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Abstract

We consider probabilistic models for sequential observations which exhibit gradual transitions among a finite number of states.
We are particularly motivated by applications such as human activity analysis where observed accelerometer time series contains
segments representing distinct activities, which we call pure states, as well as periods characterized by continuous transition
among these pure states. To capture this transitory behavior, the dynamical Wasserstein barycenter (DWB) model of [1] associates
with each pure state a data-generating distribution and models the continuous transitions among these states as a Wasserstein
barycenter of these distributions with dynamically evolving weights. Focusing on the univariate case where Wasserstein distances
and barycenters can be computed in closed form, we extend [1] specifically relaxing the parameterization of the pure states as
Gaussian distributions. We highlight issues related to the uniqueness in identifying the model parameters as well as uncertainties
induced when estimating a dynamically evolving distribution from a limited number of samples. To ameliorate non-uniqueness,
we introduce regularization that imposes temporal smoothness on the dynamics of the barycentric weights. A quantile-based
approximation of the pure state distributions yields a finite dimensional estimation problem which we numerically solve using
cyclic descent alternating between updates to the pure-state quantile functions and the barycentric weights. We demonstrate the
utility of the proposed algorithm in segmenting both simulated and real world human activity time series.

Index Terms

Wasserstein barycenter, displacement interpolation, dynamical model, sequential data, time series analysis, sliding window,
non-parametric, quantile function, human activity analysis.

I. INTRODUCTION

We consider a probabilistic model for sequentially observed data where the observation at each point in time depends on a
dynamically evolving latent state. We are particularly motivated by systems that continuously move among a set of canonical
behaviors, which we call pure states. Over some periods, the system may reside entirely in one of the pure states while over
other periods, the system is transitioning among these pure states in a temporally smooth manner. There are many applications
where such a model is appropriate including climate modeling [2], sleep analysis [3], simulating physical systems [4], as well
as characterizing human activity from video [5] or wearable-derived accelerometry [6] data. Using the last case as an example,
there will be periods when the individual will be engaged in a well-defined activity such as standing or running. During these
intervals, the data can be modeled as drawn from a probability distribution specific to that canonical state. Given the high
sampling rates of modern sensors, there also may be intervals where multiple consecutive observations reflect the gradual
transition between or among pure states. Over these periods the distribution of the data is given by a suitable combination of
the pure state distributions. Therefore, one possible model for these types of systems consists of three components: a set of
distributions containing the data-generating distribution for each pure state, a continuously evolving latent state which captures
the transition dynamics of the system as it moves among these pure states, and a means of interpolating among these pure
state distributions to characterize the data distribution in the transition regions.

These types of systems pose some unique considerations that are not sufficiently addressed by prior work in time series
modeling. The two most common methods for modeling latent state systems are continuous and discrete state-space models.
Continuous state-space models [7], [8], [9] have no natural way to identify those pure states in which the system may persist
for periods of time. In discrete state-space models such as hidden Markov models, [10], [11], [12], the dynamics are captured
by a temporally varying state vector whose elements represent the probability that the system resides in each of a countable
number of discrete (or in our terminology, pure) states. For these models, the data-generating distribution associated with this
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Fig. 1: Comparison of convex combination vs Wasserstein barycenter for modeling human activity transitions. The
beep test (BT) dataset consists of a subject running back-and-forth between two points, stopping at each point (see Sec. V-B
for more details). (a) The probability distribution functions (PDF) of the vertical acceleration of the system’s two pure states
(stand, run) are estimated using a KDE with a Gaussian kernel whose mean corresponds to the observed data when the system
resides in these pure states. Modeling a transition from stand to run via the time-varying weights (b) for t = 1, .., 5, we show
the resulting data distributions during this transition region according to a convex combination (c) and Wasserstein barycenter
(d) interpolation model.

latent state vector is given as a convex combination, i.e. a linear mixture, of the pure state distributions. As argued in [1] this is
also an insufficient model for the problems which interest us. As an example, for modeling human activity, the data distribution
illustrated in Fig. 1 produced by a convex combination of the underlying “standing” and “running” pure state distributions can
be interpreted as “sometimes standing” and “sometimes running,” which is not a proper description of the gradual transition
that actually occurs.

A better model for interpolating the data distribution during the transition period between standing and running would
smoothly shift probability mass between the two pure state distributions. As illustrated in Fig. 1, such blending can be
achieved through displacement interpolation [13] between two pure states or, for more than two pure states, as a Wasserstein
barycenter of the associated distributions [14]. Using this perspective, Dynamical Wasserstein Barycenters (DWB) [1] were
recently proposed to model a dynamically evolving distribution as a sequence of Wasserstein barycenters constructed as a
time-varying convex combination of the pure state distributions. The dynamical weights, which lie on the probability simplex,
are taken to be the latent state of the model. A Bayesian model is proposed in [1], whose parameters were determined via
maximum a posteriori estimation.

Here we expand on [1] by highlighting two challenging characteristics of the DWB model and two improvements that address
certain limitations of the original DWB approach. The first characteristic relates to uniqueness in DWB model identification,
where multiple combinations of pure state distributions and barycentric weights can produce the same Wasserstein barycenter.
Although this is true for multidimensional distributions, here we use a univariate formulation to more transparently demonstrate
how this non-uniqueness is captured in an inverse-scaling relationship between the model’s latent state and pure state parameters.
The second characteristic is related to a tradeoff in tracking and estimating an evolving data distribution from a single instance
of a time series using a windowed approach to collect samples. Smaller windows lack the number of samples to ensure small
statistical error in the estimation of the data distribution at a given point in time. On the other hand, larger windows span
longer periods during which, under relatively faster dynamics, the data distribution can change significantly again increasing
the estimation error. In a simulated example, where the dynamics consist of constant rate transitions between two Gaussian
states, we show that there exists an optimal window size that balances these two effects and discuss the dependency of this
window size tradeoff on the temporal dynamics of the latent state and pure states of the system.

Our first improvement addresses the limitations of the choice in [1] in using a probabilistic prior for the dynamics of the
DWB weight vector. That approach may introduce additional unnecessary or potentially undesirable probabilistic properties on
the latent state process such as a limiting distribution [15] which fails to adequately regularize the DWB estimation problem.
Instead, we propose here a regularization scheme that imposes temporal smoothness by penalizing the difference between the
simplex-constrained, latent state vectors at adjacent points in time. Drawing from the field of compositional analysis [16], the
Bhattacharya-arccos distance [17] proves to be well-suited to our needs. As a consequence of the aforementioned inverse-
scaling relationship, introducing this latent state regularizer impacts the model’s pure state distribution in a manner that causes
them to diverge from the data. Therefore, we also introduce a regularizer to counteract this effect to ensure that the learned
pure state distributions are representative of data while the system resides in each pure state.

Our second improvement removes the restriction in [1] where a parametric approach to model pure states with multivariate
Gaussians was employed. Here we adopt a non-parametric approach and focus on the univariate case where the Wassertein-2
distance between distributions is equivalent to the 2-norm between their respective quantile functions [18]. Using a discrete
approximation to the pure state quantile functions leads to a convenient finite dimensional, regularized linear least squares
problem for estimating the pure states.

Our numerical experiments empirically validate our analysis and improvements to the DWB model. Using simulated data,
we demonstrate in a controlled setting how we effectively regularize our model parameters with proper consideration of the
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inverse-scaling analysis and the impact of window size on the accuracy of the model parameters. Additionally, using real
world human activity data, we show how our non-parametric approach leads to improved estimation of the system’s pure state
distributions as well as improved fit of the time-evolving distribution of the observed data compared to [1].

In summary, the primary contributions of this work consist of the following:
1) We highlight the non-uniqueness of the parameters corresponding to a Wasserstein barycenter by detailing the inverse-

scaling relationship between the pure state distributions and the simplex-valued barycentric weights.
2) We explore the impact of the window size on the ability to accurately estimate a dynamically evolving data distribution

by exploring the tradeoff between the errors associated with large and small windows and the dependency of this tradeoff
on the dynamics and pure states of the system.

3) We propose regularizers for the model parameters that impose temporal smoothness in the latent states in a manner that
addresses the non-uniqueness of the model.

4) We propose a flexible, non-parametric representation for univariate pure state distributions using a discrete approximation
to the quantile function that results in a finite dimensional formulation for DWB learning.

The remainder of the paper is organized as follows: in Sec. II, we provide an overview of the Wasserstein distance and
barycenter focusing on the univariate case. In Sec. III, we discuss the DWB model, highlighting the non-uniqueness and inverse-
scaling property of the Wasserstein barycenter as well as the impact of the window size on the estimation of a dynamically
evolving data distribution. In Sec. IV, we develop a variational problem for learning a DWB model, followed by a discussion of
the regularization approach, and discretization of the pure state distributions required to obtain a finite dimensional estimation
problem. We then formally state our non-parametric and regularized DWB variational problem and provide an algorithm to
estimate the model parameters. In Sec. V we use simulated data to demonstrate the non-uniqueness, impact of window size
and regularization terms discussed in this work and use real world human activity data to demonstrate the advantages of the
non-parametric DWB approach relative to the Gaussian model.

II. TECHNICAL BACKGROUND

The Wasserstein-2 distance is a metric on the space of probability distributions on Rd with finite second moments [18], [19].
For two random variables q and s distributions ρq and ρs, the squared Wasserstein-2 distance is defined via,

W2
2 (ρq, ρs) = inf

π∈Π(ρq,ρs)
Eq,s∼π∥q − s∥22 (1)

where π denotes the joint distribution of q and s, and Π(ρq, ρs) is the set of all joint distributions with marginals ρq, ρs. In
this work, we refer to Eq. (1) as the squared Wasserstein distance.

Given a set of distributions ρq1:K = {ρq1 , ρq2 , ..., ρqK} and a vector x ∈ ∆K , where ∆K denotes the standard K-simplex,
the Wasserstein barycenter is the distribution that minimizes the weighted (with respect to elements in x) squared Wasserstein
distance to the set of distributions [14] and is given by,

ρB =B(x, ρq1:K ) = argmin
ρ

K∑
k=1

x[k]W2
2 (ρ, ρqk), (2)

where x[k] denotes the k-th element of the vector x. When ρq and ρs are univariate distributions with cumulative distribution
functions Pq, Ps, the squared Wasserstein distance in Eq. (1) becomes [19], [20],

W2
2 (ρq, ρs) =

∫ 1

0

(
P−1
q (ξ)− P−1

s (ξ)
)2

dξ. (3)

Here P−1
q and P−1

s are quantile functions, the generalized inverse [21] of the cumulative distribution function, given by,

P−1(ξ) = inf{g ∈ R : P (g) ≥ ξ}. (4)

It follows from Eq. (3) and Eq. (2) that the Wasserstein barycenter of a set of univariate distributions with quantile functions
P−1
q1:K , will have quantile function [20],

P−1
B =

K∑
k=1

x[k]P−1
qk

. (5)

III. THE DYNAMICAL WASSERSTEIN BARYCENTER MODEL

Shown in Fig. 2, the DWB model [1] describes the distribution of a time series yt at time t as,

yt ∼ ρBt
= B(xt, ρq1:K ) (6)

where ρqk , k = 1, 2, . . . ,K are the distributions of the pure states and the barycentric weight xt ∈ ∆K capture the dynamics
of the transitions among these pure states.
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Fig. 2: DWB model diagram. The DWB models the distribution ρBt
from which the time series yt is sampled as the

Wasserstein barycenter of a set of pure state distributions ρq1:K and barycentric weight x1:T , the latent state of the model.

Fig. 3: Diagram of the non-uniqueness and inverse-scaling effect of the parameters of a Wasserstein barycenter. Consider
a set of three pure states with quantile functions P−1

q1:3 and simplex-valued weight xB ∈ ∆3 where ρB = B(xB , ρq1:3) with
quanitle function P−1

B =
∑3

k=1 xB [k]P
−1
qk

. We construct a family of distinctly different pure state quantile functions P̄−1
q1:K

and barycentric weights x̄B which produce the exact same barycenter P−1
B =

∑3
k=1 x̄B [k]P̄

−1
qk

. Let x0 be another point on
the simplex where ρ0 = B(x0, ρq1:3) has quantile function P−1

0 =
∑3

k=1 x0[k]P
−1
qk

. Given x0 and xB , let x̄B given by
Eq. (7) be any point on the line connecting x0 through xB to the edge of the simplex. Moving x̄B away from x0 along the
line connecting x0 and xB (orange segments), causes the pure states quantile functions P̄−1

q1:3 to move from P−1
q1:3 towards

P−1
0 . This corresponds to α ∈ [α0, 1] where α0 is the smallest value of α such that x̄B still lies on the simplex. Conversely

moving xB towards x0 (blue segments) results in the pure state quantile functions moving away from P−1
0 . This corresponds

to α ∈ [1, αm], where αm is the largest value of α such that all P̄q1:3 remain in the set of quantile functions Q.

Given yt, t = 1, 2, · · · , T modeled via equation (6), the problem is to estimate DWB model parameters which consist of the
pure state distributions and the sequence of barycentric weights.

Below we discuss two key characteristics that pose challenges for estimating the parameters of the DWB model. The first
is the non-uniqueness of the parameters (i.e., the pure state distributions and the barycentric weights) that yield a Wasserstein
barycenter. The second relates to the complications that arise when we are provided only a single time series for learning a
DWB model.

A. Non-uniqueness in the Parameters of a Wasserstein Barycenter

The issue of uniqueness refers to the fact that a Wasserstein barycenter is not described by a unique set of pure state
distributions and barycentric weights. While the statement is true regardless of dimension (see Appendix A for an example),
given the focus of this paper, we examine the univariate case in some detail. Specifically, we provide a construction that
illustrates an inverse-scaling relation between the family of pure state distributions and barycentric weights that yields the
same Wasserstein barycenter.

As shown in Fig. 3, assume we have a set of pure state distributions ρq1:K indexed by k = 1, 2, . . . ,K with quantile
functions, P−1

qk
and barycentric weights xB ∈ ∆K which give rise to the barycenter ρB = B(xB , ρq1:K ) with quantile function

P−1
B =

∑K
k=1 xB [k]P

−1
qk

(Eq. (5)). For now, xB is assumed to lie in the interior of the simplex and we consider below the
cases where xB is on a lower dimensional face or vertex. Let us choose another point x0 ̸= xB corresponding to barycentric
quantile function P−1

0 =
∑K

k=1 x0[k]P
−1
qk

(Eq. (5)). We construct a family of barycentric weights x̄B and pure state quantile
functions, P̄−1

q1:K corresponding to distributions ρ̄q1:K such that ρB = B(x̄B , ρ̄q1:K ), or in other words, P−1
B =

∑K
k=1 x̄B [k]P̄

−1
qk

.
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Specifically, as seen in Fig. 3 we define x̄B to be a point on the line segment connecting x0 to the boundary of the simplex
that passes through xB . That is,

x̄B = x0 +
1

α
(xB − x0). (7)

The parameter α captures the scaling nature of this construction. When α = ∞ we have x̄B = x0. As α decreases, x̄B moves
away from x0 along the blue segment connecting x0 and xB , ultimately crossing xB when α = 1. Further reducing α towards
0 moves x̄B along the orange component of the same line until some point α ∈ (0, 1], where x̄B reaches the boundary. We
denote this point as α0.

With this definition of x̄B in Eq. (7) we construct quantile functions, P̄−1
q1:K such that P−1

B =
∑K

k=1 x̄B [k]P̄
−1
qk

. Indeed,

P−1
B =

K∑
k=1

xB [k]P
−1
qk

=

K∑
k=1

(αx̄B [k] + (1− α)x0[k])P
−1
qk

= α

K∑
k=1

x̄B [k]P
−1
qk

+ (1− α)

K∑
k=1

x0[k]P
−1
qk

= α

K∑
k=1

x̄B [k]P
−1
qk

+ (1− α)P−1
0 P−1

0 =

K∑
k=1

x[k]P−1
qk

=

K∑
k=1

(
αx̄B [k]P

−1
qk

+ (1− α)x̄B [k]P
−1
0

) K∑
k=1

x̄B [k] = 1

=

K∑
k=1

x̄B [k]
(
αP−1

qk
+ (1− α)P−1

0

)
=

K∑
k=1

x̄B [k]P̄
−1
qk

with for each k,

P̄−1
qk

= P−1
0 + α(P−1

qk
− P−1

0 ). (8)

Eq. (8) bears a strong resemblance to Eq. (7), except now with reciprocal use of α. For α ∈ [α0, 1], P̄−1
qk

is a convex combination
of P−1

0 and P−1
qk

lying on the line segment connecting the two quantile functions. In this case, since the collection of monotone
functions on [0, 1] is a convex set [22], P̄−1

q1:K will be valid quantile functions. However, for α > 1, P̄−1
qk

extends beyond P−1
B

along the line that connects P−1
0 to P−1

B . In this case, P̄−1
qk

is no longer a convex combination of P−1
0 and P−1

B and is not
guaranteed to be a quantile function. We denote αm as the maximum value of α such that P̄−1

qk
is a valid quantile function.

Thus, the sets of x̄B and P̄−1
q1:K corresponding to α ∈ [α0, αm] according to Eqs. (7) and (8) describe the family of parameters

that yield the same Wasserstein barycenter as xB and P−1
q1:K . The reciprocal appearance of α in these equations captures the

inverse-scaling relationship for this family of parameters. As shown in Fig. 3, the case where α ∈ [α0, 1] corresponds to
the orange lines where increasing the distance of x̄B from x0 along the segment connecting xB and x0, results in the pure
states decreasing their distances to P−1

0 each along linear trajectories connecting the P−1
qk

to P−1
0 . Conversely, the case where

α ∈ [1, αm] corresponds to the blue lines in Fig. 3 where decreasing the distance between x̄B and x0 by moving along the
line that connects xB to x0, results in pure state quantile functions P̄−1

qk
that are now increasing their distance from P−1

0 by
extending linearly along the ray from P−1

0 to P−1
qk

.
Should xB lie on a face of the K-simplex of dimension greater than one but less than K (i.e., not a vertex), this construction

may be repeated by placing x0 ̸= xB in that same lower dimensional simplex. In such a case, we may also place x0 in the
interior of the K dimensional simplex. More specifically, with xB on a face and x0 located in the interior, it is clear that
α0 = 1 implying that the construction above holds only if αm > 1. This is also the case in the event that xB is a vertex
for any value of x0 ̸= xB . With the constraint that P̄−1

q1:K must remain valid quantile functions, it is possible to construct an
example such that αm = 1, which when combined with the aforementioned case where α0 = 1 means that we cannot employ
this construction to show non-uniqueness. However, as discussed in Appendix A neither can we conclude that the barycenter
is in fact unique.

This non-uniqueness and inverse-scaling relation implies that for models (such as the DWB) that require learning both
the pure state quantile functions and the barycentric weights corresponding to one or a sequence of Wasserstein barycenters,
introducing constraints on one set of parameters will have an impact on the other. We take this effect into account in Sec. IV-B
when constructing regularizers to impose desirable properties on the latent state sequence and pure state distributions.

B. Model Sampling
A second characteristic of learning a DWB model relates to how we incorporate observed data into the model. Ideally, we

would directly observe the data distribution ρBt
as specified by Eq. (6) at each point in time or generate an estimate of these
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Fig. 4: Approximating a distribution with a window of samples. (a) Two simulated configurations, one where xC
t =

[0.5, 0.5]T is constant, and one where xD
t = [(1 − tT−1), tT−1]T is dynamically evolving. We generate a time series yt ∼

B(xC or D
t , ρq1:2) where ρq1 = N (0, 5), and ρq2 = N (10, 0.2)1. (b) We estimate the distribution data distribution ρBt∗ where

t∗ = 0.5(T +1), with a distribution ρy∗
t

comprised of a window of n samples centered at t∗ according to Eq. (9). Varying the
window size n we plot the average value and the 25/75-th quantile bands of ewt∗ = W2

2 (ρyt∗ , ρBt∗ ) from 104 simulations. In
the constant state case where ρy∗

t
consists of n IID samples from ρB∗

t
the average error monotonically decreases. However,

in the dynamic case, where the samples in the window are independent but not identically distributed, the U-shape curve
highlights the window size tradeoff where n0 indicates the optimal window size.

Fig. 5: Impact of system dynamics and pure state distributions on WAE. The average WAE is plotted for various
configurations where solid lines refer to ρq1 = N (0, 5), ρq2 = N (10, 0.2) and dashed lines corresponds to a system where
the Wasserstein distance between ρq1:2 is decreased, ρq1 = N (1, 4.23) ρq2 = N (9, 0.39). In both cases, ρBt∗ = N (5, 1.8).
Decreasing the per-sample change in distribution by increasing T or decreasing W2

2 (ρq1 , ρq2) (solid → dashed) results in
smaller ewt∗ . The impact of these changes on ewt∗ is greater for larger windows, which increases the optimal window n0

corresponding to the minimum of the U-curves.

distributions from multiple realizations of a time series. Unfortunately, in all the practical cases of interest to us, only a single
instance of the time series is available for processing. Thus, we consider the problem of estimating the time-varying data
distribution ρBt

from a single time series that is sampled from ρBt
. To do this, we consider a window of n samples centered

at t, compiled into a vector yt = [y(t−n
2 ), . . . , y(t+n

2 −1)]
T. For convenience of notation, we assume n to be even. We estimate

the data distribution with the distribution ρyt
based on this sample window,

ρyt =
1

n

n∑
i=1

δyt[i]. (9)

Here, δyt[i] is the Dirac-delta measure located at yt[i]. We then define the window approximation error (WAE) as,

ewt
= W2

2 (ρyt
, ρBt

). (10)

Since the samples that constitute ρyt
are random, the WAE is a random quantity.

Eq. (9) is an empirical measure when the samples in the window are drawn IID which is only possible when the barycentric
weights xt, and thus ρBt

, is constant in time. In this case, as n → ∞, it is known that the distribution function of ρyt
converges

almost surely to the distribution function of ρBt , and the expected value of ewt converges to zero [23]. The complication in

1N (µ, σ2): Gaussian distribution with mean µ, and variance σ2.
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our case comes from the fact that xt is changing with time, meaning that the samples in the window are no longer identically
distributed as the data distribution changes from sample to sample.

This impact of a dynamically evolving distribution on the WAE is dependent on many factors including the size of the
window n as well as properties of the system that impact the manner in which the data distribution changes between samples.
To simplify matters, we consider a simple yet informative example in Fig. 4a of a system with two pure states and two latent
state configurations, one where the latent state is constant with xC

t = [0.5, 0.5]T, and one where the latent state is dynamic,
changing at a constant rate where xD

t = [(1 − tT−1), tT−1]T, for t = 0, 1, . . . , T . For two distributions ρq1:2 , we generate a
time series by sampling independently yC or D

t ∼ B(xC or D
t , ρq1:2). Thus, in the constant state case, yCt are IID. Let ρyt∗ be

the empirically estimated distribution constructed according to Eq. (9) at t∗ = 0.5(T +1), the half-way point of the transition.
In both cases of xC

t and xD
t the distribution at this time is ρBt∗ = B([0.5, 0.5]T, ρq1:2).

When the window size is small, the distributional change over the sample window is also small. Therefore as seen in the left
side of Fig. 4b, the dynamic case closely approximates the constant state where the average WAE decreases with respect to the
window size [23]. When the window size is large, the samples being included in the window are further from t∗ and thus the
distributions of these samples increasingly diverge from ρBt∗ . Shown by the rising and expanded quantile bands on the right
side of the plot, this effect causes the average and variability of ewt∗ to increase for large windows. The resulting U-shape
curve of the WAE highlights the window size tradeoff where the optimal window size n0 corresponding to the minimum of
this curve balances the benefits of having more samples for robust estimation of a distribution with the effects of using samples
farther from the point of interest.

One major factor that impacts this tradeoff is the magnitude of the distributional change from sample to sample. There are
a number of factors that can decrease (resp. increase) the magnitude of this per-sample change in distribution including (1)
decreasing (increasing) the rate of change of the system’s continuous time dynamics; (2) increasing (decreasing) the sampling
rate of the sensor which provides discrete measurements; or (3) decreasing (increasing) the Wasserstein distance between
the pure state distributions which affects the total amount of distributional change during the transition among pure states.
Continuing with the example, we demonstrate the impact of these factors on the window size tradeoff and optimal window size.
Again, modeling the system as moving from ρq1 to ρq2 with dynamics specified by xD

t , factors (1) and (2) dictate the number
of samples over which this transition occurs2, thus their combined impact can be understood by varying T . To understand the
impact of (3), we simulate two different pure state configurations varying W2

2 (ρq1 , ρq2).
The results in Fig. 5 confirm that for a given window size, decreasing the per-sample change in distribution by increasing T ,

or by decreasing W2
2 (ρq1 , ρq2) results in a decrease in the average WAE. Additionally, the increasing difference between the

U-curves in Fig. 5 as we move towards larger windows confirms that the decreasing the per-sample change in distribution has
an increasing benefit for larger windows where the dynamics of the system have a larger impact on the accuracy of the window
estimate. This shifts the balance of the window size tradeoff as seen by the minimums of these U-curves moving to the right,
implying that decreasing the per-sample change in distribution using any of the three methods mentioned increases the optimal
window size. Indeed, in the limiting case where either T → ∞ or W2

2 (ρq1 , ρq2) → 0 in which case ρq1 = ρq2 = ρBt∗ , the
samples will be drawn IID from a constant distribution. In this limit, the dynamic case converges to the constant case where
the optimal window size n0 → ∞ and ewt

→ 0.

IV. NON-PARAMETRIC AND REGULARIZED DYNAMICAL WASSERSTEIN BARYCENTERS

In this section, we detail our proposed variational problem for estimating the parameters of the univariate DWB model.
We discuss our regularization that ensures that the latent state evolves smoothly over time while taking into account its effect
on the pure states through the inverse-scaling relationship. We also discuss our non-parametric representation for the pure
state distributions using a discrete approximation to the pure state quantile function. Finally, we detail how this leads to a
least-squares formulation of the variational DWB objective and propose an algorithm for learning the parameters of the model.

A. Variational Problem for DWB Model Estimation

Training a DWB model entails estimating the pure states distributions and latent states sequence to minimize a cost function
that encourages both fidelity to the data as well as model parameters that conform to prior knowledge we may have concerning
the general behavior of time series.

Building on the approach discussed in Sec. III-B, we create a sequence of N sample windows of length n to estimate the
distribution of the time series at select points. For our simulations in Sec. V we use overlapping windows separated by a fixed
stride length. Given ti for i = 1, . . . , N as the starting index for these sample windows, let yi = [yti , ..., yti+n]

T be the vector
of samples and ρyi the distribution according to Eq. (9) corresponding to this window of samples. Using the WAE in Eq. (10)

2The rate of change (1) may have units change in distribution per second, and the sampling rate (2) has units samples per second. Thus (1)
(2)

will have units
change in distribution per sample.
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summed over i as a data fidelity term and encoding prior information in regularizers the details of which are discussed below,
the variational problem we seek to solve is,

ρ̂q1:K , x̂1:N = argmin
ρq1:K

,x1:N

N∑
i=1

W2
2 (ρyi , ρBi)︸ ︷︷ ︸
Data Fit

+λx Rx (x1:N )︸ ︷︷ ︸
x-regularization

+λqN Rq(ρq1:K )︸ ︷︷ ︸
q-regularization

, (11)

where ρBi
= B(xi, ρq1:K ). Here, λx, λq ≥ 0 are regularization weights. We multiply Rq by N so that it scales with the length

of the time series along with the other terms in the cost function.
As highlighted by the inverse-scaling relation in Sec. III-A, any regularizer of either the latent state or pure state must

consider its effect on the other parameter. Motivated by applications where the system evolves gradually over time, we propose
a regularization scheme that imposes a gradually evolving latent state while ensuring that the learned pure state distributions
accurately reflect the distribution of the data corresponding to when the system resides in a pure state.

B. Parameter Regularization for DWB
As seen in our windowing simulations in Sec. III-B, even in a simple case, estimating a dynamically evolving distribution

with a window of samples is a challenging problem. The ambiguities identified in our experiments in Sec. III-B may cause
the learned latent state to vary greatly even if the system is constant or gradually evolving. Therefore, to limit its variability,
we propose a regularizer that penalizes the sum of the squared distances, d2(xi,xi+1), between successive latent states for
a suitable distance d on the simplex [16]. While several choices are possible, for the purpose of this work, we choose the
Bhattacharrya-arccos distance [17], one that is bounded and differentiable. We discuss alternative distances in Appendix B.
Thus, this regularizer penalizes the total length of the latent state trajectory on the simplex according to

Rx(x1:N ) =

N−1∑
i=1

d2(xi,xi+1)

=

N−1∑
i=1

(
arccos

(
K∑

k=1

√
xi[k]xi+1[k]

))
. (12)

With the above choice for regularizing the latent state sequence, our choice for regularization of the pure state distributions is
motivated by Eq. (7) and the inverse-scaling nature of barycentric non-uniqueness. Considering our non-uniqueness construction
in Eq. (7), if we set the reference point to be the current value of the latent state x0 = xt, and constructed point as the next
state x̄B = xt+1, Eq. (7) takes the form xt+1 = xt+

1
αdt where dt is a vector in the simplex along which we move the latent

state. Since dt is essentially arbitrary, taking α > 1 will encourage small changes in xt as required by Eq. (12). Referring
to Fig. 3, we see that in this α > 1 regime, barycentric non-uniqueness manifests in the divergence of the quantile functions;
i.e., motion along the blue line segments. That this in fact can occur is verified in our experiments in Sec. V-A1. Now, for
time series that reside in each pure state at some period in time, the observed data during those periods will be representative
of each of the pure state distributions. Therefore, having estimated pure state distributions diverge is undesirable if we want
to accurately learn these quantities. To counteract this diverging behavior, we propose a regularizer in the space of quantile
functions that penalizes the sum of squared Wasserstein distances of the pure state quantile functions P−1

qk
from a reference

quantile function P−1
0 . Here, we choose P−1

0 be the quantile function of ρ0 = B(x0, ρq1:K ) where x0 = 1
K 1K (with 1K the

length K vector of all ones):

Rq(ρq1:K ) =
∑

k=1:K

W2
2

(
ρqk , B

(
1

K
1K , ρq1:K

))

=
∑

k=1:K

∫ 1

0

P−1
qk

(ξ)− 1

K

∑
j=1:K

P−1
qj (ξ)

2

dξ, (13)

The two regularizers just discussed are designed to work in tandem. Here, Rx ensures that the latent state evolves gradually over
the simplex while Rq ensures that the pure state quantile functions do not diverge in the ways predicted by the inverse-scaling
analysis in Sec. III-A. Through our simulations in Sec. V-A, we demonstrate how by appropriately balancing the regularization
weights one can reliably estimate the DWM model parameters.

C. Discrete Quantile Approximation
As estimation of the infinite dimensional quantile functions P−1

q1:K in (11) requires a finite dimensional approximation we
introduce the following two quantities:
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Fig. 6: Discrete quantile representation for pure states, Wasserstein barycenter, and empirical distribution function.
(a) PDF of ρ1, ρ2. (b) Respective quantile function and n-DQA where n = 5 with corresponding n-DQV q1:2. (c) Quantile
function of the Wasserstein barycenter ρBt∗ = B([0.5, 0.5]T, ρ1:2) and its n-DQV, bt∗ , a weighted average of q1 and q2. (d)
Distribution according to Eq. (9) corresponding to sample window with n = 5 points. (e), corresponding empirical quantile
function P−1

y where y′ is the sorted vector of samples. (f) Since ρBt∗ and P−1
y are monotone step functions sharing the same

set of discontinuities, from Eq. (3) W2
2 (ρy, ρn,B) =

1
n∥y

′ − b0.5∥22

Definition 1. [n-DQA] Given a quantile function P−1 : [0, 1] → R, the n-point discrete quantile approximation (n-DQA) is a
monotone step function P−1

n (ξ) = P−1
(

⌈ξn⌉−0.5
n

)
that is obtained by sampling the { 0.5

n , 1.5
n , ..., n−0.5

n }-th quantiles of P−1.

Definition 2. [n-DQV] The n-point discrete quantile vector (n-DQV) q ∈ Rn is comprised of the sampled quantiles from an
n-point DQA: q[j] = P−1

(
j−0.5

n

)
, j = 1, 2, · · · , n.

The first two plots in the top row of Fig. 6 illustrate these definitions. For a univariate distribution, the n-DQA approximates
the quantile function with a monotone step function whose constant values are sampled from the quantile function on a uniform
interval. Since the quantile function is monotone, these sampled quantiles and consequently the n-DQV is sorted in ascending
order.

With this, we approximate the quantile functions of the pure state distributions P−1
q1:K with their respective n-DQA P−1

n,q1:K ,
parameterizing them according to their n-DQV, which are denoted as q1:K . Learning these n-DQVs amounts to estimating
the { 0.5

n , 1.5
n , . . . , n−0.5

n }-quantiles of each pure state distribution. We also use this discrete quantile approach to estimate the
quantile functions of the model Wasserstein barycenter ρBi

= B(xi, ρq1:K ). From Eq. (5) we see that the ξ-th quantile of the
Wasserstein barycenter is a weighted combination of the ξ-th quantiles of ρq1:K , with barycentric weight xi. Since the q1:K

samples the quantile function of each pure state distribution at the same quantile values, the n-DQV of ρBi is

bi =

K∑
k=1

xi[k]qk. (14)

We denote corresponding n-DQA as P−1
n,Bi

and the corresponding distribution as ρn,Bi
.

Using this n-DQV representation, by intentionally choosing n, the discretization level for the n-DQV, to be equal to the
size of the sample window, we are able to pose a least-squares cost that approximates the data fit term in Eq. (11). To see
this, we start by noting that all n-DQAs including P−1

n,qk
, P−1

n,Bi
are monotone step functions on [0, 1] with discontinuities at

{ 1
n ,

2
n , ...,

n−1
n }. Additionally, shown in the bottom row of Fig. 6, the distributions ρyi

corresponding to sample windows yi

are discrete distributions comprised of Dirac-delta measures supported on a set of n points with uniform weights (Eq. (9)). By
setting this window size n to be the same as the level of discretization used for the n-DQAs that approximate the pure state
quantile functions, the quantile functions P−1

yi
corresponding to ρyi

will have the same monotone piecewise constant structure
with the same set of discontinuities as the n-DQA (bottom right of Fig. 6). With y′

i being the vector obtained by sorting the
elements of yi in increasing order, the Wasserstein distance between the ρyi

and ρn,Bi
is simply

W2
2 (ρyi , ρn,Bi) =

1

n
∥y′

i − bi∥
2
2, (15)



10

where n is the size of the sample window corresponding to ρyi
and hence the length of y′

i, as well as the level of discretization
used for the n-DQA of the pure state distributions, and hence the length of bi.

D. Model Estimation and Algorithm

Using this discrete quantile parameterization for the pure state distributions allows us to pose an approximation to the
variational objective function in Eq. (11) for the DWB model as a constrained nonlinear least squares problem. Let Q =
[q1, ...,qK ] ∈ Rn×K denote the matrix whose columns correspond to the n-DQV of each of the pure states, Y = [y′

1, ...,y
′
N ] ∈

Rn×N the matrix whose columns correspond the sorted sample windows from the observed time series and X = [x1, ...,xN ] ∈
RK×N the matrix whose columns correspond to the latent state vectors across time. Pulling together the regularizers discussed
in Sec. IV-B, we pose the following constrained optimization problem,

Q̂, X̂ = argmin
Q,X

F (Q,X)

= argmin
Q,X

1

n
∥Y −QX∥2F︸ ︷︷ ︸

Data fit

+λx

N−1∑
i=1

d2(X[:, i+ 1],X[:, i])︸ ︷︷ ︸
Eq. (12)

+ λq
N

n

∥∥∥∥Q(I− 1

K
1K1T

K

)∥∥∥∥2
F︸ ︷︷ ︸

Eq. (13)

(16)

subject to:

Q[j + 1, k]−Q[j, k] ≥ 0,
k = 1, . . . ,K,
j = 1, . . . , (n− 1)

(17)

K∑
k=1

X[k, i] = 1 i = 1 : N (18)

X[k, i] ≥ 0
k = 1, . . . ,K
i = 1, . . . , N

(19)

As detailed in Alg. 1, we minimize Eq. (16) using a block coordinate descent approach with two blocks, alternating between
optimizing for Q and X while holding the other fixed. For both constrained optimization problems, we utilize the sequential
least squares programming (SLSQP) optimizer [24] with python’s scipy library [25].

The learned parameters of Q̂ and X̂ both have closed, non-empty, and convex constraints given by Eqs. (17)-(19). The
n-DQV, and thus the columns of Q must be sorted in ascending order (Eq. (17)). The barycentric weights, and thus the
columns of X , are constrained to the set of positive matrices with rows that sum to one (Eqs. (18), (19)). Thus, by [26], every
limit point of an alternating block coordinate descent approach with two blocks is guaranteed to be a critical point. We show
empirical convergence of this algorithm to a limit point in Fig. 10

Regarding the initialization of the parameters Q̂ and X̂ , we initialize the pure state distributions based on clustering the
observation sample windows. Starting in line 14 in Alg. 1, we compute the similarity graph using the exponential of the
negative square Wasserstein distance between the distributions estimated from any two sample windows and use spectral
clustering from Python’s sklearn [27] to learn K clusters. Denoting Ck as the index set of sample windows that belong
to cluster k, in line 22 we initialize the n-DQV of each pure state to be, qk = 1

|Ck|
∑

i∈Ck
y′
i. We initialize the latent state

X̂[t, k] = 1
K ∀i = 1, . . . , N, k = 1, . . . ,K, to be at the centroid of the simplex for all points in time.

V. MODEL EVALUATION

Analyzing simulated and real world human activity data where the system gradually evolves among its pure states, we
empirically demonstrate (1) how the proposed regularizers allow the DWB model to accurately recover the system parameters
taking into account the inverse-scaling relationship between the model parameters, (2) the impact of the window size on
the accuracy of estimating the system parameters of a dynamically evolving time series, and (3) how our non-parametric
formulation of the DWB problem is able to accurately learn the pure state distributions.

A. Simulated Experiments

Our approach proposes regularizers to the DWB model with the assumption that the latent state of the system transitions
gradually among its pure states. Here, we consider a simulated system whose parameters reflect these properties, denoting the
ground truth pure state distributions and latent states as ρq1:K , x1:T and the model estimated parameters as ρ̂q1:K , x̂1:T .
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Algorithm 1: Non-parametric and Regularized DWB

1 Input:
2 y1, ..., yt, ..., yT : Univariate time series
3 t1, ..., ti, ..., tN : Starting indices for sample windows
4 K: Number of pure states
5 Hyperparameters:
6 n: Sample window size η: Convergence threshold
7 λx, λq: Regularization weights to define F (Eq. (16))

8 Output:
9 Q̂ ∈ Rn×K : Stacked pure state DQVs

10 X̂ ∈ RK×N Stacked barycentric weights

11 for i = 1 : N do
12 y′

i = sort(yti , ..., yti+n) ; // sorted windows
13 end
14 for i = 1 : N do // Window affinity matrix
15 for j = 1 : N do
16 A[i, j] = 1

n

∥∥y′
i − y′

j

∥∥2
2

17 end
18 end
19 c1:N = SpectralClustering(K, exp(−A)) ; // Cluster sample windows
20 for k = 1, ...,K do
21 Ck = {i : ci = k}
22 qk = 1

|Ck|
∑

i∈Ck
y′
i ; // Init. n-DQV

23 end
24 Y = [y′

1, ...,y
′
N ] ; // Stacked windows

25 X̂(0) = 1
K 1K1T

N ; // Initialize X

26 Q̂(0) = [q1, ...,qK ] ; // Stacked n-DQVs
27 do
28 X̂(i+1) = argminX F

(
Q = Q̂(i),X = X̂(i)

)
; // SLSQP

29 Q̂(i+1) = argminQ F
(
Q = Q̂(i),X = X̂(i+1)

)
; // SLSQP

30 while F
(
Q̂(i), X̂(i)

)
− F

(
Q̂(i+1), X̂(i+1)

)
> η;

Consider a system that consists of K = 3 pure states with ground truth distributions,

ρq1 =0.5N (3, 0.25) + 0.25N (−3, 0.25) (20)
ρq2 =U [−4, 4]

ρq3 =
1

5

5∑
i=1

N
(
q[i], 1e−8

)
q = [−2.88,−0.74,−0.64,−0.41, 1.82] .

Here, U [a, b] denotes a uniform distribution on the interval [a, b]. We show the PDF in Fig. 7a, CDF in Fig. 7b, and quantile
functions in Fig. 7c for each of these distributions

Now let us consider a time series that transitions among these three pure states following the trajectory outlined in Fig. 7d.
The continuous-time latent state xτ alternates between pausing at each pure state for 1 second, and then transitioning to
another pure state for 2 seconds moving from ρ1 . . . ρ2 . . . ρ3 . . . ρ1 over the course of continuous time τ = [0, 9] seconds.
To emulate the simulated setup in Sec. III-B of varying the per-sample change in distribution, we vary r (Hz), the rate at
which we sample this continuous-time sequence to generate the ground truth latent state xt for t = 1, . . . , T . Time series
are independently sampled yt ∼ ρBt = B(xt, ρq1:3) by uniformly sampling a quantile ξ ∈ [0, 1] and evaluating the quantile
function P−1

Bt
(ξ) =

∑3
k=1 xt[k]P

−1
qk

(ξ).
From this time series, we generate a sequence of sample windows using sliding window[28], spacing out the windows on a

constant interval, ti+1 = ti+δ. For these experiments, we choose to set δ = n, which partitions the time series into a sequence
of N = ⌊T

n ⌋ disjoint windows of size n.
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Fig. 7: Simulated pure state distributions and latent state process. (a) PDF, (b) CDF, and (c) quantile function for the pure
state distributions used in the simulated experiments. (d) Simulated latent state trajectory as the system transitions among its
three pure states.

Fig. 8: Impact of regularization and the inverse-scaling relationship. (a) Without regularization, though the ground truth
latent state evolves gradually, the learned latent state varies over the simplex. (b) Introducing just the latent state regularizer
(blue) imposes some level of smoothness to the latent state, but consequently results in the pure state quantile functions
diverging from their ground truth values. Conversely, including just the pure state regularizer (orange) causes the pure state
quantile functions to move closer together and the latent states to move towards the boundary of the simplex. (c) Using
regularization weights that minimize ex + eq balance the effects of these two regularizers to accurately recover the gradually
evolving latent state sequence and the pure states quantile functions of the time series. Plots are shown for r = 200, n = 100.

With knowledge of ground truth, we can assess our model using the average distance of our learned parameters to these
ground truth values according to,

eq =
1

K

K∑
k=1

W2
2 (ρqk , ρ̂qk) ex =

1

N

N∑
t=1

∥xt − x̂t∥22. (21)

Since our model is unsupervised, there is no guarantee that the indexing of the learned pure states will match that of the ground
truth. Therefore, when assessing our model, we assume that learned pure states (and subsequently the latent state vector) are
reordered in a manner that minimizes Eq. (21).

1) Regularization and Inverse-Scaling: We demonstrate the inverse scaling relationship between the model parameters
through the interaction between the latent state and pure state regularizers. As discussed in Sec. III-B, the difficulty in accurately
estimating the model parameters stems from the problem of estimating dynamically evolving data distribution with a window
of finite length. In Fig. 8, we see that in the absence of any regularization, the learned latent state can vary over the simplex,
even when the ground truth latent state is stationary or gradually evolving. The blue lines of Fig. 8b show that introducing
only the latent state regularizer that penalizes d2(xt,xt+1) imposes some level of smoothness on the latent state. However,
as discussed in Sec. IV-B this regularizer has an additional effect that is similar to the α > 1 regime corresponding to the
blue lines in Fig. 3 where the latent states trajectory contracts towards a point on the simplex. In this case, as specified by
the inverse-scaling relationship, seen from the blue quantile plots in Fig. 8b, the pure state quantile functions diverge from
the ground truth values. On the other hand, as seen in orange lines of Fig. 8b, having only the pure state regularizer causes
the pure state quantile functions to be pulled closer together where by the inverse-scaling relationship, the latent states move
away from the centroid of the simplex towards the boundary.

Only through the combination of these regularization terms can we recover the ground truth parameters of this simulated
system that gradually evolves among its pure states. Using our knowledge of ground truth we perform a grid search by varying
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Fig. 9: Impact of window size on simulated model accuracy. Ground truth error averaged over 500 generated time series
as a function of window size n for sampling rates of r = 150, 200 Hz. The U-shape plots imply that the factors that impact
the ability of small and large windows to estimate a dynamically evolving data distribution similarly impact the ground truth
error of the learned DWB model parameters. Additionally, increasing the sampling rate r of the time series, which results in
a smaller per-sample change in the data distribution, similarly improves the model accuracy for larger windows and shifts the
minimum of the U-curve towards larger windows. The minimum error (solid dots) for r = 150 was achieved with a window
size of n = 300, while for r = 200 the minimum window size was achieved at n = 400.

Fig. 10: Convergence of simulated experiments: Plot of the objective function shows convergence to a limit point. Shown
for simulated data with n = 400, 410, ..., 500 and r = 150, 200.

the regularization weights λx, λq = {1e−4, 2e−4, 5e−4, 1e−3, ..., 1e−1} and picking the pair that minimizes the total ground
truth error ex+eq . As seen from Fig. 8c, the DWB model corresponding to these optimal regularization weights more accurately
recover the ground truth parameters of this simulated system. In Sec. V-B, we perform parameter selection in the absence of
ground truth using L-surfaces [29].

2) Impact of Window Size: In Sec. III-B, we highlighted the effect of window size and the rate of change in the data
distribution on the accuracy of estimating a dynamically evolving distribution using a window of samples. Here, we seek to
understand how these factors impact the accuracy of the learned DWB parameters. Using the aforementioned setup in Sec. V-A,
we simulate two systems with different sampling rates r ∈ {150, 200}Hz, generating 500 time series per value of r. We then
run our DWB model varying the window size between n = 50, 100, ..., 400, 410, ..., 500. We find the optimal regularization
weights by performing a grid search over the range of values as Sec. V-A-1. For each value of n and r, we set λx, λq to be
the average of the results of this grid search performed for 5 randomly selected time series.

In this experiment, we remove potential confounding variables across the various window sizes. First, we use the same
initialization for the pure states distributions, specifically the one generated from the spectral clustering method discussed in
Sec. IV-D for the configuration of n = 200. Secondly, we ensure that the sequence of sample windows estimates the time
series at the same points in time, such that regardless of r, n the windows are centered at τ = [1.5, 2.0, ..., 7.5].

The results shown in Fig. 9 imply that the factors discussed in Sec. III-B that impact the ability of a sample window to
accurately estimate a dynamically evolving data distribution similarly affect the ability of the DWB model to accurately learn a
system’s pure states and latent states from these estimated windows. The U-shape curves in Fig. 9 of the average ground truth
error as a function of window size bear strong similarities to the U-shape curves illustrating the window size tradeoff in Fig. 5
where small windows lack the samples to precisely estimate the data distribution and the accuracy of large windows suffer due
to the dynamics of the systems. Furthermore, we see the same trend as in Sec. III-B where decreasing the per-sample change
in distribution, shown here by increasing the sampling rate r, improves the accuracy for models with larger windows shifting
this window size tradeoff and the “optimal” window size towards larger windows.

3) Convergence: Convergence of the optimization process to a limit point is shown in Fig. 10 for various configurations of
the simulated data defined in Sec. V-A.
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B. Real World Data

In this section, we compare the performance of the non-parametric DWB model to the Gaussian DWB model [1] on
univariate data. To highlight the difference between the Gaussian and non-parametric discrete quantile parameterizations, we
use the regularization framework proposed in this paper for both models. We evaluate using our simulated data and two human
activity datasets.

1) Beep Test (BT, proprietary): Subjects run between two points to a metronome with increasing frequency, alternating
between two states: running and standing. We use the vertical component (z-axis) of the 3-axis accelerometer, which is
the dimension in which the distributions of the two pure states are best differentiated. The sensor is sampled at 100 Hz.

2) Microsoft Research Human Activity (MSR, [30]): 126 subjects perform exercises in a gym setting. Exercises vary among
subjects covering strength, cardio, cross-fit, and static exercises. Each time series is truncated to five minutes. Discrete
labels corresponding to activities are provided, thus we set K to the number of labeled discrete states in the truncated
time series (range: K = 2 to 7). We use the x-axis of the 3-axis accelerometer sampled at 50 Hz.

3) Simulated Data (Sim): Following the data generating process outlined in Sec. V-A, we simulate 500 time series setting
r = 200.

Evaluation: Since ground truth is not known in the real world setting, we assess performance by considering the model fit
to the data, computed using the data-fit term in Eq. (11),

ey =
1

N

N∑
t=1

W2
2 (ρyt , ρBt) (22)

In the non-parametric model, this distance is computed according to Eq. (15). In the Gaussian DWB model where ρBt
is

Gaussian, this distance is computed using a Monte-Carlo method using 1e5 IID samples from ρBt .

Fig. 11: L-surface for selection of regularization weights. L-surface for MSR time series for (left) non-parametric and (right)
Gaussian DWB models varying λx, λq from [1e−5, 1]. Each figure plots the magnitude of the data loss against the magnitude
of the two regularization parameters on a log scale. Selecting the regularization weight according to L-surfaces amounts finding
the λx, λq corresponding to the ”corner“ of the surface plot, the point where further increasing λx, λq (which corresponds
to moving toward the back corner of the plot, decreasing 1

KRq(ρq1:K ) and 1
NRx(x1:T )) results in a sharp increase in the

magnitude of the data loss.

To select regularization weights when ground truth is not available, we draw from the field of inverse problems and use
L-surfaces [29]. Fig. 11 shows the L-surface for one MSR dataset plotting ey against the magnitude of the Rx and Rq on a log
scale while varying λx, λq ranging from 1e−5 to 1. For each model configuration and dataset, we use this L-surface method
to pick a set of regularization parameters based on one representative time series and apply those parameters to the rest of the
dataset. These parameters are detailed in Tab. I.

Fig. 12 compares the learned pure states of the Gaussian DWB and non-parametric DWB for one example MSR time
series. As seen from Fig. 12b, the distributions of the data corresponding to many of the activities are clearly multi-modal
and therefore not Gaussian. Compared to the Gaussian DWB approach shown in Fig. 12c, the pure states learned using the
proposed non-parametric representation shown in Fig. 12d more closely match the estimated pure states from the data. This is
also reflected quantitatively in Tab. II where the values of ey show that our non-parametric DWB model better approximates
the sample windows of the time series compared to the Gaussian DWB model for each of the evaluated datasets.

We note that the magnitude of the ey , and thus the results in Tab. II are dependent on the choice of the regularization
parameters, which are chosen in a partially subjective manner. However, we can see in the L-surfaces in Fig. 11 that compared
to the Gaussian model the error is significantly lower in the non-parametric model. Therefore any small subjective changes in
the choice of regularization parameter would not significantly alter these conclusions.
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Fig. 12: Non-parametric vs Gaussian pure states distributions for MSR data. (a) MSR time series consisting of 4 activities
over 5 minutes. (b) Pure state distributions estimated from discrete labeled data converted to a PDF using KDE with a Gaussian
kernel (σ = 0.04). (c) Learned pure states for Gaussian model from [1]. (d) Learned pure states for our proposed non-parametric
model. The n-DQV qk for each pure state is converted to a PDF using KDE with the same Gaussian kernel centered on the
values of qk. The distribution of the data in each pure state activity (blue: Elliptical, yellow: Tricep Extension, purple: Bicep
Curl, Red: Non-exercise) is better captured using the non-parametric approach ey = 0.73 compared to the Gaussian ey = 3.74.

MSR BT Sim
n 250 100 100

NP λx, λq 5e−2, 5e−3 2e−1, 5e−2 2e−11e−2

Gauss λx, λq 5e−2, 2e−3 2e−1, 2e−2 1e−12e−3

TABLE I: DWB Model configuration. Window size and regularization weights for non-parametric (NP) and Gaussian (Gauss)
DWB models for simulated (Sim) and real world (BT, MSR) datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we build upon the DWB model in [1]. We present and discuss the inverse scaling relationship which captures
the lack of uniqueness in the DWB model. We also consider the challenges of estimating the data distribution of a dynamically
evolving time series. We then propose a temporal smoothness regularization framework to simultaneously address both of
these challenges. Finally, we move beyond the Gaussian assumption of [1] by using a discrete approximation to the pure state
quantile function which results in a least-square “data-fit” term in the DWB objective function. Using simulated data, we
demonstrate how the two proposed regularization terms work together to achieve the desired smoothness in the time evolution
of the latent state as well as the impact of window size on the accuracy of the learned model. In the real world setting of
human activity analysis, we demonstrate how compared to the original Gaussian DWB model our non-parametric DWB model
better characterizes the time-varying data distribution of the time series.

An important future work is to extend the univariate framework to the general non-parametric multivariate setting. Lack of
closed form expressions for barycenters in the non-parametric multivariate setting as well as the “curse of dimensionality” in
approximating a high-dimensional distribution from samples [31] makes this extension numerically and statistically challenging.
However, fast algorithms for computing Wasserstein barycenters [32] can be effectively utilized for low dimensional problems.

Furthermore, in this work we only consider the Wasserstein barycenter to model the change in distribution as a system moves
among pure states. An interesting topic for future research is to consider barycenters corresponding to alternative probability
distribution distances such as the Sinkhorn divergence [33].

Our choice to approximate the quantile function of ρqk by sampling on a uniform interval combined with the use of a
Dirac-delta functions to estimate ρyi

from windows of samples lead to the finite dimensional least-squares data fit term in
Eq. (16). Future work can consider alternative methods of estimating distributions from samples (e.g kernel-density estimation
[34]) and quantile approximation methods (e.g linear or spline decomposition [35]) to derive alternative forms of this univariate

MSR BT Sim
NP 1.32 2.07 2.19

Gauss 3.76 6.00 12.33

TABLE II: Quantitative comparison of DWB model. Average ey across all time series for simulated (Sim) and real world (BT,
MSR) datasets show clear benefits of the non-parametric DWB model compared to the Gaussian data-generating distribution
model used by [1].
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DWB problem.
We empirically show the monotonic convergence of the two-block cyclic descent method used in the paper. The theory in

[26] indicates that we are converging to a critical point of the cost function. In future work, we can seek stronger guarantees
of converging to a second-order stationary point using a proximal point block coordinate descent algorithm [36].

Finally, in this work, we also explore the issue of approximating the data distribution of a dynamically evolving system
from a window of independent, non-identically distributed random variables. We demonstrate the tradeoff between the errors
associated with large and small windows using simulated data to illustrate the effects of system parameters that drive the per-
sample change in the distribution on the accuracy of this window estimate. Future work may consider an analytical approach
to this problem using the relationship between quantiles and order statistics [37] [38] and by bounding the maximum change
in distribution over the length of the window.

REFERENCES

[1] K. Cheng, S. Aeron, M. C. Hughes, and E. L. Miller, “Dynamical Wasserstein Barycenters for Time-series Modeling,” Advances in Neural Information
Processing Systems, vol. 34, pp. 27 991–28 003, 2021.

[2] D. Mukhin, A. Gavrilov, A. Feigin, E. Loskutov, and J. Kurths, “Principal nonlinear dynamical modes of climate variability,” Scientific reports, vol. 5,
no. 1, pp. 1–11, 2015, publisher: Nature Publishing Group.

[3] S. A. Imtiaz, “A systematic review of sensing technologies for wearable sleep staging,” Sensors, vol. 21, no. 5, p. 1562, 2021, publisher: MDPI.
[4] Y. Chi, T. Yang, and P. Zhang, “Dynamical Mode Recognition of Triple Flickering Buoyant Diffusion Flames: from Physical Space to Phase Space and

to Wasserstein Space,” arXiv preprint arXiv:2201.01085, 2022.
[5] M. C. Hughes and E. B. Sudderth, “Nonparametric discovery of activity patterns from video collections,” in 2012 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops. IEEE, 2012, pp. 25–32.
[6] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE communications surveys & tutorials, vol. 15,

no. 3, pp. 1192–1209, 2012, publisher: IEEE.
[7] R. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Trans. ASME, J. Basic Eng., vol. 82, pp. 34–45, 1960.
[8] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation and properties,” Institute for Systems and Robotics, vol. 43, p. 46, 2004.
[9] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, “Nonparametric Bayesian learning of switching linear dynamical systems,” Advances in neural information

processing systems, vol. 21, 2008.
[10] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp.

257–286, 1989, publisher: Ieee.
[11] Z. Ghahramani and M. Jordan, “Factorial hidden Markov models,” Advances in Neural Information Processing Systems, vol. 8, 1995.
[12] E. B. Fox, M. C. Hughes, E. B. Sudderth, and M. I. Jordan, “Joint modeling of multiple time series via the beta process with application to motion

capture segmentation,” The Annals of Applied Statistics, vol. 8, no. 3, pp. 1281–1313, 2014, publisher: Institute of Mathematical Statistics.
[13] R. J. McCann, “A convexity principle for interacting gases,” Advances in mathematics, vol. 128, no. 1, pp. 153–179, 1997, publisher: Elsevier.
[14] M. Agueh and G. Carlier, “Barycenters in the Wasserstein space,” SIAM Journal on Mathematical Analysis, vol. 43, no. 2, pp. 904–924, 2011, publisher:

SIAM.
[15] T.-M. Nguyen and S. Volkov, “On a class of random walks in simplexes,” Journal of Applied Probability, vol. 57, no. 2, pp. 409–428, 2020, publisher:

Cambridge University Press.
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APPENDIX A
EXTENSIONS OF DWB NON-UNIQUENESS

Fig. 13: Non-uniqueness of Wasserstein barycenter parameters for multivariate Gaussians. Both systems of pure
state distributions and barycentric weights result in the same barycenters, ρA = B(xA, ρq1:2) = B(x̄A, ρ̄q1:2) and
ρB = B(xB , ρq1:2) = B(x̄B , ρ̄q1:2). Consistent with the inverse-scaling relationship discussed in Sec. III-A, compared to
system 1, in system 2 the Wasserstein distance between ρ̄q1 and ρ̄q2 is diminished while the distance between x̄A and x̄B is
increased.

While the discussion of this paper pertains mainly to the univariate case, the issue of uniqueness discussed in Sec. III also
exists in the multivariate case. Consider the two dimensional systems specified in Fig. 13 of systems with two Gaussian pure
states. For both systems, ρA = B(xA, ρq1:2) = B(x̄A, ρ̄q1:2) and ρB = B(xB , ρq1:2) = B(x̄B , ρ̄q1:2).

This multivariate example also exhibits the inverse scaling relationship discussed in Sec. III-A. The Wasserstein distance
between the pure states in system 1 (ρq1 , ρq2 ) is larger than that of system 2 (ρ̄q1 , ρ̄q2 ), however, the resulting distance between
the latent states corresponding to ρA, ρB in system 1 (xA,xB) is smaller than that of system 2 (x̄A, x̄B).

Furthermore, we can create an example where the construction specified in Sec. III-A does not result in multiple possible
values of xB and P−1

q1:K and thus cannot be used to demonstrate the non-uniquness of the Wasserstein barycenter parameters.
Let ρq1 = δ0 and ρq2 = U [0, 1], where P−1

q1 (ξ) = 0 and P−1
q2 (ξ) = ξ for ξ ∈ [0, 1]. Then the Wasserstein barycenter

ρt = B(xt, ρ1:2) for any barycentric weight xt = [(1− t), t]T will have distribution U [0, t] and quantile function P−1
t (ξ) = tξ.

Per the construction in Sec. III-A, let us pick xB = [1, 0] to be at a vertex, thus P−1
B (ξ) = 0 and let x0 = [0.5, 0.5]T, thus

in P−1
0 (ξ) = 0.5ξ. According to Eq. (7), x̄B falls of the simplex for any α < 1 thus making α0 = 1. Similarly, according to

Eq. (8), P̄−1
B (ξ) = (1− α)tξ, which breaks the monotonically increasing constraint of quantile functions for any α > 1, thus

restricting αm = 1. Thus, according to the construction in Sec. III-A, the set [α0, αm] = 1.
Although this example breaks the argument of the non-uniqueness of the Wasserstein barycenter parameters for this specific

construction used to highlight the inverse-scaling relationship, it does not mean that the parameters of the Wasserstein barycenter
are indeed unique. For example, since xB is taken to be at a vertex [1, 0]T resulting in ρB = ρq1 , any valid distribution can
be chosen for ρq2 and still have ρB = B([1, 0]T, ρq1:2).
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Fig. 14: Comparison of alternative simplex distances: (left) Example of the distance profiles for various simplex distances
given by d2(x0,x) where x0 = [0.5, 0.25, 0.25]T and x ∈ [0.5, 0, 0.5]T, [0.5, 0.5, 0]T. The Bhattacharya-arccos and city-block
distances are plotted against the left axis while the Aitchison, which diverges at the simplex boundary, is plotted against the
right axis. (Center and right) The learned simplex trajectory using the city-block and Aitchison distance in the regularizer
(Eq. (12)) using the same data shown in Fig. 8 which uses the Bhattacharya-arcos distance. λx, λq are selected via grid search
using the parameters specified in Sec. V-A and r = 200, n = 100.

APPENDIX B
ALTERNATIVE SIMPLEX DISTANCES

In this work, the Bhattacharya-arccos distance was used as a regularizer on the latent state. However, a variety of simplex
distances can be used [16], the choice of which may be application dependent. We compare the Bhattacharya-arccos, city-
block3, and Aitchison distance in Fig. 14. The Aitchison distance diverges as one of the points moves towards the simplex
boundary (x has one or more zeros). As a result, when using this distance as the regularizer in our DWB model, the learned
simplex trajectory will also avoid edges of the simplex. This is not the case for the city-block or Bhattacharya-arccos distance
which is finite for any two points on the simplex. In our simulated and real world experiments, we did not find significant
differences in the ground truth error among these three simplex distances. We leave further investigation of these distance
properties and their effect as regularizers to future work.

3We approximate |x| ≈
√
x2 + ϵ with ϵ = 1e− 8
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