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Abstract—Group testing can help maintain a widespread
testing program using fewer resources amid a pandemic. In a
group testing setup, we are given n samples, one per individual.
Each individual is either infected or uninfected. These samples
are arranged into m < n pooled samples, where each pool is
obtained by mixing a subset of the n individual samples. Infected
individuals are then identified using a group testing algorithm.
In this paper, we incorporate side information (SI) collected from
contact tracing (CT) into nonadaptive/single-stage group testing
algorithms. We generate different types of possible CT SI data by
incorporating different possible characteristics of the spread of
disease. These data are fed into a group testing framework based
on generalized approximate message passing (GAMP). Numerical
results show that our GAMP-based algorithms provide improved
accuracy.

Index Terms—compressed sensing, contact tracing, generalized
approximate message passing (GAMP), nonadaptive group test-
ing.

I. INTRODUCTION

Widespread testing is a broadly used epidemiological tool
for combating the COVID-19 pandemic. Samples are typi-
cally collected from nasal or oropharyngeal swabs and then
processed by a reverse transcription polymerase chain reac-
tion (RT-PCR) machine. However, widespread testing may be
hindered by supply chain constraints and long testing times,
especially at the inception of a pandemic.

Pooled or group testing has been suggested for improving
testing efficiency [2]–[18]. Group testing involves mixing a
subset of n individual samples into m < n pools. The
measurement process can be expressed as y = N(Ax),
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where x is a vector that quantifies the health status of the
n individuals, A is an m × n binary pooling matrix with
Aij = 1 if the jth individual contributes to the ith pool, else
Aij = 0, y is a vector of m noisy measurements or tests,
and N represents a probabilistic noise model that relates the
noiseless pooled results, Ax, to y. Our work considers a noisy
binary measurement model used by Zhu et al. [6], where x

is a binary vector, w = Ax is an auxiliary (noiseless) vector,
and the measurement yi ∈ {0, 1} depends probabilistically on
wi, where P(yi = 1 | wi = 0) and P(yi = 0 | wi > 0) are
probabilities of erroneous tests.

We wish to estimate x from y and A. We use single-stage
nonadaptive algorithms as in [6], [8], rather than two-stage
algorithms, which employ a second stage of tests depend-
ing on results from the first stage, as in Heidarzadeh and
Narayanan [10] or the classical Dorfman approach [2]. The
advantage of nonadaptive algorithms is that they reduce testing
time, which is high for RT-PCR.

Algorithms that estimate x from y and A [8], [12] rely
primarily on the sparsity of x, which is a valid assumption
for COVID-19 due to low prevalence rates [19]. However,
in addition to sparsity, the health status vector x contains
plenty of statistical structure. For example, Zhu et al. [6]
exploited probabilistic information such as the prevalence rate
and structure in x, and stated the potential benefits of using
side information (SI). Specific forms of SI include individuals’
symptoms and family structure [1], [9]. Family structure refers
to information regarding which individuals belong to the
same family. Besides the conventional meaning of a family,
within the context of disease spread, other types of family-like
structure with significant contact between all individuals could
include a group of students sharing the same room in a hostel,
security officers working regularly at the same checkpoint,
or healthcare workers working in the same facility. Finally,
Nikolopoulos et al. [11], [16] independently observed that
community structure can improve the performance of group
testing; these works focused on encoder design in conjunction
with basic decoders.

The focus of our work is on innovative decoder design.
Our algorithmic approach for the decoder uses approximate
message passing (AMP) [21], which has been proven to
achieve the best-possible estimation quality in the large system
limit for certain matrices [22]–[24]. Although the structured,
binary, non-random measurement matrices that we use do not
fall into this category, nonetheless, it seems plausible that
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Fig. 1: Performance of the proposed group testing method with binary noise at four averaged sparsity levels and three
measurement levels for a population of n = 1000 individuals. Our algorithms use family and contact tracing information
to obtain false negative rates (FNR) and false positive rates (FPR) that are more appealing than those obtained by the prior
art noisy-CoMa [20] and noisy-DD [3]. See Sec. V-B for more details. We also ran noisy-LiPo [20] with the same datasets,
and it has larger FNR than noisy-DD.

our numerical results with these matrices are favorable. Our
AMP-based decoder is theoretically motivated, and therefore
expected to estimate x well, in particular for large problem
sizes. The overarching message of our paper is that using
SI within AMP-based approaches can greatly improve group
testing.

Contact tracing (CT) information has been widely collected
and used for controlling a pandemic [25]. Such information,
including the duration of contact between pairs of individuals
and measures of physical proximity, can be collected using
modalities such as Bluetooth [26], the global positioning
system [27], manual inquiries by social workers [28], [29],
and financial transaction data [27], [30]. Karimi et al. [31]
used CT information to improve group testing using a loopy
belief propagation (BP) algorithm.

In this paper, we show how to estimate x while utilizing CT
SI. Our contributions are twofold. First, in Sec. IV, we pro-
pose group testing decoding algorithms based on generalized
approximate message passing (GAMP) [32], and demonstrate
how CT SI can be utilized. Our numerical results are presented
in Sec. V; a typical result appears in Fig. 1. Our work uses
more SI than other binary group testing algorithms [11], [16],
[17] that only considered family/community structure in binary
group testing when designing their encoders.

Our second contribution is to the AMP [21] community.
The prior art has considered vector denoisers within AMP,
within GAMP [33], and even SI-aided vector denoisers within
AMP [34], including rigorous state evolution results [35], [36].
However, combining SI-aided vector denoisers within gener-
alized AMP (GAMP) is new, to the best of our knowledge.
GAMP adds another layer of complexity beyond AMP, hence
combining these tools within GAMP could be numerically
unstable. Our favorable numerical results suggest that fusing
these algorithmic tools together offers a good direction for
future work in SI-aided signal recovery.

We also mention that an extended online version of our
work [37] incorporates SI at the encoder. We demonstrate
numerically that SI at the encoder provides little extra perfor-
mance benefits over the utilization of SI only at the decoder.

The rest of the paper is organized as follows. In Sec. II,
we survey related work. Our CT data is described in Sec. III.
Our main contributions appear in Sec. IV, where we propose
a GAMP-based group testing algorithm that exploits CT SI.
Numerical results are presented in Sec. V. We discuss our
findings in Sec. VI and conclude in Sec. VII.

II. RELATED WORK

Side information (SI) can be derived from many data
sources, including travel history, medical history, and symp-
toms. SI can be used to assign infection probabilities as prior
probabilities to individuals, who can subsequently be classified
into different risk levels. Risk-aware group testing algorithms
can then process individuals based on their risk levels.

This risk-aware approach has proven to be effective. For
example, Deckert et al. [38] demonstrated a marked reduction
in the number of tests required if pooling is performed on
subjects with similar infection probabilities, as opposed to
subjects with widely varying infection probabilities. Moreover,
risk-specific algorithms can incorporate strategies to minimize
the number of tests; McMahan et al. [39] adopt such a
hierarchical approach in conjunction with classical Dorfman
pooling [2], identifying pool sizes that minimize the expected
number of tests. In broadly similar work by Bilder et al. [40],
individuals are sorted per their infection probabilities, and
extra tests are assigned for high-risk individuals.

There are also algorithms that make use of SI about family
structures or contact tracing information. One recent example
is our previous work with Zhu and Rivera [6], [9], who used
both individual infection probabilities derived from symptom
SI and family information while performing the decoding.

More recently, Nikolopolous et al. [11], [16] used SI about
connected or overlapping communities to design good encod-
ing matrices. The designed matrices boost the performance of
basic decoders such as definite defectives (DD) [3] or loopy
belief propagation (LBP) [41], in conjunction with a model
for binary noise that resembles our model.

The work that is likely closest to ours is Karimi et al. [31].
Both works fully employ contract tracing SI in the decoder.
Additionally, both works consider noisy measurements.
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Ahn et al. [17] and Arasli and Ulukus [18] considered
correlations represented by arbitrary graphs drawn from a
stochastic block model, albeit for adaptive group testing, un-
like the nonadaptive approach in this paper. Their approaches
generalized the i.i.d. assumption often used in group testing.
Such correlations could be derived from family or contact
tracing information. Graphs generated from this model con-
tain node clusters with dense connections within a cluster
and sparse connections between clusters. Such structures are
typical of many social network graphs. The authors in [15],
[42] provided an analytical proof of cost reduction in Dorfman
pooling if there is a positive correlation between the different
samples being pooled. Moreover, Lin et al. [13] also presented
a hierarchical agglomerative algorithm for pooled testing in a
social graph. We note that [13], [17], [18], [42] do not consider
measurement noise.

Another approach was considered by Lau et al. [43]. They
employ the Ising model to capture underlying structures and
dependencies in the data. They solve the Ising model with
quadratic and linear programming, resulting in performance
improvements in group testing. Differently from our work, CT
information is captured by edge strengths in the Ising model.

The recent approach by Gatta et al. [44] fits a graph
neural network to data on COVID-19 infections, deaths, and
recoveries in a certain geographic location. This approach
allows the authors to estimate temporally varying parame-
ters of differential equations associated with a susceptible,
exposed, infectious, and recovered (SEIR) model. While there
are some similarities to our work, we have used parameters
based on recent documents published by the World Health
Organization (WHO) [38], whereas Gatta et al. [44] use a data-
driven approach to perform regression via a graph-based neural
network. Note that a neural network requires a large amount
of data for training, which would not be readily available at
the beginning of a pandemic. In contrast, our approach uses
only basic knowledge about the spread of disease.

III. DATA GENERATION APPROACH

This section summarizes the main points of a data gen-
eration system that we use to illustrate a possible GAMP-
based group testing decoding algorithm that uses CT. Our data
generation system resembles the SEIR approach [45]–[47], but
is not a contribution per se.

Below, we only present features of the data generation
system that are utilized for algorithm design in Sec. IV.
GAMP is more of an algorithmic framework than a single
algorithm, and a specific GAMP approach is derived based on
statistical information about the structure of the vector x and
its dependence on CT information (Sec. IV). For these reasons,
our data generation system was created merely to demonstrate
the efficacy of this GAMP-based framework.

We model n individuals using a dynamic time-varying
graphical model, where for each day dynamic undirected
edges represent recent contacts between pairs of nodes, where
nodes stand for individuals. Each node can be in one of

Fig. 2: Transitions between susceptible, infected, infectious,
and recovered per-node states, where each node represents an
individual. A node is infectious between days k1 and k2 (in-
clusive) after getting infected, where we set (k1, k2) = (3, 7).

four states, susceptible, infected, infectious, and recovered;
for transitions between states, see Fig 2. CT applications are
assumed to provide the decoder with SI in the form of τ

(t)
ij ,

the contact duration, and d
(t)
ij , a measure of physical proximity.

The infection probability is decided by the CT SI along with
individuals’ viral load, xi, where only individuals in states
infected or infectious have positive viral loads. More details
about our data generation system appear in Appendix A.

IV. PROPOSED GROUP TESTING ALGORITHMS

This section describes a class of group testing algorithms
that use side information (SI) within generalized approximate
message passing (GAMP) [32] for reconstructing the health
status vector x from the pooled tests, y, given the pooling
matrix, A.

A. GAMP-Based Group Testing

Zhu et al. [6] use GAMP [32] for group testing estimation.
GAMP is comprised of two components. The first component
is comprised of an input channel that relates a prior for n

individuals’ health status, x = (xi)
n
i=1, to pseudo data,

v = x+ q ∈ Rn, (1)

where the n coordinates of x are correlated, and q is additive
white Gaussian noise with qi ∼ N (0,∆i). When the ith
individual is in the infected/infectious state as defined in Fig. 2
and Sec. III, xi = 1; otherwise, xi = 0. The pseudo data v

is an internal variable of GAMP that can be considered as a
corrupted version of the true unknown health-status vector x.
The pseudo data is later iteratively cleaned up to gradually
reveal x. The unknown input x can be estimated from pseudo
data v using a denoising function (or a denoiser):

x̂i = gin (v) = E [Xi | V = v] , (2)

where we use the convention that when both the capital and
lower case versions of a symbol appear, the capital case is
a random variable and the lower case is its realization, and
E [Xi|v] represents E [Xi|V = v] when the context is clear.

The second component of GAMP is comprised of an
output channel relating the auxiliary vector w to the noisy
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Algorithm 1 Pseudocode for the GAMP Framework
Inputs. Maximum iterations tmax, side information, probabil-
ities of erroneous tests, measurements y, and matrix A.
Initialize. t, k, hj , θj , x̂i, si ∀i ∈ [1, n], j ∈ [1,m].
Comment. t is iteration number, k is mean of our estimate
for Ax, hj is correction term for wj , θj is variance of hj , x̂i

is our estimate for xi, si is variance in our estimate x̂i, and ◦
is the Hadamard/elementwise product.

1: while t < tmax do
2: // clean up the output channel:
3: θ = A◦2 s // variance of h
4: k = Ax̂− θ ◦ h // mean of w per previous iteration
5: for j = 1 to m do
6: hj = gout(yj ; kj , θj)

7: rj = − ∂
∂kj

gout(yj ; kj , θj)

8: ∆ =
[
1
N (A◦2)Tr

]◦−1
// scalar channel noise variance

9: v = x̂+∆ ◦ATh // pseudo data
10: // clean up the input channel:
11: for i = 1 to n do
12: x̂i = gin(v) = E[Xi|v] // conditional mean
13: si = E[X2

i |v]− E2[Xi|v] // conditional variance

14: t = t+ 1

Output. Estimate x̂, pseudo data v, and scalar channel noise
variance ∆.

measurements y as reviewed in Sec. I. We adopt the output
channel denoiser of Zhu et al. [6], hj = gout (yj ; kj , θj) =

(E [Wj | yj , kj , θj ]−kj)/θj , where θj is the estimated variance
of hj , and kj is the mean of our estimate for wj . Since yj
depends probabilistically on wj , we have f (wj | yj , kj , θj) ∝
Pr (yj | wj) exp

[
− (wj−kj)

2

2θj

]
, where f is a probability den-

sity function and Wj is approximated as Gaussian per the cen-
tral limit theorem when there are enough ones in the jth row of
pooling matrix A. Our pseudocode for the GAMP framework
is given in Algorithm 1. GAMP’s signal estimation quality is
asymptotically optimal for large reconstruction problems, and
it is also practically useful for finite problem sizes. Indeed,
numerical results in Sec. V demonstrate that GAMP works
adequately with a population n = 500 and well for n = 1000.

The key to an efficient GAMP-based estimator is the input-
channel denoiser. While Zhu et al. [6] considered Bernoulli
elements in x and alluded to supporting non-i.i.d. structure
in x by using vector denoisers, this paper provides details
for probabilistic dependencies within x. Below, we provide
details for the design of two denoisers. Our first denoiser is
based on a probabilistic model that considers groups of people,
such as family members. Our second denoiser encodes the CT
information into the prior for each individual’s health status.

B. Family Denoiser

We formalize a family-based infection mechanism, leading
to a denoiser that improves detection accuracy. Define MF as
the set of indices of all members of family F . We say that F

is viral when there exists viral material in the family. Next,
define the infection probability of individual i within a viral
family F as πind = P(Xi = 1 | F viral), for all i ∈ MF , and
πvf = P(F viral). Note that the infection status of individuals
in a viral family are conditionally independent and identically
distributed (i.i.d.).

Under our definition, family F being viral need not be
attributed to any individual i ∈ MF . After all, viral material
can be on an infected pet or contaminated surface. For this
model, once the family is viral, the virus spreads independently
with a fixed probability πind. Of course, our simplified model
may not accurately reflect reality. That said, without a con-
sensus in the literature on how coronavirus or other infectious
diseases spread, it is unrealistic to create a more accurate
model. On the other hand, our model is plausible, and we
will see that it is mathematically tractable. We further assume
that individuals cannot be infected unless the family is viral,
i.e., P(Xi = 1 | F not viral) = 0. The family structure serves
as SI and allows the group testing algorithm to impose the
constraint that people living together have strongly correlated
health status.

Next, we derive the denoiser (2) by incorporating the family-
based infection mechanism. Denote the pseudodata of the
members of family F as vF = (vi)i∈MF , the family-based
denoiser for ith individual can be decomposed as follows:

gfamily
in (vF )

=E [Xi | vF ] = P(Xi = 1 | vF ) (3a)

=P(Xi = 1,F viral | vF ) (3b)

=P(F viral | vF )P(Xi = 1 | vF ,F viral), (3c)

where the first term of (3c) is

P(F viral | vF )

=
f(vF ,F viral)

f(vF ,F viral) + f(vF ,F not viral)
. (4)

The two quantities in (4) can be further expanded as

f(vF ,F not viral) (5a)

=(1− πvf) f(vF | F not viral) (5b)

=(1− πvf)
∏

i∈MF

N (vi; 0,∆) (5c)

and

f(vF , F viral) = πvf f(vF | F viral) (6a)

=πvf

∑
xk∈ΩF

∏
i∈MF[

f(vi | Xi = xk,i)P(Xi = xk,i | F viral)
]
,

(6b)

where N (x;µ, σ2) := 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, and ΩF =

{0...00, 0...10, . . . , 1...11} is a power set comprised of
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2|MF | distinct infection patterns for family F . The second
term of (3c) can be simplified as follows:

P(Xi = 1 | vF ,F viral)

=P(Xi = 1 | vi,F viral) (7a)

=P(Xi = 1, vi | F viral) / P(vi | F viral) (7b)

=
πind N (vi; 1,∆)

πind N (vi; 1,∆) + (1− πind) N (vi; 0,∆)
(7c)

=

(
1 +

1− πind

πind
· N (vi; 0,∆)

N (vi; 1,∆)

)−1

(7d)

=
(
1 +

(
π−1

ind − 1
)
exp

[(
vi − 1

2

)/
∆
])−1

. (7e)

C. Contact Tracing Denoiser

While family structure SI characterizes part of the spread
of the disease, individual family members will presumably
all come in close contact with each other; hence CT SI
will include cliques for these individuals. Additionally, CT
SI describes inter-family contacts. Therefore, CT SI can char-
acterize the spread of the disease more comprehensively than
family SI.

Consider a hypothetical widespread testing program that
relies on CT SI, where all individuals are tested 8 days before
the testing program begins, resulting in a good initial estimate
of their ground-truth health status. Note that our 8 day startup
testing assumption is in line with China’s zero-Covid policy
of testing large populations daily for weeks at a time [48].
To exploit the CT SI, we encode it for each individual i into
the prior probability of infection, P(Xi = 1), and use the
following scalar denoiser:

gCT
in (vi)

=E [Xi | vi] = P (Xi = 1 | vi) (8a)

=f(vi | Xi = 1)P(Xi = 1)/f(vi) (8b)

=
{
1+

[
P(Xi=1)−1−1

]
exp

[(
vi − 1

2

)/
∆
]}−1

. (8c)

Here, P(Xi=1) for day k+1 can be estimated by aggregating
CT information of individual i over a so-called SI period1 from
day k − 7 to day k as follows

P̂
(k+1)

(Xi = 1) = 1−
k∏

d=k−7

n∏
j=1

(
1− p̂

(d)
i,j

)
, (9)

where p̂
(d)
i,j is the estimated probability of infection of individ-

ual i due to contact with individual j. This probability, p̂(d)i,j ,

1Owing to our 8 day startup testing assumption, starting the SI period on
day k − 7 and ending on day k lets us test on day k + 1. Using this SI
period for testing on day k + 1 implicitly assumes that the test results are
available within 24 hours. However, in cases when it takes more than 24
hours to generate test results, the SI period can be appropriately modified.
For example, day k − 8 to day k − 1 for testing on day k + 1 if it takes at
most 48 hours to generate test results. After the testing program begins, we
assume weekly testing, and probability estimates from the previous group test
result 7 days before the current test are used as priors for the n individuals
when performing the current group test.

may be determined by the CT information (τ (d)ij , d
(d)
ij ), as well

as their infection status as follows:

p̂
(d)
i,j = exp

(
−
(
λ τ

(d)
ij d

(d)
ij Ψ

(d)
ij + ϵ

)−1
)
, (10)

where Ψ
(d)
ij = 1− P̂

(d)
(Xi=0) P̂

(d)
(Xj=0), λ is an unknown

Poisson rate parameter, and ϵ is used to avoid division by
zero. We estimate λ with maximum likelihood (ML) using
the pseudodata of all individuals, i.e.,

λ̂ML = argmax
λ

n∏
i=1

f(vi|λ), (11)

where f(vi|λ) = f(vi|Xi = 1) P(Xi = 1|λ) + f(vi|Xi =

0) P(Xi = 0|λ). Once λ̂ML is obtained, it is plugged into (10)
for calculating the prior probability in (9) [49]. As long as
the pseudodata is not too noisy, the ML estimated parameter
will be close to the true one, and the estimated probability
p̂
(d)
i,j in (10) will be close to the true probability. This plug-

in strategy can also used for our family denoiser gfamily
in (v),

where λ = (πvf, πind).

V. NUMERICAL RESULTS

A. Experimental Conditions

The data were simulated based on the data generation
process described in Sec. III, and group testing inference was
performed using the algorithms proposed in Sec. IV. We call
our family of algorithms GAMP-SI.

1) Experiment for n = 1000: We generated datasets with
n = 1000 individuals using four levels of cross-clique
contacts, leading to four averaged sparsity levels, 2.12%,
3.98%, 6.01%, and 8.86%, for x.2 At each sparsity level, we
perform pooling experiments using Kirkman triple matrices
as proposed in [8] using m ∈ {150, 300, 375}. Measurement
vectors y for GAMP-SI were generated using probabilities
for erroneous binary tests, P(yi = 1 | wi = 0) = 0.001 and
P(yi = 0 | wi > 0) = 0.02, per Hanel and Thurner [51].

2) Experiment for n = 500: We also generated datasets
with n = 500 individuals with averaged sparsity level 1.09%.
Measurement vectors y for GAMP-SI were generated under
the symmetric noise model, P(yi = 1 | wi = 0) = P(yi =

0 | wi > 0) = 0.01, and 6 different pooling channel-coded
matrices (m ∈ {100, 150, 200, 250, 300, 350}) were derived
using a matrix design algorithm from Goenka et al. [37].

B. Main Numerical Results

We tested our model using both the family denoiser (3)
and the CT denoiser (8).3 The top row of Fig. 1 summarizes

2Because the data generation model was used, it is difficult to control the
average sparsity level from the underlying parameters. The sparsity level is
measured after the data generation.

3We have not included numerical results for the vanilla GAMP implementa-
tion without contact tracing SI, because we noticed some numerical instability
in the challenging scenarios that involve low sparsity and low measurement
rates. Of course, these are the interesting scenarios that group testing focuses
on.
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Fig. 3: Performance of GAMP-SI in terms of ROC when the family denoiser (top row) and CT denoiser (bottom row) are
used. Results for No-DD [3], No-CoMa [20], and NBP [50] are included for comparison in the top row. Columns correspond
to averaged sparsity levels ranging from 2.12% to 8.86%. Within each plot, the performance under three measurement levels
for a population of n = 1000 individuals is compared. The circular dot on each GAMP-SI curve corresponds to an operating
point that minimizes the sum of FPR and FNR. The CT denoiser significantly outperforms the family denoiser with error rates
mostly below 0.05. The estimation problem is more challenging when fewer measurements are used at a higher sparsity level.
The results of the baseline algorithm (NBP) that does not exploit SI are worse than both GAMP-based algorithms, since their
operating points are far from the ROC curves for the family denoiser; No-DD minimizes FPR at the expense of large FNR;
and No-CoMa performs better than GAMP-family at the sparsity level 8.86%.

the performance of GAMP-SI by choosing a representative
operating point on an ROC curve, and Fig. 3 presents complete
receiver operating characteristic (ROC) curves. Fig. 1 reveals
that the CT denoiser outperforms the family denoiser in all
settings. Both algorithms yield lower (better) FNR and FPR
as the number of measurements, m, increases. Moreover,
the CT denoiser’s error rates are below 0.05, except for
the challenging cases where the sparsity level is 8.86% and
m ∈ {150, 300}.

Fig. 3 illustrates the performance of family and CT denois-
ers at different measurement and sparsity levels. The circular
dot on each curve is the operating point that minimizes
the total error rate, i.e., the sum of FPR and FNR, which
correspond to the concise results of Fig. 1. The closer a dot is
to the origin of the FPR–FNR plane, the better the performance
it reflects. Comparing the ROC curves in the top and bottom
rows, we note that the CT denoiser significantly outperforms
the family denoiser at all sparsity levels. The CT denoiser, with
most of its FNR and FPR < 5%, can achieve as low as 15%

of the total error rate of the family denoiser. Across different
sparsity levels, the algorithm performs less accurately as the
sparsity level increases. In each plot, lower measurement rates
make it more challenging for the group testing algorithm.

We also examine the stability of the thresholds correspond-
ing to the operating points we selected to report results in
Fig. 1. Our empirical results reveal that at a given sparsity
level, the variation of the threshold due to different design
matrices or denoisers is less than 0.003. As the sparsity level
increases from 2.12% to 8.86%, the threshold only drops from
0.160 to 0.137. Hence, the threshold for minimizing the total
error rate is insensitive to the testing conditions.

We compare our proposed group testing algorithms to

a baseline nonparametric belief propagation (NBP) algo-
rithm [50] that does not exploit SI. We attach an additional
output channel denoiser to the NBP algorithm to process
the RT-PCR noise. We evaluate the performance in terms of
FPR–FNR pairs and plot them using triangular markers in
Fig. 3. Since the operating points are far from the ROC curves
for GAMP using the family denoiser, we conclude that our
proposed group testing algorithms that exploit SI outperform
the NBP baseline that does not use SI.

GAMP-SI is also compared to the noisy Column Matching
algorithm (No-CoMa), noisy LP Decoding algorithm (No-
LiPo) [20], and noisy definite defectives (No-DD) [3] that do
not exploit SI. No-LiPo and No-DD have large FNR levels,
and No-CoMa is tuned for each sparsity level to minimize the
sum of FPR and FNR for m = 375. We note that among
all algorithms we are comparing with, No-CoMa performs
the best and outperforms GAMP-family at the sparsity level
8.86%. We believe the lower performance of GAMP-family at
8.86% is caused by the mediocre SI provided as priors by the
weekly group testing regime; we also observed that GAMP-
family suffers from some numerical instability. In contrast
to No-LiPo and No-DD having minimal FPR, GAMP-SI can
offer any trade-off along the ROC curve.

We also compare GAMP-SI to belief propagation on com-
bined graphs (BPCG) [31] that also employs cross-clique
contact tracing as SI. Fig. 4 compares the performance of
the two algorithms in an experiment for n = 500 indi-
viduals. For BPCG, we set the prevalence rate p to 0.01,
the contagion probability q to 0.1 and the interaction prob-
ability θ to 0.008. The number of tests is set to be m ∈
{100, 150, 200, 250, 300, 350}. When m is smaller, GAMP-SI
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Fig. 4: Success probability for algorithms BPCG [31] and
GAMP-SI as a function of the measurement rate m/n. With
the measurement rate less than 65%, GAMP-SI can achieve
a higher success probability compared to BPCG. The perfor-
mance gap is larger when fewer tests are allowed. (Note that
BPCG was slow, hence we limited ourselves to n = 500.
However, GAMP-SI performs somewhat better for n = 1000.)

has a higher success probability; this advantage vanishes as m
increases. With m = 50, GAMP-SI can still achieve a success
probability of 0.702. Also, GAMP-SI has a lower running time
than BPCG. Specifically, for n = 500, BPCG takes around 680
seconds to produce the result of simulation of one day, on
average, while GAMP-SI only takes around 16 seconds. Note
that BPCG is designed to estimate samples’ states based on
the information from the previous day; GAMP-SI can use the
CT information from the entire previous SI period (multiple
days).

C. Additional Experiments

1) Using Prior Knowledge of Infection Status: We now ex-
amine the advantage that prior knowledge of the population’s
infection status in the startup phase provides our algorithm
for the model. As defined in (9)–(10), we iteratively use
the updated probability of infection, P̂(Xi = 1), estimated
from an SI period of 8 immediately preceding days. For days
k < 8, we had to use the ground-truth infection status of
each individual in the startup phase to generate the results
reported in Sec. V-B. However, ground-truth infection data
from the startup phase may provide our approach an unfair
advantage. Below, we investigate whether this advantage is
significant. We examine how varying the amount of startup
information impacts our algorithm’s quality. Specifically, we
randomly replace a portion, pexcluded ∈ {0, 0.1, 0.5, 0.75, 1}, of
the population’s infection status by an estimated probability
of infection, e.g., 5%, for a setup that has a true averaged
sparsity level of 7.2%. Using a probability instead of a binary
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Fig. 5: Performance of GAMP-SI when a proportion, pexcluded,
of the population’s health states in the startup phase is un-
known. The curves reveal that in the absence of up to 50%

prior knowledge of the infection status of the population, the
accuracy of GAMP-SI is close to that when complete startup
information is available.

value, 0 or 1, gives the algorithm soft probabilistic information
instead of hard ground-truth style information. Fig. 5 shows
that even with 50% prior knowledge of the infection status
of individuals, our detection accuracy for GAMP-SI is close
to that when using complete prior information after ramping
up for eight days. The averages of the total error rates across
time for increasing pexcluded are 0.038, 0.039, 0.046, 0.148,
and 0.407, respectively. We also tried to replace the startup
infection status with an estimated probability of infection of
10%, but only observed negligible performance differences.
The results show that the CT algorithm is robust to the absence
of up to 50% of startup infection information, suggesting that
the startup phase can likely be optimized to not require onerous
testing resources.

2) Duration of Startup SI Period: It seems plausible to
expect a trade-off between the accuracy of our algorithm and
the amount of startup infection status data that needs to be
collected before the initialization of our testing algorithm. We
investigate numerically whether the accuracy of our algorithm
is sensitive to the duration of the startup SI, or the startup
SI period. We investigated the impact of the startup SI period
by testing three durations, namely, 4, 8, and 12 days. The ex-
periment was conducted on a sample of n = 1000 individuals
with measurement rate m/n ∈ {0.1, 0.2, 0.3, 0.4} at a sparsity
level of 2.12%. Fig. 6 reveals that the estimation accuracy
is not sensitive to the startup SI period. Specifically, as the
startup SI period increases from 4 days to 8 days and then
12 days, the success probability increases by merely 0.01 and
0.005, respectively, at measurement rate 0.1. The increase in
the success probability is even smaller when the measurement
rate becomes larger. Therefore, we conclude that the startup
SI period does not substantially impact the accuracy of our
algorithm. For this reason, we chose 8 days as the startup SI
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Fig. 6: Performance of GAMP-SI when the startup SI period
is set to 4, 8, and 12 days. The average sparsity level is 2.12%
with a sample size of n = 1000 individuals. The curves are
bunched closely together, suggesting that GAMP-SI is not
sensitive to the startup SI period.

period for the experiments conducted for this paper.

VI. DISCUSSION

Recent studies have shown that CT information based on
Bluetooth may have privacy concerns, and contain many
errors [27]. However, we note that there exist methods for ob-
taining CT information, which have been shown to be quite ef-
fective, including inquiries by social workers, cellphone-based
localization, analyses of closed-circuit television footage, and
financial transactions [28]–[30]. A fusion of these modalities
can lead to more accurate CT data [27]. Contact tracing has
been shown to be useful in previous epidemics [52]. As shown
earlier, our algorithms are robust to errors in the CT SI.
However, we leave a full-fledged investigation of SI errors and
their impact on our algorithms to future work. We would like
to point out that at the peak of a pandemic, testing resources
(including time, skilled manpower, testing kits, and reagents)
could be scarce. In such a scenario, it is important to exploit
as much information as is reasonably available in order to
improve the performance of group testing algorithms, with the
aim of saving critical testing resources.

VII. CONCLUSION

In this paper, we have presented numerical evidence that
side information (SI) from family structures and contact-
tracing (CT) data can significantly improve the efficiency of
group testing. The overarching message of our paper is that
using SI within AMP-based approaches works well.

There could exist other approaches that also incorporate SI
at the encoder, in addition to the decoder considered here,
resulting in further reconstruction improvements. However, we
leave a full investigation of this aspect to future work.

Finally, due to the exploratory nature of our work and
our deliberate efforts to bring algorithmic advances closer to
practice, finding publicly available datasets with associated
SI proved to be challenging. In light of this, we crafted a
generative model that closely reflects the key characteristics
of COVID-19 transmission for generating the data used in our
investigation. Our numerical results present strong empirical
evidence that CT supported group testing is a viable option
to optimize the use of resources for a widespread testing
program during a pandemic. Future work could consider a
hybrid approach in which either the contact tracing data or
infection status are real, and the other part of the data is
simulated. Such an approach would be more realistic without
requiring a significant data acquisition project.
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APPENDIX A
DATA GENERATION MODEL

In this section, we present a generative infection model
that incorporates CT SI, which we use to prepare simulated
data for algorithmic evaluation. We model a population of
n individuals using a dynamical (time-varying) graphical
model that contains nodes, {ui}ni=1, and undirected edges,{
e
(t)
ij

}n

i,j=1
. On a given day t, an edge e

(t)
ij between nodes ui

and uj encodes CT SI
(
τ
(t)
ij , d

(t)
ij

)
, which can be acquired via

Bluetooth-based CT applications [26]. Here, τ (t)ij represents the
contact duration and d

(t)
ij represents a measure of the physical

proximity between individuals i and j. On day t, a node
can be in one of the following states: susceptible, infected,
infectious, and recovered. Note that the infected state is defined
in a narrow sense that excludes the infectious state, because
states must be mutually exclusive. To keep the model simple,
we assume that there are no reinfections, i.e., recovered is
a terminal state, despite some reinfections [53]. While our
model is inspired by a classical compartmental model in
epidemiology comprised of susceptible, exposed, infectious,
and recovered (SEIR) states considered for COVID-19 [54],
our state transitions explicitly use CT SI and knowledge about
the pandemic [55].

We adopt a simplified infection dynamic wherein the infec-
tious period is preceded and followed by the infected state.
Our design parameters for the infection dynamics are based
on a WHO report on COVID-19 [55]. Specifically, a node
ui remains infected but noninfectious for k1 = 3 days. On
day t+k1, the node becomes infectious and may transmit the
disease to a susceptible neighboring node uj with probability
p
(t+k1)
i,j whose construction is described below. An infectious

node can potentially transmit the infection until k2 = 7 days
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after getting infected, and becomes noninfectious afterward.
Note that the above assumptions ensure that the transmission
of infection on any given day is limited to one hop in the
CT graph, i.e., it cannot be the case that individual X infects
individual Y , who in turn infects individual Z on the same day.
We also model a small fraction of stray infections that may
occur, for example, due to sporadic contact with contaminated
surfaces. Such infections only affect nodes in the susceptible
state with a probability p1 = 2× 10−4 of our choice.

A state diagram appears in Fig. 2. Regarding the viral
load x

(t)
i for node i on day t, we assume x

(t)
i = 0 if

the node is susceptible or recovered. For an infected or
infectious node, we make a simplified assumption that its viral
load x

(t)
i ∼ Uniform(1, 215),4 once drawn, remains constant

throughout the combined 14-day period of infection.
Next, we model the probability p

(t)
i,j that the disease is

transmitted from node ui to uj on day t. We view infection
times as a nonhomogeneous Poisson process with a time-
varying rate function λ(t). Consider a τ

(t)
ij -hour contact on

day t when susceptible node uj is exposed to infectious node
ui. The average infection rate λij(t) for day t is assumed to
be proportional to both the viral load x

(t)
i and the physical

proximity d
(t)
ij , namely, λij(t) = λ0 x

(t)
i d

(t)
ij , where λ0 is

a tunable, baseline Poisson rate. The probability that uj

is infected by the end of contact period τ
(t)
ij is therefore

p
(t)
i,j = 1− exp

(
−λ0 x

(t)
i d

(t)
ij τ

(t)
ij

)
for t ∈ [k1, k2] + ti. From

the standpoint of susceptible node uj , all its neighbors uk that
are infectious contribute to its probability of getting infected
on day t, namely, 1 −

∏
k

(
1 − p

(t)
k,j

)
. We remark that if an

individual catches the infection on day t, then it will possibly
be detected only in testing conducted on the day t+1, since we
assume that sample collection and pooled testing is performed
at the beginning of the day.
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