∇ηL(x,η)

]
, u ∈ U (7)

where U , R
2Ktot×RKtot

+ is a closed convex set. Then,Dr
1SCA(y)

can be interpreted as finding the saddle point uo. It is shown in

[34] that the problem of finding the saddle point uo can be cast
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as the variational inequality problem: Find uo ∈ U that satisfies

the following variational inequality

g(uo)T (u− uo) ≥ 0, ∀ u ∈ U . (8)

B. Extragradient-Based SCA

To solve problem (8), one may consider the basic projection

algorithm (BPA) [34], which iteratively updates u using g(u)
and then projects it onto U . However, the convergence of BPA

requires operator g(u) to be strongly monotone [34]. Following

Definition 1, operator ψ(·) is said to be strongly monotone on Z ,

if there exists a constant c > 0 such that [ψ(z)−ψ(z′)]T (z−z′)
≥ c‖z−z′‖2, ∀ z, z′ ∈ Z . Since L(x,η) is linear with respect to

(w.r.t.) η, operator g(u) is not strongly monotone on U . Thus,

we cannot apply BPA to our problem due to no convergence

guarantee.

Instead of BPA, in this work, we adopt the extragradient

method, a variant of BPA, proposed by Korpelevich in [33].

Compared with BPA, the extragradient method can guarantee

convergence for a monotone operator, at the cost of an extra

update-and-projection step at each iteration. For operator g(u)
in (7), since L(x,η) is convex in x ∈ R2Ktot and −L(x,η) is

convex in η ∈ R
Ktot

+ , g(u) is monotone on U by Definition 1.

Thus, we develop a fast iterative algorithm to solve P r
1SCA(y)

by applying the extragradient algorithm in the problem dual

domain.

The updating procedure of the extragradient algorithm for

finding the saddle point is summarized as follows [33], [34]:

At iteration n+ 1,

x̄(n) = x(n) − α∇x(n)L(x(n),η(n)), (9)

η̄(n) =
[
η(n) + α∇η(n)L(x(n),η(n))

]+
, (10)

x(n+1) = x(n) − α∇x̄(n)L(x̄(n), η̄(n)), (11)

η(n+1) =
[
η(n) + α∇η̄(n)L(x̄(n), η̄(n))

]+
(12)

where x̄(n) and η̄(n) are the intermediate updates in the extra

update-and-projection step in (9)(10), α is the step size, and

notation [z]+ , [[z1]
+, . . . , [zn]

+]T with [zi]
+ , max{zi, 0},

for z ∈ Rn.

The gradient ∇xL(x,η) can be denoted as ∇xL(x,η) =
[∇x1L(x,η)T , · · · ,∇xG

L(x,η)T ]T . From (6), we obtain

∇xi
L(x,η) = 2AT

i Aixi + 2

(∑

j 6=i

Kj∑

k=1

γjkηjkFijk

)
xi

− 2

( Ki∑

k=1

ηikFiik

)T

yi, i ∈ G. (13)

Also from (6), we obtain the gradient ∇ηL(x,η) as

∇ηL(x,η) = [φT
1 (x), · · · ,φT

G(x)]
T . (14)

Substituting the expressions in (13) and (14) into (9)–(12), we

obtain the closed-form updates for x(n+1) and η(n+1).

For a monotone variational inequality problem with operator

being L-Lipschitz continuous, the extragradient algorithm is

guaranteed to converge to the optimal solution, provided that

the step size satisfies α < 1/L [34]. Unfortunately, it is difficult

to determine Lipschitz constant L for g(u) in our problem. To

overcome this difficulty, instead of a constant step size α, we

adopt an adaptive strategy based on the prediction-correction

procedure [35], [36] to adaptively set the step size α(n) for

each iteration.

Given a fixed step size α, the prediction-correction procedure

contains two steps at iteration n+ 1:

1) Prediction: Obtain ū(n) , (x̄(n), η̄(n)) from (9) and (10)

with fixed α. Compute d
(n)
u , ‖ū(n)− u(n)‖ and d

(n)
g ,

‖g(ū(n))− g(u(n))‖. Compute step size α̂(n) = c
d(n)
u

d
(n)
g

,

where c ∈ (0, 1) is a constant.

2) Correction: Set α(n) = min{α, α̂(n)} for iteration n + 1
to update x(n+1) and η(n+1) in (9)–(12).

We now show that the prediction-correction procedure guar-

antees the extragradient algorithm converges to the saddle point

uo of problem (8). If we replace α by α(n) in (9)–(12) of the

extragradient algorithm, then for any step size sequence {α(n)},
the following holds [35], [36]

‖u(n+1)−uo‖2

≤‖u(n)−uo‖2 − ‖ū(n)−u(n)‖2
(
1−
(
α(n) d

(n)
g

d
(n)
u

)2)
. (15)

If we set α(n) as in the correction step of the above prediction-

correction procedure, then ‖u(n+1)−uo‖ < ‖u(n)−uo‖ and

{u(n)} move towards the saddle point uo of problem (8). It

follows that the algorithm converges to the optimal solution to

P r
1SCA(y) in each SCA iteration.

Overall, the ESCA algorithm to solve P1 is summa-

rized in Algorithm 1. The main computational complexity

of ESCA lies in computing the gradients ∇xL(x,η) using

(13) and ∇ηL(x,η) in (14). At each extragradient iteration,

the related matrix-vector computation for ∇xL(x,η) requires∑G
i=1

(∑G
j=1 4KjK

2
i + 32K2

i

)
flops, and that for ∇ηL(x,η)

requires
∑G

i=1

(∑G

j=1(16K
2
j + 8Kj)Ki − 8K2

i

)
flops. Note

that ESCA consists of two layers of iterations: the outer-layer

SCA and the inner-layer extragradient-based algorithm to solve

each P1SCA(v). The number of iterations at the two layers for

convergence depend on the system parameters N and Ktot.

From our experiments, for N = 100 ∼ 500 antennas and

Ktot = 15 ∼ 60 users, it typically takes 20 ∼ 200 iterations for

the inner-layer extragradient algorithm to converge at each SCA

iteration, and the outer layer typically takes 2 ∼ 60 iterations

to converge.

Remark 1. As mentioned earlier, BPA consists of only one

update-and-projection step at each iteration (similar to (9)(10)),

but requires the operator g(u) to be strongly monotone for

convergence. If g(u) is only monotone, the updated point (the

same as ū(n) in (9)(10) in iteration n + 1) may move away

from, instead of closer to, the optimal point uo at each iteration.

Thus, the updating procedure may not converge over iterations.

In contrast, the extragradient algorithm adds an extra update-

and-projection step as in (11)(12) at each iteration. This extra

step can ensure convergence for a monotone operator g(u).
Specifically, it is shown in [34] that in iteration n + 1, after

obtaining ū(n) at the first update-and-projection step in (9)(10),

a hyperplane H(n) , {u | g(ū(n))T (u − ū(n)) = 0} can

be constructed at ū(n) with normal vector g(ū(n)). For the

monotone operator g(u), it is proven that this hyperplane H(n)

separates the point u(n) and the optimal point uo, where uo is

in the halfspace in the direction −g(ū(n)). The second update-

and-projection step in (11)(12) then utilizes −g(ū(n)) to update
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Algorithm 1 ESCA Algorithm to Solve P1

1: Initialization: Set feasible initial point y(0). Set α and c.
Set l = 0.

2: repeat

3: // solve P r
1SCA(y

(l))
4: Initialization: x(0) = y(l), η(0) = 0, n = 0.

5: repeat

6: Compute x̄(n) and η̄(n) by (9)(10) using α.

7: Compute g(ū(n)) by (13)(14).

8: Compute d
(n)
u and d

(n)
g .

9: Prediction: Compute α̂(n) = cd
(n)
u /d

(n)
g .

10: Correction: Update step size α(n) = min{α, α̂(n)}.
11: if α(n) = α then

12: Update x(n+1) and η(n+1) by (11)(12).

13: else

14: Update x(n+1) and η(n+1) by (9)–(12) using α(n).

15: end if

16: n← n+ 1.

17: until convergence

18: Set y(l+1) = x(n). Set l← l + 1.

19: until convergence

u(n+1). This ensures that u(n+1) move towards the optimal

point uo and thus is closer to uo than u(n) is.

C. Initialization for ESCA

A challenge in using SCA to solve P1 is that it requires a

feasible initial point satisfying the SINR constraint (4) as v(0)

for P1SCA(v) (equivalently y(0) for P r
1SCA(y)). It is necessary

to generate a feasible initial point with a low computational

complexity. Furthermore, a good initial point closer to the

(locally) optimal point of P1 could accelerate the convergence.

Below, we consider two initialization methods for ESCA.

1) Extragradient-based initialization method (EIM): Based on

the extragradient-based algorithm in Section IV-B, we propose

EIM as follows. EIM generates a feasible point by solving the

following feasibility problem

P1fea : Find {x}

s.t.
xT
i Fiikxi∑

j 6=i x
T
j Fjikxj + σ2

≥ γik, k ∈ Ki, i ∈ G (16)

where xi and Fjik are defined at the beginning of Section IV-A,

and constraint (16) is an equivalent real representation of

constraint (4) in P1 based on |aHj fjik|2 = xT
j Fjikxj .

We solve P1fea by applying the extragradient method with

the adaptive step size proposed in Section IV-B. Specifically,

the Lagrangian of P1fea is given by L̃(x, η̃) =∑G

i=1 φ̃
T
i (x)η̃i,

where η̃ik is the dual variable for constraint (16), η̃ ,
[η̃T

1 , · · · , η̃T
G]

T with η̃i , [η̃i1, · · · , η̃iKi
]T , and φ̃i(x) ,

[φ̃i1(x), . . . , φ̃iKi
(x)]T with φ̃ik(x) , γik

∑
j 6=i x

T
j Fjikxj

−xT
i Fiikxi + γikσ

2, for k ∈ Ki, i ∈ G. The gradient

∇xi
L̃(x, η̃), for i ∈ G, is given by

∇xi
L̃(x, η̃)= 2

(∑

j 6=i

Kj∑

k=1

γjk η̃jkFijk

)T
xi− 2

( Ki∑

k=1

η̃ikFiik

)T
xi.

Similar to (14), the gradient ∇η̃L̃(x, η̃) is given by

∇η̃L̃(x, η̃) = [φ̃T
1 (x), · · · , φ̃T

G(x)]
T . The updating procedure

of the extragradient method in (9)–(12) is then applied for solv-

ing P1fea, with η, ∇xL(x,η), and ∇ηL(x,η) being replaced

by η̃, ∇xL̃(x, η̃), and ∇η̃L̃(x, η̃), respectively. Furthermore,

the prediction-correction procedure in Section IV-B is used to

set the adaptive step size at each iteration.

For simplicity, we randomly chose the initial point for EIM.

Note that this point may not be feasible for SINR constraint (4)

in P1. Also, since P1fea is a non-convex optimization problem,

EIM may not be guaranteed to converge or the terminating point

may not be feasible as required for v(0) for P1SCA(v). Thus,

EIM is served as a heuristic algorithm. If the point produced

by EIM is infeasible, we may consider different initial points

for EIM until a feasible is obtained. Our extensive simulation

experiments show that EIM converges and provides a feasible

initial point with a very high probability.

2) SDR-based initialization method: Similar to [2], we can

apply SDR along with Gaussian randomization to P1 to obtain

an approximate solution as a feasible initial point y(0) to

P r
1SCA(y) for ESCA. Recall that P1 is converted from the

original problem Po and is of relatively smaller size (Ktot

variables and constraints). SDR can provide a good initial point

when the problem is of small to moderate size, leading to fast

convergence for ESCA. However, as Ktot becomes large, the

computational complexity of SDR will increase significantly,

and the quality of the initial point it computes deteriorates. Thus,

SDR for initialization is only suitable for small to moderate

problems.

V. ADMM-BASED SCA ALGORITHM

In this section, we develop another computationally efficient

algorithm based on ADMM [37], which is a different opti-

mization technique from ESCA. ADMM has drawn growing

popularity in recent years as a robust and fast numerical method

for solving large-scale problems. We propose an ADMM-based

algorithm to solve each SCA subproblem P1SCA(v). Define the

auxiliary variables djik , aHj fjik , for k ∈ Ki, i, j ∈ G. Define d

,
[
dH
11, · · · ,dH

GKG

]H ∈ CGKtot , with dik , [d1ik, · · · , dGik]
T

∈ CG. Then, the problem P1SCA(v) can be equivalently ex-

pressed as

P1ADMM(v) : min
a,d

G∑

j=1

‖Cjaj‖2

s.t. djik = aHj fjik, k ∈ Ki, i, j ∈ G (17)

γik
∑

j 6=i

|djik|2+|vH
i fiik|2+γikσ2−2Re{diikfHiikvi}≤0,

k ∈ Ki, i ∈ G. (18)

Denote the feasible set for the inequality constraint (18) by F .

Define the indicator function for the set F as

IF (d) ,

{
0 if d ∈ F ,

∞ otherwise.

Then, P1ADMM(v) is equivalent to the following problem

P ′
1ADMM(v) :min

a,d

G∑

j=1

‖Cjaj‖2 + IF (d)

s.t. djik = aHj fjik, k ∈ Ki, i, j ∈ G. (19)
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By introducing the auxiliary vector d in constraint (18), we

construct the equality-constrained problem P ′
1ADMM(v), where

the objective function contains two separate terms for d and a

only. This allows us to apply ADMM to decompose the problem

into separate subproblems [37]. The augmented Lagrangian of

P ′
1ADMM(v) is given by

Lρ(d, a,q) =
G∑

j=1

‖Cjaj‖2 + IF (d)

+
ρ

2

G∑

j=1

G∑

i=1

Ki∑

k=1

|djik − aHj fjik + qjik|2 (20)

where ρ > 0 is the penalty parameter, and qjik ∈ C is

the dual variable associated with constraint (19), and q ,[
qH
11, · · · ,qH

GKG

]H
, with qik , [q1ik, · · · , qGik]

T
. We now

decompose Lρ(d, a,q) into two subproblems for d and a

separately, and update {d, a,q} alternatively. Our proposed

ADMM-based updating procedure for solving P ′
1ADMM(v) is

given as follows:

d(n+1) =argmin
d

Lρ(d, a(n),q(n)), (21)

a(n+1) =argmin
a

Lρ(d(n+1), a,q(n)), (22)

q
(n+1)
jik =q

(n)
jik +

(
d
(n+1)
jik − a

(n+1)H
j fjik

)
(23)

where n is the iteration index. Since P ′
1ADMM(v) is convex,

the above ADMM procedure is guaranteed to converge to the

optimal solution of P1ADMM(v) [37].

The two main updating steps in (21) and (22) involve solving

two optimization problems. In the following, we derive the

closed-form solutions for the two optimization problems in (21)

and (22), which leads to fast computation at each iteration.

A. Closed-Form d-Update

Given a(n) and q(n), from (20), the update of d in (21) is

equivalent to solving the following problem

Pd(v) :min
d

G∑

j=1

G∑

i=1

Ki∑

k=1

|djik − a
(n)H
j fjik + q

(n)
jik |2 s.t. (18).

Problem Pd(v) can be decomposed into Ktot convex subprob-

lems, one for each user k in group i given by

Pdsub(v) :min
dik

G∑

j=1

|djik − e(n)1,jik|2

s.t. e2,ik + γik
∑

j 6=i

|djik|2 − 2Re{diike3,ik} ≤ 0 (24)

where

e
(n)
1,jik,a

(n)H
j fjik−q(n)jik , e2,ik, |vH

i fiik|2+γikσ2, e3,ik, fHiikvi.
(25)

Problem Pdsub(v) is a convex QCQP-1 problem, whose solution

may be derived in closed-form. In particular, a problem of

similar structure has been considered in [21], where the closed-

form solution is derived in [21, Appendix A]. We directly use

this result and state the closed-form solution below. The optimal

solution do
ik for Pdsub(v) is given by

dojik =





e
(n)
1,iik + νoike

∗
3,ik if j = i,

e
(n)
1,jik

1+νo
ik

γik
otherwise

(26)

where νoik = 0 if e2,ik +γik
∑

j 6=i |e
(n)
1,jik|2 −2Re{e3,ike(n)1,iik} ≤

0; otherwise, νoik is the unique real positive root of the following

cubic equation of νik:

e2,ik+γik

∑
j 6=i |e

(n)
1,jik|2

(1 + νikγik)2
−2Re{e3,ike(n)1,iik}−2νik|e3,ik|2=0.

(27)

Since the roots of (27) are given by the cubic formula, νoik is

obtained in closed-form. For the sake of completeness, the key

steps leading to the above solution is provided in Appendix A.

B. Closed-Form a-Update

Given d(n+1) and q(n), the update of a in (22) is equivalent

to solving the following problem

Pa(v) : min
a

G∑

j=1

(
‖Cjaj‖2+

ρ

2

G∑

i=1

Ki∑

k=1

|d(n+1)
jik −aHj fjik+q

(n)
jik |2

)
.

Problem Pa(v) can be decomposed into G subproblems, one

for each group j expressed as

Pasub(v) :min
aj

‖Cjaj‖2+
ρ

2

G∑

i=1

Ki∑

k=1

|d(n+1)
jik −aHj fjik+q

(n)
jik |2.

Problem Pasub(v) is an unconstrained convex optimization prob-

lem. Using the first-order optimality condition [18], we obtain

the closed-form solution to Pasub(v) as

a
(n+1)
j =

ρ

2

(
CH

j Cj +
ρ

2

G∑

i=1

Ki∑

k=1

fjikf
H
jik

)−1

·
G∑

i=1

Ki∑

k=1

(
d
(n+1)
jik + q

(n)
jik

)∗
fjik. (28)

We summarize the ASCA algorithm in Algorithm 2. The

main computational complexity of ASCA lies in computing

{e(n)1,jik} in (25) for k ∈ Ki, i, j ∈ G and {a(n+1)
j } in (28)

for j ∈ G at each ADMM iteration. Note that computing

a
(n+1)
j involves a matrix inversion with a complexity of O(K3

j ).
However, the matrix only depends on the channel vectors, and

thus the matrix inversion only needs to be computed once at

the beginning of ASCA. Thus for each ADMM iteration, only

matrix-vector multiplications are involved. At each ADMM iter-

ation, the related matrix-vector computation of {e(n)1,jik} requires

12
(∑G

i=1Ki

)2
+ 2G

∑G

i=1Ki flops, and that of {a(n+1)
j } re-

quires 6
(∑G

i=1Ki

)2
+2

∑G
i=1

(
6K2

i +GKi

)
flops. There are

two layers of iterations in ASCA: the outer-layer SCA and the

inner-layer ADMM to solve each P1SCA(v). The convergence

speed depends on the system parameters N and Ktot. From our

experiments, for N = 100 ∼ 500 antennas and Ktot = 15 ∼ 60
users, it typically takes 50 ∼ 150 iterations for the inner-layer

ADMM-based algorithm to converge at each SCA iteration, and

the outer layer typically takes 2 ∼ 90 iterations to converge.
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Algorithm 2 ASCA Algorithm to Solve P1

1: Initialization: Set feasible initial point v(0). Set ρ; l = 0.

2: repeat

3: // solve P1ADMM(v(l))
4: Initialization: a(0) = v(l), d(0) = 0, q(0) = 0, n = 0.

5: repeat

6: Compute d(n+1) by (21) with a(n) and q(n).

7: Compute a(n+1) by (22) with d(n+1) and q(n).

8: Compute q(n+1) by (23) with d(n+1) and a(n+1).

9: n← n+ 1.

10: until convergence

11: Set v(l+1) = a(n). Set l← l + 1.

12: until convergence

In Section VII, we will provide the simulation study to

compare the convergence, performance, and the computational

time of ESCA and ASCA.

C. Initialization for ASCA

As discussed earlier in Section IV-C, a feasible initial point

is required by SCA to solve P1. Below we propose an ADMM-

based initialization method (AIM).

Using the ADMM-based algorithm above, we propose AIM

for ASCA. The feasible point is computed by solving the

following feasibility problem

P ′
1fea : Find {a} s.t. (4).

Using the auxiliary variables djik = aHj fjik , for k ∈ Ki, i, j ∈
G, defined at the beginning of Section V, P ′

1fea is equivalently

expressed as

P ′
1feaADMM : Find {a,d}

s.t. djik = aHj fjik, k ∈ Ki, i, j ∈ G
|diik|2∑

j 6=i |djik|2 + σ2
≥ γik, k ∈ Ki, i ∈ G. (29)

Denote the feasible set for constraint (29) by F̃ . The augmented

Lagrangian of P ′
1feaADMM is given by

L̃ρ̃(d, a, q̃)=IF̃ (d)+
ρ̃

2

G∑

j=1

G∑

i=1

Ki∑

k=1

|djik−aHj fjik+q̃jik|2 (30)

where indicator function I , penalty parameter ρ̃, dual variable

q̃jik are defined similarly as those in (20). Similar to the ADMM

updating procedures in (21)–(23), based on (30), the AIM

updating procedure for solving P ′
1feaADMM is given as follows:

At iteration n+ 1,

d(n+1) =argmin
d∈F̃

G∑

j=1

G∑

i=1

Ki∑

k=1

|djik−a(n)Hj fjik+q̃
(n)
jik |2, (31)

a(n+1) =argmin
a

G∑

j=1

G∑

i=1

Ki∑

k=1

|d(n+1)
jik −aHj fjik+q̃

(n)
jik |2, (32)

q̃
(n+1)
jik =q̃

(n)
jik +

(
d
(n+1)
jik − a

(n+1)H
j fjik

)
. (33)

The updating steps in (31) and (32) can be derived in closed-

form, which are provided in Appendix B.

The initial point for AIM is randomly chosen, which may not

be feasible for SINR constraint (29) in P ′
1feaADMM. However,

if AIM converges, the terminating point will satisfy SINR

constraint (29), and the produced point a for v(0) is feasible to

P1SCA(v). Note that since P ′
1fea is a non-convex optimization

problem, the ADMM procedure for AIM described above may

not be guaranteed to converge. Thus, AIM is served as a

heuristic algorithm. Our extensive simulation studies show that

AIM converges to a feasible point with a very high probability.
Besides AIM, We can also use the SDR-based initialization

method discussed in Section IV-C for initialization of ASCA,

where a feasible initial point v(0) for ASCA is obtained by

applying SDR along with Gaussian randomization to solve P1.

VI. SCALING SCHEME FOR THE MMF PROBLEM

In this section, with the proposed ESCA and ASCA for

the QoS problem, we propose an efficient scheme to obtain

a solution to the MMF problem So.
We transform the original MMF problem So into the follow-

ing equivalent problem

S ′o(γ, P ) : max
w,t

t

s.t. SINRik ≥ tγik, k ∈ Ki, i ∈ G
G∑

i=1

‖wi‖2 ≤ P

where vector γ contains all SINR targets {γik} of all users

in all groups. Furthermore, we parameterize the QoS problem

Po as Po(γ). It has been shown that S ′o(γ, P ) and Po(tγ) are

the inverse problems to each other [5]. Specifically, denote the

maximum objective value of S ′o(γ, P ) by to = S ′o(γ, P ). Let

the minimum power objective value of Po(γ
′) be P = Po(γ

′)
for some γ′. Then, we have the following inverse relation:

to = S ′o(γ,Po(t
oγ)), P = Po(S ′o(γ, P )γ). (34)

Based on this relation, in the literature, the MMF problem

S ′o(γ, P ) is typically solved via iteratively solving the QoS

problem Po(tγ) along with a bi-section search over t until the

transmit power objective in Po(tγ) is equal to P [2], [5], [6],

[17], [21]. However, this approach is computationally expensive.

As mentioned at the end of Section III-B, existing works use

either SDR or SCA to compute a solution to Po(tγ), where the

second-order IPM is used to solve either relaxed or convexified

approximate problem. As a result, iteratively solving Po(tγ)
incurs high computational complexity not suitable for large-

scale problems. Using the optimal beamforming structure wo
i

in (3) can significantly reduce the required computation in the

above approach, where Po(tγ) can be converted to a much

smaller weight optimization problem as in P1. Nonetheless,

resorting to the additional layer of iterations to solve the QoS

problem is still computationally costly for the MMF problem as

compared with the QoS problem itself, especially for large-scale

problems [2].
To avoid the additional iterative procedure, we develop a

closed-form scaling scheme for finding a solution to So directly.

Specifically, we first obtain the solution to Po(γ) by solving

the smaller weight optimization problem P1 using either ESCA

or ASCA proposed in Sections IV and V. Then, we scale this

solution to Po(γ) to obtain a solution to S ′o(γ, P ), such that the

transmit power budget P is met. Parameterize So as So(γ, P ).
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Algorithm 3 The Closed-Form Scaling Scheme for So(γ, P )
1: Solve Po(γ) and attain solution wQ(γ).
2: Compute P Q(γ) =

∑G

i=1 ‖wQ

i (γ)‖2.

3: Compute ws(γ, P ) =
√

P
PQ(γ)w

Q(γ) as the solution to

So(γ, P ).

This proposed scaling scheme is summarized in Algorithm 3.

We show below that this scaling scheme provides a feasible

solution to So(γ, P ), and we also bound its performance.

Proposition 1. Let wQ(γ) be a feasible beamforming so-

lution to Po(γ) produced by a given algorithm, with

the achieved objective value denoted by P Q(γ). Define

IQ

ik(γ) ,
∑

j 6=i |hH
ikw

Q

j(γ)|2. Then, the scaled beamforming

vector ws(γ, P ) ,
√

P
PQ(γ)w

Q(γ) is a feasible solution to

So(γ, P ); the corresponding achieved objective value, denoted

by ts(γ, P ), satisfies

P

P Q(γ)
min
i,k

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
≤ ts(γ, P )

≤ P

P o(γ)
max
i,k

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
(35)

where P o(γ) denotes the optimal objective value of Po(γ).

Proof: See Appendix C.

Note that the tightness of the lower and upper bounds for

ts(γ, P ) in (35) depends on transmit power P Q(γ), which is

obtained by a given algorithm for Po(γ) with solution wQ(γ).
If the power budget P for the MMF problem So(γ, P ) is more

than the optimal power value for Po(γ), i.e., P ≥ P o(γ),
and the algorithm provides P Q(γ) = P , then ws(γ, P ) =
wQ(γ), and the bounds in (35) in this case are simplified

to 1 ≤ ts(γ, P ) ≤ P
P o(γ) . Note that, often for the given

algorithm, the solution wQ(γ) results in at least one SINR

constraint being attained with equality, i.e., SINRik = γik,

for some i, k, then we have ts(γ, P ) = 1. In a special case

when P Q(γ) = P = P o(γ), we have ts(γ, P ) = 1, and also

both the upper and lower bounds become 1. In this case, since

P = P o(γ), from the inverse relation in (34), we have to = 1.

Thus, ts(γ, P ) = to = 1, and the bounds in (35) are tight.

Comparing Algorithm 3 with the iterative bi-section search

method using (34), we see that our proposed closed-form scaling

scheme avoids iteratively solving P2(tγ) along with a bi-section

search over t, and thereby, enjoys a significant reduction of

computational complexity. Moreover, we can directly apply the

fast algorithm ESCA proposed in Section IV or ASCA proposed

in Section V along with the optimal structure in (3) to provide

a solution to Po(γ) with this scaling scheme. This approach

leads to two fast first-order algorithms for solving So(γ, P ) in

large-scale systems.

Remark 2. We point out that our scaling scheme for the multi-

group multicast beamforming MMF problem is different from

a similar scaling scheme proposed for the MMF problem in

a single-group scenario in [22]. Specifically, the scheme in

[22] first applies ZF beamforming for each group to eliminate

inter-group interference. Once the interference is removed, for

the equivalent single-group multicast beamforming problem,

[22] scales the beamforming solution of the single-group QoS

problem to obtain a feasible solution to the MMF problem. In

our scheme, we directly handle the original multi-group MMF

problem containing inter-group interference. Our scheme scales

the solution of the multi-group QoS problem Po(γ) to solve

the original MMF problem So(γ, P ). Note that the scheme in

[22] has the lower and upper bounds for the objective value t
(similar to t in S ′o(γ, P )) as

[
P

PQ(γ) ,
P

P o(γ)

]
with no interference

present. In contrast, for our scheme, the lower and upper bounds

in (35) contain additional terms w.r.t. IQ

ik(γ). Note that IQ

ik(γ)
represents the inter-group interference to user k in group i by

solution wQ(γ). Following this, both terms IQ

ik(γ) + σ2 and
P

PQ(γ)I
Q

ik(γ) + σ2 in (35) are the interference plus noise term

for user k in group i, where the latter is based on the scaled

beamforming solution ws(γ, P ). These additional terms in the

lower and upper bounds in (35) represent the minimum and

maximum inter-group interference ratios, respectively. In the

special case of single group G = 1, the bounds in (35) reduces

to
[

P
PQ(γ) ,

P
P o(γ)

]
in [22]. Thus, the bounds in (35) can be

viewed as a generalization of the bounds in [22] from single-

group to multi-group settings with inter-group interference.

VII. SIMULATION RESULTS

We consider a default setup for downlink multi-group multi-

cast beamforming, where G = 3 groups, Ki = K users/group,

∀ i ∈ G, and the same SINR target for all users as γik =
γ = 10 dB, ∀k, i. The user channels are generated indepen-

dently with an identical distribution as hik ∼ CN (0, I). The

performance plots are obtained by averaging the results over

100 channel realizations per user.
For QoS problem Po, we consider the proposed two fast

algorithms: ESCA in Algorithm 1 and ASCA in Algorithm 2.

For ESCA, we set the step size α = 0.1 and the constant

c = 0.8. For ASCA, we set the penalty parameter ρ =
0.2.1 We consider different initialization methods discussed in

Sections IV-C and V-C for ESCA and ASCA, respectively.

Therefore, we refer to our algorithms as follows: 1) EIM-ESCA:

ESCA with EIM initialization; 2) SDR-ECSA: ESCA with SDR

initialization; 3) AIM-ASCA: ASCA with AIM initialization;

4) SDR-ASCA: ASCA with SDR initialization. Note that each

algorithm solves the weight optimization problem P1 using

the optimal beamforming structure in (3).2 Besides the above

four algorithms for solving P1, we also consider the following

methods for comparison:

• Lower Bound for Po: Obtained by solving the relaxed

version of Po via SDR.

• SDR-CSCA [2]3: Solve P1 via SCA using P1SCA(v),

1We have studied different values of ρ and found ρ = 0.2 generally provides
overall good performance and convergence speed for ASCA.

2Note that in (3), the exact expression of R(λo) is used and its computation
is discussed below (3). One may utilize the asymptotic expression of R(λo)
obtained in [2] to simplify the computation of R(λo). Since the fixed-point
iterative method [2] for computing R(λo) is computationally inexpensive,
using the asymptotic expression of R(λo) only brings a minor reduction of
computation cost and thus is not considered in the simulation.

3Note that we only consider SDR-CSCA as the benchmark for comparison
against our proposed algorithms. This is because SDR-CSCA is the state-
of-the-art method with a near-optimal performance and substantially lower
computational complexity than other existing algorithms in the literature. The
comparison of SDR-CSCA and other existing algorithms in both performance
and computational complexity has already been provided in [2], and adding
other algorithms here will not provide additional insight or observation than
what has been shown in [2].
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Fig. 1. Convergence behavior for Po: Normalized power objective Pt/σ2
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K = 10).
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Fig. 2. Convergence behavior for Po: Relative difference over the inner-layer
iterations at the first outer-layer SCA iteration (N = 500, K = 10).

where each P1SCA(v) is solved by the standard convex

solver CVX, which uses IPM. The SDR method is used to

generate an initial point.

For MMF problem So, we consider ESCA and ASCA with

the proposed scaling scheme in Algorithm 3. They are denoted

as ESCA-Scaling and ASCA-Scaling, respectively. For compar-

ison, we also consider the following methods:

• Upper Bound for So: Obtained by solving the relaxed

version of Po using SDR along with the bi-section search

over t.
• ESCA-Bisection: Solve So via iteratively solving Po along

with bi-section search over t. For solving Po, SDR-ESCA

is used, where the optimal beamforming structure in (3)

with the asymptotic expression of R(λo) obtained in [2]

is applied.

• ASCA-Bisection: Similar to ESCA-Bisection, except that

SDR-ASCA is used to solve Po.

• CSCA-Bisection [2]: Similar to ESCA-Bisection, except

that SDR-CSCA is used to solve Po.

• SDR-Bisection [2]: Solve So via iteratively solving Po

along with bi-section search over t. For solving Po, SDR

along with the Gaussian randomization method is used,

where the optimal beamforming structure in (3) with the
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Fig. 3. Convergence behavior for Po: Normalized power objective Pt/σ2 over
the outer-layer SCA iterations (N = 500, K = 10).

asymptotic expression of R(λo) is applied.

A. Convergence Analysis

In this subsection, we study the convergence behavior of the

two proposed fast algorithms (ESCA and ASCA) for the QoS

problem Po. Note that each algorithm consists of two layers of

iterations: Outer-layer SCA and the inner-layer iterative algo-

rithm to solve each P1SCA(v). Let Pt =
∑G

i=1 ‖wi‖2 denote the

total transmit power. Fig. 1 shows the trajectory of normalized

transmit power Pt/σ
2 over the inner-layer iterations at the first

outer-layer SCA iteration. We set N = 500 and K = 10.

We observe that SDR-ESCA and SDR-ASCA converge faster

and result in lower Pt/σ
2 than EIM-ESCA and AIM-ASCA.

This shows that the SDR initialization method provides a better

initial point than the other initialization methods. Between SDR-

ESCA and SDR-ASCA, we observe a similar convergence rate.

Comparing EIM-ESCA and AIM-ASCA, we see that AIM-

ASCA converges faster than EIM-ESCA. Next, we consider

the convergence behavior of the relative difference of the opti-

mization variable for each algorithm. Specifically, we consider

the normalized difference
‖x(n+1)−x

(n)‖
‖x(n+1)‖

in two consecutive

inner-layer iterations of ESCA in Algorithm 1, and similarly,
‖a(n+1)−a

(n)‖

‖a(n+1)‖
for ASCA in Algorithm 2. Fig. 2 shows these

relative differences for different algorithms at the first outer-

layer SCA iteration for N = 500 and K = 10. Again, we

observe that the SDR initialization method results in a faster

convergence than the other initialization methods. Both SDR-

ESCA and SDR-ASCA reach a relative difference of 10−3

within 50 iterations, with SDR-ASCA converging slightly faster

than SDR-ESCA. Comparing EIM-ESCA and AIM-ASCA,

we see that AIM-ASCA provides a faster convergence than

EIM-ESCA, reaching a relative difference of 10−3 within 50

iterations.

We now study the convergence behavior of different algo-

rithms over the outer-layer SCA iterations. Fig. 3 shows the

convergence behavior of our proposed algorithms at the outer-

layer SCA iterations, for N = 500 and K = 10. We set the

inner-layer convergence threshold for the proposed algorithms

such that they converge to nearly the same value. For EIM-

ESCA and SDR-ESCA, we set the inner-layer convergence

threshold to be
‖x(n+1)−x

(n)‖
‖x(n+1)‖

≤ 10−3. Note that although Fig. 1
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Fig. 4. QoS: Normalized transmit power Pt/σ2 vs. N (G = 3, K = 10).

TABLE I
QOS: AVERAGE COMPUTATION TIME OVER N (SEC.) (G = 3, K = 10).

N 100 200 300 400 500

EIM-ESCA 2.694 3.032 2.708 2.589 2.711

AIM-ASCA 1.150 2.415 3.195 4.092 4.339

SDR-ESCA 0.327 0.237 0.233 0.224 0.243

SDR-ASCA 0.076 0.051 0.061 0.071 0.088

SDR-CSCA [2] 7.179 6.126 6.400 5.963 6.500

EIM (Init. method) 0.037 0.044 0.045 0.050 0.057

AIM (Init. method) 0.0068 0.0058 0.0059 0.0063 0.0073

SDR (Init. method) 1.050 1.038 1.104 1.103 1.137

shows that at the first outer-layer SCA iteration, EIM-ESCA

converges to a higher value of Pt/σ
2 than that of SDR-ESCA

over the inner-layer iterations, Fig. 3 shows that EIM-ESCA

eventually converges to nearly the same value of Pt/σ
2 as that

of SDR-ESCA over the outer-layer SCA iterations. For ASCA,

we set the inner-layer convergence threshold
‖a(n+1)−a

(n)‖

‖a(n+1)‖

≤ 10−3 for SDR-ASCA and
‖a(n+1)−a

(n)‖
‖a(n+1)‖

≤ 0.2 × 10−3

for AIM-ASCA. Our experiments show that a tighter inner-

layer threshold for AIM-ASCA than that of SDR-ASCA is

needed to converge to the same value of Pt/σ
2 as the rest

of algorithms at the outer-layer iterations. As we see in Fig. 3,

all algorithms converge to the same value of the normalized

transmit power Pt/σ
2 within 35 SCA iterations. Again, for

different initialization methods, since the SDR method provides

a better initial point than EIM and AIM methods, it leads to a

faster convergence for both ESCA and ASCA, where only less

than 5 SCA iterations are required to reach convergence. When

the same SDR initialization is used, ESCA, ASCA, and CSCA

have a similar convergence behavior.

B. Performance Comparison for the QoS Problem

We now compare the performance of different algorithms for

the QoS problem. We set SINR target γ = 10 dB. Also, for all

algorithms in comparison, we set the convergence threshold for

the outer-layer SCA iterations as
‖v(l+1)−v

(l)‖
‖v(l+1)‖

≤ 10−3. Fig. 4

shows the normalized transmit power Pt/σ
2 vs. N by different

algorithms, for G = 3 and K = 10. We see that our proposed

algorithms have a similar performance to that of SDR-CSCA in
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Fig. 5. QoS: Normalized transmit power Pt/σ2 vs. K (G = 3, N = 100).

TABLE II
QOS: AVERAGE COMPUTATION TIME OVER K (SEC.) (G = 3, N = 100).

K 5 7 10 15 20 35

EIM-ESCA 1.098 1.689 2.737 5.498 8.685 14.33

AIM-ASCA 0.519 0.725 1.234 2.043 3.146 5.426

SDR-ESCA 0.056 0.112 0.373 0.856 1.666 4.883

SDR-ASCA 0.012 0.024 0.087 0.216 0.433 2.594

SDR-CSCA [2] 1.747 3.502 7.592 13.79 21.52 57.85

EIM (Init. method) 0.019 0.025 0.038 0.063 0.090 0.450

AIM (Init. method) 0.0048 0.0055 0.0067 0.012 0.018 0.077

SDR (Init. method) 0.545 0.727 1.094 1.852 3.489 22.79

[2], and all algorithms nearly attain the lower bound for Po.4

This demonstrates that our proposed fast algorithms achieve

a near-optimal performance. The computational advantages of

ESCA and ASCA are shown in Table I, where we list the

average computation time by each algorithm used for the plots

in Fig. 4. The first five rows show the computation times of

different algorithms, excluding the initialization. We observe

that, by using the optimal structure in (3), the computation times

of all algorithms remain roughly unchanged as N increases.

Under the same SDR initialization method, the computation

times of SDR-ESCA and SDR-ASCA are only about 4% and

1% of that of SDR-CSCA, respectively, and SDR-ASCA has a

smaller computation time than SDR-ESCA. The computation

times of EIM-ESCA and AIM-ASCA are both about 40%
of that of SDR-CSCA. The computation time of AIM-ASCA

increases with N more noticeably than other algorithms. As

a result, AIM-ASCA is initially faster than EIM-ESCA for

N ≤ 200, but its computation time increases and becomes

slower than EIM-ESCA for N ≥ 300. The reason is due to

the quality of initialization as will be explained below. The

last three rows in Table I show the computation times of

different initialization methods. We see that the EIM is a fast

initialization method, with its computation time about 4% of

that of SDR. The AIM is the fastest one among all three

initialization methods, with its computation time about 15%
and 0.5% of that of EIM and SDR, respectively. However,

the quality of AIM initialization deteriorates as N increases,

4Note that the lower bound is only shown until N = 300 in Fig. 4 due to the
high computational complexity involved in generating the lower bound, which
increases fast with N and becomes impractical for N beyond 300. Similarly,
the upper bound shown in Fig. 6 is provided until N = 200.
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unlike other initialization methods, leading to more iterations for

convergence and a longer computation time. This is evidenced

by the computation time of AIM-ASCA, which increases more

noticeably as N increases.

Fig. 5 shows Pt/σ
2 vs. K by different algorithms, for G = 3

and N = 100. Again, the performance of SDR-ESCA and SDR-

ASCA are nearly identical to that of SDR-CSCA and nearly

attain the lower bound. The performance gaps of EIM-ESCA

and AIM-ASCA to the lower bound are more noticeable as K
becomes large, although they are still within 0.6 dB. Similar

to Table I, the corresponding average computation times of

these algorithms are shown in Table II. We see that both ESCA

and ASCA are considerably faster than CSCA to compute the

solution. In particular, unlike CSCA, their computation times

only mildly increase with K . For the initialization methods,

EIM and AIM are faster and much more scalable over K
than SDR. The complexity of SDR increases noticeably over

K , and thus, it is not a suitable initialization method for very

large systems. Overall, in terms of the total computation time

(including initialization and the algorithm itself), for N = 100
and K ≤ 20, SDR-ASCA is the fastest one among all al-

gorithms. AIM-ASCA offers comparable computation time as

SDR-ASCA. For N = 100 and K ≥ 35, AIM-ASCA and EIM-

ESCA offers faster computation time than the rest using SDR

for initialization.

Comparison Summary: Based on the above simulation anal-

ysis, we have the following comparison summary of the two

proposed algorithms:

• Among the initialization methods (EIM, AIM, and SDR),

SDR provides the best initialization point, which leads

to faster computation for both ESCA and ASCA (i.e.,

SDR-ESCA and SDR-ASCA). However, the computational

complexity of SDR is high. As K becomes large (e.g.,

K > 20), SDR-based initialization becomes computation-

ally expensive and is not recommended. EIM and AIM

are both very low-complexity methods over N and K .

AIM provides faster initialization than EIM. However, the

quality of the initial point that AIM provides deteriorates

over N , leading to a noticeable increase of computation

time by AIM-ASCA over N . In contrast, the computation

time of EIM-ESCA remains roughly unchanged over N .

• Both ESCA and ASCA provide closed-form updates in

each iteration. The computational complexity of ESCA and

ASCA grow over K . From our study, we conclude that:

– For the system with users per group K ≤ 15, SDR-

ASCA is generally the fastest among all algorithms.

When N ≤ 100, AIM-ASCA is similar to SDR-

ASCA. However, the complexity of SDR-ASCA in-

creases over K, and that of AIM-ASCA increases over

N . As both K and N grow, SDR-ASCA and AIM-

ASCA have higher computation time and are no longer

preferred.

– For a large-scale system where bothN and K are large

(e.g., N ≥ 500, K ≥ 35), EIM-ESCA is expected

to provide the fastest computation time among these

algorithms and thus is preferred.

C. Performance Comparison for the MMF Problem

We now present the performance of our proposed Algorithm 3

for the MMF problem So. We set the maximum transmit
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Fig. 6. MMF: Minimum SINR vs. N (G = 3, K = 10).

TABLE III
MMF: AVERAGE COMPUTATION TIME OVER N (SEC.) (G = 3, K = 10).

N 50 100 200 300 400

ESCA-Scaling 0.482 0.327 0.237 0.233 0.224

ASCA-Scaling 0.099 0.076 0.051 0.061 0.071

ESCA-Bisection 16.43 21.11 33.02 46.18 44.63

ASCA-Bisection 12.35 12.11 13.06 14.09 17.94

CSCA-Bisection [2] 99.04 87.33 81.62 84.10 99.86

SDR-Bisection [2] 11.19 15.46 19.85 15.82 22.12

power budget against noise variance as P/σ2 = 10 dB. Fig. 6

plots the average minimum SINR vs. N , and Table III shows

the corresponding computation time by these algorithms, for

G = 3 and K = 10. Both ESCA-Bisection and ASCA-

Bisection provide near-identical performance to that of CSCA-

Bisection, and they are nearly optimal as compared with the

upper bound, but with much lower computation times. The

proposed simple ESCA-Scaling and ASCA-Scaling algorithms

for the MMF problem nearly attain the upper bound for N ≤
100. Their performance gap to the upper bound increases as

N increases, indicating the accuracy of the scaling degrades

as N becomes large. At N = 400, the gap is about 1 dB.

Nonetheless, the ESCA-Scaling and ASCA-Scaling are several

orders of magnitude faster than ESCA-Bisection and ASCA-

Bisection. SDR-Bisection has worse performance than all the

rest algorithms. This is because, for the QoS problem P1 at

each bi-section iteration, the SDR approximation deteriorates

when the number of constraints (GK) for P1 is large. Finally,

Fig. 7 shows the average minimum SINR vs. K by different

algorithms, for G = 3 and N = 100, with the corresponding

computation time shown in Table IV. Except for the SDR-

Bisection, all the proposed algorithms nearly attain the upper

bound and thus are nearly optimal. In particular, ESCA-Scaling

and ASCA-Scaling maintain their near-optimal performance as

K increases. The computational advantage of ESCA-Scaling

and ASCA-Scaling is clearly seen in Table IV, where both

algorithms are substantially faster in computing a solution than

the other algorithms.

VIII. CONCLUSION

In this work, exploiting the optimal multicast beamform-

ing structure, we proposed two fast computational algorithms,
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Fig. 7. MMF: Minimum SINR vs. K (G = 3, N = 100).

TABLE IV
MMF: AVERAGE COMPUTATION TIME OVER K (SEC.) (G = 3, N = 100).

K 5 7 10 15

ESCA-Scaling 0.056 0.112 0.373 0.856

ASCA-Scaling 0.012 0.024 0.087 0.216

ESCA-Bisection 7.297 12.62 21.26 39.59

ASCA-Bisection 6.192 8.628 12.13 25.18

CSCA-Bisection [2] 24.91 48.47 88.40 178.5

SDR-Bisection [2] 6.300 10.10 15.53 25.75

ESCA and ASCA, for multi-group multicast beamforming de-

sign. For the QoS problem solved by the SCA method, these two

algorithms provide efficient computational methods for solving

the convex subproblems of SCA. At each SCA iteration, ESCA

implements a dual saddle point reformulation along with the

extragradient method to solve the convex subproblem; ASCA

constructs an ADMM procedure in a form that decomposes the

convex subproblem into multiple smaller subproblems for par-

allel computing with closed-form updates. To provide effective

initial feasible points for SCA to facilitate fast convergence, we

proposed three initialization methods based on the extragradient

method, ADMM, and SDR. For the MMF problem, we further

proposed a simple closed-form scaling approach based on the

solution to the QoS problem, avoiding the high computational

complexity involved in iteratively solving the QoS problems,

while offering bounded performance guarantee. Our simulation

studies showed that the proposed ESCA and ASCA provide

near-optimal performance with substantially lower computa-

tional complexity than the state-of-the-art algorithms for large-

scale systems.

Finally, note that in this work, we assumed single-antenna

users in our system model for multicast beamforming design.

For the case of multi-antenna users, with a given linear receiver

processing technique implemented by the receiver, each MIMO

channel can be converted into an equivalent MISO channel.

Therefore, our proposed algorithms can be relatively straight-

forward to be applied to the case of multi-antenna users with

their receiver processing techniques given.

APPENDIX A

DERIVATION OF do
ik IN (26)

The Lagrangian of Pdsub(v) is given by

L(dik, νik) =

G∑

j=1

|djik − e(n)1,jik|2 + νike2,ik

+ νikγik
∑

j 6=i

|djik |2 − 2νikRe{diike3,ik}

where νik ≥ 0 is the Lagrange multiplier associated with

constraint (24). Since Pdsub(v) is convex, the optimal do
ik

and νoik satisfy the KKT conditions [18]. Setting the gradient

∇dik
L(dik, ν

o
ik) = 0, we obtain do

ik in (26). Substituting the

expression of dojik in (26) into the constraint of Pdsub(v) yields

f(νoik) , e2,ik + γik
∑

j 6=i

|e(n)1,jik|2
(1 + νoikγik)

2
− 2Re{e3,ike(n)1,iik}

− 2νoik|e3,ik|2 ≤ 0.

It is shown in [21, Appendix A] that the function f(νoik) is

strictly decreasing for νoik ≥ 0. By the complementary slackness

condition, we have νoikf(ν
o
ik) = 0. If f(0) ≤ 0, then f(νoik) < 0

for any νoik ≥ 0, and we have νoik = 0. Otherwise, νoik = 0 is

not an feasible dual solution for Pdsub(v); thus, f(νoik) = 0, and

νoik is the unique real positive root of the cubic equation (27),

whose roots can be obtained by the cubic formula [21].

APPENDIX B

CLOSED-FORM UPDATING STEPS FOR AIM

1) Closed-Form d-update in (31): Similar to that in Sec-

tion V-A, given a(n) and q̃(n), the optimization problem in (31)

can be decomposed into Ktot subproblems, one for each user k
in group i given by

P ′
dsub : min

dik

G∑

j=1

|djik − ẽ(n)1,jik|2

s.t. γik
∑

j 6=i

|djik|2 + γikσ
2 − |diik|2 ≤ 0. (36)

where ẽ
(n)
1,jik , a

(n)H
j fjik − q̃(n)jik , for k ∈ Ki, i, j ∈ G. Problem

P ′
dsub is a non-convex QCQP-1 problem similar to Pdsub(v).

Since it satisfies Slater’s condition, the strong duality holds [18,

Appendix B], and the optimal do
ik satisfies the KKT conditions.

Let µo
ik ≥ 0 be the optimal Lagrange multiplier associated with

constraint (36). For P ′
dsub being feasible, we have 0 ≤ µo

ik ≤ 1
[18, Appendix B]. Thus, using the KKT conditions and with a

procedure similar to that in Appendix A, we have the closed-

form optimal solution dik to P ′
dsub given by

dojik =






ẽ
(n)
1,iik

1−µo
ik

if j = i,

ẽ
(n)
1,jik

1+µo
ik

γik
otherwise

where µo
ik = 0 if γik

∑
j 6=i |ẽ

(n)
1,jik|2 + γikσ

2 − |ẽ(n)1,iik|2 ≤ 0;

otherwise the following quartic equation is guaranteed to have

a unique root in (0, 1), and µo
ik is this unique root:

γik

∑
j 6=i |ẽ

(n)
1,jik|2

(1 + µo
ikγik)

2
+ γikσ

2 −
|ẽ(n)1,iik|2

(1− µo
ik)

2
= 0.
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2) Closed-Form a-update in (32): Given d(n+1) and q̃(n),

the optimization problem in (32) can be decomposed into G
subproblems, one for each group j given by

P ′
asub : min

a

G∑

i=1

Ki∑

k=1

|d(n+1)
jik −aHj fjik+q̃

(n)
jik |2,

which is an unconstrained quadratic convex optimization prob-

lem. The closed-form solution to P ′
asub is expressed as

a
(n+1)
j =

(
G∑

i=1

Ki∑

k=1

fjikf
H
jik

)−1
G∑

i=1

Ki∑

k=1

(
d
(n+1)
jik +q̃

(n)
jik

)∗
fjik.

APPENDIX C

PROOF OF PROPOSITION 1

Proof: It is straightforward to check that the scaled beam-

forming vector ws(γ, P ) =
√

P
PQ(γ)w

Q(γ) satisfies constraint

(2) and therefore is a feasible solution to So(γ, P ). The achieved

objective value ts(γ, P ) corresponding to ws(γ, P ) is expressed

in terms of wQ(γ) as

ts(γ, P ) = min
i,k

1

γik

P
PQ(γ) |hH

ikw
Q

i (γ)|2
P

PQ(γ)
IQ

ik(γ) + σ2

= min
i,k

P
PQ(γ) |hH

ikw
Q

i (γ)|2

γikI
Q

ik(γ) + γikσ2

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
. (37)

Define tQ(γ) , mini,k
|hH

ikw
Q
i
(γ)|2

γikI
Q

ik
(γ)+γikσ2

. Since wQ(γ) satis-

fies constraint (1) in Po(γ) as a feasible solution, we have
|hH

ikw
Q
i
(γ)|2

I
Q

ik
(γ)+σ2

≥ γik for k ∈ Ki, i ∈ G. It follows that tQ(γ) ≥ 1.

Based on this, from (37), we have

ts(γ, P ) ≥ P

P Q(γ)
tQ(γ)min

i,k

IQ

ik(γ) + σ2

P
PQ(γ)

IQ

ik(γ) + σ2

≥ P

P Q(γ)
min
i,k

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
. (38)

From (37), we can also obtain an upper bound on ts(γ, P ) as

ts(γ, P ) ≤ P

P Q(γ)
tQ(γ)

IQ

i′k′(γ) + σ2

P
PQ(γ)I

Q

i′k′(γ) + σ2

≤ P

P Q(γ)
tQ(γ)max

i,k

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
(39)

where {i′, k′} = argmin
i,k

|hH
ikw

Q
i
(γ)|2

γikI
Q
ik

(γ)+γikσ2
. Note that the scaled

beamforming vector
w

Q(γ)√
tQ(γ)

results in the transmit power
PQ(γ)
tQ(γ) .

Then, with
w

Q(γ)√
tQ(γ)

, the achieved weighted SINR, for any k ∈
Ki, i ∈ G, is given by

1

γik

1
tQ(γ)
|hH

ikw
Q

i (γ)|2
1

tQ(γ)
IQ

ik(γ) + σ2

(a)

≥ 1

γiktQ(γ)

|hH
ikw

Q

i (γ)|2
IQ

ik(γ) + σ2

(b)

≥ 1 (40)

where (a) is due to tQ(γ) ≥ 1, and (b) is from the definition

of tQ(γ). Thus, the beamforming vector
w

Q(γ)√
tQ(γ)

is feasible to

Po(γ) and
PQ(γ)
tQ(γ) ≥ P o(γ), where P o(γ) is the minimum

transmit power in Po(γ). Applying
PQ(γ)
tQ(γ)

≥ P o(γ) to the RHS

of (39) yields

ts(γ, P ) ≤ P

P o(γ)
max
i,k

IQ

ik(γ) + σ2

P
PQ(γ)I

Q

ik(γ) + σ2
. (41)

Combining (38) and (41), we have (35).
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