
1

A Robust Test for Elliptical Symmetry
Ilya Soloveychik

The Hebrew University of Jerusalem

Abstract—Most signal processing and statistical applications
heavily rely on specific data distribution models. The Gaussian
distributions, although being the most common choice, are
inadequate in most real world scenarios as they fail to account
for data coming from heavy-tailed populations or contaminated
by outliers. Such problems call for the use of Robust Statistics.
The robust models and estimators are usually based on elliptical
populations, making the latter ubiquitous in all methods of robust
statistics. To determine whether such tools are applicable in any
specific case, goodness-of-fit (GoF) tests are used to verify the
ellipticity hypothesis. Ellipticity GoF tests are usually hard to
analyze and often their statistical power is not particularly strong.
In this work, assuming the true covariance matrix is unknown we
design and rigorously analyze a robust GoF test consistent against
all alternatives to ellipticity on the unit sphere. The proposed test
is based on Tyler’s estimator and is formulated in terms of easily
computable statistics of the data. For its rigorous analysis, we
develop a novel framework based on the exchangeable random
variables calculus introduced by de Finetti. Our findings are
supported by numerical simulations comparing them to other
popular GoF tests and demonstrating the significantly higher
statistical power of the suggested technique.

Index Terms—Goodness-of-fit test, elliptical population, Tyler’s
estimator, robust statistics, exchangeable random variables.

I. INTRODUCTION

The majority of methods and techniques used by statistical
signal processing and data science heavily rely on various
assumptions on the data such as independence of the sam-
ples, certain parametric families of possible distributions, etc.
Very rarely these assumptions are confirmed on the observed
samples and even if such verification attempt is made the data
almost never agrees with the assumptions made. This leads to
poor inference, or even to situations in which the researcher
does not know the quality of the achieved results. The main
reason for the lack of such tests is the technical complexity of
their analysis especially when the data is far from being Gaus-
sian. The most popular substitute for Gaussian distributions in
such cases is the family of elliptical populations. Indeed, the
latter is already quite flexible to reasonably approximate the
heavy tails of the real-world populations or the outliers, while
still allowing rigorous analytical treatment. In this paper, we
focus on one of the fundamental questions accompanying any
problem of signal processing or statistical inference. Namely,
how reliably does the elliptical family of distributions model
the data at hand. In other words, we design a novel and
easy to use Goodness-of-Fit (GoF) test that efficiently and
consistently validates the ellipticity assumptions. Given inde-
pendently sampled data, such a test quantitatively and reliably
determines whether we can assume the data to be elliptically
distributed. Since an elliptical distribution is determined by its

density generator function and scatter matrix1, estimation of
the scatter (or covariance) matrix of the population becomes
a prerequisite for almost any ellipticity GoF test. Below we
give a detailed exposition of the covariance estimation problem
in such scenarios, and provide a detailed explanation of our
construction.

A. Tests for Elliptical Symmetry

Numerous ellipticity GoF tests have been proposed in the
statistical and signal processing literature, however, most of
them lack statistical power as discussed in Section VII below
in detail. Such tests are also rarely supported by provable
analysis, since such analysis often becomes infeasible when
the Gaussian assumptions are lifted. In addition, the compu-
tational schemes of some of these testing procedures are so
complex that their usage becomes computationally infeasible
even on modern machines.

In [1] Beran introduces a test based on marginal signs and
ranks. That test is neither distribution-free within the family
of elliptical populations nor affine-invariant. In addition, the
authors do not provide practical guidelines to the choice
of the basis functions involved in the test statistic making
its application difficult. Baringhaus [2] proposes a test for
spherical symmetry of Cramer-von Mises type based on the
independence between the norm of the samples and their
directions. The asymptotic distribution of this test is very hard
to achieve and exploit. Dyckerhoff et al. [3] demonstrated
empirically that this test can be used as a test for elliptical
symmetry in dimension 2. Koltchinskii and Sakhanenko [4]
design tests using the bootstrap methodology. These tests
are based on a class of functions closed under orthogonal
transformations and have no known asymptotic distribution,
thus requiring bootstrap to get the critical values. Manzotti
et al. [5] develop a test based on spherical harmonics to
test whether the normalized vectors are uniformly distributed
on the unit sphere. The test is computationally demanding
and requires moments of order 4. Schott [6] builds a Wald-
type test to compare the empirical fourth-order moments
with the expected ones under elliptical symmetry. The test
is relatively simple in usage since it is based on the moments
of low order. However, it has very low power against several
alternatives. The authors of [7] propose a Pearson χ2-type test
with multidimensional cells. Its asymptotic distribution exists
only for Gaussian scenario, otherwise bootstrap techniques are
required. Cassart et al. [8] construct a pseudo-Gaussian test
that is most efficient against a multivariate form of Fechner-
type asymmetry. The test requires finite moments of order 4.

1We assume populations have zero mean, which is a very natural assump-
tion in most applications.
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Tests based on Monte Carlo simulations can be found in [9]
and [10]. The authors of [11] exploit graphical methods while
[12] build conditional tests. We refer the reader to [13] and
[14] for extensive surveys and performance analysis of the
aforementioned tests.

B. Covariance Estimation

Elliptical GoF tests are almost never possible without ex-
plicit (e.g. in the plug-in form or through whitening the data)
or implicit (e.g. spherical/isotropic GoF tests) estimation or
stipulation of the covariance structure. In all of these tests,
whenever the scatter matrix is unknown it must be estimated
from the available data. In this section we provide a brief
survey of the non-Gaussian covariance estimation literature
and focus attention on Tyler’s estimator which is later used in
our construction.

Covariance estimation is a fundamental problem of its own
in multivariate statistical analysis. It arises in diverse applica-
tions such as signal processing [15, 16], geometric functional
analysis and computational geometry [17], genomics [18–
20], functional MRI [21], modern social networks analysis
[22, 23], empirical finance [24, 25], classical problems of
clustering and discriminant analysis [26], and many other
fields. Application of structured covariance matrices instead
of Bayesian classifiers based on Gaussian mixture densities or
kernel densities proved to be very efficient for many pattern
recognition tasks, among them speech recognition, machine
translation and object recognition [27].

As mentioned earlier, in most real world applications the
Gaussian models become unacceptable and robust covariance
estimation methods that allow the populations to be heavy-
tailed or contain a small proportion of outliers are required
[28, 29]. In the 70-s through the analysis of elliptical pop-
ulations and their Maximum Likelihood (ML) estimates, R.
A. Maronna discovered a family of covariance M -estimators
[29]. These estimators turned out to be much more robust to
outliers than the classical sample covariance which is the ML
estimator in the Gaussian setup. The ideas of Maronna were
further developed by D. E. Tyler who derived a distribution-
free robust covariance matrix estimator [30]. This estimator
fits any population from the Generalized Elliptical (GE) family
[31] and is also a member of the M -estimators family. Tyler’s
estimator has become very widely used by engineers [32–
35] since its discovery. Although, generally M -estimators are
given as solutions to optimization programs, Tyler showed that
his estimator can be obtained as a solution to a simple fixed
point equation

T =
p

n

n∑
i=1

xix
>
i

x>i T−1xi
, (1)

where x1, . . . ,xn ∈ Rp are the collected sample vectors. To
avoid the obvious scaling ambiguity (for a solution T to (1),
c ·T is also a solution whenever c > 0), it is common to fix
the scaling, e.g. by setting Tr (T) = p. When {xi}ni=1 are
i.i.d. (independent and identically distributed) elliptical [31],
their true scatter matrix Ω is positive definite and n > p,
Tyler’s estimator exists with probability one and is a consistent
estimator of Ω. In [36] Tyler also demonstrated that his

estimator can be viewed as an ML estimator of a certain
distribution over a unit sphere. In elliptical populations the
scatter matrix is equal to a positive multiple of the covariance
matrix when the latter exists.

The elliptical and generalized elliptical classes of distri-
butions are quite large to incorporate many known popula-
tions and they model the real non-Gaussian world behavior
much better [32, 33, 37, 38] than the Gaussian distributions.
In particular, the GE family includes generalized Gaussian,
compound Gaussian and many other widely used distributions
[31]. Elliptical populations are commonly used to model radar
clutter [39], noise and interference in indoor and outdoor
mobile communication channels [40] and numerous other
applications.

Other robust covariance estimation approaches were also
proposed, however, they have not become so much popular
as M -estimators. Among them is the Stahel-Donoho estimate
[41, 42], whose main idea is to detect and down-weight out-
liers based on their one dimensional “outlyingness measure”.
Another method proposed by P. J. Rousseeuw [43] is the
Minimum Volume Ellipsoid estimate, whose name stems from
the fact that among all ellipsoids containing at least half of the
data points, the one defined by the Minimum Volume Ellipsoid
estimate has the minimal volume. A more efficient approach,
the so-called S-estimator, was later proposed by P. L. Davies
[44] and deeply investigated by H. P. Lopuhaa [45] and O.
Hössjer [46]. The Minimum Covariance Determinant estimate
[47] is another possibility of robust covariance estimation.
When prior knowledge on the estimator is available to the
research, a Bayesian covariance estimator [48–50] would
become natural. Shrinkage estimators in the paradigm of
James-Stein estimator are a particular case of the Bayesian
methodology. Shrinkage estimators of covariance matrices are
computed as a conical (often convex) combination of a certain
data statistic (e.g. sample covariance) and a constant matrix
(e.g. the identity matrix) representing the prior [18, 51]. Robust
analogs of numerous shrinkage estimators were also recently
developed and thoroughly studied [52, 53].

The behavior of Tyler’s estimator had been methodically
investigated in various asymptotic regimes and multiple high-
probability performance bounds have been developed for its
analysis [34, 53–62]. However, all of these results only hold
if the samples are elliptically distributed, which is easily
achievable in simulation studies but can hardly be guaranteed
in real applications. Therefore a much more practical question
can be formulated as follows: Given the data, verify that the
ellipticity assumptions can be applied to it and therefore the
tools of robust statistics will yield meaningful and reliable
results when applied to it. This is the question we address in
our work focusing on Tyler’s estimator.

C. Our Approach and Contribution

Many of the GoF tests method mentioned in Section I-A
use plug-in estimates of the covariance matrix to whiten
the samples before applying GoF test of uniformity over
the unit sphere. Usually such plug-in estimates are based
on the sample covariance matrix (e.g. [4–7] and numerous
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others) which creates an unbalanced situation. Indeed, such
tests assume ellipticity of the population, thus allowing it to
have heavy-tails, but the tools used to estimate the covariance
are not robust and therefore no performance guarantees in
finite samples can be offered by these tests. In other cases,
robust estimates are used, however, without rigorous studies
and claims because of the significant level of complexity of the
required analysis. When testing the ellipticity hypothesis, it is
common to separate the question of elliptical symmetry from
the radial density [31, 36]. Such a standard approach enables
one to project the samples on the unit sphere as described
in Sections II and III in detail and study the distribution of
their normalized values. Remarkably, modulo positive scaling,
such a transformation does not affect the scatter matrix of an
elliptical (or GE) population and it is the use of this very
technique that led to the discovery of Tyler’s estimator as an
ML estimate of the scatter matrix [36]. Following these ideas -
for the scenario of unknown scatter matrix - we exploit Tyler’s
estimator to develop an asymptotically consistent GoF test
against all alternatives to ellipticity on the unit p-dimensional
sphere.2 To enable analytical treatment of such a hypothesis
test, we reformulate it as an asymptotic uniformity test for
a certain stochastically dependent sequence of unit random
vectors. The main tool used in the construction and analysis
of the uniformity tests for i.i.d. scenario is the Central Limit
Theorem (CLT) [63–65] which is clearly not applicable when
the measurements are not independent. For our setup, we
develop a novel toolbox that allows verification of the null
hypothesis by resorting to the concept of exchangeability.

A sequence of variables is called exchangeable if the joint
distribution of any finite subset of these variables is invariant
under arbitrary permutations of their indices. Exchangeable
random variables were first introduced by de Finetti [66, 67]
as a direct and natural generalization of i.i.d. sequences.
Interestingly, exchangeable random variables serve as one of
the fundamental building blocks of the Bayesian statistics [68].
Unlike the i.i.d. case, the behavior of exchangeable sequences
is much harder to analyze. We exploit certain versions of
CLT and the Strong Law of Large Numbers (SLLN) for
exchangeable variables to demonstrate asymptotic consistency
of our test statistics built analogously to the generalized Ajne
and Giné statistics [63, 64, 69] developed for the i.i.d. case.3

Following Tyler, our approach becomes essentially
distribution-free within the elliptical family since we do not
focus on estimating the radial density function [71]. We
offer a test which is consistent against all alternatives to
elliptical symmetry and not only certain classes of densities
[5, 8, 71]. We do not use the sample covariance matrix as
a plug-in estimator in particular because its convergence

2The unknown distribution is assumed to be a Lebesgue measurable proba-
bility measure over the p-dimensional Euclidean sphere as elaborated further.
By all alternatives, it is common to understand the set of all probability
measures except for the class under consideration, which in our case is the
class of elliptical (or generalized elliptical) populations [4, 7, 14, 63].

3The Ajne statistic was originally introduced for distributions on a circle
[69], the idea was extended by [70] to the 2-dimensional unit sphere and
later generalized by [64] for the p− 1-dimensional spheres. Similarly, Giné’s
statistic was originally defined for 1- and 2-dimensional spheres and later
extended by [64] to the general dimension.

to the true covariance in elliptical populations maybe very
slow due to heavy tails [5], however, we emphasize that our
technique allows the use of the sample covariance instead of
Tyler’s estimator. Our test is not limited to certain moments
which makes it more natural and less computationally
demanding [6, 8]. Unlike Monte Carlo simulations-based
techniques [9, 10], our methodology is rigorous and offers a
deterministic and computationally cheap algorithm. Finally,
unlike previously mentioned works (and articles referenced
in [71]) we believe that the methodology based on the
exchangeability framework is the most suitable for the
analysis of populations transformed by plug-in estimators.
This type of analysis is usually technically more complex
but in our eyes it represents the natural approach to the
problem. Our theoretical studies are supported by extensive
numerical simulations featuring the properties of the tests and
comparing them to other available tests mentioned in earlier
in Section I-A.

The rest of the article is organized as follows. In Section
II, we introduce the setup and notation. The problem is
formulated in Section III where we also present some of the
existing tests for the known scatter case. In Section IV, we
reformulate the problem and introduce necessary background
on exchangeable random variables; Section IV-D provides
some additional notation and auxiliary results. In Section
V, we formulate the main results and discuss them. Section
VI provides numerical studies of the proposed tests while
Section VII demonstrates their power in comparison to other
commonly used ellipticity tests. The conclusion is provided
in Section VIII. Some of the proofs are postponed to the
Appendix.

II. NOTATION AND SETUP

Definition 1 ([72]). A vector y ∈ Rp is elliptically distributed
with the scatter matrix Ω � 0 and mean µ if there exists a
random vector w ∈ Sp−1 uniformly distributed over the unit
p−1-dimensional sphere and an independent random variable
r > 0, such that

y = µ + r ·Ω1/2w. (2)

For example, if r ∼
√
χ2
p, then y ∼ N (µ,Ω). In what

follows we always assume that the data is centered, µ = 0.
Let us consider the normalized vector,

x =
y

‖y‖
=

Ω1/2w∥∥Ω1/2w
∥∥ , (3)

which can be equivalently viewed as disregarding the in-
formation stored in the scalar variable r but keeping the
information provided by the scatter matrix. As we see below,
the distribution of x contains all the information about the
scatter matrix Ω. We are going to recover the scatter matrix
by sampling from the distribution of x. Denote by I = Ip the
p-dimensional identity matrix.
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Definition 2 ([36]). The family of real Angular Central Gaus-
sian (ACG) distributions on Sp−1 is defined by the densities
of the form

p(x; Ω) =
Γ(p/2)

2πp/2 |Ω|1/2
1

(x>Ω−1x)p/2
, x ∈ Sp−1, (4)

for Ω � 0 which is called the scatter matrix.

When x is ACG distributed with the scatter matrix Ω, we
write

x ∼ U (Ω) , (5)

in particular when Ω = I we get the uniform distribution
over the unit sphere U (I). Note that ACG is not a member of
the elliptical family but actually belongs to a wider class of
generalized elliptical populations whose definition is identical
to Definition 1 except for weakened assumptions on r [72]. In
generalized elliptical population, r does not have to be stochas-
tically independent of w and does not have to be non-negative.
The following result allows us to reduce estimation of the
scatter matrices of elliptical populations to the estimation of
the scatter matrices of ACG vectors.

Lemma 1 ([72]). For a random vector y sampled from a
centered elliptical population with the scatter matrix Ω, x
defined in (3) is ACG distributed with the same scatter matrix.

Now assume n > p i.i.d. random vectors x1, . . . ,xn ∈
Sp−1 are sampled from U (Ω), then as shown in [36] the ML
estimator of the scatter matrix exists almost surely and is given
by the fixed point equation (1). The solutions to this equation
form a ray since the latter is invariant under multiplication of
the matrix T by a positive constant. To resolve the ambiguity
we choose T to satisfy Tr (T) = p, however, we note that the
specific choice of the scaling does not affect any of the results
presented below.

III. PROBLEM FORMULATION AND STATE OF THE ART

A. Main Goal

The problem considered in this article can be formulated as
follows. Given a sequence of vectors {xi}ni=1 ⊂ Sp−1 sampled
independently, we want to test two alternative hypotheses,

H0 : x1, . . . ,xn
i.i.d.∼ U(Ω), for some Ω, (6)

H1 : x1, . . . ,xn
i.i.d.� U(Ω), for any Ω, (7)

and in the case of H0 we want to estimate the scatter matrix
Ω, as well.

The test (6)-(7) is a composite hypothesis since the scatter
matrix is unknown. When the scatter matrix is known, the
problem can be equivalently reformulated as a uniformity test
on the sphere as shown below.

B. Uniformity Tests on Sp−1

Assume the scatter matrix Ω in the hypothesis test (6)-(7)
is known and introduce a derived i.i.d. sequence,

wi =
Ω−1/2xi∥∥Ω−1/2xi∥∥ , i = 1, . . . , n. (8)

Under H0, w1, . . . ,wn∼ U(I) and therefore the test (6)-(7)
becomes actually a uniformity test on the unit sphere,

G0 : w1, . . . ,wn
i.i.d.∼ U(I), (9)

G1 : w1, . . . ,wn
i.i.d.� U(I). (10)

Next, we summarize two uniformity tests on Sp−1 concluding
this section with Proposition 3 providing a uniformity test
consistent against all alternatives on the unit sphere. Based on
it, we will develop an analogous test for (6)-(7) with unknown
scatter matrix in the subsequent sections. Denote by

Vp−1 =

∫
x∈Sp−1

dx =
2π

Γ
(
p
2

) (11)

the area of the unit sphere. In addition, by

ψij = arccos(x>i xj) (12)

we denote the angular separation (the shortest great circle
distance) between xi and xj and by

N(y) = |{xi | y>xi > 0}|, y ∈ Sp−1, (13)

the number of points falling into the hemisphere with the pole
at y. Denote also

α =
p

2
− 1, (14)

ν(a, b) =

(
a+ b− 2

a− 1

)
+

(
a+ b− 1

a− 1

)
. (15)

The following two popular statistics and detailed investiga-
tion of their behavior can be found in [63, 69]. These results
were later generalized in [64] and summarized in [65].

Proposition 1 (Generalized Ajne Test, [64, 69]). Under the
uniformity hypothesis, the Ajne statistic

tA =
1

nVp−1

∫
y∈Sp−1

(
N(y)− n

2

)2
dy =

n

4
− 1

πn

∑
i<j

ψij

is asymptotically distributed as
L
(∑∞

q=1 a
2
2q−1Kν(p−1,2q−1)

)
, where Kξ are independent

random variables distributed as χ2
ξ and

a2q−1 =
(−1)q−12p−2Γ(α+ 1)Γ(q + α)(2q − 2)

π(q − 1)!(2q + p− 3)!
. (16)

Proposition 2 (Generalized Giné Test, [63, 64]). Under the
uniformity hypothesis, the Giné statistic

tG =
n

2
− p− 1

2n

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2∑
i<j

sin(ψij) (17)

is asymptotically distributed as L
(∑∞

q=1 a
2
2qKν(p−1,2q)

)
,

where Kξ are independent random variables distributed as
χ2
ξ and

a22q =
(p− 1)(2q − 1)

8π(2q + p− 1)

(
Γ
(
α+ 1

2

)
Γ
(
q − 1

2

)
Γ
(
q + α+ 1

2

) )2

. (18)

The following statement provides a concise and directly
applicable test for uniformity under the assumption that the
random vectors are sampled i.i.d. from U(I).
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Proposition 3 (Uniformity test, [63, 64]). Any weighted sum
of tA and tG is consistent against all alternatives to uniformity
on Sp−1.

In practice, one way to make the decision about accepting
or rejecting H0 or G0 is as follows. The statistician truncates
the series mentioned in the last two propositions in a data-
driven manner and compares the sample values of tA and tG
with the tables (or explicit numerical approximations) of the
corresponding distributions. Another more general approach
consists in replacing tA and tG by statistics whose expansions
only have finite number of non-zero coefficients ak (see [63]
for more details). An efficient data-driven approach to the
design of the uniformity tests based on a modification of the
Bayesian Information Criterion was developed by [73]. Often
in practice, the distributions of the statistics at hand under
the null hypothesis are estimated empirically, by generating
samples from the latter. This is the approach adopted in
Section VII below.

In this paper we are interested in the case of unknown scatter
matrix in (6)-(7). As we see below this makes the hypothesis
test much more involved. In the next sections we develop
analogs of generalized Ajne and Giné uniformity tests for this
scenario.

IV. PROBLEM REFORMULATION AND EXCHANGEABILITY

A. Methodology

From Theorem 3.1 from [30] we know that underH0 Tyler’s
estimator converges almost surely to the true scatter matrix
when n → ∞. This idea motivated our study of a new
sequence of vectors, defined as follows. Under H0 introduced
in (6), we now consider the sequence

ti =
T−1/2xi∥∥T−1/2xi∥∥ ∈ Sp−1, i = 1, . . . , n, (19)

where T is defined in (1). The main challenge we face in the
study of {ti} is the lack of stochastic independence unlike the
case of {wi} defined in (8). Indeed, most existing convergence
results explicitly rely on independence in their derivations in
such a way that any deviation from this assumption ruins
the performance analysis. For example, all the results of
Ajne, Giné, and Prentice utilize the CLT and thus require
independence as the most crucial assumption [63–65, 69].

Next we include a brief summary of the exchangeability
concept and the related toolbox. We then use it in Section
IV-D to overcome the loss of independence in our analysis of
the consistency of {ti} and their statistics.

B. Exchangeable Random Variables

Definition 3. Given a sequence {Xi} (finite or infinite) of
random variables, we say that it is exchangeable if the joint
distribution of any finite subset of variables is invariant under
arbitrary permutations of their indices.

In other words, exchangeability is our indifference to the
order of the measurements. This is clearly a much weaker hy-
pothesis than independence, as any i.i.d. sequence is obviously

exchangeable. In his seminal works de Finetti [66, 67] demon-
strated that in certain sense every (infinite) exchangeable
sequence can be represented as a composition of sequences
of i.i.d. variables. This result can be viewed as the analog of
Fourier decomposition in analysis, as it allows one to represent
a more complicated exchangeable sequence as a superposition
of basic building blocks - independent sequences - objects
much easier accessible for analysis and reasoning.

De Finetti [66, 67] and some of his followers focused
on infinite exchangeable sequences. There exist, however,
finite sets of exchangeable random variables which cannot
be embedded into infinite sequences, these are called finitely
exchangeable or non-extendable. The analysis of extendable
sequences can be reduced to the analysis of infinite sequences.
On the other hand, the non-extendable sequences require quite
different approaches [74]. Our sequence of samples {ti}ni=1

is an example of a non-extendable exchangeable sequence of
random vectors. Indeed, their order obviously does not matter
since T is not affected by permutations of the measurements
{xi}ni=1. We can also see that this sequence is non-extendable,
since addition of new random vectors xj without an amend-
ment of T will turn the sequence into non-exchangeable. For
a detailed study of non-extendability we refer the reader to
[74] and references therein.

The main result of our paper can be briefly summarized
as follows. We demonstrate that the limiting behavior of the
samples {ti}ni=1 is in certain sense analogous to the behavior
of the vectors uniformly distributed over the unit sphere and
therefore, we can apply similar tools for the hypothesis tests.
Below we show how to overcome the technical challenges on
this way.

C. Limit Theorems for Exchangeable Variables

To illustrate the previous section and better describe the
nature of the exchangeability phenomenon and its relation to
the stochastic independence, in this section we present analogs
of the SLLN and CLT for triangular arrays of exchangeable
variables.

Lemma 2 (Strong Law of Large Numbers for Exchangeable
Arrays). Let {Xni}∞,nn,i=1 be a triangular array of row-wise
exchangeable random variables and {X∞i}∞i=1 be a sequence
of exchangeable random variables of bounded second moment
such that

1) Xn1
a.s.−−→ X∞1, n→∞,

2) var (Xn1 −X∞1)→ 0, n→∞,
3) E [Xn1Xn2]→ 0, n→∞.

Then
1

n

n∑
i=1

Xni
a.s.−−→ 0, n→∞. (20)

Proof. The proof can be found in the Appendix.

Let kn < n be two sequences of natural numbers such that

kn
n
→ γ ∈ [0, 1). (21)
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Lemma 3 (Central Limit Theorem for Exchangeable Arrays,
Theorem 2 from [75]4). Let {Xni}∞,nn,i=1 be a triangular array
of row-wise exchangeable random variables such that

1) E [Xn1Xn2]→ 0, n→∞,
2) max

16i6n

|Xni|√
n

P−→ 0, ∀n,

3) 1
kn

∑kn
i=1X

2
ni

P−→ 1, n→∞.
Then√
kn

[
1

kn

kn∑
i=1

Xni −
1

n

n∑
i=1

Xni

]
L−→ N (0, 1− γ), n→∞.

As mentioned earlier this result provides an analog of the
CLT for exchangeable sequences. However, it is important
to stress its distinction from the classical CLT-type claims
for the i.i.d. variables. Indeed, Lemma 3 only allows us to
consider a subset of the sample of cardinality kn smaller than
the number of variables n in the row so that even their ratio
must not approach one. This is a reflection of the essential
difference between non-extendable exchangeable sequences
and their extendable counterparts that include i.i.d. sequences
as a particular case [74].

D. Additional Notation and Auxiliary Results

Assume that an infinite i.i.d. sequence {xi}∞i=1 is sampled
under the composite H0 with the true scatter matrix is un-
known. For every n > p, let the sequence of corresponding
Tyler’s estimators be

Tn =
p

n

n∑
i=1

xix
>
i

x>i T−1n xi
, n = p+ 1, . . . , (22)

which exist almost surely for a random sample [37, 76].
Consider a triangular array of row-wise exchangeable random
vectors

tni =
T
−1/2
n xi∥∥∥T−1/2n xi

∥∥∥ ∈ Sp−1, i = 1, . . . , n, n = p+ 1, . . . .

(23)
Note that by Definition 1, the sequence {xi}∞i=1 can equiva-
lently be defined as follows. Given a sequence {wi}∞i=1 ∼
U(Ip) of uniform i.i.d. random vectors, we look at their
transforms

xi =
Ω1/2wi∥∥Ω1/2wi

∥∥ , (24)

for some fixed but unknown Ω � 0. Define also an auxiliary
sequence

t∞i = wi. (25)

Lemma 4. With the notation introduced above,

tni
a.s.−−→ t∞i, n→∞. (26)

Proof. The proof can be found in the Appendix.

We are now interested in the empirical distributions of the
rows of the obtained triangular array, which are the finite sets

4To simplify the notation we assume the number of the elements in the
n-th row to be n unlike the seemingly more general case of mn variables
considered in [75].

{tni}ni=1 for every fixed n > p. The following CLT-type result
holds in our scenario.

Proposition 4. For the triangular array of vectors
{tni}∞,nn=p+1,i=1 defined above,

√
p · 1√

n

n∑
i=1

tni
L−→ N (0, I), n→∞. (27)

Proof. The proof can be found in the Appendix.

Corollary 1. Under H0, for any differentiable function
f : Sp−1 → R,

√
p · 1√

n

n∑
i=1

f(tni)
L−→ N (0, ‖∇f(0)‖2), n→∞. (28)

Proof. The proof follows the i.i.d. case verbatim using the
Maclaurin expansion of f .

V. ASYMPTOTIC UNIFORMITY TESTS FOR
EXCHANGEABLE VECTORS

In Section III-B we introduced statistics tA and tG to test
the null hypothesis of uniformity for independent samples
over the unit sphere Sp−1. Our next statements constitute
analogs of those result for the row-wise exchangeable array
{tni}∞,nn=p+1,i=1. Denote

ψn,ij = arccos(t>nitnj). (29)

Proposition 5 (Generalized Ajne Test for tni). Under H0, the
Ajne statistic

tA ({tni}) =
n

4
− 1

πn

∑
i<j

ψn,ij (30)

is asymptotically distributed as
L
(∑∞

q=1 a
2
2q−1Kν(p−1,2q−1)

)
as n → ∞, where Kξ

are independent random variables distributed as χ2
ξ and

a2q−1 =
(−1)q−12p−2Γ(α+ 1)Γ(q + α)(2q − 2)

π(q − 1)!(2q + p− 3)!
. (31)

Proof. The proof follows [63] and [64] verbatim using Corol-
lary 1.

Definition 4. Random variable X is said to be first-order
stochastically dominated by random variable Y if

P[X ∈ A] 6 P[Y ∈ A], (32)

for any measurable set A.

Proposition 6 (Generalized Giné Test for tnk). Under H0,
the Giné statistic

tG ({tni}) =
n

2
− p− 1

2n

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2∑
i<j

sin(ψn,ij) (33)

is asymptotically first-order stochastically dominated by the
random variable distributed as

∑∞
q=1 a

2
2qKν(p−1,2q), where

Kξ are independent random variables distributed as χ2
ξ and

a22q =
(p− 1)(2q − 1)

8π(2q + p− 1)

(
Γ
(
α+ 1

2

)
Γ
(
q − 1

2

)
Γ
(
q + α+ 1

2

) )2

, (34)
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and

E [tG ({wi})]−E [tG ({tni})] ∼
1

8
+

1

16p
+O

(
1

p2

)
, n→∞.

Proof. The proof can be found in the Appendix.

It is important to emphasize the main difference between
Propositions 2 and 6. Indeed, in the former the asymptotic dis-
tribution is given by a sum of scaled χ2-variables, while in the
second one the limiting distribution is first-order stochastically
dominated by the same distribution and is in fact significantly
thinner. This discrepancy is due to the fact that {tni} are
dependent in such a special way that their sample covariance
matrix is exactly I. The detailed reasoning and discussion can
be found in the Appendix.

Theorem 1 (Uniformity Test for tni). Under H0, any
weighted sum of tA ({tni}) and tG ({tni}) is consistent
against all alternatives to the asymptotic uniformity of {tni}
on Sp−1.

Proof. The proof follows [63] and [64] verbatim using Propo-
sitions 5 and 6.

Remark 1. It is also important to emphasize that an asymp-
totic bound to the power of the uniformity test suggested by
Theorem 1 against all alternatives on the unit sphere can be
easily constructed using the asymptotic normality of the scaled
deviations of the Ajne and Giné statistics as shown in Section
4 of [63]. These derivations are also valid in our case, and
therefore we omit them due to a lack of space.

VI. NUMERICAL SIMULATIONS

In this section, we investigate the behavior and advantages
of the criterion proposed in Theorem 1 through numerical
simulations.

A. Distributions of the Statistics under the Null Hypothesis

In the first experiment, we compared the empirical distri-
butions of tA ({tni}) and tG ({tni}) with their counterparts
tA ({wi}) and tG ({wi}) for the independent samples playing
the role of the benchmarks. In this simulation we took the true
scatter matrix to be the identity Ω = I. Figure 1 demonstrates
the anticipated in Section V difference in the behavior of
the Ajne and Giné statistics. More specifically, as claimed in
Proposition 6 and discussed in detail in its proof, the statistic
tG ({tni}) is first-order stochastically dominated by tG ({wi})
due to the difference in the behavior of the quadratic term
in the expansion of the statistic (75) caused by dependencies
among {tni}. This is in contrast to the Ajne statistic whose
distributions in both cases coincide since a similar expansion
into Gegenbauer polynomials involves odd degree polynomials
only (for more details see the proof of Proposition 6). Note
also that the theoretically predicted by Theorem 1 difference
between the expected values for p = 8,

E [tG ({wi})]−E [tG ({tni})] ∼
1

8
+

1

16p
+O

(
1

p2

)
≈ 0.133

(35)
is confirmed by the numerical simulation yielding the value
of 0.131.

Fig. 1: Comparison of the empirical distributions of the Ajne
and Giné test statistics computed for the sequences {wi} and
{tni} defined in Section IV-D with the true scatter matrix
being I.

B. Criterion Performance for Alternatives

Following Theorem 1, to demonstrate the power of the sug-
gested methodology in our second experiment we compared
the empirical distributions of the statistics

s ({tni}) = tA ({tni}) + tG ({tni}) , (36)

s ({wi}) = tA ({wi}) + tG ({wi}) (37)

under the null hypotheses H0 and G0 versus their distributions
under specific non-elliptical alternatives H1 and G1. The
alternatives were constructed as follows. We generated the
uniform sequence {wi} as before, added a constant offset to
all the obtained vectors and re-normalized them,

w̃i =
wi + a

‖wi + a‖
. (38)

Note that the distributions of w̃i and of xi constructed from
it via (24)

xi =
Ω1/2w̃i∥∥Ω1/2w̃i

∥∥ , (39)

are not ACG and therefore our test should be able to discrim-
inate between the hypotheses. In this experiment we chose
p = 5, Ω = I and

a = 0.05 · 1
√
p

1
...
1

 . (40)

Figure 2 demonstrates the 0.95-confidence bands for the dis-
tributions of the statistics s ({tni}) and s ({wi}) as functions
of the number of measurements n in the sample. The bands
in Figure 2 were averaged over 50000 independent trials. We
see from the graph that despite the small size of a, already
with n = 15 measurements the criterion allows us to easily
discriminate between the hypotheses and its power is similar
for both the i.i.d. (know scatter matrix) and Tyler’s (unknown
scatter matrix) cases.
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(a) s ({tni}) (b) s ({wi})

Fig. 2: Comparison of the 0.95-confidence bands for H0 versus H1 designed in section VI-B for the i.i.d. {wi} samples and
their exchangeable {tni} counterparts.

VII. COMPARISON TO OTHER TESTS

For the purpose of this comparative study, we selected the
most popular tests used in the literature due to Koltchinskii and
Sakhanenko [4, 14], Manzotti et al. (MPQ test) [5], Cassart
(PseudoGaussian test) [8], Schott [6], and Babic (SkewOptimal
test) [71]. Implementations of all these tests are available
online trough the ellipticalsymmetry5 package developed by
[77].

In our numerical experiment, we set the dimension to p = 5
and the number of samples in every batch n = 50. Each test
from the aforementioned list and the tests proposed in this
paper (from Propositions 5 and 6 and Theorem 1) is invoked
to classify each such batch and determine whether it is coming
from an elliptical population or not. The goal is to compare
the powers of the tests using their ROC (Receiver Operating
Characteristic) curves. To this end, we constructed N = 5000
sample batches (each having n vectors of dimension p), half
of which were coming from the standard normal population
and labeled as elliptical batch, and the rest form a non-
elliptical population labeled as non-elliptical batch and defined
as follows. Let

Xi,k ∼ N (0, Ip), i = 1, . . . , N, k = 1, . . . , n, (41)

be N batches of n vectors each with all Xi,k i.i.d. standard
normal. Now, we set

Yi = Xi, i = 1, . . . , N/2 (42)

for the first N/2 batches labeled as elliptical batch and another
N/2 batches marked as non-elliptical batch we sample from
a non-elliptical population designed as follows. Let

Zj,i,k ∼ N (zj , Ip),

j = 1, 2, i = N/2 + 1, . . . , N, k = 1, . . . , n, (43)

5https://cran.r-project.org/package=ellipticalsymmetry

with the population means

z1 = 5 ·



1
1
1
1
...
1
1


, z2 = 5 ·



1
−1
1
−1

...
1
−1


(44)

be all i.i.d. and define

Yi = Xi + Z1 + Z2, i = N/2 + 1, . . . , N. (45)

Clearly, for N/2 + 1, . . . , N the vectors in the corresponding
batches Yi are non-elliptical and dont become GE even if
normalized by their Euclidean norms. Therefore, we would
expect all our tests to discriminate between elliptical and non-
elliptical batches.

Figure 3 shows the ROC (Receiver Operating Characteristic)
curves for all the available tests. Naturally, the highest (having
maximal power β) curve at each point on the horizontal axis
corresponds to the most powerful test at this False Positive
Rate (α). We can see that the tests proposed in this article
are more powerful than the rest. The distributions of the
statistics tA ({tni}) , tG ({tni}) , s ({tni}) under H0 derived
in Propositions 5 and 6 were estimated empirically for this
numerical study. We would like to emphasize a number of
points. First, the ROC curves of all the reference tests are very
close to the bisector of the first quadrant, showing their very
low statistical power and making them almost equivalent to
fair coin tossing. Second, every test involving tG ({tni}) has
a horizontal ROC curve and statistical power of 1 for every
α, meaning that it correctly classified every batch. This is due
to the sharp concentration of the distribution of this statistic
around a constant value value as can be seen in Figure 1.
Because of that, any deviation from the expected value is a
strong evidence against the ellipticity hypothesis.
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Fig. 3: ROC curves of Koltchinskii-Sakhanenko, MPQ, Pseu-
doGaussian, Schott, and SkewOptimal tests in comparison to
the test statistic s ({tni}) defined in (36) and justified by
Theorem 1.

VIII. CONCLUSION

In this paper we propose a novel elliptical symmetry test
based on the ideas of robust statistics, and specifically Tyler’s
estimator of covariance matrix. This is an easy to apply and
computationally cheap test with provable performance guaran-
tees. In our extensive comparative studies we demonstrate that
it surpasses all the other commonly exploited ellipticity tests
by a large margin when it comes to their statistical power. In
addition, based on the exchangeable random variables calculus
introduced by de Finetti, we develop a natural mathematical
framework enabling rigorous analysis of our test and numerous
other tests and estimators based on dependent but exchange-
able sample measurements.

APPENDIX

Proof of Lemma 2. Our proof is based on an analogous result
in [78]. Both Lemmas 1 and 2 from [78] can be easily restated
for our setup after replacing the Banach space E by R and
linear functionals by scalar multiplication. In addition, note
that our condition 1) immediately implies requirement (2.5)
from [78]. Now, the reasoning from the proof of Theorem 1
from [78] applies verbatim.

Proof of Lemma 4. As shown in Theorem 3.1 from [30],

Tn
a.s.−−→ Ω � 0, n→∞, (46)

therefore, starting from some n0, Tn is almost surely invert-
ible for n > n0 and

T−1/2n Ω1/2 a.s.−−→ Ip, n→∞. (47)

Now the claim follows from the definition of the sequence
{tni}n,

tni =
T
−1/2
n xi∥∥∥T−1/2n xi

∥∥∥ =
T
−1/2
n Ω1/2wi∥∥∥T−1/2n Ω1/2wi

∥∥∥ a.s.−−→ wi, n→∞.

Proof of Proposition 4. As above, we can equivalently rewrite
tni as

tni =
T
−1/2
n Ω1/2wi∥∥∥T−1/2n Ω1/2wi

∥∥∥ , i = 1, . . . , n, n = p+ 1, . . . ,

which is just a useful representation as clearly Ω is not
revealed to the researcher. Fix a vector a ∈ Rp of unit norm
‖a‖ = 1 and consider the following triangular array of row-
wise exchangeable random variables

Xni =
√
p · a>tni, i = 1, . . . , n, n = p+ 1, . . . . (48)

Let us study the properties of {Xni}∞,nn=p+1,i=1. First, consider

E [Xn1Xn2] = pa>E
[
tn1t

>
n2

]
a, (49)

Lemma 4 implies that

E
[
tn1t

>
n2

]
→ E

[
w1w

>
2

]
= 0, n→∞, (50)

therefore,
E [Xn1Xn2]→ 0, n→∞. (51)

Next, note that

|Xni|√
n

=
√
p
|a>tni|√

n
6
√
p
‖a‖ ‖tni‖√

n
=

√
p

n
→ 0. (52)

Finally, let us show that

1

kn

kn∑
i=1

X2
ni

P−→ 1, n→∞. (53)

Indeed,

1

kn

kn∑
i=1

X2
ni = p

1

kn

kn∑
i=1

a>tnit
>
nia = pa>

[
1

kn

kn∑
i=1

tnit
>
ni

]
a.

For the sample covariance we obtain,

1

kn

kn∑
i=1

tnit
>
ni =

1

kn

kn∑
i=1

T
−1/2
n Ω1/2wiw

>
i Ω1/2T

−1/2
n∥∥∥T−1/2n Ω1/2wi

∥∥∥2
= T−1/2n Ω1/2

 1

kn

kn∑
i=1

wiw
>
i∥∥∥T−1/2n Ω1/2wi

∥∥∥2
Ω1/2T−1/2n

a.s.−−→ 1

p
I, n→∞, (54)

and therefore,

1

kn

kn∑
i=1

X2
ni

P−→ a>I a = ‖a‖2 = 1, n→∞. (55)

The rest of the proof is based on the argument proposed in
[79]. Assume without loss of generality that n is an even
number and set

kn =
n

2
. (56)

Consider now the following sequence,

Yni =

{
Xni, i 6 kn,

−Xni, i > kn.
(57)
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Clearly, the new sequence is exchangeable with the same joint
distribution as the original sequence. Indeed, under H0 the
joint distribution of {tni} is invariant under multiplication of
any of the random vectors by −1 and Tn is an even function
of tni. Now all the conditions of Lemma 3 are satisfied for
the new sequence {Yni} and we obtain,√

n

2

 2

n

n/2∑
i=1

Yni −
1

n

n∑
i=1

Yni

 L−→ N
(

0,
1

2

)
, n→∞.

(58)
Note that

2

n

n/2∑
i=1

Yni −
1

n

n∑
i=1

Yni (59)

=
2

n

n/2∑
i=1

Xni −
1

n

n/2∑
i=1

Xni −
n∑

i=n/2+1

Xni


=

1

n

n/2∑
i=1

Xni +
1

n

n∑
i=n/2+1

Xni =
1

n

n∑
i=1

Xni,

to obtain√
n

2
· 1

n

n∑
i=1

Xni
L−→ N

(
0,

1

2

)
, n→∞, (60)

or
1√
n

n∑
i=1

Xni
L−→ N (0, 1) , n→∞. (61)

By the definition of Xni we get

√
p · a> 1√

n

n∑
i=1

tni
L−→ N (0, 1) , n→∞. (62)

Finally, recall that the vector a was chosen arbitrarily to
conclude the proof.

For a sequence of vectors {yi}ni=1, denote their sample
covariance by

Sy,n =
1

n

n∑
i=1

yiy
>
i . (63)

Lemma 5 (Theorem 6.2 from [80]). Let {yi}ni=1 ⊂ Sp−1 be
a set of n > p vectors, then

Tr
(
S2
y,n

)
>

1

p
. (64)

Proof of Proposition 6. The difference in the behavior of the
Ajne and Giné statistics stems from the fact that the former
is a sum of Gegenbauer polynomials of odd orders involving
only monomials of odd powers, while the latter reads as a
sum of Gegenbauer polynomials of even orders involving only
monomials of even powers [63, 64]. Next we explain this in
more detail.

Gegenbauer (ultraspherical) polynomial [81] of index α and
order q > 2 is defined as

Cαq (z) =

bq/2c∑
k=0

(−1)k
Γ(q − k + α)

Γ(α)k!(q − 2k)!
(2z)q−2k. (65)

Note that the Gegenbauer polynomials of odd/even order
involves monomials of only odd/even order, respectively.

In order to analyze the Giné statistic (33), we use the
following expansion of sin θ into Gegenbauer polynomials in
cos θ from [64],

1

2
− p− 1

2

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2

sin θ

=

∞∑
q=1

(p− 1)(2q − 1)(4q + p− 2)

(p− 2)(2q + p− 1)8π

×

(
Γ
(
α+ 1

2

)
Γ
(
q − 1

2

)
Γ(q + α+ 1

2 )

)2

Cα2q(cos θ),

where we remind the reader that

α =
p

2
− 1. (66)

Using (65) we can write,

1

2
− p− 1

2

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2

sin θ =

∞∑
r=0

γ2r(α, p) cos2r θ

= γ0(α, p) + γ2(α, p) cos2 θ +

∞∑
r=2

γ2r(α, p) cos2r θ.

Below we use the explicit form of γ2(α, p),

γ2(α, p) =

∞∑
q=1

(p− 1)(2q − 1)(4q + p− 2)

(p− 2)(2q + p− 1)8π

×

(
Γ
(
α+ 1

2

)
Γ
(
q − 1

2

)
Γ
(
q + α+ 1

2

) )2

ζα2q,2, (67)

where

ζα2q,2 = 2(−1)q−1
Γ(q + 1 + α)

Γ(α)(q − 1)!
, (68)

is the weight of z2 in Cα2q(z) defined as in (65). Thus, we
obtain

γ2(α, p) =

∞∑
q=1

(−1)q−1
(p− 1)(2q − 1)(4q + p− 2)

(p− 2)(2q + p− 1)4π
(69)

×

(
Γ
(
p
2 −

1
2

)
Γ
(
q − 1

2

)
Γ
(
q + p

2 −
1
2

) )2
Γ
(
q + p

2

)
Γ
(
p
2 − 1

)
(q − 1)!

.

Since the last series is telescopic we conclude that in particular

γ2(α, p) > 0. (70)

Let us compute the first few terms of this series,

γ2(α, p) (71)

=
p(p+ 2)

4(p+ 1)(p− 1)
− 3p(p+ 2)(p+ 6)

8(p− 1)(p+ 1)2(p+ 3)
+O

(
1

p2

)
=

1

4
+

1

8p
+O

(
1

p2

)
.

Recall that due to (29),

cos(ψn,ij) = t>nitnj , (72)
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and therefore,

sin(ψn,ij) = sin(ψn,ji), (73)

together with
sin(ψn,ii) = 0. (74)

Now we can see that the Giné statistic reads as

tG ({tni}) =
n

2
− p− 1

2n

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2∑
i<j

sin(ψn,ij)

=
n

2
− p− 1

4n

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2 n∑
i,j=1

sin(ψn,ij)

=
n

2
− 1

2n

p− 1

2

(
Γ
(
α+ 1

2

)
Γ(α+ 1)

)2 n∑
i,j=1

sin(ψn,ij)


=
n

2
+

1

2n

n∑
i,j=1

[
γ0(α, p) + γ2(α, p) cos2 θ

+

∞∑
r=2

γ2r(α, p) cos2r θ − 1

2

]

=
n

4
+
nγ0(α, p)

2
+

1

2n

n∑
i,j=1

[
γ2(α, p)

(
t>nitnj

)2
+

∞∑
r=2

γ2r(α, p)
(
t>nitnj

)2r]
. (75)

Note that
n∑

i,j=1

(
t>nitnj

)2
=

p∑
k,l=1

[
n∑
i=1

t
(k)
ni t

(l)
ni

]2
(76)

= Tr
(

[nSt,n]
2
)

= n2Tr
(
S2
t,n

)
,

where we denote

t =

t(1)

...
t(p)

 . (77)

In our setup, the sample covariance matrix satisfies the fol-
lowing relation,

St,n =
1

n

n∑
i=1

tnit
>
ni =

1

n

n∑
i=1

T
−1/2
n xix

>
i T
−1/2
n∥∥∥T−1/2n xi

∥∥∥2 (78)

=
1

n
T−1/2n

n∑
i=1

xix
>
i

x>i T−1n xi
T−1/2n =

1

p
I,

and therefore,

Tr
(
S2
t,n

)
=

1

p2
Tr (I) =

1

p
. (79)

By Lemma 5, for {wi}ni=1 i.i.d. uniformly distributed over
Sp−1 with n > p,

Tr
(
S2
w,n

)
>

1

p
= Tr

(
S2
t,n

)
. (80)

Since γ2(α, p) > 0, from (75) we infer that tG ({wi}) first-
order stochastically dominates tG ({tni}).

Recall that the limiting distribution of the spectrum of
pSw,n is given by the Marchenko-Pastur law [82] whose
second moment gives us the following asymptotic equivalence,

E
[
Tr
(

[pSw,n]
2
)]
∼ p+

p2

n
, n→∞. (81)

As a consequence,

1

2n

(
n2E

[
Tr
(
S2
w,n

)]
− n2E

[
Tr
(
S2
t,n

)])
∼ n2

2n

(
1

p
+

1

n
− 1

p

)
∼ 1

2
, n→∞,

and from (75) we conclude,

E [tG ({wi})]− E [tG ({tni})] ∼
γ2(α, p)

2

∼ 1

8
+

1

16p
+O

(
1

p2

)
, n→∞.
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Birkhäuser, vol. 144, 2012.

[82] V. A. Marcenko and L. A. Pastur, “Distribution of
eigenvalues for some sets of random matrices,” Sbornik:
Mathematics, vol. 1, no. 4, pp. 457–483, 1967.


	I Introduction
	I-A Tests for Elliptical Symmetry
	I-B Covariance Estimation
	I-C Our Approach and Contribution

	II Notation and Setup
	III Problem Formulation and State of the Art
	III-A Main Goal
	III-B Uniformity Tests on Sp-1

	IV Problem Reformulation and Exchangeability
	IV-A Methodology
	IV-B Exchangeable Random Variables
	IV-C Limit Theorems for Exchangeable Variables
	IV-D Additional Notation and Auxiliary Results

	V Asymptotic Uniformity Tests for Exchangeable Vectors
	VI Numerical Simulations
	VI-A Distributions of the Statistics under the Null Hypothesis
	VI-B Criterion Performance for Alternatives

	VII Comparison to Other Tests
	VIII Conclusion
	Appendix

