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Abstract

Compressed sensing (CS) model of complex-valued data can represent the sig-
nal recovery process of a large amount types of radar systems, especially when the
measurement matrix is row-orthogonal. Based on debiased least absolute shrinkage
and selection operator (LASSO), detection problem under Gaussian random design
model, i.e. the elements of measurement matrix are drawn from Gaussian distri-
bution, is studied by literature. However, we find that these approaches are not
suitable for row-orthogonal measurement matrices. In view of statistical mechanics
approaches, we provide derivations of more accurate test statistics and thresholds
(or p-values) under the row-orthogonal design model, and theoretically analyze the
detection performance of the present detector. Such detector can analytically pro-
vide the threshold according to given false alarm rate, which is not possible with
the conventional CS detector, and the detection performance is proved to be bet-
ter than that of the traditional LASSO detector. Comparing with other debiased
LASSO based detectors, simulation results indicate that the proposed approach
can achieve more accurate probability of false alarm when the measurement matrix
is row-orthogonal, leading to better detection performance under Neyman-Pearson
principle.

Key words- Compressed sensing, radar detection, LASSO, row-orthogonal
matrix, replica method, statistical mechanics
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1 Introduction

CS model of complex-valued data assumes a scenario of recovering an N -dimensional
vector x0 ∈ CN from a M -dimensional vector y ∈ CM , given by

y = Ax0 + ξ, (1)

where A ∈ CM×N is the measurement matrix (or the sensing matrix) and ξ ∈ CM is the
complex additive white Gaussian noise (AWGN) with i.i.d. components ξi ∼ CN

(
0, σ2

)
.

Basically, for the CS model, M is less than N , and we regard γ = M/N as compression
rate. The original signal x0 is a sparse vector containing only k = 2ρN non-zero entries,
where 2ρ (0 ≤ 2ρ ≤ 1) is referred to as the signal density .

In many practical applications, the signal processing can be modeled as above, while
the sensing matrix has a specific structure. Particularly, in this paper, we focus on
radar applications, in which y, x0 and A refers to the sampled received signal, radar
observation scene and observation (or steering) matrix, respectively. Generally, in the
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radar application scenarios, the number of non-zero entries in x0, which represents the
intensity of scattering points, is small enough to satisfy k � N . The indices of the
non-zero entries indicate the “position” of the scattering points (or the targets), such as
range, azimuth, radial velocity, etc.

The observation matrix A incorporates the geometry of the observation scene and
the design of the transmitting waveform. In the present paper, we are concerned with the
case where A is row-orthogonal matrix. That is, Ai·A

H
j· = 0 for i 6= j and Ai·A

H
i· = 1,

in which Ai· represents the i-th column of matrix A. A large amount types of radar
transmitting waveform utilize a row-orthogonal steering matrix, and we list several below
for illustration:

1) The partial observation problem of a pulse Doppler radar system, such as working in
complex electromagnetic environments [1], leads to a result of partial Fourier steering
matrix, which is apparently row-orthogonal.

2) The steering matrix of frequency agile radar system is similarly row-orthogonal [2,3],
which possesses a variety of merits such as good electronic counter-countermeasures
(ECCM) performance, low hardware system cost and convenience of spectrum shar-
ing.

3) Sub-Nyquist radar systems [4, 5] realize the observation and compression on several
dimensions, such as temporal domain, spatial domain and spectral domain. The
steering matrix of sub-Nyquist radar, which is proved to be the Kronecker product
of several partial Fourier matrices (depends on the number of dimensions of the
observation scene) in [5], satisfies the row-orthogonal property.

For modern radar systems, it is crucial to detect targets element-wisely. As previously
mentioned, the indices of the non-zero entries in x0 represent the information of the
targets, and judging whether each entry in x0 is non-zero can inform us about the
existence of the targets and their location. We summarize such requirement as solving
the following hypothesis testing problems:{

H0,i : x0,i = 0,
H1,i : x0,i 6= 0,

(2)

for i = 1, 2, . . . , N and designing thresholds for these tests. Note that it is different from
the task to detect whether there exists any target in the whole observed scene. The
latter is generally more simple, which can be expressed as{

H0 : y = ξ,
H1 : y = Ax0 + ξ,

(3)

and can be easily solved by conventional approaches such as generalized likelihood ratio
test (GLRT) or Wald test. While since the linear model (1) is underdetermined, the
maximum likelihood estimation (MLE) of x0,i is unavailable. Consequently, one cannot
directly apply conventional detectors to solve detection problem (2).
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Therefore, it is natural that we estimate x0 by CS approaches and complete the
tests on the basis of estimation, in which LASSO [6] is a frequently used technique. The
complex-valued LASSO estimator x̂LASSO is given by

x̂LASSO = arg min
x

{
1

2
‖y −Ax‖22 + λ‖x‖1

}
, (4)

where

‖x‖1
.
=

N∑
i=1

√
(Re (xi))

2 + (Im (xi))
2. (5)

As a convex optimization problem, LASSO can be solved by standard techniques such
as interior point and homotopy methods [7, 8]. There are also plenty of threshold
class fast algorithms such as approximate message passing (AMP), iterative shrinkage-
thresholding algorithm (ISTA), etc. Besides the computationally feasible feature, the
nature of x̂LASSO has been studied in a large literature, which mainly focus on: the
prediction error ||A(x̂LASSO − x0)||22/M [9], the estimation error ||x̂LASSO − x0||q with
q ∈ {1, 2} [10–12] and variable selection (or support estimation) of x0 [13–15], denoted
by the support set S0 = {i ≤ N : x0,i 6= 0} such that P(Ŝ 6= S0) is bounded. However,
the above study is not enough to solve detection problems (2): we still cannot get their
p-values (or the threshold of given false alarm rate, which is extremely important in
radar applications). Naturally, one would wonder about the distribution of x̂LASSO

i in
purpose of designing the detector.

A certain linear transformation of the LASSO estimator, called debiased LASSO, is
given by

x̂d = x̂LASSO +
1

Λ
AH(y −Ax̂LASSO), (6)

where Λ > 0 is the debiased coefficient computed from known variables and contains
information about the structure of sensing matrix A. Asymptotic analysis of the LASSO
solution based on AMP algorithm was developed in [16] and [17], which proves that the
empirical distribution of the difference

w
.
= x̂d − x0, (7)

converges weakly to Gaussian distribution under Gaussian random design model (the
entries of observation matrix A are i.i.d. drawn from Gaussian distribution). This con-
clusion derives two studies for the design of detectors for solving the detection problem
(2) based on debiased LASSO: [18] for the real-valued CS model and [19] for the complex-
valued one. While all the studies above restrict the measurement matrix to be Gaussian,
work in [20] based on statistical mechanics methods as well provides different ways for ob-
taining x̂d. The methodologies used allows the asymptotic analysis of LASSO solutions
and the construction of debiased LASSO estimator for multiple real-valued observation
matrix ensembles such as Gaussian, row-orthogonal, random discrete cosine transforma-
tion (DCT). We aim to derive debiased LASSO in complex-valued form based on [20],
especially under row-orthogonal design model, and analyze the detection performance
of the resulting constructed detector.
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The main contributions of this paper are twofold. First, we present a general debi-
ased LASSO detector framework and analyze its detection performance. We summarize
the existing research on detection problems, including [18] and complex approximate
message passing (CAMP) based [19], and find that the test statistics used are the same:
all debiased LASSO. Therefore, we construct a general detector framework based on
debiased LASSO, and analyze its detection performance. We prove that the detection
performance of debiased LASSO detector is better than that of traditional LASSO detec-
tor under the Neyman-Pearson principle, and its detection threshold can be analytically
calculated by the given false alarm rate, thus the detection rate can be further quantified.
In contrast, most CS methods do not have closed-form solutions, and the distribution
is not available. Consequently, the threshold cannot be given by the false alarm rate
either. Therefore, we believe that the debiased lasso detector can completely replace the
traditional CS detector when solving the detection problem (2).

Second, we extend the results of [20] to the complex domain to enhance their appli-
cability to engineering applications. Some methods in statistical mechanics are used in
reference [20], which sacrifice part of the mathematical rigor to obtain more attractive
results: the debiased LASSO estimator for some non-Gaussian sensing matrices can be
derived, and a more accurate estimation medium for the variance σ2

w of w (as defined
in (7)) can be provided. These results make it possible to implement debiased LASSO
detector under row-orthogonal design model. Therefore, for engineering applications,
we extend these derivation processes to the complex domain. We find that the debi-
ased coefficient under the row-orthogonal assumption is different from the results in [18]
and [19], and the correctness of the results obtained by our method is verified by sim-
ulation experiments. Numerical results also verify that our method can estimate the
variance σ2

w of w more accurately than [18] and [19]. This leads to a more accurate
threshold for the designed debiased LASSO detector and therefore to a better reaching
of a given false alarm rate. Such conclusion is also verified by simulation results.

The organization of the present paper is as follows. In Section 2, we provide our
results on the design of the detector for compressed sensing radar system and the analysis
on its detection performance. The derivation of the test statistic and the threshold of
the presented detector is elaborated in Section 3. Section 4 furnishes some numerical
validation of the previous asymptotic analysis. We conclude the paper in Section 5.

Throughout the paper, we use a, a and A as a number, a vector and a matrix,
respectively. For a set S, #S denotes its cardinality. Denote by Re(·) and Im(·) for the
real and imaginary parts of a complex-valued component, respectively. Function δ(·) is
the Dirac’s delta function and Θ(x) is Heaviside’s step function. The operators (·)T , (·)∗
and (·)H represent the transpose, conjugate and conjugate transpose of a component, re-
spectively. Denote by ϕ(x) = e−x

2/2/
√

2π the Gaussian density and Φ(x) =
∫ x
−∞ ϕ(u)du

the Gaussian distribution.
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Figure 1: Frameworks of two detectors for detection problem (2): (a) LASSO detector;
(b) Debiased LASSO detector.

2 Design and analysis of the debiased LASSO detector

In this section, we first introduce the debiased LASSO detector. The advantage of the
debiased LASSO detector is elaborated mainly by comparing with the LASSO detector
in Section 2.1. While both the proposed detector and the ones in [18–20] are debiased
LASSO detectors, the difference is explained in Section 2.2. Particularly, this paper
inherits some derivation from [20], and we will briefly describe the contribution of this
work over [20] in Section 2.2.

2.1 Debiased LASSO detector

With regard to detection problem (2), we here define the following performance metrics.
Denote by

ϕi =

{
1, if detector reject H0,i;
0, otherwise.

(8)

Define the false alarm probability Pfa as

Pfa = lim
N→∞

1

N − k
∑
i∈Sc

ϕi, (9)

and the detection probability Pd as

Pd = lim
N→∞

1

k

∑
i∈S

ϕi, (10)

where S = {i : x0,i 6= 0} is the support set of x0 with #S = k and Sc = {1, . . . , N}\S.
The LASSO detector, which is a natural idea, possesses the structure shown in Fig. 1

(a), in which the test statistic is provided by LASSO estimator. Indeed, other traditional
CS radar detectors have the similar form with the LASSO detector, which contain the
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compressed sensing module and a test of judging whether the amplitude is greater than
a threshold.

On the contrary, the debiased LASSO detector for compressed sensing radar has
the structure shown in Fig. 1 (b). The test statistic is given by debiased estimator x̂d

and the threshold κd can fix the probability of false alarm. In the present paper, we
propose the debiased LASSO detector for complex-valued row-orthogonal observation
matrix called Complex Row-Orthogonal Debiased detector (CROD), whose procedure
is shown in Algorithm 1. The detailed derivation of the involved parameters will be
presented later in Section 3.

We declare here that the benefits of the debiased LASSO detector are mainly twofold.
First, the relationship between the threshold κd and the false alarm rate Pfa can be
computed analytically, as will be detailed later in Section 2.1.1. This is usually not
possible for traditional CS detectors, because the distribution of the solution obtained
by CS methods is unavailable. Second, its detection performance is better than that of
the LASSO detector, which will be proved in Section 2.1.2.

2.1.1 Analytical expression of false alarm probability

The most significant advantage of the debiased LASSO detector over the conventional CS
detector is that the analytical relationship between the threshold κd and the false alarm
rate Pfa can be obtained. Controlling false alarm rate is particularly important in many
radar applications due to resource allocation and other reasons. Asymptotic analysis
shows that as N → ∞, if Λ is suitably chosen, x̂d

i , the i-th entry of x̂d, approximately
follows Gaussian distribution with mean x0,i, where x0,i is the i-th entry of x0. For the
convenience of readers, we here restate the definition and conclusion in [16] (, which is
similar to that in [17],) to describe this result more precisely.

Definition 2.1 ( [16]). For a given (γ, 2ρ) ∈ [0, 1]2, a sequence of instances {x0(N), ξ(N),A(N)}N∈N
indexed by N is said to be a converging sequence of Gaussian design model if the em-
pirical distribution of the entries x0(N) ∈ RN converges weakly to a probability measure
pX with bounded second moment, the empirical distribution of the entries ξ(N) ∈ RM
(M = γN) converges weakly to a probability measure pξ with bounded second moment
and the elements of A(N) ∈ RM×N are i.i.d. drawn from a Gaussian distribution.

Lemma 2.2 ( [16]). Let {x0(N), ξ(N),A(N)}N∈N be a converging sequence of Gaussian
design model. The empirical law of w(N) = x̂d(N) − x0(N) converges to a zero-mean
Gaussian distribution almost surely as N →∞ for a specific Λ.

In the present paper, we further prove that such Λ is unique.

Theorem 2.3. Let {x0(N), ξ(N),A(N)}N∈N be a converging sequence of Gaussian de-
sign model. Let Λ1 ∈ R and x̂d

1 = x̂LASSO+ 1
Λ1
AH(y−Ax̂LASSO), such that the empirical

law of w1(N) = x̂d
1(N)− x0(N) converges to a zero-mean Gaussian distribution almost

surely as N →∞. Then for all Λ2 6= Λ1 and x̂d
2 = x̂LASSO + 1

Λ2
AH(y −Ax̂LASSO), the

empirical law of w2(N) = x̂d
2(N)− x0(N) does not converge to a Gaussian distribution

as N →∞.
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Algorithm 1 CROD

Input: y, A, regularization parameter λ, probability of false alarm Pfa, variance of
noise σ2

Output: debiased LASSO estimator x̂d, threshold κd
1: Let

x̂LASSO = arg min
x

{
1

2
‖y −Ax‖22 + λ‖x‖1

}
.

2: The debiased LASSO estimator is obtained from

x̂d = x̂LASSO +
1

ΛCROM
AH(y −Ax̂LASSO), (11)

with ΛROM and ρCA given by

ΛCROM =
γ − ρCA

1− ρCA
,

ρCA =
1

2N

N∑
i=1

[(
2− λ

ΛCROM

∣∣x̂LASSO
i

∣∣+ λ

)
·Θ
(∣∣x̂LASSO

i

∣∣)]. (12)

3: The threshold κd is given by
κd = −σ2

w lnPfa,

where

χ =
ρCA(1− ρCA)

γ − ρCA
, (13)

G′(−χ;J) =
1 + χ−

√
(χ+ 1)2 − 4γχ

2χ
, (14)

G′′(−χ;J) =
2γχ− χ− 1 +

√
(χ+ 1)2 − 4γχ

2χ2
√

(χ+ 1)2 − 4γχ
, (15)

RSS =
1

M

∥∥y −Ax̂LASSO
∥∥2

2
, (16)

χ̂ =
γG′′(−χ;J)

2G′(−χ;J)− 2G′′(−χ;J)χ
RSS +

−G′′(−χ;J)γ + (G′(−χ;J))2

2G′(−χ;J)− 2G′′(−χ;J)χ
σ2,(17)

σ2
w =

2χ̂

Λ2
CROM

. (18)
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Proof. The proof is given in Appendix A.

In addition, we claim that such uniqueness is not limited to Gaussian sensing matrix,
but other matrix manifolds also have the same conclusion such as row-orthogonal ma-
trices. The following definition of a converging sequence of row-orthogonal design model
is required.

Definition 2.4. For a given (γ, 2ρ) ∈ [0, 1]2, a sequence of instances {x0(N), ξ(N),A(N)}N∈N
indexed by N is said to be a converging sequence of row-orthogonal design model if the em-
pirical distribution of the entries x0(N) ∈ RN converges weakly to a probability measure
pX with bounded second moment, the empirical distribution of the entries ξ(N) ∈ RM
(M = γN) converges weakly to a probability measure pξ with bounded second moment
and A(N) ∈ RM×N is randomly drawn from all the row-orthogonal matrices with a size
of M ×N .

Corollary 2.5. Let {x0(N), ξ(N),A(N)}N∈N be a converging sequence of row-orthogonal
design model. Let Λ1 > 0 and x̂d

1 = x̂LASSO + 1
Λ1
AH(y −Ax̂LASSO), such that the em-

pirical law of w1(N) = x̂d
1(N)− x0(N) converges to a zero-mean Gaussian distribution

almost surely as N →∞. Then for all Λ2 6= Λ1 and x̂d
2 = x̂LASSO+ 1

Λ2
AH(y−Ax̂LASSO),

the empirical law of w2(N) = x̂d
2(N)−x0(N) does not converge to a Gaussian distribu-

tion as N →∞.

The proof of the corollary is the same as Theorem 2.3.
Denote the sample variance ofw(N) by σ2

w, it is natural to get the following analytical
relationship between the probability of false alarm and the threshold κd of the detector.

Theorem 2.6. The false alarm probability Pfa of the debiased LASSO detector satisfies:

κd = −σ2
w lnPfa, (19)

where the test is

ϕi =

{
1,

∣∣x̂d
i

∣∣2 > κd;
0, otherwise.

(20)

Proof. For i ∈ Sc, which means that x0,i = 0, the empirical law of {x̂d
i } converges to

CN (0, σ2
w) as N → ∞. Therefore, the empirical distribution of {

∣∣x̂d
i

∣∣2} converges to
exponential distribution of rate parameter 1/σ2

w, leading to:

Pfa = lim
N→∞

1

N − k
∑
i∈Sc

ϕi = exp

(
− κd
σ2
w

)
, (21)

which proves (19).

From Theorem 2.6, we conclude that the threshold κd of the debiased LASSO detec-
tor can be analytically calculated by the false alarm probability. Such mission cannot
be achieved by traditional CS detector for the reason that almost all of the solutions
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Table 1: Comparison of several detectors.

approach Λ σ2
w Gaussian row-orthogonal complex

SDL-test [18] (22) (23) X × ×
CAMP [19] (24) (25) X × X
ROD [20] (26) (13) - (18) X X ×

CROD (27) (13) - (18) X X X

obtained by CS methods does not have a closed form, neither the distribution of the
solutions. In the present paper, we will provide an asymptotic analysis from a statistical
mechanics perspective and the process of calculating the coefficients Λ with variance σ2

w

in Section 3, which can be adapted to the row-orthogonal matrix design of A mentioned
for radar applications.

2.1.2 Better detection performance

At first glance, the debiased LASSO estimator destroys the sparsity brought by the
LASSO results, but we will next prove theoretically that treating

∣∣x̂d
i

∣∣ as a test statistic
compared to

∣∣x̂LASSO
i

∣∣ will improve the detection performance of the detector.

Theorem 2.7. For the same false alarm probability Pfa, the detection probability of
debiased LASSO detector Pd,1 is not less than that of LASSO detector Pd,2.

Proof. See Appendix B for the proof.

Theorem 2.7 suggests that applying such non-sparse solution in the detector instead
lead to better detection performance.

2.2 Comparison with existing debiased LASSO detectors

In this subsection, we compare the proposed detector CROD with SDL-test [18], CAMP
[19], and the Row-Orthogonal Debiased detector (ROD) constructed by the conclusions
obtained from [20]. Due to the frameworks of all the debiased LASSO detectors are the
same, we mainly list the differences of the debiased coefficient Λ and the approaches to
estimate the variance σ2

w.

1. SDL-test [18] suggests that
ΛG = γ − ρa, (22)

where ρa = #{i|x̂LASSO
i 6= 0}/N denotes the active component density and

σ̂w =

√
γ

Φ−1(0.75)(γ − ρa)
median

(∣∣y −Ax̂LASSO
∣∣) , (23)

for real-valued Gaussian random sensing matrix.
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2. CAMP [19] provides
ΛCG = γ − ρCA, (24)

where ρCA given by (12) denotes the active component density and

σ̂w =
1√
ln 2

median
(∣∣∣x̂d

∣∣∣) . (25)

for complex-valued Gaussian random sensing matrix.

3. ROD from [20] claims that

ΛROM =
γ − ρa
1− ρa

, (26)

and σ2
w is given by exchanging all the ρCA in (13) - (18) to ρa for real-valued

row-orthogonal sensing matrix.

4. The proposed CROD claims that

ΛCROM =
γ − ρCA

1− ρCA
, (27)

and σ2
w is given by (13) - (18) for complex-valued row-orthogonal sensing matrix.

Moreover, the methodologies in [20] can obtain the same result as (22) under Gaus-
sian random matrix design. Our work also gives the same debiased coefficient as (24)
for complex-valued Gaussian sensing matrix in Corollary 3.4. Based on the derivation
in Section 3, we believe that Λ is related to the asymptotic eigenvalue distribution ρJ (s)
of J = ATA (or J = AHA), which is referred to Claim 3.2. For a Gaussian matrix,
ρJ (s) can be calculated by (36), which yields (24). For other sensing matrices, the pro-
posed method is also applicable as ρJ (s) is obtainable. We summarize the results of the
comparison in Table 1.

Recall that we have proved the uniqueness of the debiased coefficient Λ. When the
steering matrix A is row-orthogonal, the correctness of the debiased coefficient ΛCROM

given in the present paper will be verified by numerical result in Section 4. Besides
the construction of the debiased LASSO estimator, the approach to estimate σ2

w in the
present paper is different from CAMP and SDL-test. There is also numerical result of
the accuracy of the three estimation mediums presented in Section 4.

The derivation, including the construction of the debiased LASSO estimator and the
estimation of the variance, in Section 3 is primarily based on [20]. However, since the
signal model in radar systems are composed of complex vectors or matrices, our next
derivations are in complex form, which differs from both the process and the results
of [20]. We will verify in our simulation experiments that the direct use of the real-
valued version results is incorrect. This is because the complex LASSO differs from the
real one with regard to the computation of the `1-norm of x in the regularization term.
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3 Derivation of the debiased LASSO estimator and the
estimation of its variance

In Algorithm 1, we simply present the results of the debiased LASSO estimator and
estimation of its variance σ2

w. In this section, we will provide the detailed derivation of
these results, based on some statistical mechanics approaches. Led by [21], more and
more work apply statistical mechanics approaches for theoretical analysis in information
theory and communications theory. Although a mathematically rigorous justification
of replica method is still in-progress, it has been proved extensively successful in very
difficult problems and applied to derive a number of captivating results, see [22–25]. In
addition, we refer to the results in this Section as claims.

Particularly, the asymptotic analysis of the distribution of LASSO solutions will first
be introduced, which tells us that a central limit obeying Gaussian distribution with a
mean of x0 exists. Then, we aim to get the close-form expression of the central limit,
which will be regarded as the debiased LASSO estimator. At the end of this section, the
procedure for estimating the variance of the debiased estimator will be presented.

Throughout the analysis, we will generally examine the typical reconstruction per-
formance in the limit N,M → ∞, but keeping the compression rate γ constant. The
assumption of large system limit N →∞ will be omitted in the following part to avoid
wording. We list our main results in Section 3.1. The proof details are referred to Section
3.2, 3.3 and 3.4.

3.1 Main results

Our first result provides the asymptotic distribution of the LASSO solution x̂LASSO.

Claim 3.1. When the sensing matrix A is randomly drawn from row-orthogonal matri-
ces, the asymptotic distribution of the LASSO solution x̂LASSO can be inferred as follow:

x̂LASSO
i = STλ,Q̂ (hi)

.
=

hi
|hi|
· |hi| − λ

Q̂
Θ (|hi| − λ) , (28)

where
hi = m̂x0,i +

√
2χ̂zi, (29)

in which zi ∼ CN (0, 1) are i.i.d. standard complex variables and m̂, Q̂, χ̂ are positive
real numbers.

Such conclusion reminds us that the debiased LASSO estimator can be easily ob-
tained if hi is available. We next introduce the construction of debiased LASSO x̂d for
certain matrix ensembles through deriving hi.

Claim 3.2. Suppose the Gram matrix J = AHA has deterministic asymptotic eigen-
value distribution ρJ (s), the debiased LASSO estimator x̂d is given by

x̂d = x̂LASSO +
1

Λ
AH(y −Ax̂LASSO). (30)

12



The debiased coefficient is

Λ =
t · ρCA

ρCA − 1
, (31)

in which t is the solution of ∫
ρJ (s)

t− s
ds =

1− ρCA

t
, (32)

and ρCA is complex active component density of the LASSO solution defined in (12).

Setting the sensing matrix ensemble to row-orthogonal, then the asymptotic eigen-
value distribution of J is given by

ρJ (s) = (1− γ)δ(s) + γδ(s− 1). (33)

Therefore, one can obtain the following corollary.

Corollary 3.3. When the complex-valued sensing matrix A is row-orthogonal, the de-
biased LASSO estimator x̂d is given by

x̂d = x̂LASSO +
1

ΛCROM
AH(y −Ax̂LASSO), (34)

where

ΛCROM =
γ − ρCA

1− ρCA
, (35)

and ρCA is complex active component density of the LASSO solution defined in (12).

According to [26], when the entries of A are all i.i.d. Gaussian ensembles with mean
0 and variance 1/N , the asymptotic eigenvalue distribution is given by

ρJ (s) = (1− γ)δ(s) +
1

2π

√
(λ+ − s)(s− λ−)

s
I[λ−,λ+](s), (36)

λ± = (1±√γ)2, (37)

IS(x) =

{
1 if x ∈ S
0 otherwise

. (38)

Then comes the following corollary.

Corollary 3.4. When the sensing matrix A is of random i.i.d. complex Gaussian
ensemble in which all entries of A are i.i.d. complex Gaussian variables with mean 0
and variance 1/N , the debiased LASSO estimator x̂d is given by

x̂d = x̂LASSO +
1

ΛCG
AH(y −Ax̂LASSO), (39)

where ΛCG = γ − ρCA.

13



In addition, we find that the debiased coefficient ΛCG is the same as the result in [19]
in the case of complex Gaussian matrix design.

The third result presents a method for estimating the variance σ2
w.

Claim 3.5. When the sensing matrix A is randomly drawn from row-orthogonal matri-
ces, the sample variance σ2

w of w = x̂d − x0 converges to 2χ̂/Q̂2, where

Q̂ = G′(−χ;J), (40)

and

χ̂ =
γG′′(−χ;J)

2G′(−χ;J)− 2G′′(−χ;J)χ
RSS +

−G′′(−χ;J)γ + (G′(−χ;J))2

2G′(−χ;J)− 2G′′(−χ;J)χ
σ2. (41)

Here,

G′(−χ;J) = t(−χ) +
1

χ
, (42)

G′′(−χ;J) = t′(−χ) +
1

χ2
, (43)

RSS = lim
N→∞

1

Nγ

∥∥y −Ax̂LASSO
∥∥2

2
. (44)

in which

−χ =

∫
ρJ (s)

t(−χ)− s
ds, (45)

t(−χ) =
ρCA − 1

χ
, (46)

t′(−χ) = −
[∫

ρJ (s)

(t(−χ)− s)2 ds

]−1

. (47)

The definition of the residual sum of squares RSS is given in (84), while it is unrealistic
to calculated in practice. In a single hypothesis testing, we estimate the value of RSS in
this way:

RSS =
1

M

∥∥y −Ax̂LASSO
∥∥2

2
. (48)

3.2 Proof of Claim 3.1

We evaluate the free energy density corresponding to the LASSO Hamiltonian H(x) =
‖y −Ax‖22 /2 + λ‖x‖1 at a zero-temperature limit:

f(λ)
.
= − lim

β→∞
lim
N→∞

1

βN
EA,ξ [lnZ (y,A;λ, β)] , (49)

where β is the inverse temperature and Z is the partition function:

Z (y,A;λ, β) =

∫
exp

(
−β

2
‖y −Ax‖22 − βλ‖x‖1

)
dx. (50)

14



In the zero-temperature limit β → ∞, the Boltzmann distribution e−βH(x)/Z is domi-
nated by the configurations of the LASSO solution. Hence, one can evaluate how the
LASSO estimator depends on x0, A, ξ by analyzing the macroscopic behavior of the
typical free energy density (49) using statistical mechanics.

Based on the replica method and the replica symmetric (RS) ansatz, the following
is claimed.

Claim 3.6. When the steering matrix A is row-orthogonal, the free energy density (49)
can be evaluated:

f = extr
Q,Q̂,χ,χ̂,m,m̂

{
G′(−χ;J)

(
Q− 2m+ ρ− χ

2
σ2
)

+
γ

2
σ2 − Q̂Q+ χ̂χ+ 2m̂m

+ lim
N→∞

1

N

N∑
i=1

∫
min
xi

[
Q̂

2
|xi|2 − Re

((
m̂x0,i +

√
2χ̂zi

)∗
xi

)
+ λ |xi|

]
Dzi

}
,(51)

where extrX{F (X)} denotes extremization of a function F (X) with respect to X and
G′(x;J) is the derivative of G(x;J) with respect to x. We define

∫
(. . .)Dz, J and G(x)

as follows: ∫
(. . .)Dz

.
=

∫
(. . .)

exp(− |z|2)

π
dz, (52)

J
.
= AHA, (53)

G(x;J)
.
= extr

t

[
−
∫
ρJ (s) ln |t− s|ds+ tx

]
− ln |x| − 1, (54)

where z is a complex number and ρJ (s) is the asymptotic eigenvalue distribution of J .
The derivative of the function G(x;J) has the following form:

G′(x;J) = t(x)− 1

x
, (55)

where t(x) is implicitly determined by the extreme value condition of (54):

x =

∫
ρJ (s)

t(x)− s
ds. (56)

Proof. The proof is given in Appendix C.

We can then obtain the possible distribution of LASSO solution by the free energy
density.

On one hand, from the extreme value condition of the free energy density (51) of
variable m̂, that is ∂f

∂m̂ = 0, we have

m = lim
N→∞

1

2N

N∑
i=1

∫
Re
(
x∗0,ix̂i

)
Dzi, (57)

15



where x̂i satisfies

x̂i = arg min
xi

[
Q̂

2
|xi|2 − Re

((
m̂x0,i +

√
2χ̂zi

)∗
xi

)
+ λ |xi|

]
. (58)

The above optimization problem has its analytical solution, given by

x̂i = STλ,Q̂ (hi) , (59)

where hi is given in (29).
On the other hand, from definition of the macroscopic physical observable m, that

is m = 1
2NRe

(
xH0 xa

)
, we have

m = lim
N→∞

1

2N
EA,ξ

[
Re
(
xH0 x̂

LASSO
)]
. (60)

Comparing (57) with (60), the distribution of the LASSO solution x̂LASSO can be inferred
as follow:

x̂LASSO
i = x̂i = STλ,Q̂ (hi) . (61)

3.3 Proof of Claim 3.2

Denote by h = [h1, h2, . . . , hN ]T , where hi is defined in (29). In the Thouless-Anderson-
Palmer (TAP) analysis, h is called local field. Denote by 〈x〉 the average of x taken by
the Boltzmann distribution e−βH(x)/Z, which is given by

〈x〉 =

∫
x exp

(
−β

2 ‖y −Ax‖
2
2 − βλ‖x‖1

)
dx∫

exp
(
−β

2 ‖y −Ax‖
2
2 − βλ‖x‖1

)
dx

. (62)

In the zero-temperature limit β → ∞, the average 〈x〉 is equal to the LASSO solution
x̂LASSO. TAP approach is to obtain the mean field equation, which describes the relation
between the local field h and the average 〈x〉.

Consider the following alternative Gibbs free energy [20]:

Gi(m, Q) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ− 1

β
ln

∫
e−

β
2
‖y−Ax‖22+βRe(hHx)−β2 Λ‖x‖22−βλ‖x‖1dx

}
.

(63)
From the extreme value condition on h, m Λ and Q of G(m, Q), one can conclude that

〈x〉 ,
〈
‖x‖22

〉
/(2N) = arg min

m,Q
G(m, Q). (64)

We will evaluate it by expectation consistent approximate inference [27].
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Claim 3.7. The alternative Gibbs free energy (63) possesses the following expression
under the limit β →∞:

Gi(m, Q) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ−

N∑
i=1

(|hi| − λ)2

2Λ
·Θ (|hi| − λ)

}

−N
β
G(−χ;J) +

1

2
‖y −Am‖22 , (65)

where χ = β(Q− q) and q =
∑
i
m2
i /N .

Proof. The expectation consistent inference provides the following approximation:

Gi(m, Q) ' φada(m, Q) = φ̃(m, Q; l = 0) + φG(m, Q; l = 1)− φG(m, Q; l = 0), (66)

where

φ̃(m, Q; l) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ− 1

β
ln

∫
e−

βl
2
‖y−Ax‖22+βRe(hHx)−β2 Λ‖x‖22−βλ‖x‖1dx

}
,

(67)
and

φG(m, Q; l) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ− 1

β
ln

∫
e−

βl
2
‖y−Ax‖22+βRe(hHx)−β2 Λ‖x‖22dx

}
.

(68)

With such approximation, φ̃(m, Q; l = 1), φG(m, Q; l = 1) and φG(m, Q; l = 0) can be
easily calculated as follow:

φ̃(m, Q; l = 0) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ−

N∑
i=1

(|hi| − λ)
2

2Λ
·Θ (|hi| − λ)

}
, (69)

φG(m, Q; l = 1) = −N
β
G(−χ;J) +

1

2
‖y −Am‖22 +

N

β
ln

β

2π
− N

β
ln |−χ| − N

β
, (70)

φG(m, Q; l = 0) =
N

β
ln

β

2π
− N

β
ln |−χ| − N

β
, (71)

where (69) is calculated under the limit β →∞. Therefore,

φada(m, Q) = extr
h,Λ

{
Re
(
hHm

)
−NΛQ−

N∑
i=1

(|hi| − λ)2

2Λ
·Θ (|hi| − λ)

}

−N
β
G(−χ;J) +

1

2
‖y −Am‖22 . (72)

Taking the limit β → ∞ and N → ∞, we can get the mean field equation by the
extreme value condition on h, Λ, m, Q of (72) and linear response argument [21, 28],
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given by

h = Λm+AH(y −Am), (73)

mi =
hi
|hi|
· |hi| − λ

Λ
·Θ (|hi| − λ) , (74)

Λ = G′(−χ;J), (75)

χ =
1

2NΛ

N∑
i=1

[(
2− λ

|hi|

)
·Θ (|hi| − λ)

]
, (76)

where (76), derived in Appendix E, is obtained by linear response argument. Denote by
ρCA the complex active component density of the LASSO solution as follow:

ρCA =
1

2N

N∑
i=1

[(
2− λ

|hi|

)
·Θ (|hi| − λ)

]
, (77)

which is the same as (12). According to (73), one can obtain the debiased estimator x̂d

as follow:

x̂d = x̂LASSO +
1

Λ
AH(y −Ax̂LASSO), (78)

where Λ = G′(−χ;J) and χ can be obtained by solving

ρCA

χ
= G′(−χ;J). (79)

Then we get the following equations according to the extreme condition in function
G(−χ;J) (56) and (79):

Λ = G′(−χ;J) =
ρCA

χ
= t(−χ) +

1

χ
, (80)

−χ =
1− γ
t(−χ)

+
γ

t(−χ)− 1
, (81)

which lead to (31) and (32).

3.4 Proof of Claim 3.5

We first define some macroscopic observables.

Claim 3.8. The following relationships between the free energy density, regularization
term, and residual sum of squares hold:

f =
γ

2
RSS + r̄, (82)

r̄ = EA,ξ

[〈
λ

N

N∑
i=1

|xi|

〉]
= 2χ̂χ+ 2m̂m− 2Q̂Q, (83)

RSS = EA,ξ [RSS] = EA,ξ
[〈

1

M
‖y −Ax‖22

〉]
(84)

=
2

γ

[
G′(−χ;J)(Q− 2m+ ρ− χ

2
σ2) +

γ

2
σ2 − χ̂χ

]
, (85)
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where r̄ and RSS represent the per-element average of the regulation term and residual
sum of squares, respectively.

Proof. Consider the extreme value condition of the free energy density f (51) on Q̂, m̂
and χ̂, given by

∂f

∂Q̂
= −Q+ lim

N→∞

1

N

N∑
i=1

∫
1

2
|x̂i|2 Dzi = 0, (86)

∂f

∂m̂
= 2m− lim

N→∞

1

N

N∑
i=1

∫
Re
(
x∗0,ix̂i

)
Dzi = 0, (87)

∂f

∂χ̂
= χ− lim

N→∞

1

N

N∑
i=1

∫
Re

(
1√
2χ̂
z∗i x̂i

)
Dzi = 0, (88)

where x̂i is the same with (58) and (59). The above equations note that

Q̂Q = lim
N→∞

1

N

N∑
i=1

∫
Q̂

2
|x̂i|2 Dzi, (89)

2m̂m = lim
N→∞

1

N

N∑
i=1

∫
Re ((m̂x0,i)

∗ x̂i) Dzi, (90)

2χ̂χ = lim
N→∞

1

N

N∑
i=1

∫
Re
((√

2χ̂zi

)∗
x̂i

)
Dzi. (91)

Therefore, one can obtain that

lim
N→∞

1

N

N∑
i=1

∫
min
xi

[
Q̂

2
|xi|2 − Re

((
m̂x0,i +

√
2χ̂zi

)∗
xi

)
+ λ |xi|

]
Dzi

= Q̂Q− 2χ̂χ− 2m̂m+ r̄. (92)

On the other hand, with the close-form expression of x̂i, we can get that

lim
N→∞

1

N

N∑
i=1

∫
min
xi

[
Q̂

2
|xi|2 − Re

((
m̂x0,i +

√
2χ̂zi

)∗
xi

)
+ λ |xi|

]
Dzi

= lim
N→∞

1

N

N∑
i=1

∫
−Q̂

2
|x̂i|2 Dzi = −Q̂Q. (93)

The expression of the regulation term r̄ (83) can then be derived, and the same with
RSS (85).

19



Recall the extreme value condition of the free energy density f (51) on Q, m and χ,
given by

∂f

∂Q
= G′(−χ;J)− Q̂, (94)

∂f

∂m
= 2G′(−χ;J)− 2m̂, (95)

∂f

∂χ
= −G′′(−χ;J)

(
Q− 2m+ ρ− χ

2
σ2
)
− σ2

2
G′(−χ;J) + χ̂ = 0. (96)

Together with the expression of RSS (85), the expression of χ̂ (41) can be obtained. The
derivatives of function G(−χ;J) (42) and (43) follow the derivation of (55). Derivatives
act on (56) leads to the expressions of t(−χ) and t′(−χ).

4 Numerical Experiments

In this section, we mainly provide the numerical simulations to exam the following
capabilities.

1. Gaussianity of w in the case of row-orthogonal matrix design, where w = x̂d−x0

denotes the difference between the debiased LASSO estimator and the original
signal x0.

2. Accuracy of estimating the variance σ2
w in both the case of row-orthogonal and

Gaussian matrix design.

3. Detection performance of debiased LASSO detector.

4.1 Settings

In all the numerical experiments, we artificially generate the original signal x0, observa-
tion matrix A and the noise ξ. The original signal x0 is generated from the Bernoulli-
Gaussian distribution: px = (1−2ρ)δ(x)+ 2ρ

πσ2
x
e−|x|

2/σ2
x . For the observation matrixA, we

separately consider Gaussian design and row-orthogonal design. The former is achieved
by setting all the entries of A i.i.d. complex Gaussian variables: Aij ∼ CN (0, 1/N), and
the latter is achieved by randomly selecting M rows from a randomly generated N ×N
orthogonal matrix. The entries of the noise ξ are i.i.d. complex Gaussian variables:
ξi ∼ CN (0, σ2). We consider the matched filtering (MF) definition of the signal-to-noise
ratio (SNR) [5], such that

SNR =
γσ2

x

σ2
. (97)

4.2 Gaussianity of w in the case of row-orthogonal matrix design

We investigate the Gaussianity of w in the case of row-orthogonal matrix design by
comparing the empirical cumulative distribution function (ECDF) of its real and imag-
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Table 2: p-values of Kolmogorov-Smirnov test of the real and imaginary parts of non-zero
entries and zero entries of wCROM and wCG.

p-values wCROM (H1) wCROM (H0) wCG (H1) wCG (H0)

real part 0.7563 0.6702 1.731× 10−78 0
imaginary part 0.8259 0.6090 1.729× 10−70 0

Figure 2: The difference between the Gaussian distribution and the empirical CDF of
the real and imaginary parts of non-zero entries and zero entries of wCROM and wCG.
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inary part with Gaussian distribution. The comparisons are performed for the com-
plex row-orthogonal debiased estimator x̂d,CROM (with ΛCROM given by (27)) and the
complex Gaussian debiased estimator x̂d,CG (with ΛCG given by (24)). Denote by
wCROM = x̂d,CROM − x0 and wCG = x̂d,CG − x0. Let w̃CROM =

√
2wCROM/σ2

w,CROM,

w̃CROM =
√

2wCG/σ2
w,CG. Consequently, the ECDF of the real and imaginary part

of these two vectors, denoted by FCROM,r(x), FCROM,i(x), FCG,r(x) and FCG,i(x) re-
spectively, are considered to converge to standard Gaussian distribution Φ(x) weakly.
We divide w̃CROM and w̃CG into 4 parts: real and imaginary part of non-zero entries
and zero entries, and verify their Gaussianity by demonstrating the differences such as
Φ(x)− FCROM,H1,r(x) respectively.

The observation matrix A is partial Fourier with a size of M = 768 and N = 1024.
The variance σ2

x of the non-zero entries in x0 is set to be 1 and the regularization
parameter λ of LASSO is 0.1. We set the signal density to be 2ρ = 0.1 and SNR to be
5dB. The empirical laws are obtained by 103 Monte-Carol trials.

Fig. 2 shows the difference between Gaussian distribution Φ(x) and the ECDF of
each part of wCROM and wCG. The results shows that in the case of partial Fourier
matrix design, the ECDF of wCROM is very close to the Gaussian distribution, while
the ECDF of wCG has a significant difference from the Gaussian distribution. We also
employ Kolmogorov-Smirnov (KS) test [29] on them, with the p-values shown in Table
2. The KS test compares the ECDF of the input samples with a certain distribution
(here we set it to be Gaussian distribution) and the larger of p-values means the higher
probability that the samples come from the given distribution. It is obvious that for
each part of wCROM, KS test verifies that the ECDF well meets the expected theoretical
distribution while the other one indicates the opposite result. Our verification of the
Gaussianity of wCROM in turn verifies the correctness of the debiased coefficient ΛCROM

in the case of row-orthogonal matrix design.

4.3 Accuracy of estimating σ2
w

In this section, we investigate the accuracy of the estimation of σ2
w by comparing the

relative estimation error of different approaches, which is defined as follow

REE =
|σ̂w − σw|

σw
, (98)

where σ̂w is the estimated result and the ground truth σw is obtained by

σw =

√√√√ 1

N

N∑
i=1

|wi|2. (99)

We compare REE of CROD, CAMP and SDL-test in the case of Gaussian matrix design
and row-orthogonal matrix design, respectively. In the following experiments, we set
the length of x0 to be N = 256 and σ2

x to be 1. The variance of noise σ2 = 0.05,
corresponding to a SNR of 13dB. Noting that the estimation approach of SDL-test
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Figure 3: REE of CROD, CAMP and SDL-test under the Gaussian and partial Fourier
design model.

Figure 4: REE of CROD, CAMP and SDL-test under the Gaussian and partial Fourier
design model.
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Figure 5: (a) Probability of false alarm and (b) detection of different detectors vary with
SNR. Here 2ρ = 0.1 and γ = 0.5.

Figure 6: (a) Probability of false alarm and (b) detection of different detectors vary with
signal density. Here SNR = 13dB and γ = 0.5.

in [18] is not suitable for complex-valued data, we have modified it to the following
form:

σ̂w =

√
γ

√
ln 2(γ − ρCA)

median
(∣∣y −Ax̂LASSO

∣∣) , (100)

The results are obtained by 105 Monte-Carol trials and presented in Fig. 3 and Fig.
4, in which the signal density and compression rate vary, respectively. The results of
the numerical experiments illustrate that the variance estimation method we use has
the ability to consistently obtain high estimation accuracy under a variety of different
conditions.

4.4 Detection performance of debiased LASSO detector

We apply several detectors for solving the sub-Nyquist radar detection problem, in which
the observation matrix A is partial Fourier, and examine their detection performance.
Debiased detectors listed in Table 1, including CROD, CAMP, SDL-test and ROD, are
compared. In the following experiments, we set the length of x0 to N = 256 and σ2

x to
1. The probability of false alarm is set to 0.01 and all the results are obtained by 105

Monte-Carol trials. In Fig. 5, 6 and 7, we demonstrate how the detection performance
of these detectors varies with SNR, signal density, and compression rate, respectively.
The results suggest that CROD has the best ability to maintain the false alarm rate
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Figure 7: (a) Probability of false alarm and (b) detection of different detectors vary with
compression rate. Here 2ρ = 0.1 and SNR = 13dB.

under multiple parameter variations, i.e., it can most accurately calculate the threshold
(or p-value) for a given false alarm rate.

5 Conclusion

In this paper, we provide the design of debiased LASSO detector solving the detection
problem of compressed sensing radar under the row-orthogonal design model. The de-
tection performance of the present detector is theoretically analyzed and proved to be
better than LASSO detector. We also compare the proposed approach with other de-
biased LASSO detectors, simulation results indicate that our approach can provide test
statistic and threshold (or p-value) more accurately. Such merit allows precise control
of the false alarm rate, resulting in the higher detection rate than other CS detectors.

A Proof of Theorem 2.3

Assume that there exists Λ2 6= Λ1 such that the empirical law of w2(N) converges to a
Gaussian distribution with mean µ2 as N →∞. According to Lemma B.2, we have the
following inequality

|w2,i − w1,i| ≤ λ
∣∣∣∣ 1

Λ2
− 1

Λ1

∣∣∣∣ .= c. (101)

We argue that the probability that the variance σ2
2 of w2 is unequal to the variance

σ2
1 of w1 is 1. That is, almost surely,

lim
N→∞

1

N

N∑
i=1

w2
1,i 6= lim

N→∞

1

N

N∑
i=1

w2
2,i − µ2

2, (102)

where

µ2 =
1

N

N∑
i=1

w2,i. (103)

Such conclusion holds since the well-known fact that the set of zeros of a nonzero poly-
nomial has measure zero.
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Without loss of generality, let σ2 > σ1. Denote the empirical distribution of w1(N)
and w2(N) by F1,N (x) and F2,N (x) respectively, given by

F1,N (x) =
1

N
# {i ≤ N : w1,i ≤ x} , (104)

F2,N (x) =
1

N
# {i ≤ N : w2,i ≤ x} . (105)

Therefore, ∀δ1 > 0, ∀δ2 > 0, ∀m ∈ R, ∃N1 ∈ N, ∀n ≥ N1, such that

|F1,n(mσ1)− F1(mσ1)| ≤ δ1, (106)

|F2,n(mσ2 + µ2)− F2(mσ2 + µ2)| ≤ δ2 (107)

hold with probability 1, where

F1(mσ1) = F2(mσ2 + µ2) =
1√
2π

∫ m

−∞
e−

t2

2 dt. (108)

Thus,
|F1,n(mσ1)− F2,n(mσ2 + µ2)| ≤ δ1 + δ2. (109)

Let m > c−µ2
σ2−σ1 , m1 = mσ2+µ2−c

σ1
, and

δ1 = δ2 =
1√
18π

(m1 −m)e−
m2

1
2 . (110)

Then we have mσ2 + µ2 = m1σ1 + c and m1 > m. Combining with (101) and the
definition of the empirical law (104), (105) yields

F2,n(mσ2 + µ2) ≥ F1,n(m1σ1). (111)

On the other hand, (106) and (107) yield

F1,n(m1σ1) ≥ 1√
2π

∫ m1

−∞
e−

t2

2 dt− δ1, (112)

F2,n(mσ2 + µ2) ≤ 1√
2π

∫ m

−∞
e−

t2

2 dt+ δ2. (113)

Then, from a simple math, we can obtain that

F2,n(mσ2 + µ2)− F1,n(m1σ1) ≤ δ1 + δ2 −
1√
2π

∫ m1

m
e−

t2

2 dt < 0, (114)

which is in contradiction with (111).
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B Proof of Theorem 2.7

For the convenience of readers, we here restate the definition of subdifferential as follow,
which will help us prove this theorem.

Definition B.1 ( [30]). The subdifferential of a function f : I → R at a point x0 ∈ I
is defined to be a set of vectors such that

∂f (x)|x=x0
=
{
g ∈ Rn : f (x)− f (x0) ≥ (x− x0)T g, ∀x ∈ I

}
, (115)

where I ⊂ Rn and each g is called subderivative or subgradient.

It is easy to verify that the subderivative is linear. We then prove the following
lemma that simplifies the proof of Theorem 2.7.

Lemma B.2. The vector x̂ is the solution of the LASSO problem if and only if the
following conditions are all satisfied for i ∈ {1, . . . , N}:

aHi (y −Ax̂) = λ
x̂i
|x̂i|

, if x̂i 6= 0, (116)∣∣aHi (y −Ax̂)
∣∣ ≤ λ, if x̂i = 0, (117)

where ai is the i-th column of matrix A and x̂i is the i-th entry of vector x̂.

Proof. Due to the independent variable x in LASSO problem is complex-valued, we
transform the objective function into a real function f : R2N → R, given by

f (xr) =
1

2
‖yr −Arxr‖22 + λ

N∑
i=1

(
x2
r,i + x2

r,i+N

) 1
2 , (118)

where xr = [Re (x)T , Im (x)T ]T ∈ R2N , yr = [Re (y)T , Im (y)T ]T ∈ R2M and

Ar =

[
Re (A) −Im (A)
Im (A) Re (A)

]
∈ R2M×2N .

It is easy to verify that f (xr) equals to the objective function of LASSO problem. Let
f (xr) = g (xr) + λh (xr), in which

g (xr) =
1

2
‖yr −Arxr‖22, (119)

h (xr) =

N∑
i=1

(
x2
r,i + x2

r,i+N

) 1
2 . (120)

The part g (xr) is everywhere differentiable, thus

∂g (xr) =

{
dg (xr)

dxr

}
= {−Ar (yr −Arxr)} . (121)
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The part h (xr) could be divided into N parts: hi (xr,i, xr,i+N ) = (x2
r,i+x

2
r,i+N )

1
2 . If x2

r,i+

x2
r,i+N > 0, then ∂hi (xr,i, xr,i+N ) = {(xr,i(x2

r,i + x2
r,i+N )−

1
2 , xr,i+N (x2

r,i + x2
r,i+N )−

1
2 )}. If

x2
r,i+x2

r,i+N = 0, then ∂hi (xr,i, xr,i+N ) = {(g1, g2) : (x2
r,i+x2

r,i+N )
1
2 ≥ g1xr,i+g2xr,i+N}.

According to Cauchy inequality, we can easily obtain that g2
1 + g2

2 ≤ 1.
With the fact that f (xr) is a convex function, the point x̂r is the global minimum

of f (xr) if and only if 0 ∈ ∂f (xr)|xr=x̂r , which indicates that

l
.
=

1

λ
Ar (yr −Arxr) ∈ ∂h (xr)|xr=x̂r (122)

Therefore,

(li, li+N ) ∈


{(

xr,i

(x2r,i+x
2
r,i+N )

1
2
,

xr,i+N

(x2r,i+x
2
r,i+N )

1
2

)}
, x2

r,i + x2
r,i+N > 0;{

(g1, g2) : g2
1 + g2

2 ≤ 1
}
, x2

r,i + x2
r,i+N = 0.

(123)

Combined with the definition of xr, yr and Ar, the previous result yields (116) and
(117).

Let the threshold of the LASSO detector be κ, such that the probability of false
alarm Pfa,2 satisfies

Pfa,2 = lim
N→∞

1

N − k
∑
i∈Sc

ϕ2,i, (124)

where S = {i : x0,i 6= 0} is the support set of x0 with |S| = k, Sc = {1, . . . , N}\S and
ϕ2,i is a test with

ϕ2,i =

{
1,

∣∣x̂LASSO
i

∣∣ > κ;
0, otherwise.

(125)

Then the probability of detection of LASSO detector Pd,2 has the expression that

Pd,2 = lim
N→∞

1

k

∑
i∈S

ϕ2,i. (126)

We now define the test of the debiased LASSO detector as follow:

ϕ1,i =

{
1,

∣∣x̂d
i

∣∣ > κ+ λ
Λ ;

0, otherwise.
(127)

and the probability of false alarm Pfa,1, the probability of detection Pd,1, given by

Pfa,1 = lim
N→∞

1

N − k
∑
i∈Sc

ϕ1,i, (128)

Pd,1 = lim
N→∞

1

k

∑
i∈S

ϕ1,i. (129)
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1) If ϕ2,i = 0 and i ∈ Sc, then
∣∣x̂LASSO
i

∣∣ ≤ κ.

• For i satisfying x̂LASSO
i = 0, we have the following derivation based on Lemma

B.2: ∣∣∣x̂d
i

∣∣∣ =

∣∣∣∣x̂LASSO
i +

1

Λ
aHi
(
y −Ax̂LASSO

)∣∣∣∣
≤

∣∣x̂LASSO
i

∣∣+
1

Λ

∣∣aHi (y −Ax̂LASSO
)∣∣

≤
∣∣x̂LASSO
i

∣∣+
λ

Λ
. (130)

• For i satisfying
∣∣x̂LASSO
i

∣∣ > 0, we have the following derivation based on Lemma
B.2: ∣∣∣x̂d

i

∣∣∣ =

∣∣∣∣x̂LASSO
i +

1

Λ
aHi
(
y −Ax̂LASSO

)∣∣∣∣
=

∣∣∣∣∣x̂LASSO
i +

λ

Λ
· x̂

LASSO
i∣∣x̂LASSO
i

∣∣
∣∣∣∣∣

=
∣∣x̂LASSO
i

∣∣+
λ

Λ
. (131)

Therefore,
∣∣x̂d
i

∣∣ ≤ κ+ λ
Λ and ϕ1,i = 0. Thus, ϕ1,i ≤ ϕ2,i for i ∈ Sc, and

Pfa,1 = lim
N→∞

1

N − k
∑
i∈Sc

ϕ1,i

≤ lim
N→∞

1

N − k
∑
i∈Sc

ϕ2,i = Pfa,2. (132)

2) If ϕ2,i = 1 and i ∈ S, then
∣∣x̂LASSO
i

∣∣ > κ, leading to
∣∣x̂d
i

∣∣ > κ+ λ
Λ and ϕ1,i = 1. Thus,

ϕ1,i ≥ ϕ2,i for i ∈ S, and

Pd,1 = lim
N→∞

1

k

∑
i∈S

ϕ1,i

≥ lim
N→∞

1

k

∑
i∈S

ϕ2,i = Pd,2. (133)

C Proof of Claim 3.6

Replica method bases on a simple fact that for any Z > 0, we have

lnZ = lim
n→0

Zn − 1

n
= lim

n→0

∂

∂n
(Zn − 1) . (134)
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If Z is a random variable, then we take the average over Z on the both side of (134)
yielding

E lnZ = lim
n→0

EZn − 1

n
= lim

n→0

1

n
ln (EZn) = lim

n→0

∂

∂n
ln (EZn) . (135)

Therefore, with the help of replica method, we rewrite the free energy density f(λ) as
follow

f(λ) = − lim
β→∞

lim
N→∞

lim
n→0

∂

∂n

1

βN
lnEA,ξ [Zn (y,A;λ, β)] , (136)

where we recall Z (y,A;λ, β) is the partition function and we use Z instead of Z (y,A;λ, β)
in all of the following. As most of the work based on replica analysis, we exchange the
order of the limits n→ 0 and N →∞, thus

f(λ) = − lim
β→∞

lim
n→0

∂

∂n
lim
N→∞

1

βN
lnEA,ξ [Zn] . (137)

We will first compute the limit N →∞ in Appendix C.1, then we take the other limits
to get the final result in Appendix C.2.

C.1 Derivation of the limit N →∞

In this subsection, we will introduce the derivation of

1

N
lnEA,ξ [Zn]

and take the limit N →∞. With the definition of Z, we have

1

N
lnEA,ξ [Zn]

=
1

N
lnEA,ξ

[∫ n∏
a=1

dxa exp

{
−β

2
‖y −Axa‖22 − βλ‖xa‖1

}]

=
1

N
ln

∫ n∏
a=1

exp

{
−β

2
‖y −Axa‖22 − βλ‖xa‖1

}
pξ(ξ)pA(A)

n∏
a=1

dxadξdA, (138)

where pA(A) and pξ(ξ) are the probability density function of A and ξ, respectively.
However, this integral is still difficult to calculate. To solve this problem, we introduce
the RS ansatz, which gives a constraint on original signal x0 and the replicas xa, and
we express it as

h ({xa}na=1 ,x0) = k. (139)

And we define that

f ({xa}na=1 ,x0,A, ξ)
.
=

n∏
a=1

exp

{
−β

2
‖y −Axa‖22

}
pξ(ξ)pA(A), (140)

g ({xa}na=1)
.
=

n∏
a=1

e−βλ‖xa‖1 . (141)
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With the conclusion∫
f ({xa}na=1 ,x0,A, ξ) dξdA = f1 (h ({xa}na=1 ,x0)) , (142)

which will be proved in Appendix C.1.1, we can split (138) into two parts under the RS
ansatz:

1

N
lnEA,ξ [Zn]

=
1

N
ln

∫
f ({xa}na=1 ,x0,A, ξ) g ({xa}na=1) δ (h ({xa}na=1 ,x0)− k)

n∏
a=1

dxadξdAdk

=
1

N
ln

∫
f1 (h ({xa}na=1 ,x0)) g ({xa}na=1) δ (h ({xa}na=1 ,x0)− k)

n∏
a=1

dxadk

=
1

N
ln

∫
f1 (k)

(∫
g ({xa}na=1) δ (h ({xa}na=1 ,x0)− k)

n∏
a=1

dxa

)
dk

=
1

N
ln

∫
f1 (k) g1 (k,x0) dk, (143)

where

g1 (k,x0)
.
=

∫
g ({xa}na=1) δ (h ({xa}na=1 ,x0)− k)

n∏
a=1

dxa. (144)

Then we employ the following substitution, given by

f1 (k) = exp {NT (k)} , (145)

g1 (k,x0) = exp {NS (k,x0)} . (146)

The limit N → ∞ of (143) can be calculated by saddle point method, which is usually
used to approximately calculate the following complex integral when N ∈ R is large
enough

I(N) =

∫
Γ1×Γ2×...×ΓM

F (z)eNf(z)dz, (147)

where f(z) is analytic in complex variable z ∈ CM and {Γi} converge the integral.
Saddle point method claims that for large N , the integral can be approximately given
by the function value of the saddle point z0, given by

|I(N)| =
∣∣∣eN(f(z0)+O( 1

N ))
∣∣∣ , (148)

where z0, the saddle point, satisfies ∂f
∂z

∣∣∣
z=z0

= 0. Thus,

lim
N→∞

1

N
lnEA,ξ [Zn] = extr

k
{T (k) + S (k,x0)} . (149)

In Appendix C.1.1 and C.1.2, we will provide the derivation of T (k) and S (k,x0),
respectively.
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C.1.1 The derivation of T (k)

In this section, we will introduce the derivation of∫
f ({xa}na=1 ,x0,A, ξ) dξdA = EA,ξ

[
exp

{
−β

2

n∑
a=1

‖y −Axa‖22

}]
, (150)

and further under the RS ansatz

T (k) = lim
N→∞

1

N
ln f1 (k) = lim

N→∞

1

N
ln

∫
f ({xa}na=1 ,x0,A, ξ) dξdA. (151)

It is convenient to first take the average with respect to ξ:

Eξ

[
exp

{
−β

2

n∑
a=1

‖A (x0 − xa) + ξ‖22

}]
= exp

[
n∑
a=0

−ka
2
uHa Jua −Nγ ln

(
1 +

βnσ2

2

)]
,

(152)
where we recall that J = AHA, γ = M/N and ka, ua are defined as follows:

k0 = − β2σ2

2 + βnσ2
, (153)

u0 =

n∑
a=1

ua, (154)

ka = β, 1 ≤ a ≤ n, (155)

ua = xa − x0, 1 ≤ a ≤ n. (156)

Then we orthogonalize {ua}na=0 in order to facilitate the calculation of the average on
A. First, one can rewrite (152) as,

exp

[
n∑
a=0

−ka
2
uHa Jua −Nγ ln

(
1 +

βnσ2

2

)]
= exp

[
1

2
Tr (JL)−Nγ ln

(
1 +

βnσ2

2

)]
,

(157)
where Tr(·) denotes the trace of a matrix and L ∈ CN×N is defined as follow:

L =
β2σ2

2 + βnσ2

(
n∑
a=1

ua

)(
n∑
a=1

ua

)H
− β

n∑
a=1

uau
H
a . (158)

To obtain a more specific perspective on the matrix L, we here introduce the RS ansatz.
Denote by an overlap matrix Q ∈ C(n+1)×(n+1), whose elements are given by Qab =
Qba = (2N)−1xHa xb (0 ≤ a ≤ n; 0 ≤ b ≤ n). Then the RS ansatz restricts the values of
the overlap matrix Q to the following:

Qab =


Q,
q,
m,
ρ,

(a = b = 1, 2, . . . , n)
(a > b = 1, 2, . . . , n; b > a = 1, 2, . . . , n)
(a = 0, b = 1, 2, . . . , n)
(a = b = 0)

, (159)
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where we recall ρ > 0 is half of the signal density, Q, m and q are real numbers. Due to
the symmetry of the replicas, we assume that xHa xb for a 6= b are all real numbers. This
indicates that L has three types of eigenvalues:

s1 = − 4Nβ

2 + βnσ2
((Q− q) + n(q − 2m+ ρ)) , (160)

s2 = −2Nβ(Q− q), (161)

s3 = 0, (162)

which can be obtained by

L

n∑
a=1

ua = − 4Nβ

2 + βnσ2
((Q− q) + n(q − 2m+ ρ))

n∑
a=1

ua, (163)

L

(
n∑
a=1

ua − nub

)
= −2Nβ(Q− q)

(
n∑
a=1

ua − nub

)
, (164)

Lvk = 0, (165)

where vk are the vector orthogonal to all ua, thus there are at least N − n vk’s. Now
we get the eigenvalue decomposition of L, thus

exp

[
n∑
a=0

−ka
2
uHa Jua

]
= exp

[
n∑
i=1

−1

2
vHi Jvi

]
, (166)

where

vH1 v1 = 2N · 2β

2 + βnσ2
((Q− q) + n(q − 2m+ ρ)) , (167)

vHi vi = 2N · β(Q− q), 2 ≤ i ≤ n. (168)

Under such constraint, when N is large enough, the logarithm of the averages on A
can be calculated:

T (k)
.
= T (Q, q,m)

= lim
N→∞

1

N
ln

∫
f ({xa}na=1 ,x0,A, ξ) dξdA

= lim
N→∞

1

N
lnEA

{
exp

[
n∑
i=1

−1

2
vHi Jvi −

Nγ

2
ln
(
1 + βnσ2

)}]

= G

(
−2β (Q− q + n(q − 2m+ ρ))

2 + βnσ2
;J

)
+(n− 1)G(−β(Q− q);J)− γ ln

(
1 +

βnσ2

2

)
, (169)

where

G(x;J)
.
= extr

z

[
−
∫
ρJ (s) ln |z − s|ds+ zx

]
− ln |x| − 1. (170)

The derivation of (169) is explained in Appendix D.
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C.1.2 The derivation of S(k,x0)

In this section, we will derive

S(k,x0) = lim
N→∞

1

N
ln

∫ n∏
a=1

dxae
−β‖xa‖1δ (h ({xa}na=1 ,x0)− k). (171)

We first express the constraint provided by RS ansatz as follow

δ (h ({xa}na=1 ,x0)− k)

.
=

1

(2N)n
2−1

n∏
a=1

[
δ
(
‖xa‖22 − 2NQ

)
δ
(
Re
(
xH0 xa

)
− 2Nm

)]∏
a6=b

δ
(
xHa xb − 2Nq

)
.(172)

We proceed with the derivation of (190) by the Fourier transform of the Dirac’s delta
function:

δ
(
xHa xb − 2NQab

)
=

1

4πj

∫ c+j∞

c−j∞
dQ̃ab exp

{
Q̃ab
2

(
xHa xb − 2NQab

)}
, (173)

where c ∈ R is an arbitrary real number. Therefore,∫ n∏
a=1

dxae
−β‖xa‖1δ (h ({xa}na=1 ,x0)− k)

=

∫ ∏
a,b

d
Q̃ab
4πj

∫ n∏
a=1

dxa
1

(2N)n
2−1

∏
a,b

(
e
Q̃ab
2
xHa xb−NQ̃abQab

) n∏
a=1

e−β‖xa‖1

=

∫ ∏
a,b

d
Q̃ab
4πj

exp

N
−∑

a,b

Q̃abQab +
1

N
ln

∫ n∏
a=1

dxa exp

∑
a,b

Q̃ab
2
xHa xb −

n∑
a=1

β‖xa‖1

(174)

With the saddle point method, we can approximately calculate the integral of Q̃ab by
the function value of the saddle point Q̃0

ab. Under the RS ansatz, we find that the saddle
point Q̃0

ab have only three types of values, which is given as follow

Q̃0
ab =


−Q̃,
q̃,
2m̃.

(a = b = 1, 2, . . . , n)
(a > b = 1, 2, . . . , n; b > a = 1, 2, . . . , n)
(a = 1, 2, . . . , n, b = 0; a = 0, b = 1, 2, . . . , n)

(175)

Therefore,

S(k,x0)
.
= S(Q, q,m)

= extr
Q̃,q̃,m̃

(
nQ̃Q− n(n− 1)q̃q − 2nm̃m+ lim

N→∞

1

N
R
(
Q̃, q̃, m̃

))
, (176)
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where

R
(
Q̃, q̃, m̃

)
.
= ln

∫ n∏
a=1

dxa exp

 n∑
a=1

−Q̃
2
xHa xa +

∑
a6=b

q̃

2
xHa xb +

n∑
a=1

m̃Re
(
xH0 xa

)
−

n∑
a=1

βλ ‖xa‖1


=

N∑
i=1

ln

∫ n∏
a=1

dxa,i exp

 n∑
a=1

−Q̃
2
|xa,i|2 +

∑
a6=b

q̃

2
x∗a,ixb,i +

n∑
a=1

m̃Re
(
x∗0,ixa,i

)
−

n∑
a=1

βλ |xa,i|

 .(177)

According to the well-known identity

Ez exp
(

Re
(√

2λ∗z
))

= exp

(
|λ|2

2

)
, (178)

where z is a standard complex Gaussian variable, one can find that

exp

∑
a6=b

q̃

2
x∗a,ixb,i


= exp

1

2

∣∣∣∣∣
n∑
a=1

√
q̃xa,i

∣∣∣∣∣
2

− q̃

2

n∑
a=1

|xa,i|2


=

∫
Dzi exp

(
Re

(√
2q̃z∗i

n∑
a=1

xa,i

)
− q̃

2

n∑
a=1

|xa,i|2
)
. (179)

Thus,

R
(
Q̃, q̃, m̃

)
=

N∑
i=1

ln

∫ n∏
a=1

dxa,iDzi exp

{
n∑
a=1

[
−Q̃+ q̃

2
|xa,i|2 + Re

((√
2q̃zi + m̃x0,i

)∗
xa,i

)
− βλ |xa,i|

]}

=

N∑
i=1

ln

∫
Dzi

(∫
dxi exp

{
−Q̃+ q̃

2
|xi|2 + Re

((√
2q̃zi + m̃x0,i

)∗
xi

)
− βλ |xi|

})n
. (180)

C.2 Final result

We continue working on the result of equation (149). Note that such result holds for
n = 1, 2, . . .. In the following derivation, we assume the analytic continuation to real
n from the expression obtained by evaluating the relevant quantity only for positive
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integers n. Thus,

lim
n→0

∂

∂n
lim
N→∞

1

N
lnEA,ξ [Zn]

= lim
n→0

∂

∂n
extr
Q,q,m

{T (Q, q,m) + S (Q, q,m)}

= extr
Q,q,m

{
lim
n→0

∂

∂n
T (Q, q,m) + lim

n→0

∂

∂n
S (Q, q,m)

}
, (181)

where

lim
n→0

∂

∂n
T (Q, q,m)

= lim
n→0

∂

∂n

{
G

(
−2β (Q− q + n(q − 2m+ ρ))

2 + βnσ2
;J

)
+(n− 1)G(−β(Q− q);J)− γ

2
ln
(
1 + βnσ2

)}
= −G′ (−β (Q− q) ;J)

(
β (q − 2m+ ρ)− β2σ2 (Q− q)

2

)
+G (−β (Q− q) ;J)− βγσ2

2
, (182)

and

lim
n→0

∂

∂n
S (Q, q,m)

= extr
Q̃,q̃,m̃

{
lim
n→0

∂

∂n

[
nQ̃Q− n(n− 1)q̃q − 2nm̃m+ lim

N→∞

1

N
R
(
Q̃, q̃, m̃

)]}
= extr

Q̃,q̃,m̃

{
Q̃Q+ q̃q − 2m̃m+ lim

N→∞

1

N
lim
n→0

∂

∂n
R
(
Q̃, q̃, m̃

)}
. (183)

The part of the partial of R
(
Q̃, q̃, m̃

)
is given by

lim
n→0

∂

∂n
R
(
Q̃, q̃, m̃

)
= lim

n→0

∂

∂n

N∑
i=1

ln

∫
Dzi

(∫
dxi exp

{
−Q̃+ q̃

2
|xi|2 + Re

((√
2q̃zi + m̃x0,i

)∗
xi

)
− βλ |xi|

})n

=

N∑
i=1

∫
Dzi ln

(∫
dxi exp

{
−Q̃+ q̃

2
|xi|2 + Re

((√
2q̃zi + m̃x0,i

)∗
xi

)
− βλ |xi|

})
. (184)

When β →∞, the following substitutions of variables are employed

χ
.
= β(Q− q),

Q̂
.
= β−1(Q̃+ q̃),

χ̂
.
= β−2q̃,

m̂
.
= β−1m̃.
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With these substitutions, we have

lim
β→∞

− 1

β
lim
n→0

∂

∂n
T (Q, q,m)

= lim
β→∞

− 1

β

[
−G′ (−β (Q− q) ;J)

(
β (q − 2m+ ρ)− β2σ2 (Q− q)

2

)
+G (−β (Q− q) ;J)− βγσ2

2

]
= G′(−χ;J)(Q− 2m+ ρ− χ

2
σ2) +

γ

2
σ2, (185)

and

lim
β→∞

− 1

β
lim
n→0

∂

∂n
Sn (Q, q,m)

= extr
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{
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− 1

β

[
Q̃Q+ q̃q − 2m̃m+ lim

N→∞

1

N
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∂
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(
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− 1
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1

N
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n→0

∂
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R
(
Q̃, q̃, m̃

)}
. (186)

With the saddle point method, one has

lim
β→∞

− 1

β
lim
N→∞

1

N
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n→0

∂

∂n
R
(
Q̃, q̃, m̃

)
= lim

N→∞

1

N
lim
β→∞

− 1

β

N∑
i=1

∫
Dzi ln

(∫
dxi exp

{
−Q̃+ q̃

2
|xi|2 + Re

((√
2q̃zi + m̃x0,i

)∗
xi

)
− βλ |xi|

})

= lim
N→∞

1

N

N∑
i=1

∫
Dzi lim

β→∞
− 1

β
ln

(∫
dxi exp

{
−β

[
Q̂

2
|xi|2 − Re

((√
2χ̂zi + m̂x0,i

)∗
xi

)
+ λ |xi|

]})

= lim
N→∞

1

N

N∑
i=1

∫
min
xi

[
Q̂

2
|xi|2 − Re

((
m̂x0,i +

√
2χ̂zi

)∗
xi

)
+ λ |xi|

]
Dzi. (187)

Finally, associating with the result (185), (186) and (187) yields the expression of
the average free energy density in zero-temperature limit

f = extr
Q,Q̂,χ,χ̂,m,m̂

{
G′(−χ;J)(Q− 2m+ ρ− χ

2
σ2) +

γ

2
σ2 − Q̂Q+ χ̂χ+ 2m̂m

+ lim
N→∞

1
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N∑
i=1
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[
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2
|xi|2 − Re

((
m̂x0,i +

√
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)∗
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)
+ λ |xi|

]
Dzi

}
.(188)
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D Derivation of averages with respect to row-orthogonal
matrices

We here would like to derive the averages with respect to row-orthogonal matrices A ∈
CM×N as follow:

LROM(−x)
.
= lim

N→∞

1

N
lnEA

[
exp

{
−

n∑
i=1

1

2
vHi A

HAvi

}]
, (189)

where vi ∈ CN×1 (1 ≤ i ≤ n) is a set of orthogonal vectors satisfying vHi vj = 2Nνiδij , δij
is unity for i = j and vanishes otherwise, x = [ν1, ν2, . . . , νn]T and the average is taken
over all the row-orthogonal matrices. Denote by J = AHA, then the Hermitian matrix
J ∈ CN×N can be factorized as J = ODOH with an orthogonal matrix O ∈ CN×N and
a diagonal matrix D, in which its on-diagonal elements are eigenvalues of J . Due to the
fact that A is row-orthogonal, the eigenvalues of J are fixed to 1 or 0, that is, D does
not vary with A. In addition, denote by ṽi = OHvi, the `2-norm of ṽi is maintained:
ṽHi ṽi = 2Nνi. Therefore, the average on A reduces to the average on ṽi, which is given
by

LROM(−x) = lim
N→∞

1

N
ln


∫ n∏
i=1

dṽi exp

(
−

n∑
i=1

1
2 ṽ

H
i Dṽi

)
n∏
i=1

δ
(
ṽHi ṽi − 2Nνi

)
∫ n∏
i=1

dṽi
n∏
i=1

δ
(
ṽHi ṽi − 2Nνi

)
 .

(190)
Note that here we discard the fact that {vi}ni=1 are orthogonal to each other, for when
the dimension of vectors N →∞, the probability that any finite number of vectors are
orthogonal to each other is 1.

We proceed with the derivation of (190) by the Fourier transform of the Dirac’s delta
function:

δ
(
ṽHi ṽi − 2Nνi

)
=

1

4πj

∫ c+j∞

c−j∞
dΛi exp

{
−Λi

2

(
ṽHi ṽi − 2Nνi

)}
, (191)

where c ∈ R is an arbitrary real number. Thus,∫ n∏
i=1

[
dṽiδ

(
ṽHi ṽi − 2Nνi

)]
=

(2π)nN

(4πj)n

∫ c+j∞

c−j∞

n∏
i=1

dΛi exp

{
−N

n∑
i=1

(ln Λi − Λiνi)

}
,

(192)
where we use the complex Gaussian integration formula

1

(2π)N

∫
exp

(
−1

2
zHMz + Re

(
bHz

))
dz =

1

detM
exp

(
1

2
bHM−1b

)
, (193)

where b, z ∈ CN and M is symmetric positive definite.
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Applying saddle-point method, we rewrite (192) as∫ n∏
i=1

[
dṽiδ

(
ṽHi ṽi − 2Nνi

)]
= (2π)nN exp

{
−N

(
n∑
i=1
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(
1

N

))}

= (2π)nN exp

{
−N

(
n∑
i=1

(− ln νi − 1) +O

(
1

N

))}
. (194)

With similar procedure, the numerator of (190) can be expressed as∫ n∏
i=1

dṽi exp

(
−

n∑
i=1

1

2
ṽHi Dṽi

)
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i=1
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=

1
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2
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(4πj)n
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i=1
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{
n∑
i=1

(
−

N∑
m=1
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N

(
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(
− 1

N

N∑
m=1

ln (Λi + dm) + Λiνi

))}
, (195)

where dm (1 ≤ m ≤ N) are the diagonal elements of D, thus are the eigenvalues of J .
When N are large enough, we have the following approximation:

1

N

N∑
m=1

ln (Λi + dm) =

∫
dλρJ (λ) ln (Λi + λ) . (196)

Therefore, by using such approximation and combining (194) and (195), (190) can be
expressed as

LROM(−x) = lim
N→∞

1

N
ln

{
1

(4πj)
n

∫ c+j∞

c−j∞

n∏
i=1

dΛi·
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N

(
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i=1

(
−
∫
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)
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1

N
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=

n∑
i=1

(
extr
Λi

[
−
∫

dλρJ (λ) ln (Λi + λ) + Λiνi

]
− ln νi − 1

)

=
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i=1

(
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Λi

[
−
∫
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]
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)
. (197)

Recall the definition of function G:

G(x;J)
.
= extr

z

[
−
∫
ρJ (s) ln |z − s|ds+ zx

]
− ln |x| − 1. (198)
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We finally obtain:

LROM(−x) =
n∑
i=1

G(−xi;J). (199)

E Derivation of χ through linear response argument

Denote by

Gi0(m,h, Q,Λ) = Re
(
hHm

)
−NΛQ− 1

β
ln

∫
e−

β
2
‖y−Ax‖22+βRe(hHx)−β2 Λ‖x‖22−βλ‖x‖1dx,

(200)
By recalling the definition of the Boltzmann average 〈x〉, one can find that

∂Gi0
∂Re (hi)

∣∣∣∣
hi=h0,i

= Re (mi)− Re (〈xi〉) , , (201)

∂Gi0
∂Im (hi)

∣∣∣∣
hi=h0,i

= Im (mi)− Im (〈xi〉) , (202)

and further
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2
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∂Im (hi)
2
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hi=h0,i

= β
(〈
|xi|2

〉
− |〈xi〉|2

)
, (203)

where h0 is the extreme value of G0, hi and h0,i is the i-th entry of h and h0, respectively.
Therefore,

χ =
1

2N
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i=1

(
∂2Gi0

∂Re (hi)
2
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hi=h0,i

+
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. (204)

We compute χ with the following approximation:

χ =
1

2N

N∑
i=1

(
∂2Gi1

∂Re (hi)
2

∣∣∣∣
hi=h1,i

+
∂2Gi1
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, (205)

where

Gi1(m,h, Q,Λ) = Re
(
hHm

)
−NΛQ−

N∑
i=1

(|hi| − λ)2

2Λ
·Θ (|hi| − λ)

−N
β
G(−χ;J) +

1

2
‖y −Am‖22 . (206)

and h1 is the extreme value of Gi1 with h1,i denoting the i-th entry of h1. Hence, (76)
can be derived from (205).
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