arXiv:2208.08867v2 [eess.SP] 11 May 2023

A Unified Algorithmic Framework for Distributed

Adaptive Signal and Feature Fusion Problems
— Part I: Algorithm Derivation

Cem Ates Musluoglu, and Alexander Bertrand, Senior Member, IEEE

Abstract—In this paper, we describe a general algorithmic
framework for solving linear signal or feature fusion optimization
problems in a distributed setting, for example in a wireless
sensor network (WSN). These problems require linearly com-
bining the observed signals (or features thereof) collected at
the various sensor nodes to satisfy a pre-defined optimization
criterion. The framework covers several classical spatial filtering
problems, including minimum variance beamformers, multi-
channel Wiener filters, principal component analysis, canonical
correlation analysis, (generalized) eigenvalue problems, etc. The
proposed distributed adaptive signal fusion (DASF) algorithm
is an iterative method that solves these types of problems by
allowing each node to share a linearly compressed version of
the local sensor signal observations with its neighbors to reduce
the energy and bandwidth requirements of the network. We first
discuss the case of fully-connected networks and then extend
the analysis to more general network topologies. The general
DASF algorithm is shown to have several existing distributed
algorithms from the literature as a special case, while at the
same time allowing to solve new distributed problems as well
with guaranteed convergence and optimality. This paper focuses
on the algorithm derivation of the DASF framework along with
simulations demonstrating its performance. A technical analysis
along with convergence conditions and proofs are provided in a
companion paper.

Index Terms—Distributed optimization, distributed signal pro-
cessing, spatial filtering, signal fusion, feature fusion, wireless
sensor networks.

I. INTRODUCTION

IRELESS Sensor Networks (WSNs) consist of a wire-
less network of sensor nodes, which collect, process,
and share data in order to solve a specific signal processing
task in a collaborative fashion. Such WSNs allow to easily ac-
quire data at multiple locations simultaneously, which is useful
in several application domains including health monitoring [2],

Copyright ©2023 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or pro-
motional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802895). The authors also acknowledge the
financial support of the FWO (Research Foundation Flanders) for project
GO81722N, and the Flemish Government (Al Research Program).

C.A. Musluoglu and A. Bertrand are with KU Leuven, Department of
Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal
Processing and Data Analytics, Kasteelpark Arenberg 10, box 2446, 3001
Leuven, Belgium and with Leuven.Al - KU Leuven institute for Al. e-mail:
cemates.musluoglu, alexander.bertrand @esat.kuleuven.be

A companion paper submitted together with this paper is provided in [1].

Digital Object Identifier: 10.1109/TSP.2023.3275272

Dol = > Xiye(®)]?
t k

Time t
X7 XT X7 y1(t) d(t)
7 i y2(t) ~ [
xT ya(t)
Nodes k
> ldu(t) = X yr()l?
k t
Time ¢
—
YT [dy()
T[] ~ I da()
yr | s T dy()

Nodes k

Fig. 1. Comparison of the 3—node problem setting of the DSFO (top) and
the traditional consensus-type setting (bottom) with corresponding example
objective functions for the case of least squares estimation. In the consensus
setting, note that the objective is per-node separable and has a shared
optimization variable X which is assumed to be the same across all nodes
(which is why there is no node subscript k).

[3], acoustics [4], [5], structural monitoring [6], environmental
studies [7], [8], and many others [9], [10].

In many cases, the aim is to find or estimate a common
signal, filter or a set of parameters that satisfy a pre-defined
optimality criterion involving the observation data from all the
nodes [11], [12]. Various “work horse” strategies and frame-
works have been described previously to solve such problems
in a distributed fashion. Well-known examples are consensus
[13], [14], incremental strategies [15], [16], diffusion [17]-
[19], gossip [20], [21], or the alternating direction method of
multipliers [22], [23].

In order to achieve a distributed implementation, most of
these methods rely on the separability of the global cost
function f as a sum of local functions fi: f(X) = >, fr(X),
where fj depends only on the local data of node k, and where
X is a shared optimization variable across all nodes. In this
case, we say that f is per-node separable. However, there
exist various cases where this property is not satisfied, e.g.,
when optimizing a spatial filter X that linearly combines the
signals from different nodes. Classical examples are adaptive

beamformers [24], [25], multi-channel Wiener filtering [26],
[27], principal component analysis, filters based on (gener-
alized) eigenvectors of spatial covariance matrices [28], [29],
etc. In these problems, the aim is to find a network-wide linear
spatial filter X € RM*®@ @Q < M to apply to the network-
wide M —channel time signal y(¢) € RM containing all sensor
channels' from all nodes in the network, where ¢ denotes the
time or sample index. The filter X is typically designed to
exploit the spatial correlation across the different nodes to
optimize some network-wide objective function in the form
f(XTy(t)), with T the transpose operator. In this case, the
function f itself is not per-node separable, but the argument
is, ie., f(XTy(t)) = f(O, XLyr(t)). If y is interpreted as
a feature vector, this type of separation of the observed data
is also known as feature partitioning or distributed features
[30]-[35]. In this paper, we refer to such cases as a distributed
signal fusion optimization (DSFO) problem to emphasize that
the framework also applies to traditional array processing
problems such as beamforming or spatial filtering. A visual
example that illustrates the conceptual difference between both
aforementioned types of data separation, i.e., separability of
the cost function versus separability of the argument, is given
in Figure 1 for the case of least squares estimation.

A commonly encountered strategy to solve DSFO problems
is to compute all inner products involving the data vector y via
a standard consensus-type subroutine that performs in-network
averaging or summation [36], [37], or by artificially rewriting
the problem as a consensus problem (e.g., by treating the filter
output d itself as a shared (consensus) optimization variable
in the example of Figure 1). However, this strategy typically
results in a distributed algorithm with nested iterative loops
for each sample time ¢, each in itself requiring a substantial
number of communication rounds. Such an iterative distributed
subroutine typically has to be executed from scratch for each
new sample observation at the sensors. This leads to a large
communication burden, which also scales poorly with network
size, i.e., a larger network increases the per node transmission
cost in these subroutines. In many cases, the use of such
consensus-type subroutines even leads to a setting where each
node shares more data than what it actually collects at its
Sensors.

Based on the block partitioning of the DSFO problem in
Figure 1, a tempting alternative strategy could be to use a
nonlinear Gauss-Seidel method [12], [38], or so-called block
coordinate descent algorithms. These are iterative algorithms
in which a block of variables in X is optimized while keeping
all others fixed, and where the fixed blocks change across
iterations. By selecting the blocks of X according to the nodes
(i.e., the Xj’s in Figure 1), each iteration of the nonlinear
Gauss-Seidel method can then be “outsourced” to the node that
is responsible for optimizing the corresponding coordinates,
which makes it a better fit for the class of problems we
are interested in. However, the convergence results for such

In this paper, we adopt the terminology from the field of sensor arrays
and multi-channel signal processing although the results are also applicable
in a more general context, where y can be viewed as a generic feature vector
in an M —dimensional feature space where distributed agents each observe a
part of the feature vector.

nonlinear Gauss-Seidel methods often require conditions such
as convexity assumptions or constraint sets that can be written
as Cartesian products, where each factor corresponds to a
constraint set for the block X [12], [38], which would not
be satisfied in many spatial filtering optimization problems.
Moreover, when optimizing the selected block of coordinates,
forcing the other ones to remain constant leads to a new
optimization problem that is often different from the original
problem, and which can be significantly more difficult to solve.

In this paper, we introduce a generic distributed algorithm,
referred to as the Distributed Adaptive Signal Fusion (DASF)
algorithm, which can be used to solve generic linear DSFO
problems. In each iteration of the algorithm, a node within
the network is selected to receive compressed data from other
nodes and to locally solve a lower-dimensional version of
the original network-wide problem. A convenient property
is that an instance of the same algorithm that solves the
centralized network-wide optimization problem can be used to
also solve the local (compressed) problems at each iteration.
The compression allows to reduce bandwidth and energy usage
in the network, while we still achieve convergence to the
centralized solution. Moreover, since the locally constructed
problem is of lower dimension, the computational cost re-
quired to solve it is also smaller compared to solving the
network-wide problem. This makes the proposed algorithm
also attractive in fully deterministic distributed settings where
computational or memory resources are limited.

Various existing distributed algorithms can be shown to
be special cases of our proposed DASF algorithm, including
distributed algorithms for generalized eigenvalue decomposi-
tion (GEVD) [39], spatial principal component analysis (PCA)
[40], least squares (LS), minimum mean square error (MMSE)
or multi-channel Wiener filtering (MWF) [41], [42], linearly
constrained minimum variance (LCMV) beamforming [5],
[43], [44], canonical correlation analysis (CCA) [45] and
generalized CCA [46]. However, each of these algorithms
was previously treated separately, with convergence proofs that
were tailored to these specific cases. Our aim is to thoroughly
define a unified algorithmic framework that contains these
already existing algorithms but also extends to new DSFO
problems. We also provide a toolbox available both in Matlab
and Python to generate and validate new distributed algorithms
within this framework [47].

The outline of this paper is as follows. In Section II, we
formally define the framework setting and the assumptions
used throughout this paper. We then propose the DASF algo-
rithm for fully-connected networks in Section III, and later
generalize it to general topologies in Section IV. Finally,
we demonstrate the performance of the algorithm in a few
new DSFO examples in Section V, thereby demonstrating the
generalization properties of the DASF framework. We refer
readers to the companion paper [1] for detailed analyses and
proofs.

Notation: Uppercase letters are used to represent matrices
and sets, the latter in calligraphic script, while scalars, scalar-
valued functions and vectors are represented by lowercase
letters, the latter in bold. We use the notation Xf; to refer to
a certain mathematical object x (such as a matrix, set, etc.)

at node ¢ and iteration i. The notation (x*),_, refers to a
sequence of elements ' over every index i in the ordered
index set Z. If it is clear from the context (often in the case
where 7 is over all natural numbers), we omit the index set 7
and simply write (x*),. A similar notation {x}cz is used for
non-ordered sets. Additionally, I denotes the Q) x () identity
matrix, E[-] the expectation operator, tr(-) the trace operator,
BlkDiag (-) the operator that creates a block-diagonal matrix
from its arguments and | - | the cardinality of a set.

II. PROBLEM DESCRIPTION

Consider a set of K nodes, where £ = {1,..., K} denotes
the set of nodes. The nodes are interconnected in a connected
graph where an edge between nodes k and g implies that these
nodes can share data (e.g., via a wireless link). The set of
neighbors of node k, i.e., the nodes that are connected to node
k, is denoted by N}, (which excludes node k itself).

Each node k£ € K measures samples of a local Mj-channel
signal y;(t) € RM~ at every time instance t. We define the
network-wide M -channel signal y as

y(t) =yl @), ... ye®]", (1)

with M = 3", M. Ally,’s, and therefore also y, are assumed
to be (short-term) stationary and ergodic stochastic signals,
such that their statistical properties can be properly estimated
given a sufficiently large number of samples at different time
instances.

The different channels of y can be spatially correlated
across all nodes in the network, and we do not assume this
correlation structure to be known. In a centralized setting,
the channels of y can be linearly combined (fused) using a
network-wide spatial filter X € RM*® with Q output signals
(with @ < M), where we typically aim to find an optimal X
such that the filter outputs X7y € R satisfy some optimality
conditions. Typical examples of such filter design problems are
listed in Table I, which can all be viewed as special cases of
a general class of problems that will be formalized in the next
subsection, which we refer to as (distributed) signal fusion
optimization ((D)SFO) problems. This table is not exhaustive
and various other signal fusion problems fit this framework
(see e.g. [48], [49]). Note that all of these examples require
knowledge of the full correlation matrix Ry, = Ely(t)y T (t)],
which can only be estimated in a centralized setting where
the data from all the nodes are collected in a single fusion
center, allowing to estimate the correlation between any two
channel pairs of y. One of the key strengths of our proposed
DASF framework is that it avoids such a data centralization
(in the sense that there is never a node which has access to
all the channels of y, i.e., Ry, cannot be constructed), while
still achieving the solution of the centralized problem.

Additionally, we consider inner products of the form X TR,
where B € RM*L is a deterministic (i.e., fixed and time-
independent) matrix. The LCMV example in Table I is an
example where such an inner product with a deterministic
matrix appears. Similar to y in (1), this term is defined as

B:[Bfa"'vBIT;]T7)

TABLE I
(D)SFO PROBLEMS THAT ARE SPECIAL CASES OF (3)

y, v and d are multi-variate stochastic processes (signals). TRO is the trace
ratio optimization problem and RR represents the ridge regression method. In
the CCA case, the minimization is done with respect to X and W.

Problem Cos;ifg?;tii;n to Constraints
LCMV [5],
)] E[IXTy (0] XTB=H
PCA [40] —E[|XTy®)]?] XTX =1Iq
GEVD [39] ~E[|XTy(®)|[?] EXTv(t)vT(t)X] = Iq
T 2
TRO [50] — SOl L XTX = I
LS/MMSE
/MWEF [41], | E[||d(t) — XTy(t)|[?] X € RMxQ
[42]
RR E[|ld(t) - XTy(@®)|?] w(XTX) <a?
_ T T EXTyt)yT (#)X] = Iq
CCA [45] Elu(XTy(t)vT ()W) BTN VT (OW] = T

where we only require that By is known to node k. We note
that the argument B allows a deterministic representation of
y in which multiple time samples of y are stored in the
columns of B. Nevertheless, we make a distinction between
both expressions to emphasize time-adaptive properties of the
algorithm (see Section II-B).

It is noted that some of the problems in Table I involve
a second signal v : v(t) = [vI(t),...,vE(t)]T collected
by the WSN (e.g., in the case of GEVD and CCA), and
possibly another filter W to be optimized (e.g., in the case
of CCA). This additional signal could either be derived from
the same set of sensors (e.g., a time-lagged version of y as
in [45], or observing y during two different regimes as in
[39], [51]), or they could come from different types of sensors
with which the nodes are equipped. In the remaining parts
of this paper, we will typically consider the case of a single
filter X, a single observed (multi-channel) sensor signal y
and a single deterministic parameter B, yet all results can be
easily generalized to multiple signals, parameters or filters.
This generalization will be briefly addressed at the end of the
next subsection and in Section III-C.

It is important to note here that every other quantity of the
problem that is not represented by an inner product with X
is assumed to be available at each node (e.g., H and d in the
LCMYV and LS / MMSE / MWF examples in Table I). This
means that each node is able to evaluate the objective and
constraint functions of the optimization problem solved over
the network if it has access to X7y and X' B.

A. Scope of Signal Fusion Optimization Problems

We first provide a generic description of the signal fusion
optimization (SFO) problems that will be covered in this paper.
While this description may seem rather exotic at first, we will
provide several examples throughout the paper to illustrate
how it contains many familiar problems as a special case.

The SFO problems studied in this paper can be written in
the following way:

minimize
XERMxQ
subject to 7; (X"y(t),X"B) <0, Vje T, S

n; (XTy(®),X"B) =0, Vj€ T,

¢ (XTy(t), X" B)

where ¢ and the 7;’s are differentiable scalar- and real-valued
functions, and the sets J; and Jg represent the index sets of
inequality and equality constraints respectively. Additionally,
we define J = J7r U Jg, and the number of constraints in
total is given by J = |J|.

An important observation is that X always appears in an in-
ner product with y or B, which corresponds to a signal fusion
or spatial filtering operation. Furthermore, note that the func-
tions that contain a stochastic signal y as an argument must
contain an operator to translate this stochastic variable into a
deterministic loss or constraint function (i.e., the functions in
instances of Problem (3) are deterministic, as any stochastic
variable is converted into a deterministic value), for example
through the use of an expectation operator (see Table I). In
most practical cases, including those mentioned in Table I, the
evaluation of ¢ requires the knowledge or estimation of the
network-wide spatial covariance matrix Ryy = E[y(t)y” ()].
In this work, we assume that this matrix is unknown, in
which case the spatial correlation between the nodes should
be learned on the fly by the proposed distributed algorithm.

The formulation (3) covers a wide range of popular spa-
tial filtering and signal processing problems, including those
shown in Table I. For example, for the LCMV case (first
example in Table I), we have o(XTy(t)) = E[[|XTy(#)||*].
and 1;(XTB) = [XT B — H]; for each element [X” B — H};
of the matrix X7 B — H. Note that quadratic terms of the
form X7 X, which appear in some problems in Table I, should
be seen as (XTB) - (XTB)T with B = I,;. The reader is
also referred to Section V in which a few extra examples are
provided.

Finally, to simplify notation in various parts of this pa-
per, we also define the differentiable functions f and h;’s,
replacing ¢ and 7);’s respectively, to describe Problem (3) as
a function of X only, in which case y and B should be viewed
as internal function parameters:

J(X) 20 (XTy(0), X" B), @
hi(X) £ n; (XTy(t),X"B), Vi€ J.
Furthermore, we denote the constraint set of (3) as S, the
complete solution set as X'* and a single solution as X*, i.e.,
X*e X,

Note on further generalizations: The problem description
(3) considers only one argument of each type (X 7y (t), X B)
involving only one filter variable X, one stochastic signal y
and one deterministic matrix B. However, this is merely for
conciseness and intelligibility of the description of our frame-
work, i.e., the framework can be straightforwardly generalized
to multiple versions of variables and each of the two arguments

in (3), e.g., to also cover the cases of GEVD and CCA in Table
I. Formally, the full scope of SFO problems we consider is

minimize ¢ (X(a>Ty(b) (1), X@Tgle),) , Va,b,c
X (a) Va

subject to 7); (X(“)Ty(b) (t),X(‘l)TB(C)7) <0 VjeJ,

o (X(“)Ty(b) (t), X(@T Be),) =0 Vje Tp.

&)
Additionally, even though we restrict ourselves to real-valued
arguments, the results can be extended to complex-valued
arguments (with real-valued cost functions) based on standard
techniques such as those explained in [11], [52], [53]. Further
extensions are possible where each node minimizes a different
function, as in [42], [54], but this is beyond the scope of this

paper.

B. Adaptivity and Approximation in Practical Settings

The problems we are interested in typically involve an
expectation operator over random signals with unknown distri-
butions. In practical settings, the expectation operators in the
objective and constraint functions of (3) are usually approxi-
mated using sample averages [55]-[59]. The expectation op-
erator over the distribution of y(¢) for a generic deterministic
function g taking y(¢) as an argument is then approximated?

as
t+N—1

. > gly(m), (©®

Elgly@))] = GY (1) = +

(1>

where Y (t) = [y(¢),...,y(t + N — 1)] denotes a matrix that
contains [NV observations of y, starting with the observation
at time sample ¢. Here, it is assumed that the signal y is
ergodic such that the expectation operators can be accurately
approximated using (6). In particular for the second-order
statistics, which are commonly encountered in signal process-
ing problems (see Table I), the approximation (6) results in

Ely(t)y" (5] = =¥ (Y7 (1), a)

Table II gives the practical approximations of some commonly
encountered functions in problems of interest (including ex-
pressions found in Table I) using (6). Note that the stationarity
assumption removes any time dependence from the problems
of interest such that any window of contiguous time samples
of y can be used.

Throughout this paper, we assume stationarity for mathe-
matical tractability, which is a common assumption in the anal-
ysis of adaptive filters [55], [61]-[64]. However, in practice,
we do not require the signals to be fully stationary, as long as
the dynamics in the underlying signal statistics are sufficiently
slow, such that (6) gives a reasonable approximation. In this
case, the solution X* of (3) becomes time-dependent. When
the DASF framework is applied in such an adaptive context,
the targeted instance of Problem (3) is effectively replaced
by its sample average counterpart, where the statistics are

2Convergence of the approximation to the true expectation for N — 400
is studied in the stochastic optimization literature. We refer the reader to the
sample average approximation method in particular [60].

TABLE II
PRACTICAL APPROXIMATIONS OF COMMON FUNCTIONS

Approximations computed in practice to evaluate some commonly encoun-
tered functions using (6) and N observations of the stochastic signals, e.g.,
{y(7) ff:]t\[*l. Y (t) denotes the sample matrix of y for N observations,

Y =[y(t),...,y(t+ N —1)], while V and D are similarly defined for v
and d respectively.
E[g(y(¢))] G(Y(1)
E[IXTy®)°] IXTY (®)l1%/N
EXTy(t)y" (H)X] XTY(6)Y™" (t)X/N
Elld(t) — XTy(®)|I°] ID(t) = XY (t)|[7/N
Eltr(XTy)vT ()W) wr(XTY()VT ()W)/N

regularly re-estimated in a block-based fashion, i.e., each time
a new block of IV samples becomes available. As we will
explain in Sections III and IV, every new block of /N samples
will initiate one new iteration of the DASF algorithm, i.e., the
iterations of DASF are spread over different sample blocks,
such that the algorithm becomes time-recursive (implicitly
assuming G(Y (t)) =~ G(Y(t + N))). We will demonstrate
in Section V-D through an example that the proposed DASF
algorithm can indeed track slow changes in the signal statistics,
and is able to recover from abrupt changes.

C. General Assumptions

In order for our DASF algorithm to be applicable and
achieve convergence and optimality, the problem (3) must
satisfy some sufficient conditions, which are listed in this
subsection for completeness, while the technical details are
explained in the companion paper [1]. It is noted that these
conditions are usually satisfied for all examples listed in Table
I (except in some contrived cases) and we refer the reader
to [1] for some examples on how these conditions can be
checked in practice. In addition to these sufficient conditions,
we restate the implicit assumption from Section II-A that the
functions f and h; in (4) are smooth functions, i.e., they
are continuously differentiable over the variable X on their
respective domain, or equivalently, the functions ¢ and 7; are
continuously differentiable over X for any y and B.

Assumption 1. The targeted instance of Problem (3) is well-
posed®, in the sense that the solution set is not empty and
varies continuously with a change in the parameters of the
problem.

Note that since in practice, the DASF algorithm will be used
for solving a particular instance of Problem (3), Assumption
1 is only required for that particular problem and not all
problems within the scope of the framework. As an example,
consider the PCA problem of Table I. It can be shown that the
PCA problem satisfies Assumption 1 if the covariance matrix

3The notion of (generalized Hadamard) well-posedness we require is based
on [65], [66]. The main difference is that we require the map from the
parameter (inputs of the problem) space to the solution space to be continuous
instead of upper semicontinuous, which is required for the convergence proof
of the DASF algorithm. These technical details are presented in [1].

of y is positive definite and its () + 1 largest eigenvalues are
all distinct.

Assumption 2. The linear independence constraint qualifica-
tions (LICQ) hold at the solutions of Problem (3), i.e., the
solutions satisfy the Karush-Kuhn-Tucker (KKT) conditions.

If X* is a solution of Problem (3), then Assumption 2 implies
that the gradients Vxh;(X*), j € J*, are linearly indepen-
dent*, where J* C 7 is the set of all indices 7 for which
hj(X*) = 0. We refer the reader to [67] for further details on
constraint qualifications. If there is no constraint function 7;
in Problem (3), Assumption 2 implies that Vx f(X*) = 0.

Assumption 3. f has compact sublevel sets in S, i.e., for all
meR {X eS| f(X)<m} is compact.

Note that in RM*@Q, compactness is equivalent to closedness
and boundedness of a set, which is a relatively mild con-
dition. In fact, as is shown in [1], the assumption can be
further relaxed by only requiring that at least one sublevel
set {X € S| f(X) < f(X} is compact, where X is the
initialization point of the DASF algorithm.

Moreover, the convergence proof in [1] requires an ad-
ditional sufficient condition that is akin to the LICQ. We
postpone its definition to [1] because of its technical nature,
and because it is a relatively mild condition, which is generally
satisfied in practice. Nevertheless, an important implication of
this condition, which is relevant to disclose at this point, will
be that it imposes an upper bound on the number of constraints
J the problem is allowed to have (see [1]):

2
LTI (i VDR) ®)

J < min
< jra
ke

Here, K is the total number of nodes, |N%| is the number of
neighbors of node k, and () is the number of columns of X.

We also make the implicit assumption that a (centralized)
algorithm is available to solve (with arbitrary accuracy) the
targeted problem instance, i.e., the instance of (3) for which
we aim to design a distributed algorithm. This is a reasonable
premise, since it makes little sense to design a distributed
algorithm for a problem that cannot even be solved in a
centralized setting. Nevertheless, it is important as our DASF
framework will use the same solver to find solutions of
compressed versions of the targeted problem at each node, as
will be explained next. We note that there are no restrictions
on the solver, which can be chosen freely (e.g., closed-form
solutions, steepest descent methods, interior point methods,
trust region methods, etc.).

III. DISTRIBUTED ADAPTIVE SIGNAL FUSION IN
FULLY-CONNECTED NETWORKS (FC-DASF)

For the sake of an easier exposition, let us first consider
the special case of a fully-connected network where data
transmitted by any node is received by every other node

4A set of matrices {A;} ;¢ 7 is linearly independent when Djeg aid; =
0 is satisfied if and only if o; = 0, Vj € J, or equivalently, when
vec(A;)}s is a set of linearly independent vectors, where vec(-) is the
YRBFISNS y P!
vectorization operator.

(more general topologies are treated in Section IV). As the
optimization problem (3) depends on the full signal y and
its (unknown) spatial correlation across the nodes, the nodes
would need to share some information between each other.
However, sharing the full signal y would require significant
bandwidth and consume a large amount of power. Instead, each
node will linearly compress its local My —channel signal into
an R—channel signal (with R < Mj) before broadcasting it to
the other nodes in the network. At iteration ¢, the compression
is done by multiplying the signal y, at node k with an My x R
matrix F,i, which we refer to as the local compressor at node
k. The R—dimensional compressed signal resulting from this
compressive spatial filtering can be written as

Yi(t) 2 Filyi(t). 9)

The deterministic parameters By are similarly compressed
to obtain B,i, which are also broadcast between nodes. The
index ¢ emphasizes that these compressors are not constant and
will be iteratively updated across time. Note that the iteration
index i is also added to the stochastic signal yj in order to
indicate that the content of the signal (and hence its statistics)
changes in each iteration due to an update of the underlying
compression matrix. However, this does not imply that we
iterate over a single batch of samples of this signal, i.e., an
update from yi to yi'' (or F} to Fi™') only affects future
samples of yy that are collected after performing the update.
As a result, the compressor F}j operates as a block-adaptive
filter, which updates its coefficients after every new block
of N samples, such that F}} operates on the samples in the
data matrix Y (iN), whereas F,ﬁ“ operates on the samples in
Y (iN + N), where Y (t) is defined as in (6). In other words,
an update of the compressor F}, affects how future samples of
Yy are compressed, yet previously collected samples will not
be re-compressed or re-broadcast.

Equation (9) results in a compression ratio of My /R. The
compression implies that the nodes do not have full access to
the network-wide signal y. Nevertheless, we will show that
an optimal solution X* € X* of Problem (3) can be achieved
if R = @, where @ is the number of columns of X, i.e., the
number of output signals of the filter X (in many cases only
a single-channel output is desired, such that R = @ = 1). In
a fully-connected network, this implies that we must assume
that @@ < Mj in order to achieve a bandwidth reduction at
node k. However, in the case of more general topologies, we
can also achieve this for) > M) (see Section IV).

After introducing the DASF algorithm for (3) in the next
subsection, we will provide insights on the relationship be-
tween the network-wide problem and the problems solved at
each node in Section III-B. Extensions to the more general
form (5) will be presented in Section III-C.

A. Algorithm Derivation

Consider the partitioning of the optimization variable X in
per-node sub-blocks, i.e.,
X =[xF,..

LXK (10)

where X, € RMx*Q_ This way, every X}, has a corresponding
local signal yg, i.e., the part of X that is applied to yy in the
expression X Ty, such that we can write

XTy(t) =" X{ye(t).
kex

Y

A similar observation for the local deterministic terms B
implies that we can write the objective ¢ using the local filters
and data:

F(X) =o(XTy(t),X"B)

ZSO<Z Xng(t)angBk>- (12)
kek keK

The constraint functions 7; can also be written in a similar
way. Therefore, we are able to express the full optimization
problem (3) using X}’s, yi’s and By’s. The main idea behind
the DASF framework is to partially reconstruct and solve a
compressed version of Problem (3) at any selected node, which
is referred to as the “updating node”, and which changes from
iteration to iteration. Let us now set R = @ and

F, = X}, (13)

where X corresponds to the local estimate of X}, at node k
at iteration ¢. Stacking them together as in (10), we obtain the
estimate X of the global variable X at iteration i. This means
that, within the DASF algorithm, the X,i’s act both as com-
pressors and as part of the optimization variable. Combining
(9) and (13), the compressed signal that is broadcast by node
k can be written as

yi(t) 2 X{Tyi(t) € RY, (14)

which implies that the network-wide filter output at iteration
1 can be computed as the sum of the compressed signals in
(14), i.e.,

V) EXTy() =) XiTyet) =) 5i(0).

kex keKx

5)

In a similar way, the compressed deterministic terms at node
k are

Bi 2 XiTB), € RO*L, (16)

and we have

B 2 Xx"Tp=Y Xi"B, =) Bi.
kex ke

a7

Since the network is assumed to be fully-connected, each node
has access to (observations of) all signals ?’k, such that each
node can compute the filter outputs (15). Let g be the updating
node at iteration ¢, and define the stacked vector containing
all available signals at node ¢ as

SEAOIE

Vi) 2 [yl (), 57 (t), ...
(18)

which contains M, 2 M, + Q(K — 1) channels. Note that
node g only has access to uncompressed observations of
¥q and a corresponding batch of compressed observations
of all the other nodes. Similarly, the matrix containing all
available deterministic terms is obtained by stacking B, which

7?(117;1(t)5§:§,-1(t)7 L

is available at node ¢ and the compressed B\]i’s received from
other nodes:

pi & 1pT [T

B, =[B,,By,.. ,BIT

BlT

Bt ... BT (19)

q—1

which is an]qu x L matrix. Bag:d on (18) and (19), we define
a new local variable)?q € RMa*Q at node ¢, such that we
are able to formulate a local optimization problem using only
data available at node ¢ at iteration :

minimize cp()?f?é (1),)?ggé)
)‘ZQERM‘ZXQ

. (FTSin v Ri (20)
subject to 7;(X, ¥,(t), X, B .) <0 VjeJ,

0 (X3 ¥4(0), X{By) =0 Vj € Tp.
A key observation here is the similarity between (20) and (3).
This means that node g can locally apply the same solver
as the one used for solving the centralized problem, albeit
on a problem of smaller size. Note that this implies that the
computational cost required to solve Problem (20) is smaller
compared to solving (3).

At iteration 7, node q solves the local problem (20), and we
denote its solution as X!, which can be partitioned as
X+ = QD

[X(SZJrl)T’ ng-i-l)T G(L+1)T G((]:—J-ll)T7 o G%—&-I)T]’
where X! is M, x Q and each G_ZH is Q x Q. By
comparing (21) with (18), we see that G}:’l refers to the part
of)Z'q that is multiplied with the received compressed data
¥y}, from node k in the inner product X!y’ (t) in (20). Since
yk() = XTyi(t), we can instead multiply the compressor
X, at node k£ with this matrix GZJrl As a result, each node
k in the network updates its local X k as

i+1 T3 A
Xliﬂ = Xq‘ i+1 ?f ko (22)
X G if k#£q,

where X é“ and G?fl are obtained from the partitioning (21)
of)N(;“. Since the updating node ¢ does not have access to
the X, of the other nodes k& # g, it needs to communicate
the matrices GZH to the other nodes, so that they can update
their local X}, as well’>. A block diagram of this process is
provided in Figure 2.

If the minimization (20) has multiple solutions, an ambi-
guity exists on the choice of the local variable, which can be
resolved by selecting a specific solution at each iteration. We
propose to select the solution X é“ for which the distance
|| Xi*+! — Xi||F is minimal, where X} is defined as

Xi=[X\"Ig,....Ig]". (23)

The choice of the Frobenius norm || - || as a distance metric
is arbitrary. Other distance functions d can also be used (and
might be better suited for the specific instance of Problem (3)
at hand), as long as they are continuous and satisfy d(X,Y) =
0 <= X =Y. These conditions on d are needed for the
convergence of the proposed method, as explained in [1].

SNote that the communication cost to transmit these G} matrices is
negligible compared to the transmission of a batch of observations of yi’s
(see also Remark 1).

Receive from Node q Transmit to
other nodes other nodes
Gt
ya(} > (55(7))
e . (G za
i(r 4
{¥k(7) b rzd (Gt 1Yz, >

Fig. 2. Block diagram representation of the steps followed by a given node
q in the FC-DASF algorithm. The black part is executed for any sample time
t at each node. The red and blue parts are only executed at each iteration
increment ¢ — ¢ + 1, where the blocks in blue are only executed when node
q is the updating node. Otherwise, the part in red is carried out. Node g has
always access to its own signal samples y,(t) measured at its own sensors
(represented by rings, in black), while the compressed signal samples ?;ﬁ(t)
are transmitted to node g by the respective nodes k (represented by arrows
in blue). For intelligibility, we omitted the data flow of the expression X B
from the diagram.

Algorithm 1: Fully-Connected Distributed Adaptive
Signal Fusion (FC-DASF) Algorithm
Code available in [47]

output: X*

Initialize X©,

repeat

Choose the updating node as g < (i mod K) +1
1) Every node k collects a new batch of V
samples of y (see Remark 1), compresses these
to N samples of y} using (14) and transmits
them to node q.

E}c is computed using (16) and transmitted to node
q.

at Node q do

2a) Compute)? i+1 as the solution of (20). If
the solution is not unique, select the solution
which minimizes ||X’+1 Xl||p with Xz
defined in (23)

2b) Partition X i+1 a5 in (21).

2¢) Transmit GZJrl to node k for every k # q.

1<+ 0.

end
3) Every node updates X ,i“ according to (22).
1+ 1+1

Note: Each iteration uses a different batch of N samples in step
1, i.e., the iterations can be spread over different time segments in
order to avoid retransmitting the same batch of N samples across the
network (see also Remark 1). This makes the sample time index ¢
coupled to the iteration index .

All the steps of the FC-DASF algorithm as explained above
are summarized in Algorithm 1. Algorithm 1 converges under
mild technical conditions to an optimal filter X* solving
the network-wide problem (3). The convergence results with
detailed analysis and proofs can be found in the companion
paper [1].

Remark 1. It is noted that a transmission of the compressed
signal y; at node k corresponds in practice to transmitting
a batch with the N most recent time samples of y}. This

allows for the receiving node ¢ to estimate the necessary
signal statistics to evaluate or optimize (20), where a larger
value of N results in a closer approximation of the true
value (remember that the objective function in (3) and (20)
has a built-in operator to transform the stochastic signal y
into a deterministic loss, which in practice is usually replaced
with an average over N samples, as in Table II). Leveraging
the (short-term) stationarity assumption, different batches of
N samples are used in each iteration, such that the com-
munication bandwidth becomes independent of the number
of iterations. Therefore, Algorithm 1 behaves similarly to an
adaptive filter which learns over time how to optimally filter
newly observed samples (based on past samples). In a tracking
context where the signal statistics of y change over time, the
algorithm can still be applied if the statistics change slower
than the convergence speed of the algorithm.

The DASF framework could in principle also be applied in a
batch-mode (non-adaptive) framework, in which all operations
are performed entirely on a single batch of samples (instead
of spreading out the iterations over different sample batches
of length). In this case, the argument X'y can be dropped
and the argument X T B can be used to represent the batch of
samples, in which all available samples of y are stored in the
columns of B.

Remark 2. Although each node is able to communicate with
every other node in a fully-connected network, Algorithm 1
is still distributed in nature. Indeed, the network-wide data is
never centralized, i.e., the updating nodes g have never access
to y or B, but only to ?; and Bé, and therefore cannot estimate
any network-wide statistics such as E[y(t)y” (¢)], whereas a
centralized solver has access to this information.

B. Link between the Central and Local Problems

In this subsection, we further explain the link between the
central problem (3) and the local problems (20) at the updating
node ¢, where the latter can be viewed as a parameterized
version of the former. This will provide some additional
insights and show some useful properties of the DASF frame-
work. Their relationship can be described by means of the
transformation matrix:

0 |e,| 0
Ci=| 1| 0 | o |eRMM (4

0| 0 |6,
where ©%, = BlkDiag(Xi,..., X, ;) and O, 6 =
BlkDiag(X 41, ,X;H). Then, from (14) and (18), one can

validate that

yi(t) = Cily(t), (25)
while (16) and (19) result in
i T
B, =C!"B. (26)

Using these relationships in (20), we see that
P(XTT4(0, XTBY) = ¢ (X7 (CyTy (1), K] (€I B))
= ¢ ((C3%) (1), (CiX,)"B)
= f(CiXy).
Similarly, we find that, Vj € J:

27)

s (X795(0), X7 By) = n; ((C3X,) "y (1), (C3X,)"B)
(28)
= h;(ChXq).
This implies that the local optimization variable)N(q defines a
parameterization of the global variable X . Indeed, if we define

X, =xIG6T,....GL,GL .,GR]", (29)

where X, is M, x @ and every Gy, is @ x (), we have at
iteration ¢ (for the updating node ¢q)

x[@]

(30)

| xifGx] |

Note that only the framed variables in (30) appear as opti-
mization variables in the local problem (20), which is clear
from comparing (21) with (29). This shows that the updating
node ¢ only has the full freedom to update X, i.e., its local
compressor. The remaining parts of X can only change up
to a multiplication from the right by a matrix G, k # ¢
when it is node ¢’s turn to solve the local problem. Therefore,
by sequentially changing the updating node across iterations,
we allow every node to fully update its own local compressor
while only manipulating the other sub-blocks of X within their
respective column spaces.
The solution X ;H of the local problem (20) at node ¢ and
iteration ¢, which can also be written as
)?éﬂ £ ar~gmi~n f (C;)Z'q) ,
Xq€S}
= argmin ¢ ()?g?;(t),)?ggg) ,
Xq€S}

&1V

where g; denotes the constraint set of (20), defines a new
point X“*1 for the global problem (3) via (30).

In the following lemma, we show that the global variable X*
produced by the DASF algorithm® always satisfies the global

constraint set S for any iteration 7 > 0.
Lemma 1. For any iteration i > 0,
X,€8, — C,X,€S8. (32)

5The proof of Lemma 1 also holds for the general topology-independent
DASF algorithm in Section IV.

In particular, X' € S and thz € gfz for all © > 0.

Proof. From (28), it follows automatically that any point X qin
the constraint set of the local problem (20) has a corresponding
point X = Cqu in the constraint set of the global problem
(3). This implies that, if)N(q is a feasible point of (20), the
point X parameterized by)N(q, such that X = C’;)N(q, is a
feasible point of (3), and vice versa, which proves (32).
From (29)-(30), we find that the point X i (before the update
at iteration 1) is equal to X* = Cp X with X defined in (23).
Similarly, we know (by construction) that X+ = CZ{X' JARS
Since X +*1 is the solution of (20), X*™! must be a feasible
point of (3), which follows from (32). As this holds for all
i >0, X’ is then also a feasible point of (3), i.e., Xt €~S, if
i > 0. Since X = CéX;, and using (32), we find that X; as
defined in (23) is a feasible point of (20), ie., X} € Si. O

The results of Lemma 1 mean that all points (X%);~0
generated by the algorithm will be in the constraint set of
the global problem (3). Additionally, the final result states
that X 'qi itself is a feasible point of (20), which is important
to achieve convergence and a monotonic decrease in f, as
it allows the algorithm to stay in the current point X* if no
reduction in f can be obtained at node ¢ in iteration %, in
which case Xt = X (a formal proof is given in [1]).

Remark 3. The fact that the local problem (20) inherits
the structure from the global problem (3) is one of the key
differences between the DASF framework and the nonlinear
Gauss-Seidel method (sometimes referred to as the alternating
optimization method), which would consist of only updating
X in (3), while freezing the other X}’s Vk # ¢. In the
latter case, the subproblem that has to be solved in each
iteration typically has a different structure than the original
one, often leading to problems that are more difficult to solve
or for which a straightforward solver might not even exist.
Moreover, the extra degrees of freedom to manipulate the X},’s
of other nodes through the GG;, matrices in the parameterization
(30) allow to optimize X° over a larger subset of RM* in
each individual iteration, leading to larger descents in the loss
function f in each iteration. In Gauss-Seidel methods, these
G, matrices do not exist, i.e., all X} s are fixed except one.

Remark 4. By combining (25) and (30), we find that

X(iJrl)Tyé(t) _ AX(iJrl)Ty(tL)7

{ (33)

which means that node ¢ always has access to the filtered
signal X (+DTy — $9+1 based on the most recent version of
the filter X**1. If any of the other nodes would act as a data
sink, the updating node g has to forward the observations of
yit! to the data sink.

C. Multiple Signals, Deterministic Terms and Variables

The DASF algorithm can be immediately adapted to the
generalized version of (3) defined in (5), i.e., with multiple
filters, signals and deterministic terms. In the case of multiple
signals (stochastic variables) or deterministic terms appearing
in the problem in the forms X7y and X7 B respectively,

every single object is treated as previously presented, creating
new data to be communicated between the nodes for every
additional expression. Examples include the GEVD and TRO
given in Table I having two signals y and v. An example of
a problem with two deterministic terms is given in Section V.
Similarly, we could also consider cases with multiple opti-
mization variables. Taking the example of CCA given in Table
I, the two optimization variables (X, W) appear as X”y and
WPy in the problem. Then, nodes k # g compress their
signals as i = XTy, and Vi = WTv; and transmit them
to node q. Then, node ¢ solves its local problem as
(Xt wat) = argmin o (X750, Wi 94(0))
(Xq,Wq)€ES]
. (34)
Partitioning W, as
W,=W] H{, . H

CHL L HET (35)
similarly to (29) for X'q, node ¢ sends the G?l and H,i“’s
to corresponding nodes k& such that they update their local
variables as in (22). The same procedure can be applied for

more than two variables.

Remark 5. The communication burden required to transmit
the compressed terms X,iTBk is minimal because Bj’s are
deterministic parameters, as opposed to the signals yj, which
require sending batches of multiple compressed observations
in each iteration to estimate the signal statistics at the up-
dating node (see Remark 1). The communication cost of the
deterministic part can be further reduced when we have an
expression of the form (X7BW) . (XTB@HT = XTIX,
where ' is a block-diagonal deterministic matrix written as

L Tk),

where each I'y is known by node k. Each node could then
transmit XiTT), X} € R2*? at iteration i instead of X;7 B\"
and X ,iTB,(f), which is more efficient when QQ < 2L. Although
expression (36) is quite specific, it is encountered often in
spatial filtering, for example for orthogonality constraints
such as XTX = Ig or ¢y-norm regularization terms. For
example, consider the PCA constraint XTX = Ig, where
B = B@ = [,,. Then it is sufficient for the nodes to
transmit X/T X} instead of X}.

I = BlkDiag(T1, .. (36)

IV. TorPOLOGY-INDEPENDENT DASF (TI-DASF)

Until this point, we have considered fully-connected WSNs
only, where every node in the network is a neighbor of every
other node. In this section, we extend our discussions and
describe the DASF algorithm for other network topologies.
For this purpose, we first consider star topologies which are
helpful to introduce the main idea, which will then lead to gen-
eralizations to tree topologies and finally to any (connected)
network topology.

A. Star Topologies

We keep the same definitions introduced in Sections II and
IIT and consider now that the WSN has a central node ¢ € K

to which every other node k # c is connected (having only
node c as a neighbor). In the case where the center node c
is the updating node, we have the same setting as the fully-
connected case and the steps described in the previous section
apply, therefore we present here a strategy when the updating
node g # c. A straightforward approach would be to let node ¢
relay all the data from all other nodes to create a virtually fully-
connected network. However, this would put high bandwidth
requirements on node c¢, which would not scale well with
respect to network size. Instead, we claim that it is sufficient
for node ¢ to have access to the signal defined in (15), which

is slightly rewritten here as
y'(t) = X"y(t))+ Vi)
k#q

Note that the second term can be computed at node ¢ (which
includes node ¢’s own sensor observations y., as well as the
compressed signals yi of the nodes k # q) such that only the
sum has to be forwarded instead of the individual terms. The
data received by node ¢ from c is then a (Q—channel signal

given by ‘ ‘
Vi 2 Y S,
kek\{qa}

and a similar expression can be written for the deterministic

terms:
c—>q - Z Bk
kek\{q}

From the perspective of node ¢, the network consists of only
itself and node ¢, so by following analogous steps to Algorithm
1, node ¢ creates its vector of locally available data:

Yq(t) = lyq (1), 55,07,
Bz . [BT BZT

(—)q] i

= X34l 37)

(38)

(39)

(40)

such that the corresponding X é“ is obtained at iteration i by
solving the local problem (20) using the data that is available
at node g, as in (40). Similar to (21), we define the partitioning:

X1+1 [X(Z+1)T G(Z+1)T] c R(]Wq+Q)><Q, (41)

where G4+ is analogous to the G}fl ’s in the previous section.
Since node ¢ has only one link, there is only one such matrix
resulting from solving the local problem (20), which is sent
to node c. Finally, the central node ¢ disseminates this matrix
G'*! to the other nodes to update their local compressor as
in (22), but with G, = G, for all k.

B. Tree Topologies

We now consider a network represented by a tree, i.e., a
graph without cyclic paths. A leaf node is defined as a node
with a single neighbor, i.e., a node k for which [N;| = 1.
Recalling that our objective is to be able to recreate (37) at
the updating node g, we perform an in-network fusion across
the different tree branches that are rooted in node ¢. This
fusion can be done in a bottom-up fashion without central
coordination. Indeed, the strategy for each node k # ¢ is to
wait until it has received the compressed signals from all its
neighbors except one (denoted as node n), sum these and add

Xi 0 0
X5 0 0
X, 0 0
X; 0 0
0 0 0
0 Xi o0
0 X 0
0 Xi o0
0 0 X
X, 0 0|

Fig. 3. [50] Example of a tree network where the updating node is node
5. Each neighbor of node 5 creates its own cluster containing the nodes
“hidden” from node 5 behind them, shown here as Bas, Bgs, Bos. The
resulting transition matrix is given by Cg.

its own compressed signal yi, and transmit to its remaining
neighbor n. Formally, the compressed signal being sent from
node k # ¢ to n at iteration 7 is

Z YI—>k (t).

lENk\{n}

Vion(t) = X yr(t) + (42)
Note that this is a recursive definition, which is bootstrapped
by the leaf nodes, for which the second (recursive) term
vanishes. This data fusion flow is illustrated in Figure 3 for
an example network. The fused signals will eventually arrive
at the updating node ¢ which receives

= > i),

Z Yk%n
k€EBng
(43)

keN\{a}
from each of its neighbors n € N, where we define Brq to
be the connected subgraph containing node n when the link
between nodes n and ¢ is removed (see Figure 3). The same
process is applied to the deterministic terms such that node ¢

Ynoq(t) = X3 yn(t) +

receives
B ,,=XIB,+ Y Bi,,= > B 44
keN\{q} k€Bng

from all its neighbors n € N.
Writing Nq {ni,... ,n|Nq|}, we have the vector of
available data at the updating node ¢:

Fo0) = D (0.9 0.5, 0]
T piT niT T (45)
By =Bl Byl g Bl LT

We note that the relationship between the network-wide data
y, B and the locally available ¥;, By can again be described
by means of a compression matrix C; as in (25)-(26), such
that ¥ - Ci'y and éfl = CITB. An example of such a
matrix C is shown in Figure 3. We recommend the reader
to use the example of this figure to appreciate the structure
of this matrix, yet we also provide a general definition for
completeness. In general, this matrix can be defined as

0
Ci=| Im, | O, |, (46)
0
where [M, is placed in the ¢—th block-row, and oL q is a block

matrix with K block-rows and |A;| block-columns, where
the block at the k—th block-row and m—th block-column
is represented by ©° (k,m) € RM+*Q_ Each block-column

corresponds to one of the neighbors n € N, of ¢, which we
re-index as m,, € {1,...,|N,|}. Then, we have

Xi if k€ By

. 47)
0 otherwise

o. G(ksmy) = {
As in the previous cases, the transition from t1~16 local variable
to the network-wide one is given by X = C’;X ¢ at node ¢ and
iteration ¢. We can verify that)Aéq is a feasible point of the
local problem if and only if C} X, is a feasible point of the
global problem, i.e., (32) and more generally Lemma 1 also
holds here. Node ¢ then solves its local problem (20) using
the locally available data described in (45), to obtain X ;*1,
partitioned as
G(i—i—l)T T

vit+tl _ (i+1)T ~(i+1)T

X+ = [Xq JGUT, LG (48)
Each Gi*! is then disseminated into the corresponding sub-
graph B,,, through node n (and the nodes behind it in B5,,)

and every node updates its compressor as

: Xitl if k=
DAL S (49)
XIGH if k€ By n € N,
such that we again have X(+DTy)Z}SHDT?é and

i v(E+D)T i
X@TR = X7 Bi

From (49), we observe that we have parameterized the
global variable X at node ¢ and iteration ¢ as

X{ Gy
ij—l C;n(q—l)
X Gutar |
| ifGun) |

where C/ is given in (46) and n(k) is the neighbor n € N
of node ¢ such that k£ € B,,,. This can be compared with (30)
for the fully-connected case. Since the optimization variable
of (20) is partitioned as in (48), we can see from (50) that,
similarly to the fully-connected case, the updating node ¢ can
“freely” update its filter X, while the filters of the other nodes
can only change up to a right-hand side matrix multiplication
with a G,,—matrix (the updating variables are the framed
variables in (50)). In contrast to the fully-connected case in
(30), some of the G,,’s are constrained to be equal due to the
network topology since k,l € B, = G,u) = Gy This
implies that the degrees of freedom in the updating steps of
the tree-based DASF algorithm are determined by the number
of neighbors of the updating node.

) (50)

Remark 6. Sometimes it is possible that a node cannot
generate () linearly independent output channels using (42).
For example, this happens if node k is a leaf node and
Mj; < Q. In this case, node k£ will send its raw uncompressed
sensor data yy, instead of y; ., = defined in (42). The neighbor

Algorithm 2: Topology-Independent Distributed
Adaptive Signal Fusion (TI-DASF) Algorithm
Code available in [47]

output: X*

Initialize X©°, ¢ « 0.

repeat

Choose the updating node as ¢ < (¢ mod K) + 1.

1) The network G is pruned into a tree 7°(G, q).

2) Every node k collects a new batch of N samples
of yx. All nodes compress these to N samples of
y: as in (14). B} is computed using (16).

3) The nodes sum-and-forward their compressed
data towards node ¢ via theArecursive rule (42)
(and a similar rule for the B,i’s). Node ¢
eventually receives N samples of ¥ _,q along
with]§$L Sq given in (43)-(44) from all its
neighbors n € N,

at Node g do

4a) Compute X, +*1 as the solution of (20)
where y?, Eé and)~(q are redefined as in (45)
and (48). If the solution of (20) is not unique,
select the solution which minimizes
|| Xt — X||p with X} defined as in (23).

4b) Partition X! as in (48).

4¢c) Disseminate G%! to all nodes in B,

Vn € Ny

end
5) Every node updates X }:rl according to (49).
1+ 1+1

Note: Each iteration uses a different batch of N samples in step
2, i.e., the iterations can be spread over different time segments in
order to avoid retransmitting the same batch of N samples across the
network (see also Remark 1). This makes that the sample time index
t is coupled to the iteration index 4.

Note: As in FC-DASF, the fused output signal X7y(t) = §(t) can
be computed as)?(51+1)T§; (t) at node g without extra transmissions
(see also Remark 4).

n that receives the raw data from node £ will then treat this
data as part of its own sensor signals, i.e., y, is stacked
with y; and its sensor channel count becomes M, + Mj.
In other words, the data flow starting at the leaf nodes can
initially consist of raw sensor channels until a node has more
than) channels to compress them into a (J—channel signal.
Therefore, the number of transmitted channels is at most ()
per node, but can also be less than (). An analogous statement
applies to the deterministic terms By.

C. General Connected Graphs

Suppose the network is represented by a connected graph G,
which can potentially contain cycles. The main difference with
the previous subsection is that there is more than one choice
to forward the compressed data to the updating node q. We
therefore propose to prune the graph G into a (different) tree
at each iteration ¢, so that we can apply the same steps as the
ones described for the tree topology case. The resulting tree
is denoted as T%(G,q) to highlight the fact that the pruning

q — 1 — ~
— @ B W U £ O 1 u
g ~i (Y1
e ° va(t) @ ya(t) ?’gal(t) }Q
Original Network ¥s(t) . yi(t) .A, M
a e 3 Vi (t)
6.5 L Node2
y3(t) () M| .
ya(t) yq oL } (0
OH)—@ @ yi(t) 7 = r
yi(t) @ visa@}e
_ t i G
q=2 e o yal(t) @ TP Vi) Q]

Fig. 4. Data flow for a 4—node network when nodes ¢ = 1 (top) and ¢ = 2
(bottom) are the updating node. The updating node has always access to its
own data yq, while receiving fused signals from every other node in the
network through its neighboring nodes.

function 7° depends on the current updating node g. An
example of the data flow in pruned networks for two different
updating nodes is given in Figure 4.

The choice of the mapping function 7° is a free design
choice as long as the resulting tree remains connected. How-
ever, the convergence results in [1] that define the bound (8)
also assume that the pruning function does not remove the
links between the updating node ¢ and its neighbors. Indeed,
if (8) is satisfied, then this rule ensures that J < (1+|N,|)Q?
at any updating node ¢, which is one of the convergence
conditions for the DASF algorithm in [1]. Furthermore, dis-
connecting node ¢ from a neighbor would also reduce the
convergence speed, since it would lead to a smaller number
of resulting G,,’s in (48)-(49) and therefore a lower number
of degrees of freedom in the local optimization problem (20),
typically leading to a smaller descent of the cost ¢ or f. In
comparison, in the case of fully-connected networks, we were
able to use (K —1) of such G,,’s in each iteration, which — as
we will show in Section V — leads to the fastest convergence.

A simple distributed protocol to establish 77, i.e., to set
up a tree that satisfies the aforementioned rule, is to let the
updating node ¢ broadcast a token to each neighbor. Once
a node receives a token, it acknowledges a link to the node
from which it received it, and it then broadcasts that token to
its remaining neighbors from which it did not receive a token.
This process continues until all nodes have received a token. If
a node receives multiple tokens, it only connects to the parent
node from which it received the token first (in case of a tie,
it makes a random choice).

The full TI-DASF algorithm is given in Algorithm 2 and
convergence analyses are provided in [1]. We note that FC-
DASF (Algorithm 1) is a special case of TI-DASF (Algorithm
2). The same generalizations as explained in Section III-C
apply for TI-DASF as well.

Remark 7. In the TI-DASF algorithm, each node & transmits
only N samples of yy, per iteration, which is independent of
the number of neighbors or the total number of nodes in the
network. As opposed to the fully-connected case, the TI-DASF
algorithm can reduce the total communication burden, even
when @Q > M. This is because naively relaying all the raw
sensor data to a fusion center node for centralized processing
would require most nodes to send more than N @ samples as
they would also have to forward the data from their neighbors,

My + M3 + M,

Mg + Ms + My 0 e Q
(5)
M, My Q Q Q Q
@ @ & O

Fig. 5. Comparison between a straightforward relaying approach (left) and
the scalable fuse-and-forward approach the DASF algorithm uses (right). In
this example, node 4 is the updating node.

and their neighbors’ neighbors, etc (see Figure 5). Obviously,
such a relaying approach does not scale well with the network
size, whereas the per-node bandwidth requirements in the TI-
DASEF algorithm are independent of the number of nodes.

V. EXAMPLES AND SIMULATIONS

In this Section, we present examples of problems that fit
the DASF framework and demonstrate the performance of
the algorithm in various settings to gain insights into the
convergence behavior as a function of), K and the topology.
The examples also serve as illustrations to familiarize the
reader with how to recognize SFO problems of the form (3) or
(5), and how to translate these into the DASF framework. It is
noted that several existing distributed algorithms can be shown
to be special cases of the proposed unified DASF framework
(Table I). Since these special cases have been validated already,
and to show the generalizing properties of the framework, we
will validate it on a few new problems that fit our framework.
For this purpose, we have also published a companion toolbox
[47] which allows to automatically generate and simulate a
distributed algorithm for any arbitrary problem of the form (3)
or (5). The only requirement is that the user provides a solver
for the centralized problem (3) or (5). The software will use
this solver to compute the updating step in each iteration of
the FC- or TI-DASF algorithm, as the update requires solving
a compressed local instance of (3) or (5).

In our experiments, we refer to randomly generated trees
as trees where each node has between 0 and 4 children with
1.7 children on average’. We consider two different sensor
signals y and v measured at each node throughout this section,
following the mixture model given by

y(t) =1 - s(t) + n(t), (51)
v(t) =1L - r(t) + y(t)
=TI, - r(t) + I, - s(t) + n(z), (52)

with (t), s(t) “5" N(0,02), n(t) "X N(0,02) for every
entry and time instance t. In the experimental settings of
Sections V-A to V-C, the entries of II; and II,. are independent
of the time ¢ and drawn from the uniform distribution within
the interval [—0.5,0.5]. In Section V-D, we will consider an
adaptive setting where II; is time-dependent. We assume that
both y and v are observable at the nodes (this is possible,
e.g., if the source r has an on-off behavior). In all the
simulations, we take the number of samples of the signals to
be communicated between the nodes to be N = 10* and each

"The number of children nodes is selected randomly from [0,1,2,3,4],
which is distributed following the probability vector [0.2,0.3,0.2,0.2,0.1].

TABLE III
SUMMARY OF PARAMETERS USED IN THE SIMULATIONS.

Experiment Section V-A Section V-B Section V-C
Q 3 5 {1,3,5,7}
K {10, 25,50} 30
M, My, M =450, M = M/K,Vk e K
Signal Statistics | 77 = 1"721 = Z% = %-.51’ o7 :103 =
N 10000
Monte Carlo Runs 100

node has an equal number of channels My = M /K (where the
total number of channels M and the total number of nodes K
will vary). The convergence of the DASF algorithm is assessed
by tracking the normalized error e:
iy NIXT = X
= e o
The optimal value X* is computed by solving the problems we
present in the following paragraphs using centralized solvers.
In case the centralized problem has multiple possible solutions,
ie., |[X*] > 1, we select X* € X* in (53) that best matches
X% in the final iteration of the simulation. This resolves the
ambiguity of the solution, while the plots would still reveal
non-convergence in case the algorithm would arrive in a limit
cycle that switches between multiple accumulation points, i.e.,
we would observe subsequences of (X*); converging to differ-
ent solutions of the problem. The parameters chosen for each
following problem in Sections V-A to V-C are summarized
in Table III. In these experiments, we aim to observe the
theoretical convergence result of the DASF algorithm and
therefore consider stationary and ergodic signals. On the other
hand, Section V-D has a slightly different experimental setting
as we aim to demonstrate the adaptive properties of the DASF
algorithm, in which case stationarity does not hold.

A. Quadratically Constrained Quadratic Problem

In this subsection, we will solve the following problem:

minig{nize %EH IXTy()||?] — tr(XT A) (54)

subject to tr(X7 X) < o?, XTc=d,

where we take 02 = o2 = 1 for the noise and signal variance.
In this problem, we have three deterministic inner products of
the form X7 B where B is known a priori. Two of them are the
terms X7 A and X7c where A € RM*® and ¢ € RM. The
third one comes from X7 X, which can be written as (X7 Iy)-
(XTIy)T which reveals the term X7 B with B = Ij; (see
also Remark 5). The values of & € R and d € R® have been
chosen randomly while ensuring that o > ||d||?/||c||? which
would otherwise make the problem infeasible. We can write
E[XTy (1)) = (X7 Ryy X) where Ry, = Ely(t)y” (1)
is the covariance matrix of the signal y. We note that the
matrix Ry, is assumed to be unknown, as the signal statistics
are to be learned by the algorithm, so it should not be seen

[|Number of Nodes
K=10
K=25
10° 10! 10? 10°
Iterations i

10

Fig. 6. Convergence comparison of the DASF algorithm solving (54) in
fully-connected networks (FC), randomly generated trees (Rand) and Erd6s-
Rényi random graphs with connection probability of 0.6 (ER(0.6)) for various
network sizes. The bold lines represent the mean values across 100 Monte
Carlo runs, while the shaded areas delimit the standard error of the mean
around them.

as a deterministic term. Then, the local problem at iteration %
that node ¢ needs to solve is

SN DPP O S
mlm)l(rqnze §tr(Xq ququq) — tr(Xq Aq) 55)
subject to tr(X7CITCLX,) < o?, X1 =d,

where Rgﬁq =]E[?fz(t)yff(t)] is the correlation matrix of
the locally available signal % at 'node q and iteration 1.
Note that the compression matrix C; appears in the quadratic
constraints, which is indeed what one obtains when computing
Bé with B = I, which directly follows from (26).

For this experiment, we take the number of channels to
be M = 200, take Q = 3 and look at the behavior of
the algorithm for a varying number of nodes in the network
with K € {10,25,50} (the number of channels per node
M, = M/K therefore changes for each K). The results are
shown in Figure 6. For the fully-connected case, we see that
the smaller networks, i.e., when K is small, converge faster in
the first iterations. This is because they are able to do a full
round update (over all nodes) in a smaller number of iterations
compared to larger networks. However, the larger networks can
eventually “catch up” and even surpass the convergence speed
of their counterparts with smaller K after a certain number
of iterations due to the larger number of degrees of freedom
(i.e., a larger number of (G, matrices in each iteration). This
property is however not observed for randomly generated trees
as here the number of (G}, matrices at each node is related to
its number of neighbors, hence independent of the network
size. Overall, the fully-connected topologies lead to faster
convergence and the randomly generated trees are the slowest,
which is consistent with the expectations based on the amount
of degrees of freedom (i.e., the number of G} matrices in
each update). Networks for which the topology is neither a
tree nor fully-connected are expected to fall in between these
two extreme cases. We add that the high variance observed in
Figure 6 over various Monte-Carlo runs is due to the fact that
Problem (54) has many parameters chosen randomly.

100 F = T HREEE]

Network Type

100 10! 102 108
Iterations 7

Fig. 7. Convergence comparison of the DASF algorithm solving (56) for
various network settings namely fully-connected networks (FC), Erd6s-Rényi
random graphs with connection probability p (ER(p)), path or line graphs
(Path) and randomly generated trees (Rand). The bold lines represent the
mean values across 100 Monte Carlo runs, while the shaded areas delimit the
standard error of the mean around them.

B. The Trace Ratio Optimization Problem

We now consider the problem:

E[||XTv(t)||?
maximize IXTvOIF] _

E[||XTy(2)]1?]
subject to X7 X = 1o,

tr(X7T Ryy X)
tr(XT Ry, X)

(56)

often referred to as the trace ratio or trace quotient opti-
mization (TRO) problem [68]. It is noted that a distributed
algorithm for this TRO problem has been proposed in [50]
where techniques tailored to the TRO problem have been used.
Applying the generic Algorithm 2 to Problem (56) results
in an alternative distributed algorithm for the TRO problem,
based on the DASF framework. Ry, and R, are again spatial
correlation matrices of y and v respectively, assumed to be
unknown to the DASF algorithm. We take the signal and noise
variance to be 02 = 0.5 and o2 = 0.1 respectively. Problem
(56) can be solved using the solver in [68] by iteratively
computing generalized eigenvalue decompositions.
At updating node ¢ and iteration ¢, (56) is translated to

. tr(Xg RS 5 Xq)
maximize —=———""t=—

X, tr(X$R§q§q Xq)
subject to)?gC;TC;Xq =g,

(57)

where R;qu and R%q;,q are estimated in the same way as
in the previous example. Therefore, the solver in [68] can
be applied to solve the local problem (57) in step 4a of
Algorithm 2, by replacing Ryy and Ryy by Ry o and Rf o
respectively, where ¢ is the updating node at iteration q.

The experimental results are shown in Figure 7, where
we highlight the differences in convergence depending on
the topology of the network. In particular, we look at fully-
connected networks, random trees, line topologies (trees where
each node has two neighbors, except leaf nodes which have
only one neighbor), and Erdds-Rényi (ER) models, generated
using [69]. In each case, we keep the number of nodes,
the number of channels and the compression dimension)
constant, with K = 30, M = 450 and @@ = 5 respectively.
We observe that the more the network is connected the faster
the DASF algorithm converges, the fastest being the fully-

connected networks, while the slowest convergence is obtained

10°

Network Type
5l |—FC
........ Rand

Number of Filters
Q=] . Q=°
— O R

100,

100 10t 102
Iterations 7

Fig. 8. Convergence comparison of the DASF algorithm solving (58) for
various number of filters @ for fully-connected networks (FC) and randomly
generated trees (Rand). The bold lines represent the mean values across 100
Monte Carlo runs, while the shaded areas delimit the standard error of the
mean around them.

for line graphs. This is again in line with the results and
discussion on the degrees of freedom in Section V-A.

C. Quadratic Problem with a Spherical Constraint
Let us now consider:
1
minimize -E[||XTy(®)||*] + tr(XT A
mize SE(IXTy(0)") (XA
subject to tr(XTX) =1,

where 02 = 02 = 1 and the elements of A have been chosen
independently at random. Note that this problem differs from
(54) in the sense that it has a non-convex constraint set due to
the non-linear equality constraint. The local problem at node
q and iteration ¢ can be written as

1 ~m . o~ o~
minimize ~tr(XZ RL - X,) + tr(XT A?)
X, 2 4 7Yq¥q 4 q°7q (59)
subject to tr(X7CITCLX,) = 1.

For this experiment, we fix K = 30, M = 450 and consider
various number of filters @ € {1,3,5,7}. We observe in
Figure 8 that the larger the number of filters (), the faster
the algorithm converges. This is expected as a larger value for
@ implies that more information can be used at every node,
however at the expense of a larger communication cost. As
for the previous examples, we see that the DASF framework
converges faster for fully-connected networks compared to
randomly generated trees for Problem (58).

D. DASF in a Tracking Problem

In this final experiment, we consider the MMSE problem

minimize E[|s(t) — xTy(t)|?], (60)
x€RM

where s is a one-dimensional signal, implying () = 1. The
problem is solved using the DASF algorithm on a randomly
generated Erd8s-Rényi network with connection probability
0.8. The network contains K = 10 nodes, each measuring a
signal y; with M} = 4 channels. At each iteration i, N = 10*
new times samples of yy, are used, such that ¢ = |t/N|. The
network-wide signal is given by

y(t) =p(t) - s(t) + n(t), (61)

10°
1072}
1074
1076 L I | |
0 1 2 3 4 5
Sample time ¢ %100

Fig. 9. Error € over time of the DASF algorithm in an adaptive setting
(blue). The signal statistics change over time and depend on the function A,
represented in red. The relationship between the time ¢ and the iterations 7 is
given by ¢ = [t/N].

for each ¢, with s(t) e N(0,1) and n(t) R N(0,0.1)
for every entry and time instance ¢. The main difference with
(51) is that now the steering vector p (corresponding to the
mixture matrix IIg in (51)) changes with time, implying that
the statistical properties of y are time-dependent as well.
At each time instance t, the solution of (60) is given by
x*(1) = (Ryy (1)) ~rys(r), where Ryy(t) = Ely(t)y” (1)
and ry.(t) = Ely(t)s(t)]. For each t, we have p(t) =
(I = A() - po + At) - (po + A), where pg and A are
time-independent vectors of which the entries are drawn from
N(0,1) and N(0,0.01) respectively. The function \ used in
this experiment is represented in Figure 9, where it can be
observed that smooth, as well as abrupt, changes are modeled.
At each iteration, the ground-truth solution of (60) is estimated
as

X" = (Ry,)"'rl,, (62)
where
) iINtN—1 _ iN+N—1
Ryy = Z y(r)y" (7), ry, = Z y(7T)s(7). (63)
T=iN T=iN

Figure 9 shows the median value over 100 Monte Carlo
runs of the error e:
l[x? — x

[]2

*z||2

e(i) =

over time, where ¢ = [t/N|. The algorithm can adapt to
abrupt changes in signal statistics, i.e., when the value of
A suddenly changes, which translates to an initial jump in
the error followed by a decrease. We observe that the DASF
algorithm is also able to track slow changes in the statistical
properties of the signal, shown by constant error values € over
the iterations, despite changes in the value of A. Since the
optimal solution x*! changes at each iteration, the error e
settles around a certain threshold, which is higher for larger
rates of change in A\ and due to the approximation error.

(64)

VI. CONCLUSION

In this paper, we have proposed the DASF framework which
contains a large number of well-known distributed spatial
filter design problems and algorithms as a special case. For
intelligibility purposes, we have first addressed the case of
fully-connected networks (FC-DASF) and then generalized

it to any network represented by a connected graph (TI-
DASF). In order to reduce the communication burden, the
nodes only communicate compressed data across the network.
An interesting property of the resulting distributed algorithm
is that the local problem to be solved at an updating node has
the same structure as the original network-wide centralized
problem, such that the same solver can be used. The con-
vergence properties of the algorithm have been illustrated by
means of four example instances of the (D)SFO problem (3)
or its more general form in (5), one of the examples focusing
on the adaptive properties of the DASF algorithm. A formal
convergence analysis with convergence and optimality proofs,
including examples on how the convergence conditions can
be checked, are provided in a companion paper [1]. We have
also provided a toolbox to automatically design and test the
DASEF algorithm for any user-defined instances of the (D)SFO
problem (3) or (5), available in [47].

VII. ACKNOWLEDGMENTS

The authors would like to thank Charles Hovine for the
brainstorming sessions and help with Sections II-B and V-D.

REFERENCES

[1] C. A. Musluoglu, C. Hovine, and A. Bertrand, “A unified algorithmic
framework for distributed adaptive signal and feature fusion problems
— Part II: Convergence properties,” 2022.

[2] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A
survey on wireless body area networks,” Wireless networks, vol. 17,
no. 1, pp. 1-18, 2011.

[3] A. Bertrand, “Distributed signal processing for wireless EEG sensor
networks,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 23, no. 6, pp. 923-935, 2015.

, “Applications and trends in wireless acoustic sensor networks: A
signal processing perspective,” in 2011 18th IEEE symposium on com-
munications and vehicular technology in the Benelux (SCVT). IEEE,
2011, pp. 1-6.

[5] S. Markovich-Golan, A. Bertrand, M. Moonen, and S. Gannot, “Opti-
mal distributed minimum-variance beamforming approaches for speech
enhancement in wireless acoustic sensor networks,” Signal Processing,
vol. 107, pp. 4-20, 2015.

[6] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin, “A wireless sensor network for structural
monitoring,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004, pp. 13-24.

[71 M. F. Othman and K. Shazali, “Wireless sensor network applications:
A study in environment monitoring system,” Procedia Engineering,
vol. 41, pp. 12041210, 2012.

[8] C. Albaladejo, P. Sdnchez, A. Iborra, F. Soto, J. A. Lépez, and R. Torres,
“Wireless sensor networks for oceanographic monitoring: A systematic
review,” Sensors, vol. 10, no. 7, pp. 6948-6968, 2010.

[9] I FE Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393—

422, 2002.

J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”

Computer networks, vol. 52, no. 12, pp. 2292-2330, 2008.

A. H. Sayed, “Adaptation, learning, and optimization over networks,”

Foundations and Trends® in Machine Learning, vol. 7, no. 4-5, pp.

311-801, 2014, http://dx.doi.org/10.1561/2200000051.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:

numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor net-

works and distributed sensor fusion,” in Proceedings of the 44th IEEE

Conference on Decision and Control. 1EEE, 2005, pp. 6698—6703.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-

eration in networked multi-agent systems,” Proceedings of the IEEE,

vol. 95, no. 1, pp. 215-233, 2007.

D. P. Bertsekas, “A new class of incremental gradient methods for least

squares problems,” SIAM Journal on Optimization, vol. 7, no. 4, pp.

913-926, 1997.

[4]

[10]

(11]

(12]

[13]

[14]

[15]

http://dx.doi.org/10.1561/2200000051

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064-4077, 2007.

——, “Diffusion least-mean squares over adaptive networks: Formula-
tion and performance analysis,” IEEE Transactions on Signal Process-
ing, vol. 56, no. 7, pp. 3122-3136, 2008.

F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” IEEE transactions on signal processing, vol. 58,
no. 3, pp. 1035-1048, 2009.

J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4289-4305, 2012.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE transactions on information theory, vol. 52, no. 6,
pp. 2508-2530, 2006.

A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847-1864, 2010.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2011.

E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC). 1IEEE, 2012, pp. 5445-5450.

A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson,
and B. Ottersten, “Convex optimization-based beamforming,” IEEE
Signal Processing Magazine, vol. 27, no. 3, pp. 62-75, 2010.

S. A. Vorobyov, “Principles of minimum variance robust adaptive
beamforming design,” Signal Processing, vol. 93, no. 12, pp. 3264—
32717, 2013.

S. Doclo and M. Moonen, “GSVD-based optimal filtering for single and
multimicrophone speech enhancement,” IEEE Transactions on signal
processing, vol. 50, no. 9, pp. 2230-2244, 2002.

B. Somers, T. Francart, and A. Bertrand, “A generic EEG artifact
removal algorithm based on the multi-channel Wiener filter,” Journal
of neural engineering, vol. 15, no. 3, p. 036007, 2018.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 19, no. 7,
pp. 711-720, 1997.

M. Sugiyama, “Dimensionality reduction of multimodal labeled data by
local fisher discriminant analysis.” Journal of machine learning research,
vol. 8, no. 5, 2007.

B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977-992, 2018.

H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
models, limits, and algorithms,” IEEE Transactions on Signal process-
ing, vol. 59, no. 1, pp. 386-398, 2010.

J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Distributed
basis pursuit,” IEEE Transactions on Signal Processing, vol. 60, no. 4,
pp. 1942-1956, 2011.

C. Manss, D. Shutin, and G. Leus, “Distributed splitting-over-features
sparse bayesian learning with alternating direction method of multipli-
ers,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2018, pp. 3654-3658.

C. Gratton, N. K. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed learning over networks with non-smooth regularizers and feature
partitioning,” in 2021 29th European Signal Processing Conference
(EUSIPCO). IEEE, 2021, pp. 1840-1844.

B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient
distributed learning with feature partitioned data,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). 1EEE, 2018,
pp. 1-6.

L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace
estimation in wireless sensor networks,” IEEE Journal of Selected Topics
in Signal Processing, vol. 5, no. 4, pp. 725-738, 2011.

Y. Zeng and R. C. Hendriks, “Distributed delay and sum beamformer for
speech enhancement via randomized gossip,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 1, pp. 260—
273, 2013.

L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear Gauss—Seidel method under convex constraints,” Operations
research letters, vol. 26, no. 3, pp. 127-136, 2000.

(391

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

A. Bertrand and M. Moonen, “Distributed adaptive generalized eigen-
vector estimation of a sensor signal covariance matrix pair in a fully
connected sensor network,” Signal Processing, vol. 106, pp. 209-214,
2015.

——, “Distributed adaptive estimation of covariance matrix eigenvectors
in wireless sensor networks with application to distributed PCA,” Signal
Processing, vol. 104, pp. 120-135, 2014.

S. Doclo, M. Moonen, T. Van den Bogaert, and J. Wouters, “Reduced-
bandwidth and distributed MWF-based noise reduction algorithms for
binaural hearing aids,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 17, no. 1, pp. 38-51, 2009.

A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal
estimation in fully connected sensor networks-—Part I: Sequential node
updating,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp.
5277-5291, 2010.

S. Markovich-Golan, S. Gannot, and I. Cohen, “Distributed multiple
constraints generalized sidelobe canceler for fully connected wireless
acoustic sensor networks,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 2, pp. 343-356, 2012.

A. Bertrand and M. Moonen, “Distributed LCMV beamforming in a
wireless sensor network with single-channel per-node signal transmis-
sion,” IEEE Transactions on Signal Processing, vol. 61, no. 13, pp.
3447-3459, 2013.

——, “Distributed canonical correlation analysis in wireless sensor
networks with application to distributed blind source separation,” IEEE
Transactions on Signal Processing, vol. 63, no. 18, pp. 4800-4813, 2015.
C. Hovine and A. Bertrand, “Distributed MAXVAR: Identifying com-
mon signal components across the nodes of a sensor network,” in 2021
29th European Signal Processing Conference (EUSIPCO). 1EEE, 2021,
pp. 2159-2163.

C. A. Musluoglu and A. Bertrand, “DASF Toolbox,” 2022. [Online].
Available: https://github.com/AlexanderBertrandLab/DASF_toolbox

H. Cox, R. Zeskind, and M. Owen, “Robust adaptive beamforming,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35,
no. 10, pp. 1365-1376, 1987.

J. Wouters, P. Patrinos, F. Kloosterman, and A. Bertrand, “Multi-pattern
recognition through maximization of signal-to-peak-interference ratio
with application to neural spike sorting,” IEEE Transactions on Signal
Processing, vol. 68, pp. 6240-6254, 2020.

C. A. Musluoglu and A. Bertrand, “Distributed adaptive trace ratio
optimization in wireless sensor networks,” IEEE Transactions on Signal
Processing, vol. 69, pp. 3653-3670, 2021.

Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for
channel selelction in motor imagery based brain-computer interface,” in
2005 IEEE engineering in medicine and biology 27th annual conference.
IEEE, 2006, pp. 5392-5395.

A. Hjorungnes and D. Gesbert, “Complex-valued matrix differentiation:
Techniques and key results,” IEEE Transactions on Signal Processing,
vol. 55, no. 6, pp. 2740-2746, 2007.

T. Adali and P. J. Schreier, “Optimization and estimation of complex-
valued signals: Theory and applications in filtering and blind source
separation,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 112—
128, 2014.

A. Bertrand and M. Moonen, “Distributed node-specific LCMV beam-
forming in wireless sensor networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 1, pp. 233-246, 2011.

B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE assp magazine, vol. 5, no. 2, pp. 4-24, 1988.
B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal processing magazine, vol. 25, no. 1, pp. 41-56, 2007.

I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate
in adaptive arrays,” IEEE Transactions on Aerospace and Electronic
Systems, no. 6, pp. 853-863, 1974.

S. Valaee, B. Champagne, and P. Kabal, “Localization of wideband
signals using least-squares and total least-squares approaches,” IEEE
Transactions on Signal Processing, vol. 47, no. 5, pp. 1213-1222, 1999.
C. E. Davila, “An efficient recursive total least squares algorithm for
fir adaptive filtering,” IEEE Transactions on Signal Processing, vol. 42,
no. 2, pp. 268-280, 1994.

S. Kim, R. Pasupathy, and S. G. Henderson, “A guide to sample average
approximation,” Handbook of simulation optimization, pp. 207-243,
2015.

P. S. Diniz, Adaptive Filtering: Algorithms and Practical Implementa-
tion. Springer Nature, 2019.

A. H. Sayed, Adaptive filters. John Wiley & Sons, 2011.

https://github.com/AlexanderBertrandLab/DASF_toolbox

[63]

[64]

[65]

[66]

[67]

[68]

[69]

——, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4,
pp. 460497, 2014.

H.-F. Chen and G. Yin, “Asymptotic properties of sign algorithms for
adaptive filtering,” IEEE transactions on automatic control, vol. 48,
no. 9, pp. 1545-1556, 2003.

J. Hadamard, “Sur les problémes aux dérivées partielles et leur signifi-
cation physique,” Princeton university bulletin, pp. 49-52, 1902.

Y.-h. Zhou, J. Yu, H. Yang, and S.-w. Xiang, “Hadamard types of
well-posedness of non-self set-valued mappings for coincide points,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5-7,
pp. €2427-e2436, 2005.

D. W. Peterson, “A review of constraint qualifications in finite-
dimensional spaces,” Siam Review, vol. 15, no. 3, pp. 639-654, 1973.
H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang, “Trace ratio vs.
ratio trace for dimensionality reduction,” in 2007 IEEE Conference on
Computer Vision and Pattern Recognition. 1EEE, 2007, pp. 1-8.

N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs,” ArXiv e-prints, Aug. 2014.

	I Introduction
	II Problem description
	II-A Scope of Signal Fusion Optimization Problems
	II-B Adaptivity and Approximation in Practical Settings
	II-C General Assumptions

	III Distributed Adaptive Signal Fusion in Fully-Connected Networks (FC-DASF)
	III-A Algorithm Derivation
	III-B Link between the Central and Local Problems
	III-C Multiple Signals, Deterministic Terms and Variables

	IV Topology-Independent DASF (TI-DASF)
	IV-A Star Topologies
	IV-B Tree Topologies
	IV-C General Connected Graphs

	V Examples and Simulations
	V-A Quadratically Constrained Quadratic Problem
	V-B The Trace Ratio Optimization Problem
	V-C Quadratic Problem with a Spherical Constraint
	V-D DASF in a Tracking Problem

	VI Conclusion
	VII Acknowledgments
	References

