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Abstract—An analytic parahermitian matrix admits in almost
all cases an eigenvalue decomposition (EVD) with analytic
eigenvalues and eigenvectors. We have previously defined a
discrete Fourier transform (DFT) domain algorithm which has
been proven to extract the analytic eigenvalues. The selection
of the eigenvalues as analytic functions guarantees in turn the
existence of unique one-dimensional eigenspaces in which analytic
eigenvectors can exist. Determining such eigenvectors is not
straightforward, and requires three challenges to be addressed.
Firstly, one-dimensional subspaces for eigenvectors have to be
woven smoothly across DFT bins where a non-trivial algebraic
multiplicity causes ambiguity. Secondly, with the one-dimensional
eigenspaces defined, a phase smoothing across DFT bins aims
to extract analytic eigenvectors with minimum time domain
support. Thirdly, we need to check whether the DFT length,
and thus the approximation order, is sufficient. We propose an
iterative algorithm for the extraction of analytic eigenvectors
and prove that this algorithm converges to the best of a set of
stationary points. We provide a number of numerical examples
and simulation results, in which the algorithm is demonstrated to
extract the ground truth analytic eigenvectors arbitrarily closely.

Index Terms—eigenvalue decomposition, parahermitian matrix
factorisation, analytic functions, phase retrieval, quadratic pro-
gramming with quadratic constraints.

I. INTRODUCTION

If M sensors record a multi-channel broadband signal

x[n] ∈ C
M with time index n ∈ Z, any signal processing

needs to deal with time delays between elements of x[n],
as opposed to the narrowband case where mere phase shifts

suffice. Therefore, the space-time covariance matrix R[τ ] =
E
{

x[n]xH[n− τ ]
}

, with E{·} the expectation operator and

{·}H the Hermitian transposition, has to include a lag param-

eter τ ∈ Z. The space-time covariance R[τ ] inherits the sym-

metries of its constituent auto- and cross-correlation sequence

entries, and so R[τ ] = RH[−τ ]. Thus, its z-transform, the

cross-spectral density (CSD) matrix R(z) =
∑

τ R[τ ]z−τ ,

satisfies the parahermitian property R(z) = RP(z) [1],

whereby RP(z) ≡ {R(1/z∗)}H requires a Hermitian trans-

position and time reversal. This CSD matrix can assist in
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formulating and solving broadband array problems, including

e.g. beamforming [2]–[4], blind source separation [5], mul-

tichannel coding [6], [7], speech enhancement [8]–[10], or

MIMO system design [11]–[13].

Optimum narrowband solutions at a fixed frequency Ω0 are

typically based on the diagonalisation of the narrowband co-

variance matrix R(ejΩ0) = R(z)|z=ejΩ0 . To formulate equiva-

lent optimum broadband solutions requires the diagonalisation

of R[τ ] for all lags τ , or equivalently the diagonalisation of the

CSD matrix R(z) for every value of z. It is shown in [14]–[16]

that unless x[n] is time-multiplexed, a parahermitian R(z)
admits a parahermitian matrix EVD (PhEVD)

R(z) = Q(z)Λ(z)QP(z) (1)

with an analytic paraunitary Q(z), such that Q(z)QP(z) =
QP(z)Q(z) = I, and an analytic diagonal Λ(z) =
diag{λ1(z), . . . , λM (z)}. Both Λ(z) and Q(z) are abso-

lutely convergent but generally transcendental functions in z,

i.e. (infinite) Laurent series. Due to this analyticity, Laurent

polynomials can approximate these functions arbitrarily well

by truncation.

A problem related to (1) is the McWhirter decomposition

or polynomial EVD (PEVD) [17] R(z) ≈ U (z)D(z)U P(z).
This is an approximate factorisation, using Laurent polynomial

matrices U (z) and D(z). The diagonal parahermitian matrix

D(z) contains the M approximate polynomial eigenvalues

dµ(z), µ = 1, . . . , M . These eigenvalues are spectrally

majorised [18] such that, on the unit circle, dµ(e
jΩ) ≥

dµ+1(e
jΩ) ∀Ω and µ = 1, . . . , (M − 1). As a result, in

the case of overlapping eigenvalues λm(ejΩ) in (1) as shown

in Fig. 1(a), the functions dµ(e
jΩ) are piecewise analytic,

permuted versions of λm(ejΩ) as depicted in Fig. 1(b), which

are no longer differentiable and so are not analytic functions.

Further, the corresponding eigenvectors will also be permuted,

piece-wise analytic functions, but because of their orthonor-

mality will include discontinuities at the points of permutation.

The approximation of non-differentiable and discontinuous

functions requires infinite Laurent series for D(z) and U (z),
which are no longer absolutely convergent; their approxima-

tions therefore lead to much higher order functions than those

for the analytic functions Λ(z) and Q(z) in (1).

A large number of algorithms have targeted solutions to the

McWhirter decomposition or PEVD over the last two decades.

This includes the second order sequential best rotation (SBR2)

family of algorithms [7], [17], [20] and the sequential matrix

diagonalisation algorithms (SMD, [21], [22]). These algo-

rithms generally encourage spectral majorisation, while SBR2
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Fig. 1. Example of (a) analytic eigenvalues λm(ejΩ) [14], [19] and (b) spec-
trally majorised eigenvalues dµ(ejΩ), m,µ = 1, 2, with non-differentiable
points circled.

has been proven to converge to a spectral majorised solu-

tion [23]. Even though no convergence proof is provided, the

fixed-order algorithms in [24]–[26] also target the spectrally

majorised solution. Spectral majorisation can be useful, as

it, e.g., provides optimality for subband coding [7], [18].

However, for subspace decompositions, targeting a spectrally

majorised decomposition can lead to subspace perturbations at

the permutation points that distinguish analytic from spectrally

majorised solutions (e.g., see later Fig. 7); these perturbations

inherently demand high approximation orders, resulting in an

unnecessarily high implementation cost for applications in

e.g. [2], [3], [5], [6], [11].

We are therefore interested in algorithms that can approx-

imate the analytic solution in (1). Due to analyticity of both

R(z) and its desired factors, it suffices to consider such

functions on the unit circle, R(ejΩ) = R(z)|z=ejΩ , where

a solution in z may be obtained by re-parameterisation [27].

Related efforts on EVD, singular value (SVD) and QR decom-

positions have been undertaken for general matrices A(t) that

depend on a real parameter t ∈ R on some interval [28]–[35].

For a detailed review, please refer to [36]; note however that an

analytic decomposition of A(t) does not necessarily imply its

existence for a matrix A(ejΩ) that is periodic in Ω ∈ R [15].

If it exists, then this periodicity can be exploited via efficient

algorithms based on the discrete Fourier transform, unlike the

solutions in [32]–[35].

DFT-based approaches somewhat negate the advantage of

spectral coherence that is guaranteed by the time-domain

PEVD algorithms in [7], [17], [20]–[22], [37]. Instead, simi-

larly to [32]–[35] spectral coherence needs to be re-introduced

across bins. The smooth polynomial EVD in [38] accomplishes

this by monitoring the orthogonality of eigenvectors across

bins. This can be misleading [36], [39], since eigenvectors are

phase-ambiguous [14] and, at a C-fold algebraic multiplicity

of eigenvalues, can form an arbitrary C-fold basis. Therefore,

as a first part, in [36], we have based the extraction of analytic

eigenvalues for (1) only on their analyticity, and have provided

an algorithm with proven convergence, which iteratively grows

the DFT order until a desired approximation error can be

reached. In each iteration step, spectral coherence is re-

estabished in principle by considering all possible associations

of eigenvalues across frequency bins, which are evaluated via a

smoothness metric based on differentiability [40]. In practice,

the method in [36] follows a maximum likelihood sequence

estimation approach that starts from the first DFT bins, and

by adding further bins progressively only retains associations

across these frequency bins that are sufficiently smooth. A

metric that assesses truncation or time domain aliasing is then

used in [36] to terminate the iteration and thus the algorithm

at a desired threshold.

In this paper, we target the extraction of analytic eigen-

vectors based on the assumption that the analytic eigenvalues

have been obtained using e.g. [36]. We characterise the am-

biguities that exist for DFT-based binwise EVDs, and first

resolve the problem of creating one-dimensional subspaces

across DFT bins that contain non-trivial algebraic multiplic-

ities; different from an initial investigation in [41], we here

propose a closed-form solution. Thereafter, we perform a

phase smoothing based on the analyticity of each of the

eigenvectors separately. Beyond the discussion in [41], we

show that this problem is generally NP hard, and provide some

insight into a smoothness-based cost function. This analysis

permits a guaranteed convergence to the smoothest of a set of

possible functions, and hence the lowest-order approximation.

We finally show that by iterating the subspace extraction and

phase smoothing, convergence to an analytic solution can be

guaranteed.

In the following, Sec. II defines important properties of the

PhEVD in (1). The general DFT-based approach is outlined

in Sec. III, followed by the extraction of 1-d eigenspaces

and phase smoothing in Secs. IV and V. The growth of the

approximation order and overall convergence is discussed in

Sec. VI, with simulations in Sec. VII. Sec. VIII provides

conclusions.

II. PARAHERMITIAN MATRIX EVD

Via the space-time covariance matrix in Sec. II-A, we

discuss relevant properties of a parahermitian matrix. Based

on this, we review its PhEVD in Sec. II-B before we explore

polynomial approximations of its factors in Sec. II-C.

A. Space-Time Covariance Matrix

A space-time covariance R[τ ] can be tied to the model

in Fig. 2, where Ls mutually independent source signals

sℓ[n], ℓ = 1, . . . , Ls contribute to the measurement vec-

tor x[n] = [x1[n], . . . , xM [n]]
T

via a convolutive mixing

system H[n] ∈ C
M×Ls . The z-transform leads to a matrix

H (z) =
∑

nH[n]z−n: C→ C
M×Ls of transfer functions. In

the following we use the short hand notation H[n] ◦—• H (z)
for a transform pair [27]. In turn, the Ls source signals sℓ[n]
in Fig. 2 can each be modelled as the output of an inno-

vation filter gℓ[n] ◦—• Gℓ(z) that is excited by a zero mean

unit variance uncorrelated signal uℓ[n] [42]. With G(z) =
diag{G1(z) . . . GLs

(z)}, the CSD matrix R(z) •—◦ R[τ ],

R(z) = H (z)G(z)GP(z)H P(z) , (2)
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Fig. 2. Source model for measurement vector x[n] [36].

is thus determined by the source model components in Fig. 2.

If the systems G(z) and H (z) in (2) are causal and stable,

and therefore analytic, then the CSD matrix R(z) will be

analytic. Because of its structure, R(z) = A(z)AP(z), where

A(z) = H (z)G(z), and so R(z) is guaranteed to be a

parahermitian and positive semi-definite matrix. Further, when

evaluated on the unit circle, R(ejΩ) = R(z)|z=ejΩ is a self-

adjoint matrix such that R(ejΩ) = RH(ejΩ) [43], i.e. for any

particular normalised angular frequency Ω0 ∈ R, R(ejΩ0)
satisfies the Hermitian property.

B. Parahermitian Matrix EVD

If a parahermitian matrix R(z) is analytic and the mea-

surement data x[n] does not originate from some multiplexing

operation [15], then it is possible to state the following for its

eigenvalues in (1):

Theorem 1 (Eigenvalues of a parahermitian matrix): Any

analytic, parahermitian, and non-multiplexed R(z) : C →
C
M×M possesses M unique analytic eigenvalues.

Proof. See [15] based on analysis in [14], which extends results

for analytic self-adjoint matrices in [28] to the parahermitian

case. �

We assume that there are no identical eigenvalues,

i.e. λm(z) = λµ(z) ∀z, with m,µ = 1, . . . , M , is only true

for m = µ. This implies that for the model in Fig. 2, at

the very least Ls ≥ (M − 1).1 In this case, the uniqueness

theorem for analytic functions [44] states that there may only

be a finite number of intersections of the functions λm(ejΩ),
m = 1, . . . , M , i.e. frequency points where R(ejΩ) possesses

eigenvalues with an algebraic multiplicity greater than one.

Under this premise, we can state the following theorem for

the eigenvectors of R(z):
Theorem 2 (Eigenvectors of a parahermitian matrix):

For the above analytic R(z) with no identical eigenvalues,

there exists a unique one-dimensional eigenspace for every

eigenvalue. The corresponding eigenvectors lying in these

eigenspaces can be analytic, but are ambiguous up to an

arbitrary allpass function.

Proof. See [15] and the analysis in [14] for the existence of an-

alytic eigenvectors, which again follows as a generalisation of

the self-adjoint matrix case in [28]. Because of its importance,

in the following we explicitly consider the phase ambiguity.

For this, we define a diagonal and paraunitary matrix Ψ(z),

Ψ(z) = diag{ψ1(z), . . . , ψM (z)} . (3)

1We exclude identical eigenvalues, as the identification of 1-d eigenspaces
as performed in Sec. IV otherwise is difficult and beyond the scope of this
work.

Since Ψ(z)ΨP(z) = I and diagonal matrices permute, we

have Λ(z) = Ψ(z)Λ(z)ΨP(z) and so R(z) in (1) can be

written as

R(z) = Q(z)Ψ(z)Λ(z)ΨP(z)QP(z) .

The product Q(z)Ψ(z) now defines the phase ambiguity of

the eigenvector qm(z), i.e. the mth column of Q(z): if qm(z)
is an eigenvector corresponding to the eigenvalue λm(z), then

ψm(z)qm(z) is also a valid eigenvector. If the remaining

(M−1) eigenvectors are selected to be analytic, then the mth

eigenvector can only reside in a uniquely defined orthogonal

subspace, refered to as the 1-d eigenspace. Many different

functions lie with this eigenspace, differing by phase functions

ψm(z), with only some being analytic. �

Example 1: Consider R(z) : C→ C
2×2 from [14], [19],

R(z) =

[

1−j
2 z + 3 + 1+j

2 z−1 1+j
2 z2 + 1−j

2
1+j
2 + 1−j

2 z−2 1−j
2 z + 3 + 1+j

2 z−1

]

, (4)

with eigenvalues Λ(z) = diag
{

z+3+z−1; −jz+3+jz−1
}

.

The eigenvectors are qm(z) = ψm(z)[1,±z−1]T/
√
2, where

ψm(z) = ejϕ
∏

n

a∗m,n − z−1

1− am,nz−1
(5)

is an arbitrary allpass filter with |am,n| < 1 and am,n ∈
C ∀m,n [45]. Note that unless the allpass ψm(z) takes

on a simple delay with am,n = 0 ∀m,n, the support of

qm[n] ◦—• qm(z) is infinite. Therefore, even though the

choice of the allpass filter does not affect analyticity, it

nonetheless influences the support and potential complexity

if the eigenvectors are to be approximated by polynomials. △

C. Polynomial Approximation of PhEVD Factors

Even if R(z) is a Laurent polynomial, i.e. a function of

finite order, the factors Q(z) and Λ(z) in (1) will in many

cases be Laurent series, i.e. of infinite order, and represent

algebraic or even transcendental functions [14], [15]. We

therefore would like to approximate Λ(z) and Q(z) by finite

order functions, i.e. generally by Laurent polynomials. For

the approximation of analytic eigenvalues, we can state the

following theorem:

Theorem 3 (Laurent polynomial approximation of eigenval-

ues): The best N th-order approximation Λ̂(N)(z) of an ana-

lytic Λ(z) in the least squares sense is obtained by truncating

Λ(z) symmetrically to the required order.

Proof. See Theorem 2 in [36]. �

The approximation of the paraunitary Q(z) should ideally

lead to lossless filter bank implementations that process data to

e.g. achieve strong decorrelation [18] or to generate subspace

decompositions. We are therefore interested in approximate

eigenvectors q̂
(N)
m [n] ◦—• q̂ (N)

m (z) that are causal and finite,

i.e. for q̂
(N)
m (z) to be a polynomial rather than a Laurent

polynomial. With a rectangular window

pN [n] =

{

1 , 0 ≤ n ≤ N,
0 , otherwise,

(6)

we can state for the polynomial approximation q̂m
(N)(z) of

qm(z):
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Theorem 4 (Polynomial approximation of eigenvectors):

The best N th order polynomial approximation q̂m
(N)(z) of

an analytic eigenvector qm(z) in the least squares sense is

obtained by masking

q̂(N)
m [n] = pN [n]qm[n−∆m] , (7)

whereby the shift ∆m must minimise the overall truncation

error in the least squares sense.

Proof. We want to initially find the N th order Laurent poly-

nomial approximation ŵ
(N)
m [n] ◦—• ŵ (N)

m (ejΩ) of a single

eigenvector qm[n] ◦—• qm(ejΩ). For the approximation error,

we defined

ζ =
1

2π

π
∫

−π

‖qm(ejΩ)− ŵ
(N)
m (ejΩ)‖22dΩ . (8)

Due to Parseval, this is equivalent to

ζ =
∑

n

‖qm[n]− ŵ(N)
m [n]‖22 = ǫ− + ǫ0 + ǫ+ (9)

with

ǫ− =

−∆m−1
∑

n=−∞

‖qm[n]‖22 , ǫ+ =

∞
∑

n=N−∆m+1

‖qm[n]‖22 ,

ǫ0 =

N−∆m
∑

n=−∆m

‖qm[n]− ŵ(N)
m [n]‖22 .

All terms are non-negative; to minimise ζ, we require ǫ0 = 0,

and set ŵ
(N)
m [n] = qm[n] for −∆m ≤ n ≤ N −∆m. There

will be at least one ∆m such that the overall truncation error

ǫ− + ǫ+ is minimised. To ensure that the approximation is

causal, we shift ŵ
(N)
m [n] by ∆m samples, such that q̂

(N)
m [n] =

ŵ
(N)
m [n−∆m]. �

Example 2: Since qm(z) is analytic, qm[n] is absolutely

convergent and decays at least as fast as an exponential

function, say

‖qm[n]‖2 ≤
{

a−n n < 0 ,
bn n ≥ 0 .

(10)

For the purpose of this example, we assume equality in (10),

such that

ǫ− =
a2∆m+2

1− a2 , ǫ+ =
b2N−2∆m+2

1− b2 . (11)

Therefore, for the minimum truncation error, we have that

∆m =
1

2
logab

a2(1− b2)
b2N+2(1− a2) . (12)

Specifically, for a symmetric decay with a = b we obtain

∆m = N
2 . △

The adjustment of the delay ∆m is equivalent to the shift-

compensated truncation method discussed in [46].

Note that the Fourier transform q̂
(N)
m (ejΩ) •—◦ q̂(N)

m [τ ]
converges uniformly to e−jΩ∆mqm(ejΩ) as N increases [47].

Therefore by sufficiently adjusting the approximation order

N , we can decrease the approximation error to an arbitrarily

small value at every frequency Ω ∈ R. Further, while we used

the variable N for both Λ(z) and Q(z), generally different

approximation orders are required for these two quantities if

similar approximation errors are to be obtained.

Example 3: To demonstrate the potential mismatch in order,

consider R(z) = [3, z; z−1, 3]. This matrix possesses

constant eigenvalues with Λ(z) = diag{4, 2} of order zero,

while Q(z) = [1, 1; z−1, −z−1]/
√
2 has order one. △

III. BIN-WISE EVD AND GENERAL APPROACH

Since we operate in the DFT domain, we review the prop-

erties of an EVD at one sample point of R(ejΩ) in Sec. III-A,

and see how this relates to the PhEVD in Sec. III-B. This will

expose quantities that are already known assuming previously

determined analytic eigenvalues [36], and quantities that still

need to be determined in order to extract analytic eigenvectors.

A general algorithm of the latter is outlined in Sec. III-C.

A. EVD of a Hermitian Matrix

For a Hermitian matrix R ∈ C
M×M , the eigenvalues λm,

m = 1, . . . , M are uniquely determined up to an arbitrary or-

dering. The corresponding eigenvectors qm, such that Rqm =
λmqm are ambiguous. Assuming a Ci-fold algebraic multi-

plicity of eigenvalues, such that λi = λi+1 = . . . = λi+Ci−1,

with corresponding eigenvectors qi, qi+1, . . . , qi+Ci−1, then

for any arbitrary unitary Vi
′ ∈ C

Ci×Ci ,

[

q′

i, . . . , q
′

i+Ci−1

]

= [qi, . . . , qi+Ci−1]V
′

i (13)

are also valid eigenvectors of R. This means that the eigen-

vectors can be selected as an arbitrary basis within a Ci-
dimensional subspace. In case of a distinct eigenvalue with

Ci = 1, this unitary matrix reduces to a 1× 1 quantity V′

i =
ejψi that still imposes an arbitrary phase shift ψi ∈ R [48].

For the factorisation R = QΛQH, assume that the eigen-

values in Λ are majorised, i.e. λ1 ≥ . . . ≥ λM . A reordering in

Λ′ can be accomplished via a permutation matrix P ∈ R
M×M

s.t. Λ′ = PΛPT. If there are M ′ distinct eigenvalues and the

ith one has an algebraic multiplicity Ci, Λ is block-diagonal,

Λ = blockdiag{Λ1, . . . , ΛM ′} ,

where Λi = λiICi
with ICi

is Ci×Ci, i = 1, . . . ,M ′. Hence

for any paraunitary matrix V′

i we have V′

iΛiV
′H
i = Λi. Thus

we can write Λ′ = PV′ΛV′HPT = PΛPT where the unitary

matrix V′ ∈ C
M×M is:

V′ = blockdiag{V1
′, . . . , V′

M ′} ,

and Vi
′ ∈ C

Ci×Ci with
∑M ′

i=1 Ci =M . Hence we have

R = QΛQH = QV′HPTPV′ΛV′HPTPV′QH

=
(

QV′HPT
)

Λ′
(

PV′QH
)

= Q′Λ′Q′H , (14)

where Λ′ = PΛPT holds the permuted eigenvalues, and

Q′ = QV′HPT contains eigenvectors that are (i) reordered

and (ii) form a new Ci-dimensional basis for the eigenspace

corresponding to an eigenvalue with algebraic multiplicity Ci.



EIGENVALUE DECOMPOSITION OF A PARAHERMITIAN MATRIX: EXTRACTION OF ANALYTIC EIGENVECTORS 5

B. EVD at Sample Points of R(z)

We evaluate R(z) : C −→ C
M×M for K sample points

along the unit circle at equispaced normalised angular frequen-

cies Ωk = 2π
K k, k = 0, . . . , (K − 1). Evaluating the PhEVD

in (1) at one such sample point Ωk, we obtain

R(ejΩk) = Q(ejΩk)Λ(ejΩk)QH(ejΩk) , (15)

where Λ(ejΩk) = diag
{

λ1(e
jΩk), . . . , λM (ejΩk)

}

contains

the appropriate sample points of the analytic eigenvalues

λm(z), m = 1, . . . , M , and the mth column of Q(ejΩk)
holds the sample points of the corresponding mth analytic

eigenvector.

Note that if, as is conventional, the eigenvalues are ordered

there is no reason to assume this ordering is the same in

adjacent bins. Indeed, ordering the eigenvalues separately in

each bin will produce spectral majorisation and, in general,

dissociate the ‘spectral coherence’ of Λ(ejΩ) across bins.

Therefore, in the EVD

R(ejΩk) = QkΛkQ
H
k , (16)

the r.h.s. factors are not directly equivalent to the terms on

the r.h.s. of (15); in particular, the eigenvalues in Λk =
diag{λ1,k, · · · , λM,k} may be permuted w.r.t. to those in

Λ(ejΩk).
The relation between the sample points of the analytic

functions Λ(ejΩk) and Q(ejΩk) in (15), and the factors Λk

and Qk of the EVD in (16) is described by the ambiguity in

(14), i.e.

Λ(ejΩk) = PkΛkP
T
k (17)

Q(ejΩk) = QkV
H
kP

T
k . (18)

Akin to Sec. III-A, (17) and (18) contain permutations Pk and

block-diagonal unitary matrices Vk that are specific to the kth

bin. Specifically, Pk adjusts the ordering of eigenvalues in the

kth bin, while

Vk = blockdiag{Vk,1, . . . , Vk,Mk
} , (19)

where Mk ≤ M is the number of distinct eigenvalues in

the k bin, and the dimension of the otherwise arbitrary

unitary matrices Vk,µ ∈ C
Ck,µ×Ck,µ , µ = 1, . . . , Mk, is

that of the algebraic multiplicity Ck,µ of the corresponding

eigenvalues [14], [36]. Note that
∑Mk

µ=1 Ck,µ =M .

C. Analytic Eigenvector Extraction Approach

With the permutation matrices Pk and the unitary block-

diagonal Vk, k = 0, . . . , (K − 1), as defined above, (18)

reflects the challenges that the retrieval of analytic eigenvectors

from the bin-wise EVDs of R(z) poses. We briefly discuss

why we can assume Pk is known, and therefore only have to

focus on Vk thereafter.

The permutation Pk needs to create a smooth association of

both eigenspaces and eigenvalues across DFT bins. Although

it is possible to estimate Pk based on both eigenvalues and

eigenvectors [38], it is arguably better to only rely on the

eigenvalues—see Sec. I. The extraction of analytic eigenvalues

has been addressed in [36], and an algorithm with proven con-

vergence to the analytic eigenvalues exists, which is capable

Algorithm 1: Extraction of Analytic Eigenvectors

1: determine analytic eigenvalues Λ(z) of R(z) [36];

2: initialise K to exceed the support of R(z) and Λ(z);
3: repeat

4: obtain Pk, k = 0, . . . (K − 1) from Λ(ejΩk);
5: calculate Qk via EVD;

6: determine Ak for any Ck,µ > 1;

7: determine Ψk, k = 0, . . . , (K − 1);

8: interpolate Q̂(z) from Q̂
(K)
k = QkΨ

H
kA

H
kP

T
k ;

9: calculate approximation error ζ
10: K ← 2K;

11: until (ζ < ǫ) ∨ (K > 2Kmax).

of retrieving both the permutations Pk, k = 0, · · · , (K − 1),
as well as the minimum approximation order KΛ for a set

approximation error for Λ(z). Therefore, for any DFT size

K ≥ KΛ, we assume Pk to be given via [36].

To approximate the analytic eigenvectors in Q(z) from

(18), it therefore remains to determine suitable unitary block-

diagonal matrices Vk and an approximation order KQ for

Q(z) to guarantee a sufficiently small approximation error

w.r.t. the analytic solution. As discussed below, the unitary

matrix Vk can be determined as the product of two matrices,

Vk = AkΨk , (20)

subject to the DFT order being sufficiently large. The proce-

dure then consists of three steps:

1) The alignment matrix Ak aligns 1-d eigenspaces

smoothly across algebraic multiplicities; it contains

along its diagonal unitary blocks of size Ck,µ, where an

eigenvalue λk,µ has an algebraic multiplicity Ck,µ > 1,

and diagonal values of one elsewhere.

2) The 1-d smooth eigenspaces can contain many different

functions since only their magnitude is constrained.

Generally such functions will not be analytic unless

their phases are selected appropriately. Therefore, the

diagonal matrix Ψk,

Ψk = diag
{

ejψk,1 , . . . , ejψk,M
}

, (21)

adjusts the phases in the kth bin to create analytic

eigenvectors within each of the smooth 1-d eigenspaces.

Note that Ψk closely relates to the arbitrary allpass

filters that can modify the analytic eigenvectors in (3).

3) Unless Vk admits a sufficiently small approximation

error, we return to 1) with an increased DFT length K.

These steps are outlined in Algorithm 1. The algorithm

terminates when a sufficient accuracy or a maximum DFT

length, Kmax, has been reached. We will later in Sec. VI-C

see that a finite approximation error for the extracted analytic

eigenvalues according to [36] does not impact on the correct

association of the eigenvalues and eigenvectors, and hence

does not affect steps 1 and 2. It may however impact on the

achievable minimum approximation error ζ in step 3. We will

further elaborate on the above steps 1), 2), and 3) in Secs. IV,

V, and VI, respectively.
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IV. SMOOTH ONE-DIMENSIONAL EIGENSPACES

The purpose of this section is to construct the alignment

matrices Ak, k = 0, . . . , (K − 1) for (20), which we address

on a bin-by-bin basis. If in the kth bin all eigenvalues in (17)

are distinct, then only a simple ordering of the eigenvectors

via Pk is required, and Ak = IM . Otherwise, if the kth bin

contains any eigenvalues with an algebraic multiplicity greater

than one, Sec. IV-A outlines the rationale for constructing Ak

via a phase alignment across algebraic multiplicities discussed

in Sec. IV-B, followed by the selection of smooth one-

dimensional eigenspaces in Sec. IV-C.

A. Rationale

Recall that in case of a Ck,µ-fold algebraic multiplicity of

the µth eigenvalue in the kth bin, with Ck,µ > 1, the cor-

responding eigenvectors can form an arbitrary basis within a

Ck,µ-dimensional subspace. However, to approximate analytic

eigenvectors, we first need to weave smooth 1-d eigenspaces

through such a manifold. Based on the assumption of non-

identical eigenvalues and supported by the uniqueness theorem

of analytic functions [44], we know that non-trivial algebraic

multiplicities can only occur at a finite and isolated number

of frequency points. We therefore compare the eigenvectors

at such points against those in their direct vicinity, typically

within a small fraction of the bin width.

Let Ωk be a frequency bin where the eigenvalues

λm(ejΩk) = . . . = λm+Ck,m−1(e
jΩk) share a Ck,m-fold

non-trivial algebraic multiplicity. Since we know the analytic

eigenvalues to a predefined accuracy from [36], we can find

frequency points Ωk−∆ and Ωk+∆ where ∆≪ 2π/K and

the Ck,m eigenvalues are sufficiently distinct. Let Qk− and

Qk+ be the matrices of eigenvectors obtained by EVDs from

R(ej(Ωk−∆)) and R(ej(Ωk+∆)), and appropriately ordered

using Pk− and Pk+ based on the knowledge of the analytic

eigenvalues [36]. Since the phases of Qk− and Qk+ are

incoherent — recall the difference between (15) and (16) —

we first align phases across Qk− and Qk+ in Sec. IV-B as

a prerequisite for interpolating through the appropriate Ck,m-

dimensional subspace of Qk in Sec. IV-C.

B. Phase-Alignment Across Algebraic Multiplicities

Let qµ,k− and qµ,k+ be the µth eigenvectors in the columns

of Qk− and Qk+. W.l.o.g., we retain Qk− as it is, but change

qµ,k+ by a phase term ϑm,k that satisfies the optimisation

problem

ϑ
opt
µ,k = argmin

ϑµ,k

‖qµ,k− − e−jϑµ,kqµ,k+‖22 ,

µ = m, · · · ,m+ Ck,m − 1 . (22)

Noting that ‖qµ,k−‖2 = ‖qµ,k+‖2 = 1, (22) simplifies to

ϑ
opt
µ,k = argmin

ϑµ,k

{

1− Re
{

e−jϑµ,kqH
µ,k−qµ,k+

}

}

, (23)

such that (22) is minimised by

ϑ
opt
µ,k = ∠{qH

µ,k−qµ,k+} . (24)

With the phase shifts ϑ
opt
µ,k, µ = m, . . . , m + Ck,m − 1, the

eigenvectors qµ,k− and qµ,k+ become aligned as closely as

possible in the least squares sense.

C. Smooth Eigenspace Selection in Algebraic Multiplicities

Similar to the block-diagonal partitioning of Vk in (19),

we now form the block diagonal Ak of (20), where every

unitary subblock Ak,µ ∈ C
Ck,µ×Ck,µ belongs to a Ck,µ-

fold algebraic multiplicity in the kth bin. For each such

Ck,µ identical eigenvalues let Uk,µ ∈ C
M×Ck,µ contain the

corresponding Ck,µ eigenvectors. Recalling (18) and (20),

there is an ambiguity in the eigenvectors such that if Uk,µ

are valid eigenvectors then, for any arbitrary unitary matrix

Ak,µ, so are Uk,µA
H
k,µ.

Since we assume that there are no eigenvalues that are iden-

tical for all frequencies, non-trivial algebraic multiplicities can

only occur at isolated frequency points such as Ωk [44]. This

means that the algebraic multiplicities resolve immediately to

the left and right of Ωk, where we define Uk−,µ ∈ C
M×Ck,µ

and Uk+,µ ∈ C
M×Ck,µ as the corresponding eigenvectors

in Qk−,µ and Qk+,µ, evaluated at Ω = Ωk ± ∆. In order

to smoothly continue eigenspaces, Ak,µ must satisfy two

conditions,

Uk,µA
H
k,µ = lim

∆→0
Uk−,µ , (25)

Uk,µA
H
k,µ = lim

∆→0
Uk+,µΘk,µ , (26)

such that the columns of Uk,µA
H
k,µ align with the correspond-

ing 1-d eigenspaces to the immediate left and right of the

kth bin. The matrix Θk,µ = diag{ejϑµ,k , . . . , ejϑµ+Ck,µ−1,k}
performs the phase alignment described in Sec. IV-B between

Uk−,µ and Uk+,µ.

Replacing the limits ∆ → 0 in (25) and (26) by a small

deviation ∆≪ 2π/K, we formulate the following constrained

problem for Ak,µ:

min
Ak,µ

χk,µ s.t. AH
k,µAk,µ = I . (27)

with

χk,µ = ‖Ak,µU
H
k,µUk−,µ − I‖2F

+ ‖Ak,µU
H
k,µUk+,µΘkµ − I‖2F ,

and ‖ ·‖F the Frobenius norm. Expanding this cost term using

the trace operator tr{·}

χk,µ = tr
{

(Ak,µU
H
k,µUk−,µ − I)H(Ak,µU

H
k,µUk−,µ − I)

}

+ tr
{

(Ak,µU
H
k,µUk+,µΘk,µ − I)H ·

·(Ak,µU
H
k,µUk+,µΘk,µ − I)

}

(28)

reveals a quadratic expression in Ak,µ. However, the unitary

constraint generally causes this problem to be non-convex [49].

Nevertheless, a gradient approach using matrix-valued differ-

entiation [50], Wirtinger calculus [51], and a suitable initiali-

sation leads to a workable iterative solution [41].

Interestingly, a closed-form solution to the optimisation

problem in (27) exists2. Rewriting χk,µ as

χk,µ = ‖Ak,µU
H
k,µ [Uk−,µ , Uk+,µΘk,µ]− [I , I] ‖2F

2The closed-form solution via a Procustes problem was kindly suggested
by one of the reviewers.



EIGENVALUE DECOMPOSITION OF A PARAHERMITIAN MATRIX: EXTRACTION OF ANALYTIC EIGENVECTORS 7

reveals an orthogonal Procrustes problem [48], which is equiv-

alent to

χk,µ = ‖Ak,µ − (Uk−,µ +Uk+,µΘk,µ)
H
Uk,µ‖2F , (29)

i.e. we want to find a unitary matrix Ak,µ that matches

(Uk−,µ +Uk+,µΘk,µ)
HUk,µ in the least squares sense.

Let the operation Y = Π{X} find the unitary matrix Y

closest to X ∈ C
Ck,µ×Ck,µ in the least squares sense; based

on the SVD X = UΣVH, we have Π{X} = UVH [48].

Therefore,

Ak,µ = Π{(Uk−,µ +Uk+,µΘk,µ)
HUk,µ} (30)

is the solution to (27).

Thus, to solve the subspace alignment problem across

algebraic multiplicities we first obtain Θk,µ as defined in (26),

and thereafter evaluate (30). Once all algebraic multiplicities

within a bin have been addressed, we can assemble

Ak = blockdiag{Ak,1,Ak,2, . . . ,Ak,Mk
}

as the alignment matrix for the kth bin. In practice, we

define an algebraic multiplicity of order C if within a bin we

encounter C eigenvalues that are within a small limit ǫAM of

each other. We then find a small ∆ which can be iteratively

increased if necessary, such that we find new bins Ωk ± ∆
where those C eigenvalues separate by more than several ǫAM.

Example 4: For a parahermitian matrix with known analytic

eigenvalues and eigenvectors, Fig. 3(a) shows the analytic

eigenvalues that can be extracted, e.g., by the method in [36].

The black circles in Fig. 3(a) indicate which of the K = 210

bins contain non-trivial algebraic multiplicities. It can be seen

that there are a further four non-trivial algebraic multiplicities

in the continuous eigenvalues but they do not coincide with

the K = 210 frequency bins. In terms of the algorithm under

discussion, it is the multiplicities at Ω = {0, π, 32π} that are

of interest, where the eigenvectors are not clearly defined.

To measure the smoothness of extracted 1-d eigenspaces, the

Hermitian angle of eigenvectors evolving with Ω are inspected.

We calculate the Hermitian angle w.r.t. a reference point, here

r = q1(e
jΩ)|Ω=0, such that

cosαm(ejΩk) = |qH
m(ejΩk) · r| . (31)

The subspace angle αm(ejΩk) in (31) for qH
m(ejΩk) before

and after performing the above smoothing of 1-d eigenspaces

are shown in Fig. 3(b) and (c), respectively. Note that the

eigenvectors corresponding to the eigenvalues with non-trivial

algebraic multiplicities result in discontinuities in the subspace

angle, while the application of the above method correctly

aligns the 1-d eigenspaces across algebraic multiplicities,

providing a smooth evolution of αm(ejΩk). △
Note that the extraction of smooth 1-d eigenspaces is

indicated by a smooth evolution of the subspace angle in,

e.g., Fig. 3(c). Since (31) takes the absolute value on its r.h.s.,

the subspace angle is blind to phase shifts. Thus with respect

to (20), we have identified Ak, but now need to determine

Ψk in each bin in order to determine an analytic eigenvector

within each smooth 1-d eigenspace. This is the purpose of the

following section.

Fig. 3. For an example of a parahermitian matrix R(z) : C → C3×3, (a)
analytic eigenvalues evaluated in K = 210 DFT bins resulting in 3 algebraic
multiplicities indicated by black markers, and the evolution of subspace angle
in (31) for the corresponding eigenvectors (b) before and (c) after creation of
smooth 1-d eigenspaces, with the ground truth under-laid in grey.

V. EXTRACTION OF ANALYTIC EIGENVECTORS FROM

SMOOTH EIGENSPACES

A. Overview of Approach

To determine the sample points Q(ejΩk) of the desired an-

alytic eigenvectors based on the evaluated Qk in (18) requires

Q(ejΩk) = QkPkAkΨk via (20). With the permutation

matrix Pk given by the analytic eigenvalue extraction [36]

and the alignment matrix Ak calculated in Sec. IV, each

column of Q(ejΩk) matches the corresponding column of

QkPkAk save for a phase shift contained in Ψk. Specifi-

cally, the kth sample point of the mth analytic eigenvector

qk,m, i.e. Q(ejΩk), and the corresponding column uk,m of

QkPkAk are related as qk,m = ejψk,muk,m, whereby Ψk =
diag

{

ejψk,1 , . . . , ejψk,M
}

. Finding Ψk therefore consists of M
decoupled problems. In this section, we representatively focus

on a single such problem, and by dropping subscripts for the

mth eigenvector, want to determine sample points qk of a

vector of analytic functions by phase-aligning given vectors

uk, k = 0, . . . , (K − 1), across all K bins. Thus, within each

of the one-dimensional eigenspaces determined in Sec. IV, we

now aim to establish an analytic eigenvector.

The aim is to select the phase values ψk, k = 0, . . . , (K−1)
such that the sample points qk admit a maximally smooth

interpolation q̂
(K)(ejΩ) •—◦ q̂(K)[n] as per (7), with

q̂
(K)(ejΩ) =

[

Q̂
(K)
1 (ejΩ), . . . , Q̂

(K)
M (ejΩ)

]T

. (32)

If qµ,k and uµ,k are the µth elements of the vectors qk ∈ C
M

and uk ∈ C
M , respectively, then each function Q̂

(K)
µ (ejΩ) is
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obtained by interpolation from the set of points contained in

the vectors q′

µ ∈ C
K and u′

µ ∈ C
K ,

q′

µ = [qµ,0, . . . , qµ,K−1]
T

(33)

u′

µ = [uµ,0, . . . , uµ,K−1]
T
. (34)

These two vectors of samples are related via

q′

µ = diag{a}u′

µ = diag
{

u′

µ

}

a (35)

based on a vector of phase shifts

a =
[

ejψ0 , . . . , ejψK−1
]T

. (36)

Below, we elaborate on maximally smooth interpolations

Q̂
(K)
µ (ejΩ) in Sec. V-B, define the power of derivatives of the

interpolant as a measure of differentiability, and utilise it as a

cost function for optimising the phase shifts in a in Sec. V-C.

B. Maximally Smooth Interpolation

The smoothest possible interpolation for Q̂
(K)
µ (ejΩ) is

given by the Dirichlet interpolation, in the sense that it

provides the shortest possible support in the time domain [36].

In the Fourier domain, the Dirichlet function PK(ejΩ) =
∑K−1
n=0 e−jΩn •—◦ pK [n] given by (6) leads to

Q̂(K)
µ (ejΩ) =

1

K

K−1
∑

k=0

qµ,kPK
(

ej(Ω−2πk/K)
)

(37)

for the smoothest possible interpolant based on the K sample

points contained in q′
µ

. Note that

Q̂(K)
µ (ejΩ) =

1

K

K−1
∑

k=0

qµ,k

K−1
∑

n=0

e−j(Ω−2πk/K)n

=
1

K

K−1
∑

n=0

e−jΩn
K−1
∑

k=0

qµ,ke
j2πnk/K

=
1√
K

eHK(ejΩ) ·WH
K · q′

µ ,

where

eHK(ejΩ) = [1, e−jΩ, . . . , e−jΩ(K−1)] ,

and WK is a K-point DFT matrix scaled by 1/
√
K to be

unitary.

C. Measuring Smoothness of an Eigenvector

Since we are looking for an analytic solution, the in-

terpolation Q̂
(K)
µ (ejΩ), µ = 1, . . . ,M , must be infinitely

differentiable. Similar to finding analytic eigenvalues in [36],

therefore the power in a pth derivative of Q̂
(K)
µ (ejΩ) provides

a suitable metric, ξ
(K)
p ,

ξ(K)
p =

M
∑

µ=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∂pQ̂
(K)
µ (ejΩ)

∂Ωp

∣

∣

∣

∣

∣

2

dΩ . (38)

For the pth derivative of Q̂
(K)
µ (ejΩ), we have that

∂pQ̂
(K)
µ (ejΩ)

∂Ωp
=

1√
K

eHK(ejΩ)Dp
K ·WH

K · q′

µ ,

where

DK = diag{0, −j, ,−2j, . . . , −(K − 1)j} . (39)

Due to Parseval’s theorem [27], [39], [52], for any x ∈ C
K ,

1

2π

∫ 2π

0

∣

∣eHK(ejΩ)x
∣

∣

2
dΩ = xHx .

Therefore, for (38), we obtain

ξ(K)
p =

1

K

M
∑

µ=1

∥

∥D
p
K ·WH

K · q′

µ

∥

∥

2

2
.

Using (35), this cost can be tied to the phase vector a in (36),

ξ(K)
p = aHCK,pa , (40)

where

CK,p =
M
∑

µ=1

diag
{

u′H
µ

}

WKD
2p
KWH

Kdiag
{

u′

µ

}

.

Thus the pth derivative, and therefore the smoothness, of the

vector of the smoothest possible interpolants in (32) can be

expressed in terms of the vector a of phase shifts that we

would like to optimise.

D. Optimisation Problem

Based on the above analysis, we need to solve the following

optimisation problem

min
a

aHCK,pa

s.t. |ak| = 1, ∀k = 0, . . . , (K − 1) , (41)

where ak is the kth element of a. Even though the cost term

is quadratic in a, the condition is awkward.

To understand the type of optimisation problem, note that,

using (35), (40) can be reformulated as ξ
(K)
p = xHCx, where

x is the concatenation of the M vectors q′

µ, µ = 1, . . . ,M ,

and C = CK,p⊗IM , with ⊗ denoting the Kronecker product.

We need to include a unit norm constraint on the eigenvector

qk via some matrix Fk as xHFkx = 1. Additionally, qk must

be orthogonal to the remaining (M − 1) eigenvectors in the

kth bin. This can be achieved by appropriately embedding

the latter in a matrix G such that Gx = 0. The resulting

formulation

min
x

xHCx

s.t. xHFkx− 1 = 0, k = 0, . . . , (K − 1)

xHGHGx = 0

represents a quadratically constrained quadratic programming

(QCQP) problem [53], [54], which is non-convex and even for

semi-definite matrices C, Fk, and GHG NP hard.

QCQP problems can be solved via a linearisation in an

inflated parameter space — typically squaring the number of

parameters — subject to a rank one constraint. A popular

solution approach is semidefinite relaxation [54], which sup-

presses the rank one constraint, thus resulting in a convex

optimisation problem for which various solvers exist [55].

Since here the number of frequency bins could be rather large,
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operating with K2 optimisation parameters is not feasible. We

therefore explore a different approach below, which exploits

some particular properties of our cost function.

E. Cost Function Properties

To incorporate the constraint into the cost function of (41),

we define a vector of phases

ψT = [ψ0, ψ1, . . . , ψK−1] .

Using (36), this allows to reformulate (41) as

min
ψ

aHCK,pa . (42)

The gradient of (42) can be determined via the operator

∂

∂ψ
=
∂aH

∂ψ

∂

∂a∗
+
∂aT

∂ψ

∂

∂a
(43)

= −j diag{a∗} ∂

∂a∗
+ j diag{a} ∂

∂a
,

where diag{a} is a diagonal matrix containing the elements

of the vector a along its diagonal. Then, noting that CK,p =
CH
K,p,

∂ξ
(K)
p

∂ψ
= −j diag{a∗}CK,pa + j diag{a}CH

K,pa
∗

= 2Im{diag{a∗}CK,pa} . (44)

With the gradient defined, we can make the following state-

ment about some of the stationary points of this cost function:

Theorem 5 (Stationary points): If the time-domain support

of an eigenvector is limited, then some stationary points of the

cost function to be minimised in (42) are closely related by a

small shift κ ∈ Z applied to the time domain eigenvector.

Proof. We assume that for a phase vector ψmin with corre-

sponding amin, according to (44), we have

∂ξ
(K)
p (ψmin)

∂ψ
= 2Im{diag{a∗min}CK,pamin} = 0 .

A shift by κ ∈ Z samples in the time domain is equivalent to

a phase shift applied to amin, such that

aκ = diag
{

[1, ej
2π
K
κ, . . . , ej

2π
K

(K−1)κ]
}

amin

= diag{wκ}amin . (45)

For the gradient, we obtain

∂ξ
(K)
p (ψκ)

∂ψ
= 2Im{diag{a∗κ}CK,paκ}

= 2Im
{

diag{a∗min}C
(κ)
K,pamin

}

,

where the modified term C
(κ)
K,p is given by

C
(κ)
K,p = diag{w∗

κ}
∑

µ

diag
{

u′∗

µ

}

WKD
2p
KWH

K

· diag
{

u′

µ

}

diag{wκ}
=

∑

µ

diag
{

u′∗

µ

}

diag{w∗

κ}WKD
2p
KWH

K

· diag{wκ} diag
{

u′

µ

}

. (46)

Note that

diag{w∗

κ}WK = WK

[

0 IK−κ

Iκ 0

]

.

Therefore, (46) simplifies to

C
(κ)
K,p =

∑

µ

diag
{

u′∗

µ

}

WKD̃
2p
KWH

Kdiag
{

u′

µ

}

with

D̃
2p
K = diag{κ, . . . , (K − 1), 0, . . . , (κ− 1)}2p . (47)

Note that WH
Kdiag

{

u′

µ

}

contains the time domain coefficients

equivalent to the sample points in u′

µ along its diagonal. If the

time domain support is limited to the first L coefficients with

L < K − κ, then comparing (39) with (47) and for a small

value κ we have

lim
k→∞

k2p

(k + κ)2p
= 1 . (48)

Thus, the weighting applied by D̃
2p
K is approximately propor-

tionate to that applied by D
2p
K , and therefore for the gradient

we obtain

∂ξ
(K)
p (ψκ)

∂ψ
≈ 2Im{diag{a∗min}CK,pamin} = 0 .

The deviation from proportionality for small k in (48) means

that a phase shift by a small κ ∈ Z only leads approximately

to a new stationary point. �

Example 5: In Example 4, the ground truth analytic Q(z)
has a length of L = 6. We here investigate the cost function

for K = 16 bins of its first eigenvector based on the power in

its p = 2, 3, 4, 5th derivative. If the M = 3 components u′

µ,

µ = 1, 2, 3 in (34) match the analytic solution, then ideally

ψk = 0, k = 0, . . . , (K − 1). We now select ψk = 2πκk/K,

k = 0, . . . , (K−1), with κ ∈ R. Fig. 4(a) shows a cut through

the cost function ξ
(16)
2 for κ ∈ [0, 16]. Note that for small

integer values κ ∈ Z, the cost function exhibits deep notches.

The gradient of the cost function in Fig. 4(b) shows that for

small κ ∈ Z, we approximately encounter stationary points,

which together with the evidence of Fig. 4(a) indicates that

these stationary points are minima of the cost function. Note

that as p increases, the notches in the cost function and the

gradient norm deepen, but do not change location.

Two examples for interpolations Q̂
(16)
µ (ejΩ) according to

(37) based on κ = {0, 1} are shown in Fig. 5. For κ =
0 in Fig. 5(a), we obtain the lowest order eigenvector with

maximum smoothness. In comparison, Fig. 5(b) illustrates the

case κ = 1, which is modulated w.r.t. the interpolation for

κ = 0, and hence oscillates faster and is less smooth. However,

it is also an analytic solution (with the time domain shifted

and now of length 7) and hence represents a local minimum

for the cost function. △

F. Phase Smoothing Algorithm

Based on Theorem 5, we combine an iterative gradient

search with a phase shift approach. For the iterative gradient

search, in the ith iteration the phase vector ψ[i] is updated as

ψ[i+ 1] = ψ[i]− ρH−1 ∂ξ
(K)
p (ψ[i])

∂ψ
, (49)
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Fig. 4. (a) Cost function ξ
(16)
p , and (b) norm of its gradient for a single

eigenvector with an applied phase shift ψk = 2πκk/16 with κ ∈ [0, 16].
The curves for each p = 2, 3, 4, 5 are normalised with unity as maximum.

Im
{

Q̂
(
1
6
)

µ
(e

jΩ
)}

Re
{

Q̂(16)
µ (ejΩ)

}

Re
{

Q̂(16)
µ (ejΩ)

}Ω Ω

(a) (b)

Fig. 5. Interpolations Q̂
(16)
µ (ejΩ) for µ = 1, 2, 3 in blue, red, and green,

respectively, for (a) κ = 0 and (b) κ = 1. The markers show the values of
q
′

µ in (35).

with the Hessian matrix [56]

H = 2Re{diag{a∗}CK,pdiag{a} − diag{diag{a∗}CK,pa}} .
This Gauss-Newton algorithm will converge to a stationary

point of the cost function. Once sufficiently converged, a

number of phase shifts are applied, and for each of these

the above gradient search is performed to move to a related

stationary point. For the stationary point with the smallest

cost function value, again phase shifted points can be used to

identify potential related stationary points, and the procedure

is repeated until the cost function cannot be further minimised

by gradient searches and shifts. This algorithm is summarised

in Algorithm 2, with SP abbreviating ‘stationary point’.

Theorem 6 (Convergence of phase smoothing algorithm):

With a suitable step size ρ and a DFT length K that exceeds

the support of the analytic solution, the phase smoothing

Algorithm 2 will converge to the stationary point, within a

set S , with the smallest cost function ξ
(K)
p in (41). The set S

consists of a collection of stationary points near phase shifted

versions of each other.

Proof. For a suitable step size ρ, the Gauss-Newton scheme

will converge to a stationary point — this could be a (local)

minimum or a saddle point. If a saddle point is encountered,

the fact that phase shifted versions only approximately co-

Algorithm 2: Phase Smoothing

1: For some initialisation, find an SP aSP using (49);

2: repeat

3: set a′SP = aSP;

4: from aSP, generate aκ, κ = 0, . . . , (K − 1) via (45);

5: for every aκ find an SP aSP,κ using (49);

6: find aSP = argminκ ξ
(K)
p (aSP,κ);

7: until ‖aSP − a′SP‖2 < ǫ.

10
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10
5
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Fig. 6. Cost function evolution in dependency of the iteration index i and
the derivative order p of Algorithm 2.

incide with new stationary points means that the algorithm

cannot get repeatedly trapped in a saddle point. For a DFT

length greater than the support of the analytic solution, The-

orem 5 applies to any stationary point. This guarantees that

through phase shifts we can re-initialise the gradient search to

reach a solution with a smaller cost function value, until the

minimum within the set of phase-related stationary points is

found. �

Example 6: Learning curves for (49) for determining the

phase smoothing of the eigenvectors in Example 3 are shown

in Fig. 6. The conditioning of the cost function worsens with

an increase in the derivative order p, and significantly benefits

from the inclusion of the inverse Hessian in (49) compared to

a standard gradient search with H = I. △

VI. ADJUSTMENT OF APPROXIMATION ORDER

We now aim to determine criteria to identify whether a

phase-smoothed solution in K bins yields a sufficient ap-

proximation. For this, we investigate two criteria — (i) a

loss in paraunitarity, and (ii) a reconstruction error — before

commenting on the overall convergence.

A. Loss of Paraunitarity

Based on an EVD in each of K bins, the matrices Qk in

(16) are unitary. After the extraction of 1d eigenspaces and

phase smoothing, the resulting approximation Q̂(K)(z) will

therefore also be unitary for z = ej2πk/K , k = 0, . . . , (K−1).
However, generally E (K)(ejΩ) = Q̂(K)(ejΩ)Q̂(K),H(ejΩ) −
I = 0 ∀Ω ∈ R cannot be assumed unless the approximation

order K is sufficiently large. We therefore assess

ζPU =
1

2π

∫ 2π

0

∥

∥

∥
E (K)(ejΩ)

∥

∥

∥

2

F
dΩ (50)



EIGENVALUE DECOMPOSITION OF A PARAHERMITIAN MATRIX: EXTRACTION OF ANALYTIC EIGENVECTORS 11

to measure how well paraunitarity of an interpolation is

satisfied. For the evaluation of (50), Parseval’s theorem permits

to assess the energy in E(K)[n] ◦—• E (K)(ejΩ). In prac-

tice, instead of determining E(K)[n] via a K-point IDFT

from the sample points Qk, we perform a zero-padded

2K-IDFT. This effectively performs a two-fold Dirichlet

interpolation of E (K)(ejΩ) and ensures that the product

Q̂(K)(ejΩ)Q̂(K),H(ejΩ) — equivalent to a cyclic convolution

in the time domain — does not cause any time-domain aliasing

due to cyclic wrap-around. Thus the approximation according

to (7) in Theorem 4 applies.

Lemma 1 (Sufficiency of Loss of Paraunitarity): If for a

small threshold ǫPU, ζPU > ǫPU, then the approximation order

K is too small.

Proof. We know that an analytic paraunitary solution exists.

For (50), a two-fold Dirichlet interpolation of the phase-

smoothed result is evaluated. If for some frequency, a devi-

ation of Q̂(K)(ejΩ) from orthonormality is found, then the

interpolation is incorrect, and the sample points on which

interpolation is based are not sufficiently closely spaced.

Therefore, ζPU > ǫPU is sufficient to indicate that the DFT

size K, which also represents the approximation order, is too

small. �

Note that ζPU ≤ ǫPU does not guarantee that a suitable K
has been found. Hence a second criterion is required.

B. Reconstruction Error

With the approximation Q̂(K)(z), as well as the extracted

analytic eigenvalues Λ̂(z) using [36], we can reconstruct

R̂(K)[τ ] ◦—• Q̂(K)(z)Λ̂(z)Q̂(K),P(z), and determine

ζR =
∑

τ

∥

∥

∥
R[τ ]− R̂(K)[τ ]

∥

∥

∥

2

F
(51)

as a reconstruction error. Provided that the eigenvalue

from [36] is sufficiently accurate, we can state:

Lemma 2 (Reconstruction Error): If and only if for a small

threshold ǫR, ζR < ǫR, then the approximation order K is

sufficient.

Proof. If the approximation is sufficiently good and Q̂(K)(z)
is close to Q(z), then ζR must be small. For the ‘only if’ part,

if ζR is small, then Q̂(K)(z) behaves almost indistinguishably

from Q(z) . Due to the uniqueness of the parahermitian matrix

EVD [14], [15], and the uniqueness of analytic functions [44],

in fact Q̂(K)(z) must closely approximate the analytic eigen-

vectors save of their phase ambiguity. �

C. Order Increase and Overall Convergence

The quantities defined in Secs. VI-A and VI-B now enable a

criterion for the loop in Algorithm 1. There, we will iterate as

long as ζPU > ǫPU for some threshold ǫPU. Once ζPU ≤ ǫPU,

because loss of paraunitarity is only sufficient, we still iterate

as long as ζR > ǫR, with some threshold ǫR.

Theorem 7 (Convergence to Analytic Eigenvectors): Algo-

rithm 1 with the prescribed loop criterion and suitable thresh-

olds ǫPU and ǫR can converge close to analytic eigenvectors.

Proof. If an approximation order K is too short to extract

analytic eigenvalues, likely both ζPU and ζR, but at the very

Fig. 7. Hermitian angles for the extracted eigenvectors using (a) the proposed
algorithm and (b) the SBR2 algorithm [7], [17]. The ground truth angles are
under-laid in grey. The lower plot highlights the frequencies Ω = {π

4
, 5π

4
},

where algebraic multiplicities enforce a permutation as dash-dotted lines.

least the latter, will not fall below their thresholds. Thus,

Algorithm 1 will increase K. Since analytic eigenvalues exist

and decay at least exponentially [14], [15], at some point

the truncation error will be sufficient small, such that the

support of the analytic eigenvalues is shorter than K. Thus,

Theorem 6 then guarantees to yield smooth eigenvectors, save

of some arbitrary phase. Note that criterion ζPU is independent

of any previously extracted eigenvalues via [36], and hence

does not depend on the accuracy of those eigenvalues. The

accuracy of the eigenvalues will impact on the necessary and

sufficient criterion ζR, and thus potentially limit the achievable

approximation error for the eigenvectors. Since it is possible

to extract analytic eigenvalues with arbitrarily small approx-

imation errors [36], the only limitation for approximation

errors on the eigenvectors are the approximation order K,

and Theorem 6 potentially returning a stationary point with

an insufficient smoothness. �

In practice, for all simulations run to date with known

ground truth, Algorithm 2 has in fact found the global min-

imum, hence allowing Algorithm 1 to converge arbitrarily

closely to the analytic eigenvectors.

VII. SIMULATIONS AND RESULTS

A. Numerical Example

As an initial numerical example, we utilise R(z) : C →
C

2×2 from Example 1. The ground truth eigenvectors have

a minimum order of 1 for a phase term ψm(z) = 1 in (5).

The Hermitian angles αm(ejΩ) for the eigenvectors qm(ejΩ)
relative to q1(e

j0) as defined in (31) are shown in Fig. 7(a),

together with the Hermitian angles for the extracted eigenvec-

tors using the proposed algorithm, which are also of order 1

and match the ground truth.

When using the SBR2 algorithm [7], [17], the approximated

eigenvalues are guaranteed to be spectrally majorised [23], and

as a result, the extracted eigenvectors need to approximate

discontinuities at Ω = π
4 and Ω = 5π

4 . Fig. 7(b) shows the
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Fig. 8. Analytic eigenvalues for one ensemble probe with L = 12, with
the ground truth λm(ejΩ) underlaid in grey and the extracted eigenvalues

λ̂m(ejΩ) according to [36] in colour.

progression of the Hermitian angles of these estimated eigen-

vectors, which require an approximation order of 87 — almost

two orders of magnitude above the order of the extracted

analytic eigenvectors, and with a significant reconstruction

error compared to the results using the proposed algorithm.

B. Ensemble Test

In order to form a more exhaustive assessment of the pro-

posed algorithm against benchmarks with proven convergence

such as SBR2 [7], [17] and SMD [21], we use the model

outlined in (2) and Fig. 2, to generate an ensemble of CSD

matrices R(z) : C → C
4×4, where the innovation filters

Gℓ(z) •—◦ gℓ[n], ℓ = 1, . . . , 4 are of order L ∈ {1, 2, . . . , 12}.
The L + 1 coefficients of gℓ[n] for every ensemble probe

are uncorrelated and drawn from a zero mean unit vari-

ance complex Gaussian distribution, and normalised such that
∑

n |gℓ[n]|2 = 1. The convolutive mixing matrices H (z), also

of order L, are generated from a concatenation of L elementary

paraunitary matrices [1],

H (z) =

L
∏

i=1

(

I+ (z−1 − 1)viv
H
i

)

, (52)

whereby each vector vi has its uncorrelated coefficients drawn

from a zero mean unit variance complex Gaussian distribution,

but is normalised such that ‖vi‖22 = 1. Because of the result-

ing paraunitarity of H (z), (2) directly reflects the analytic

parahermitian EVD with the lowest order Q(z) = H (z), and

Λ(z) = G(z)GP(z). Using this model, for each value of L,

an ensemble of 500 randomised CSD matrices R(z) of order

4L is generated for every value of L. As an example for one

ensemble probe, Fig. 8 characterises the eigenvalues on the

unit circle, Λ(ejΩ), for L = 12.

When factorising R(z) with the various methods, in the

case of SBR2 and SMD, internal trimming in the algorithm

curbs the growth in polynomial order as iterations progress;

additionally, the order of the extracted paraunitary matrices is

optimised using a shift-corrected truncation described in [46],

which removes the potential time shift encountered in (5).

The algorithms terminate after 300 or 600 iterations for SMD

and SBR2, respectively, or if the off-diagonal energy has

Fig. 9. Ensemble results showing (a) the achievable order, (b) reconstruction
error, and (c) execution time for the proposed eigenvector extraction vs the
performance of SBR2 [7], [17] and SMD [21] algorithms.

dropped below 10−4 of the total energy in R(z). The pro-

posed algorithm operates with a paraunitarity error threshold

ǫPU = 10−5; although (50) could not be shown to represent

a necessary convergence measure, in practice across 6000

ensemble simulations, it was sufficient to check ζPU < ǫPU

alone in order to achieve a reconstruction ζR < 10−4.

Fig. 9(a) shows the order of the estimated eigenvectors, in

Q̂(z), versus that of the ground truth eigenvalues generated

via (52). Additionally, Fig. 9(b) and (c) show the normalised

reconstruction error ζR,n = ζR/
∑

τ ‖R[τ ]‖2F, whereby ζR is

normalised for comparison across an ensemble of different

CSD matrices, and the execution time of the algorithms.

It is evident from Fig. 9 that the proposed analytic eigen-

value extraction achieves the task with an approximation order

close to the ground truth, and with a small reconstruction error.

In contrast, because in many cases the ground truth eigenvalues

are not spectrally majorised, the spectrally majorised solution

targeted by the SBR2 and SMD algorithms requires signifi-

cantly higher approximation orders in Fig. 9(a). Subsequently,

the generally insufficient approximation of a discontinuity by

a polynomial leads to poorer reconstruction errors in Fig. 9(b).

The low order achieved by the proposed algorithm therefore

also means a significant reduction in execution time as shown

in Fig. 9(c). The latter clearly shows the execution time is

affected more by the required DFT length K — a power of 2

— than the order of the ground truth Q(z).
For the results in Fig. 9, the analytic eigenvalue extraction

was based on the exact eigenvalues. We have also estimated

the analytic eigenvalues using the algorithm in [36] with
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Fig. 10. Eigenvalues for one ensemble probe with L = 12, with the analytic
ground truth λm(ejΩ) underlaid in grey and the approximately spectrally

majorised solution d̂m(ejΩ) obtained by the SMD algorithm [21] in colour.

Fig. 11. Evolution of the Hermitian angles (31) of 1-d subspaces for one
ensemble probe for L = 12, with the ground truth for Q(z) underlaid in
grey; the coloured curves show the Hermitian angles for (a) the eigenvectors

Û (z) obtained by the SMD algorithm [21], and (b) the extracted analytic

eigenvectors Q̂(z) using the proposed algorithm.

a predefined precision of 10−5, followed by the proposed

analytic eigenvector extraction. Because of the high accuracy

of the extracted eigenvalues, there is no significant difference

to the results shown in Fig. 9, with the orders remaining the

same, and achievable values for the normalised reconstruction

error ζR,n within 1.7% of those with perfect knowledge of the

analytic eigenvalues.

To exemplify the performance difference between the pro-

posed analytic eigenvector extraction and the SBR2/SMD

algorithms, for the ensemble probe characteristed in Fig. 8,

Fig. 10 shows the eigenvalues d̂µ(e
jΩ) extracted by the SMD

algorithm, which generally satisfy spectral majorisation. The

resulting approximation of the permuted ground truth analytic

eigenvalues leads to the estimated eigenvectors having to

approximate piecewise analytic, discontinuous functions, as

evident from the evolution of the Hermitian angles of the

estimated eigenvectors in Fig. 11(a). There, at the algebraic

multiplicities of the eigenvalues shown in Fig. 10, the esti-

mated eigenvectors switch between ground truth eigenvectors,

underlaid in grey occur, resulting in large associated time do-

main support. In contrast, the estimated analytic eigenvectors

using the proposed algorithm in Fig. 11(b) follow the ground

truth closely, resulting in smooth eigenspaces that permit much

lower order approximations than those obtainable by the SMD-

estimated functions in Fig. 11(a).

VIII. CONCLUSIONS

We have proposed an analytic eigenvector extraction algo-

rithm for parahermitian matrices. The method relies on the

previous extraction of analytic eigenvalues via [36], and then

iteratively increases the DFT length and hence approximation

order until a suitably close approximation is found. In each

iteration, the method extracts smooth 1-d eigenspaces across

frequency bins, which need to be suitably continued across

algebraic multiplicites. This is followed by a phase smoothing

operation, which identifies eigenvectors of short order within

every 1-d eigenspace. The approach demonstrates significantly

enhanced performance over state-of-the-art algorithms, such

as SBR2 and SMD. While we have not proven its necessity,

the error in paraunitarity seems to be sufficient, across all

our simulations, as a metric to decide when to terminate the

algorithm, and has the benefit of being independent of the

accuracy with which analytic eigenvalues have been extracted.

While some applications such as subband coding [7], [18]

rely on spectral majorisation of the eigenvalues, subspace-

based applications such as those required for broadband beam-

forming [3] or source separation [5] benefit from both the

accurate extraction of subspaces and the computational savings

that result from the significantly lower polynomial order of the

analytic eigenvectors obtainable with [36] and the proposed

approach.
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