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Variable-Wise Diagonal Preconditioning for
Primal-Dual Splitting: Design and Applications

Kazuki Naganuma, Student Member, IEEE, Shunsuke Ono, Member, IEEE,

Abstract—This paper proposes a method for designing diag-
onal preconditioners for a preconditioned primal-dual splitting
method (P-PDS), an efficient algorithm that solves nonsmooth
convex optimization problems. To speed up the convergence of
P-PDS, a design method has been proposed to automatically de-
termine appropriate preconditioners from the problem structure.
However, the existing method has two limitations. One is that
it directly accesses all elements of matrices representing linear
operators involved in a given problem, which is inconvenient
for handling linear operators implemented as procedures rather
than matrices. The other is that it takes an element-wise pre-
conditioning approach, which turns certain types of proximity
operators into analytically intractable forms. To overcome these
limitations, we establish an Operator norm-based design method
of Variable-wise Diagonal Preconditioning (OVDP). First, OVDP
constructs diagonal preconditioners using only (upper bounds)
of the operator norms of linear operators, thus eliminating
the need for their explicit matrix representations. Furthermore,
since OVDP takes a variable-wise preconditioning approach,
it keeps any proximity operator analytically computable. We
also prove that our preconditioners satisfy the convergence
condition of P-PDS. Finally, we demonstrate the effectiveness
and usefulness of OVDP through applications to mixed noise
removal of hyperspectral images, hyperspectral unmixing, and
graph signal recovery.

Index Terms—Primal-dual splitting method (PDS), diagonal
preconditioning, convex optimization, signal estimation

I. INTRODUCTION

Many signal estimation and processing problems, such as
denoising, interpolation, decomposition, and reconstruction,
have been resolved by casting them as convex optimization
problems [1], [2] of the form:

min
x1,...,xN ,
y1,...,yM

N∑
i=1

fi(xi) +

M∑
j=1

gj (yj)

s.t. y1 =

N∑
i=1

L1,i(xi), . . . ,yM =

N∑
i=1

LM,i(xi), (1)

where fi : Rni → (−∞,+∞] and gj : Rmj → (−∞,+∞]
are proximable1 proper lower-semicontinuous convex func-
tions, and Lj,i : Rni → Rmj are linear operators (∀i =
1, . . . , N and ∀j = 1, . . . ,M ). The variables x1, . . . ,xN
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represent estimated signals or components, and y1, . . . ,yM

are auxiliary variables for splitting.
As a method for solving Prob. (1), a primal-dual splitting

method (PDS) [3] has attracted attention [4]–[12] due to
its simple implementation without operator inversions.2 To
improve the convergence speed of PDS, a preconditioned PDS
(P-PDS) has been studied [15]–[18]. P-PDS is a generalization
of the standard PDS, where the scalar-valued stepsizes of PDS
are replaced by (positive definite) matrix-valued precondition-
ers. The theoretical convergence of P-PDS is established in
a primal-dual space equipped with a skewed metric, which is
determined by the linear operators involved in the optimization
problem and the preconditioners used (see [13], [15], [19]
for details). Preconditioning can be viewed as the selection
of an appropriate metric for optimization algorithms and is
a crucial long-standing issue not only in P-PDS but also in
various proximal algorithms [20], [21].

The appropriate preconditioners that accelerate the conver-
gence of P-PDS vary greatly depending on the structure of
the target optimization problem (see Section IV for detailed
examples). To automatically determine such preconditioners,
the authors in [15] have proposed a diagonal-preconditioner
design method. The elements of the diagonal preconditioners
consist of the row/column absolute sum of the elements of the
explicit matrices representing the linear operators Lj,i in (1),
and thus the resulting diagonal elements of the preconditioners
can be different for each element in one variable.

Although this design method determines reasonable di-
agonal preconditioners, there exist two limitations that are
considerable in real-world applications. First, the method is
difficult to apply in the case where (some of) the linear
operators Lj,i in Prob. (1) are not implemented as explicit
matrices because it requires access to the entire elements of the
matrices to construct the preconditioners. We often encounter
such situations, especially in imaging applications, where the
linear operators are implemented not as explicit matrices but
as procedures that compute forward and adjoint operations
in an efficient manner, e.g., difference operators [22], [23]
and frame transforms [24]–[26]. Second, some proximable
functions fi and gj are not completely separable for each
element of the input variables xi and yj , e.g., mixed norms and
the indicator functions of norm balls [27]. For such functions,
the element-wise preconditioning might make the functions
non-proximable.

1If an efficient computation of the proximity operator (see. Eq. (3)) of f
is available, we call f proximable.

2This algorithm has been generalized by Condat [13] and Vu [14], where
smooth convex functions are optimized by using their Lipschitzian gradients.
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To address the above issues, this paper proposes an
Operator-norm-based design method of Variable-wise Diag-
onal Preconditioning (OVDP). Specifically, we introduce a
new general form of P-PDS preconditioners, and then propose
specific preconditioners based on this general form. We also
prove that the sequence generated by P-PDS with OVDP
converges to an optimal solution of Prob. (1).

Our method has two features preferred in many real-world
applications. First, our preconditioners can be computed from
(upper bounds of) the operator norms of the linear operators
Lj,i, meaning that our method does not need their explicit
matrix representations. This is because (upper bounds of) the
operator norms are often known or can be estimated without
matrix implementation for typical linear operators used in
signal processing applications, including the ones mentioned
above. Second, the elements of the diagonal preconditioners
obtained by our method take the same value for all the
elements of each variable, i.e., variable-wise preconditioning.
This maintains the proximablity of the functions fi and gj in
Prob. (1).

Comprehensive experiments are conducted by applying our
method to three signal estimation problems: mixed noise
removal of hyperspectral images, hyperspectral unmixing,
and graph signal recovery. By discussing the convergence in
these three optimization problems, which have very different
structures, we demonstrate the effectiveness and usefulness of
our method.

This paper is organized as follows. Section II gives pre-
liminaries on mathematical tools, the description of P-PDS,
and reviews of existing preconditioner design methods. In
Section III, we present OVDP and prove the convergence
theorem of P-PDS with OVDP. Their applications to mixed
noise removal hyperspectral images, hyperspectral unmixing,
and graph signal recovery are given in Section IV. Finally, we
conclude the paper in Section V.

The preliminary version of this work, without the general-
ization of our method, applications to various signal estimation
tasks, or deeper discussion, has appeared in conference pro-
ceedings [28].

II. PRELIMINARIES

A. Notations

In this paper, vectors and matrices are denoted by lowercase
and uppercase bold letters, for example, x and X, respectively.
For a vector x = [x1, . . . , xN ]⊤ ∈ RN , each scalar value xi

(1 ≤ i ≤ N) is called the ith element of x and the ℓp norm of
x is defined by ∥x∥p = (

∑N
i=1 |xi|p)1/p for p ≥ 1. Similarly,

for a matrix X = [xj,i]1≤j≤M,1≤i≤N , each scalar value xj,i

(1 ≤ j ≤ M, 1 ≤ i ≤ N) is called the (j, i)th element of
X. We denote a matrix X ∈ Rm̃×ñ (m̃ =

∑M
j=1 mj , ñ =∑N

i=1 ni) consisting of block matrices Xj,i ∈ Rmj×ni (j =
1, . . . ,M and i = 1, . . . , N ) by X = [Xj,i]1≤j≤M,1≤i≤N .

Let L : RN → RM be a linear operator. We denote the
adjoint operator of L as L∗, which satisfies ⟨L(x),y⟩ =
⟨x,L∗(y)⟩ for any x ∈ RN and y ∈ RM .

B. Mathematical Tools
Let f : RN → (−∞,∞] be a proximable proper lower-

semicontinuous convex function and G ∈ RN×N be a sym-
metric and positive definite matrix. The proximity operator of
f relative to the metric induced by G is defined as

proxG,f (x) := argmin
y

1

2
⟨x− y,G(x− y)⟩+ f(y), (2)

where ⟨·, ·⟩ is the Euclidean inner product. If G is a positive
scalar matrix, i.e., G = αI (α > 0), the proximity operator is
identical to the standard proximity operator:

proxG,f (x) = argmin
y

1

2
∥x− y∥22 +

1

α
f(y). (3)

In this paper, the proximity operator relative to the metric
induced by a positive matrix that is not scalar matrix is
called the skewed proximity operator. We would like to note
that the standard proximity operators of some popular convex
functions, such as the mixed ℓ1,2-norm and the indicator
functions of norm balls, have analytic solutions but their com-
putations are not completely separable element by element. In
such cases, even if G is diagonal (with different elements),
the computation of the skewed proximity operator becomes
difficult.

The Fenchel–Rockafellar conjugate function of f is defined
as

f∗(x) := max
y
⟨x,y⟩ − f(y). (4)

Thanks to the generalization of Moreau’s Identity [29, Theo-
rem 3.1 (ii)], the skewed proximity operator of f∗ is calculated
as

proxG,f∗(x) = x−G−1proxG−1,f (Gx). (5)

For a given nonempty closed convex set C ⊂ RN , the
indicator function of C is defined by

ιC(X ) :=

{
0, if X ∈ C;

∞, otherwise.
(6)

The proximity operator of the indicator function ιC is equiv-
alent to the convex projection onto C. The following convex
sets are useful in signal processing applications.

• For c ∈ RN , the c-centered ℓp-ball (p = 1 or 2) with the
radius α > 0 defined by

Bc
p,α := {x ∈ RN | ∥x− c∥p ≤ α}. (7)

• The nonnegative orthant RN
+ := [0,+∞)N .

For a linear operator L, the operator norm ∥L∥op is defined
by

∥L∥op := sup
x̸=0

∥L(x)∥2
∥x∥2

. (8)

For a matrix A, its operator norm satisfies

∥A∥op := sup
x̸=0

∥Ax∥2
∥x∥2

= σ1(A), (9)

where σ1(A) is the maximum singular value of A. Let L1◦L2

be the composition of linear operators L1 and L2. The operator
norm of L1 ◦ L2 satisfies that

∥L1 ◦ L2∥op ≤ ∥L1∥op∥L2∥op. (10)

This property is called the submultiplicity.
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C. Preconditioned PDS (P-PDS)

For Prob. (1), let x = [x⊤
1 , . . . ,x

⊤
N ]⊤ ∈ Rñ (ñ =

∑N
i=1 ni),

y = [y⊤
1 , . . . ,y

⊤
M ]⊤ ∈ Rm̃ (m̃ =

∑M
j=1 mj), f(x) =∑N

i=1 fi(xi), g(y) =
∑M

j=1 gj(yj), and

L :=


L1,1 L1,2 · · · L1,N

L2,1 L2,2 · · · L2,N

...
...

. . .
...

LM,1 LM,2 · · · LM,N

 . (11)

P-PDS [15] computes an optimal solution of Prob. (1) by the
following iterative procedures:⌊

x(t+1) ← proxΓ−1
1 ,f (x

(t) − Γ1L
∗(y(t))),

y(t+1) ← proxΓ−1
2 ,g∗(y(t) + Γ2L(2x

(t+1) − x(t))),

(12)

where Γ1 ∈ Rñ×ñ and Γ2 ∈ Rm̃×m̃ are symmetric and
positive definite matrices called preconditioners.

If Γ1 and Γ2 are block-diagonal matrices, that is,
Γ1 = diag(Γ1,1, . . . ,Γ1,N ) and Γ2 = diag(Γ2,1, . . . ,Γ2,M )
for matrices Γ1,1, . . . ,Γ1,N ,Γ2,1, . . . ,Γ2,M corresponding to
x1, . . . ,xN ,y1, . . . ,yM , the procedures in (12) can be rewrit-
ten as the following equivalent form:

x
(t+1)
1 ← proxΓ−1

1,1,f1
(x

(t)
1 − Γ1,1

∑M
j=1 L

∗
j,1(y

(t)
j )),

...
x
(t+1)
N ← proxΓ−1

1,N ,fN
(x

(t)
N − Γ1,N

∑M
j=1 L

∗
j,N (y

(t)
j )),

y
(t+1)
1 ←
proxΓ−1

2,1,g
∗
1
(y

(t)
1 + Γ2,1

∑N
i=1 L1,i(2x

(t+1)
i − x

(t)
i )),

...
y
(t+1)
M ←
proxΓ−1

2,M ,g∗
M
(y

(t)
M + Γ2,M

∑N
i=1 LM,i(2x

(t+1)
i − x

(t)
i )).

(13)

Compared with (12), the procedures in (13) can easily be
calculated because it avoids the computations of the skewed
proximity operators and linear operators over the entire vari-
ables.

Here, we introduce the convergence theorem of P-PDS.

Theorem II.1. [15, Theorem 1] Let Γ1 and Γ2 be symmetric
and positive definite matrices satisfying∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op

< 1. (14)

Then, the sequence (x
(t)
1 , . . . ,x

(t)
N ,y

(t)
1 , . . . ,y

(t)
M ) generated

by (12) converges to an optimal solution (x∗
1, . . . ,x

∗
N ,y∗

1, . . . ,
y∗
M ) of Prob. (1).

D. Existing Preconditioner Design Methods

1) Scalar Preconditioning (SP): The standard PDS [3]
can be recovered by setting the preconditioners to be scalar
matrices, i.e.,

Γ1 = γ1I,Γ2 = γ2I. (15)

The parameters γ1 and γ2 are positive scalars that satisfy (14),
that is,

γ1γ2 ∥L∥2op < 1. (16)

In practice, the parameter γ2 is often set as

γ2 =
1

µ2
SP γ1

, (17)

where µSP is an upper bound of ∥L∥op. Since ∥L∥op < µSP ,
the parameters γ1 and γ2 in (17) satisfy the inequality in (16).
We note that the parameter γ1 needs to be manually adjusted
for accelerating the convergence of P-PDS.

2) Row/Column Absolute Sum-Based Element-Wise Pre-
conditioning (ASP): Let Lj,i be the representation matrix
of Lj,i. The authors of [15] present a design method of
constructing the preconditioners Γ1 = diag(Γ1,1, . . . ,Γ1,N )
and Γ2 = diag(Γ2,1, . . . ,Γ2,M ) as follows:

Γ1,i =diag

(
1

σi,1
, . . . ,

1

σi,ni

)
, (∀i = 1, . . . , N),

Γ2,j =diag

(
1

τj,1
, . . . ,

1

τj,mj

)
, (∀j = 1, . . . ,M), (18)

where

σi,l =

M∑
j=1

mj∑
k=1

|[Lj,i]k,l|, (∀l = 1, . . . , ni),

τj,l =

N∑
i=1

ni∑
k=1

|[Lj,i]l,k|, (∀l = 1, . . . ,mj). (19)

Each Γ1,i (or Γ2,j) is a diagonal matrix consisting of the
row/column absolute sums of the elements of Lj,i (see [15,
Lemma 2]). This means that the diagonal elements of one Γ1,i

(and Γ2,j) may take different values, i.e., the diagonal elements
of the preconditioners will be different for each element for
one variable in (1).

3) Positive-Definite Preconditioning (PDP): The authors
in [18] proposed to determine the preconditioners as

Γ1 = τI,Γ2 =
1

τ
(LL⊤ + θI)−1, (20)

where L is the representation matrix of L and τ > 0 is a
parameter. Since the preconditioners in (20) are not block-
diagonal matrices in general, P-PDS with them results in the
procedures given in (12).

If the number of dual variables is two (M = 2), the
preconditioners are set as

Γ1 =
τ

2
I, Γ2 =

[
Γ2,1 O
O Γ2,2

]
, (21)

where

Γ2,j =
1

τ

(
N∑
i=1

Lj,iL
⊤
j,i + θI

)−1

, (∀j = 1, 2). (22)

Since Γ1 and Γ2 in (21) are block-diagonal matrices, P-PDS
with them can solve the Prob. (1) by the procedures given
in (13).

We note that the parameters τ and θ affect the convergence
speed of P-PDS. Therefore, the parameters τ and θ need to
be manually adjusted.
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III. PROPOSED OPERATOR NORM-BASED VARIABLE-WISE
DIAGONAL PRECONDITIONING (OVDP)

This section is devoted to the establishment of a novel
diagonal preconditioning method, OVDP, for P-PDS. First, we
introduce a general form of our preconditioners as follows: for
all i = 1, . . . , N and j = 1, . . . ,M

Γ1,i = Γ1,iI =
1∑M

j=1 µ
2−β
j,i

I,

Γ2,j = Γ2,jI =
1∑N

i=1 µ
β
j,i

I, (β ∈ [0, 2]) (23)

where each µj,i is an upper bound of the operator norm of
each Lj,i, i.e.,

µj,i ∈ [∥Lj,i∥op ,∞). (24)

By changing the choice of β, OVDP gives three design ways.
• If we choose β = 0, the preconditioners by OVDP

(OVDP1) become

Γ1,i =
1∑M

j=1 µ
2
j,i

I, Γ2,j =
1

N
I. (25)

• If we choose β = 1, the preconditioners by OVDP
(OVDP2) become

Γ1,i =
1∑M

j=1 µj,i

I, Γ2,j =
1∑N

i=1 µj,i

I. (26)

• If we choose β = 2, the preconditioners by OVDP
(OVDP3) become

Γ1,i =
1

M
I, Γ2,j =

1∑N
i=1 µ

2
j,i

I, (27)

Remark III.1 (Two Features of Our Method).
• Our preconditioners can be calculated by only using

(upper bounds of) the operator norms of the linear op-
erators Lj,i. This implies that OVDP does not require
direct access to the elements of the explicit matrices
representing Lj,i as long as some µi,j are available.

• In addition, the diagonal elements of one Γ1,i take
the same value (Γ2,j as well), i.e., our method is a
variable-wise preconditioning method, which maintains
the proximability of the functions in Prob. (1).

Before showing the convergence theorem of P-PDS with
OVDP defined in (23), we give the following lemma on matrix
decomposition.

Lemma III.1. An arbitrary matrix A ∈ Rm×n can be
decomposed into matrices B and C (i.e., A = BC) that
satisfy for any β ∈ [0, 1]

∥B∥op = ∥A∥1−β
op (= σ1(A)1−β),

∥C∥op = ∥A∥βop (= σ1(A)β). (28)

The proof is in Appendix.
Then, the following theorem guarantees the convergence of

P-PDS with OVDP.

Algorithm 1 P-PDS with OVDP for solving (1)

Input: x
(0)
1 , . . . ,x

(0)
N ,y

(0)
1 , . . . ,y

(0)
M

Output: x
(t)
1 , . . . ,x

(t)
N ,y

(t)
1 , . . . ,y

(t)
M

1: Initialize t = 0;
2: Set Γ1,1, . . . ,Γ1,N ,Γ2,1, . . . ,Γ2,M as in (23);
3: while A stopping criterion is not satisfied do
4: for i = 1, · · · , N do
5: x′

i ←
∑M

j=1 L
∗
j,i(y

(t)
j );

6: x
(t+1)
i ← proxΓ−1

1,i ,fi
(x

(t)
i − Γ1,ix

′
i);

7: end for
8: for j = 1, · · · ,M do
9: y′

j ←
∑N

i=1 Lj,i(2x
(t+1)
i − x

(t)
i );

10: y
(t+1)
j ← proxΓ−1

2,j ,g
∗
j
(y

(t)
j + Γ2,jy

′
j);

11: end for
12: t← t+ 1;
13: end while

Theorem III.2. If the preconditioners are set as (23), then
the following inequality holds:∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op
≤ 1. (29)

Proof. Since Γ1 and Γ2 are positive-definite and diagonal,
their powers of one-half are

Γ
1
2
1 = diag

(
Γ

1
2
1,1, . . . ,Γ

1
2

1,N

)
,

Γ
1
2
2 = diag

(
Γ

1
2
2,1 . . . ,Γ

1
2

2,M

)
. (30)

By matrix multiplication and Eq. (30), we have

Γ
1
2
2 ◦ L ◦ Γ

1
2
1 =

[
Γ

1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,i

]
1≤i≤N,1≤j≤M

. (31)

For all x = [x⊤
1 , . . . ,x

⊤
N ]⊤ ∈ Rñ, the triangle inequality yields∥∥∥Γ 1

2
2 ◦ L ◦ Γ

1
2
1 x
∥∥∥2
2
≤

M∑
j=1

N∑
i=1

∥∥∥Γ 1
2
2,j ◦ Lj,i ◦ Γ

1
2
1,ixi

∥∥∥2
2
. (32)

Since Lj,i (i = 1, . . . , N, j = 1, . . . ,M) can be represented
by matrices, from Lemma III.1, there exist linear operators

L
β
2
j,i and L

1−β
2

j,i that satisfy for any β ∈ [0, 2],

Lj,i = L
1−β

2
j,i ◦ L

β
2
j,i,

∥L
1−β

2
j,i ∥op = ∥Lj,i∥1−

β
2

op ,

∥L
β
2
j,i∥op = ∥Lj,i∥

β
2
op . (33)

Thus, it follows, from Eq. (33) and the definition and the
submultiplicity of operator norms, that

Eq. (32) =

M∑
j=1

N∑
i=1

∥∥∥∥∥Γ 1
2
2,j ◦ L

1−β
2

j,i ◦ L
β
2
j,i ◦ Γ

1
2
1,ixi

∥∥∥∥∥
2

2

≤
M∑
j=1

Γ2,j

N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥Lj,i∥βop ∥xi∥22 . (34)
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By applying the inequality
∑M

j=1 x
2
j ≤ (

∑M
j=1 xj)

2 for any
positive real numbers x1, . . . , xM and the Cauchy-Schwarz
inequality to the right hand side of Eq. (34), we obtain

Eq. (34)

≤
M∑
j=1

Γ2,j

(
N∑
i=1

√
Γ1,i ∥Lj,i∥1−

β
2

op ∥Lj,i∥
β
2
op ∥xi∥2

)2

≤
M∑
j=1

Γ2,j

(
N∑
i=1

∥Lj,i∥βop

)(
N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥xi∥22

)
.

(35)

Then, from the definitions of Γ2,j and Γ1,i in (23), we
have Γ2,j

∑N
i=1 ∥Lj,i∥βop ≤ 1 for any j = 1, . . . ,M and

Γ1,i

∑M
j=1 ∥Lj,i∥2−β

op ≤ 1 for any i = 1, . . . , N , which yields

Eq. (35) ≤
M∑
j=1

N∑
i=1

Γ1,i ∥Lj,i∥2−β
op ∥xi∥22

=

N∑
i=1

Γ1,i

 M∑
j=1

∥Lj,i∥2−β
op

 ∥xi∥22

≤
N∑
i=1

∥xi∥22 = ∥x∥22 . (36)

Therefore, we finally obtain

∥∥∥Γ 1
2
2 ◦ L ◦ Γ

1
2
1

∥∥∥2
op

= sup
x̸=0

∥Γ
1
2
2 ◦ L ◦ Γ

1
2
1 x∥22

∥x∥22
≤ ∥x∥

2
2

∥x∥22
= 1.

□

Remark III.3. To guarantee the convergence of P-PDS, in-
equality (14) has to be strict, but inequality (29) is not.
However, we do not observe any convergence issue of P-PDS
with our preconditioners in the experiments (see Section IV).
This is because, our method separates L variable by variable
and sums up upper bounds of the operator norms, resulting
in setting preconditioners such that ∥Γ

1
2
2 ◦ L ◦ Γ

1
2
1 ∥2op < 1 in

almost all real-world applications.

Theorem III.2 asserts that our preconditioners defined
in (25), (26), and (27) satisfy the convergence condition
of P-PDS in (14). Therefore, P-PDS with OVDP generates
sequences that converge to an optimal solution of Prob. (1).

Here, each µj,i is determined in the following manner.

• If the operator norm ∥Lj,i∥op is known, we set µj,i to
∥Lj,i∥op.

• If ∥Lj,i∥op is unknown, we set µj,i to some known or
computatble upper bound of ∥Lj,i∥op.

• If the linear operator is the composition of two linear
operators A and B whose operator norms (or their upper
bounds) are known (∥A∥op ≤ αA, ∥B∥op ≤ αB), we set
µj,i to αAαB, which is an upper bound of ∥A ◦B∥op
due to the submultiplicity in (10).

Finally, we show the detailed procedures of P-PDS with
OVDP in Algorithm 1.

TABLE I
FEATURES OF EXISTING METHODS

AND OUR METHOD (HIGHLIGHTED IN BOLD).

Methods Parameters requiring Maintaining Avoiding access to
manual adjustment proximability representation matrices

SP [3] γ1 ✓ ✓
ASP [15] None. × ×
PDP [18] τ × ✓
OVDP1 None. ✓ ✓
OVDP2 None. ✓ ✓
OVDP3 None. ✓ ✓

TABLE II
STOPPING CRITERIA.

Applications Stopping criteria

Mixed noise removal RMSE < 0.005
Unmixing RMSE < 0.01

Graph signal recovery RMSE < 0.001

IV. EXPERIMENTS AND DISCUSSION

In this section, we apply our OVDP to three signal es-
timation problems: mixed noise removal of hyperspectral
images, hyperspectral unmixing, and graph signal recovery.
Through these applications, we illustrate the effectiveness and
usefulness of our method as follows:

• P-PDS with OVDP is fast on average to obtain an optimal
solution of the target optimization problem.

• The preconditioners by OVDP can be easily calculated
by using operator norms even if the target optimiztion
problem involves linear operators implemented not as
explicit matrices.

• P-PDS with OVDP is efficiently computed by avoiding
the computations of skewed proximity operators.

A. Experimental Setup

We compared OVDP with three existing preconditioner de-
sign methods (see Tab. I): the Scalar Preconditioning (SP) [3]
in (15), the row/column Absolute Sum-based element-wise
Preconditioning (ASP) [15] in (18), and the Positive-Definite
Preconditioning (PDP) [18] in (20) and in (21). Note that the
preconditioners by SP and PDP have parameters (γ1, τ , θ)
to be adjusted manually. For SP, we set γ1 and γ2 in (15)
as γ1 = 1, 0.1, 0.01, 0.001, and as in (17). The parameter τ
in (20) and in (21) was set as τ = 1, 0.1, 0.01, 0.001. The
parameter θ in (20) and in (21) was set as θ = 0.01, which is
recommended in [18]. To calculate skewed proximity operators
in the iterations of P-PDSs with ASP and PDP, we used the
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [30]
initialized with a zero vector.

To check the convergence of P-PDS, we used the Root Mean
Square Error (RMSE):

RMSE(x(t)
1 , . . . ,x

(t)
N ) :=

√√√√∑N
i=1 ∥x

(t)
i − x∗

i ∥22∑N
i=1 ni

, (37)
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(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs MPSNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs MPSNR

Fig. 1. Convergence profiles of the mixed noise removal experiments. (a): Iterations/computational time versus RMSE. (b): Iterations/computational time
versus Residual. (c): Iterations/computational time versus MPSNR. Note that applying P-PDS with ASP (green dotted line) to Prob. (40) is not practical in
terms of implementation (the linear operators Dv , Dh, and Db are not usually implemented as explicit matrices).

and the residual of the function values:

Residual(x(t)
1 , . . . ,x

(t)
N )

:=

∣∣∣∣∣∣
 N∑

i=1

fi(x
(t)
i ) +

M∑
j=1

gj

(
N∑
i=1

Lj,i(x
(t)
i )

)
−

 N∑
i=1

fi(x
∗
i ) +

M∑
j=1

gj

(
N∑
i=1

Lj,i(x
∗
i )

)∣∣∣∣∣∣ , (38)

where x∗
1, . . . ,x

∗
N are oracle solutions. However, such oracle

solutions are not available in the experiments, and therefore,
we generated pseudo-oracle solutions by the following proce-
dures. We calculated the results through 100, 000 iterations of
P-PDS with all the methods in advance, and then selected the
best ones among them.

Tab. II shows the stopping criteria with RMSE as the
threshold used in the experiments. Since convergence speeds
are different depending on problems, reasonable criteria are
also different. To determine reasonable criteria, we employed
normalized error (∥x(t+1) − x(t)∥2/∥x(t)∥2), which is often
used as stopping criteria in real-world applications. Based on
the normalized error, we set the stopping criteria as the RMSE
values such that ∥x(t+1) − x(t)∥2/∥x(t)∥2 < 10−5.

B. Application to Mixed Noise Removal of Hyperspectral
Images

Hyperspectral (HS) images often suffer from various noises,
such as random noise, outliers, missing values, and stripe
noise, due to environmental and sensor issues [31]–[33].
These noises seriously degrade the performance of subsequent

processing, such as HS unmixing [34], classification [35], and
anomaly detection [36]. Therefore, removing mixed noise from
HS images is a crucial preprocessing. Popular mixed noise
removal methods adopt the Spatio-Spectral Total Variation
(SSTV) regularization [37]–[43], which models the spatial
piecewise-smoothness and the spectral correlations of HS
images.

1) Problem Formulation: Consider that an observed HS
image (of size N1 ×N2 ×N3) v ∈ RN1N2N3 is given by

v = ū+ s̄+ l̄+ n, (39)

where ū, s̄, l̄, and n are the true HS image of interest,
sparsely distributed noise (e.g. outliers and missing values),
stripe noise, and random noise, respectively. Based on this
observation model, the SSTV-regularized mixed noise removal
problem is formulated as the following convex optimization
problem:

min
u,s,l
∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 + λ∥l∥1

s.t.Dv(l) = 0, s ∈ B0
1,ηs

,u+ s+ l ∈ Bv
2,ε, (40)

where Dv , Dh, and Db are the vertical, horizontal, and spectral
difference operators, respectively, with the Neumann boundary
condition. To reduce computing resources, these difference
operators are usually implemented not as matrices but as the
following procedures:

[Dv(x)]i,j,k :=

{
[x]i,j,k − [x]i+1,j,k, if i < N1;

0, otherwise,
(41)

[Dh(x)]i,j,k :=

{
[x]i,j,k − [x]i,j+1,k, if j < N2;

0, otherwise,
(42)
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(a) (b) MPSNR=14.37 [dB] (c) MPSNR=34.60 [dB] (d) MPSNR=34.62 [dB]

(e) MPSNR=35.45 [dB] (f) MPSNR=34.81 [dB] (g) MPSNR=34.66 [dB] (h) MPSNR=34.62 [dB]
Fig. 2. Mixed noise removal results. (a): The ground truth HS image. (b): The observed HS image. (c): The HS image estimated by P-PDS with SP [3]
(γ1 = 0.1). (d): The HS image estimated by P-PDS with ASP [15]. (e): The HS image estimated by P-PDS with PDP [18] (τ = 0.1). (f): The HS image
estimated by P-PDS with OVDP1 (Ours). (g): The HS image estimated by P-PDS with OVDP2 (Ours). (h): The HS image estimated by P-PDS with OVDP3
(Ours).

[Db(x)]i,j,k :=

{
[x]i,j,k − [x]i,j,k+1, if k < N3;

0, otherwise,
(43)

where [x]i1,i2,i3 is the value of x at a location (i1, i2, i3). Here,
∥ · ∥1 is the ℓ1 norm, and Bv

2,ε and B0
1,ηs

are the ℓ2 and ℓ1
norm balls, respectively given by

Bv
2,ε :=

{
x ∈ RN1N2N3

∣∣ ∥v − x∥2 ≤ ε
}
,

B0
1,ηs

:=
{
x ∈ RN1N2N3

∣∣ ∥x∥1 ≤ ηs
}
. (44)

The term ∥Dv(Db(u))∥1 + ∥Dh(Db(u))∥1 is the SSTV reg-
ularization. The positive value λ is a balancing parameter
between the SSTV regularization and the sparse noise term.
The hard constraint guarantees the ℓ2 data-fidelity to v with
the radius ε ≥ 0.3

By using the indicator function (see Eq. (6)) of Bv
2,ε,

Prob. (40) is reduced to Prob. (1) through the following
reformulation:

min
u,s,l,

z1,z2,z3,z4

ιB0
1,ηs

(s) + λ∥l∥1

+ ∥z1∥1 + ∥z2∥1 + ι{0}(z3) + ιBv
2,ε

(z4)

s.t.


z1 = Dv(Db(u)),

z2 = Dh(Db(u)),

z3 = Dv(l),

z4 = u+ s+ l.

(45)

3The original SSTV-regularized denoising formulation proposed in [37] in-
corporates an ℓ2 data-fidelity term as a part of the objective function, whereas
the formulation in (40) imposes data fidelity as an ℓ2-ball constraint. These
two formulations are essentially the same with appropriate hyperparameters,
but constrained formulation like (40) is preferred in experimental comparison
and real-world applications because it facilitates hyperparameter settings as
adopted, e.g., in Refs. [8], [19], [44]–[46]

TABLE III
THE PRECONDITIONERS BY OVDP FOR MIXED NOISE REMOVAL.

Γ1,1 Γ1,2 Γ1,3 Γ2,1 Γ2,2 Γ2,3 Γ2,4

OVDP1 1
33

I I 1
5
I 1

3
I 1

3
I 1

3
I 1

3
I

OVDP2 1
9
I I I 1

4
I 1

4
I 1

33
I 1

3
I

OVDP3 1
33

I 1
33

I 1
33

I 1
33

I 1
33

I 1
33

I 1
33

I

Applying Algorithm 1 to Prob. (45), we can compute an
optimal solution of Prob. (40). Here, since it is satisfied that
∥Dv ◦ Db∥op ≤ 4, ∥Dh ◦ Db∥op ≤ 4,4 and ∥I∥op = 1, the
preconditioners designed by OVDP are given in Tab. III.

2) Experimental Results and Discussion: For SP, µSP

in (17) was set as
µSP =

√
39, (46)

because the following inequality holds due to the inequality
of the operator norms of block matrices [48]:∥∥∥∥∥∥∥∥


Dv ◦Db O O
Dh ◦Db O O

O O Dv

I I I


∥∥∥∥∥∥∥∥
2

op

≤ ∥Dv ◦Db∥2op + ∥Dh ◦Db∥2op + ∥Dv∥2op + 3 ∥I∥2op
< 42 + 42 + 22 + 3× 12 = 39, (47)

where O is a zero operator.
We also derived the preconditioners in (18), for (45). Let

us remark that since Dv , Dh, and Db in (45) are not usually
implemented as explicit matrices, applying ASP to (45) is not
practical in real-world applications. Let x ∈ Rn1n2n3 be a

4These are derived from ∥Dv∥op ≤ 2, ∥Dv∥op ≤ 2, ∥Dv∥op ≤ 2 [47],
and the submultiplicity of operator norms (Eq. (10))
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(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs SNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs SNR

Fig. 3. Convergence profiles of the unmixing experiments. (a): Iterations/computational time versus RMSE. (b): Iterations/computational time versus Residual.
(c): Iterations/computational time versus SNR.

vectorized data cube and [x]i1,i2,i3 be the value of x at a
location (i1, i2, i3). Then the preconditioners are

Γ1,1 = diag(g1),Γ1,2 = I,Γ1,3 = diag(g2),

Γ2,1 = Γ2,2 =
1

4
,Γ2,3 =

1

2
,Γ2,4 =

1

3
I. (48)

Here, g1 ∈ RN1N2N3 and g2 ∈ RN1N2N3 are given as follows:

[g1]i1,i2,i3 =



1
9 , if i1 ∈ I1 and i2 ∈ I2 and i3 ∈ I3;
1
3 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ E3;

1
4 , if i3 ∈ E3 and


(i1 ∈ E1 and i2 ∈ I2)

or

(i1 ∈ I1 and i2 ∈ E2);
1
5 , if i1 ∈ E1 and i2 ∈ E2 and i3 ∈ I3;
1
7 , otherwise,

(49)

[g2]i1,i2,i3 =

{
1
3 , if i1 ∈ I1;
1
2 , otherwise,

(50)

where Im and Em for m = 1, 2, 3 are {2, . . . , nm − 1}
and {1, nm}, respectively. In this case, the skewed proximity
operators are separable and thus have analytical solutions. This
indicates that P-PDS with ASP does not require FISTA.

As the ground truth HS image, we used Moffett Field [49]
of size 120× 120× 176. The observed image was generated
by adding white Gaussian noise with the standard deviation
σ = 0.05 and Salt & Pepper noise with the ratio ps = 0.1.
The parameters λ, ηs, and ε were set to 0.005, 0.5∗0.95∗ps ∗
N1N2N3, and 0.95σ

√
(1− ps)N1N2N3, respectively. For the

quantitative evaluation of image qualities, we used the Mean
Peak Signal-to-Noise Ratio (MPSNR):

MPSNR(u(t)) :=
1

N3

N3∑
b=1

10 log10

(
N1N2

∥ūb − u
(t)
b ∥22

)
, (51)

where ūb and u
(t)
b are the bth band of the ground-truth image

ū and the estimated image u(t).
Fig. 1 plots iterations versus RMSE, Residual, and MPSNR

and computational time versus RMSE, Residual, and MPSNR,
respectively. In terms of iterations (Figs. 1 (a1), (b1), and
(c1)), P-PDSs with SP (γ1 = 0.01), SP (γ1 = 0.001), PDP
(τ = 0.01), and PDP (τ = 0.001) were very slow, and P-
PDSs with SP (γ1 = 1), SP (γ1 = 0.1), ASP, PDP (τ = 1),
PDP (τ = 0.1), OVDP2, and OVDP3 were fast. For P-
PDS with OVDP1 , the evolution of the MPSNR values was
slightly slow, but the convergence of the RMSE and Residual
values was not. In terms of computational time (Figs. 1 (a2),
(b2), and (c2)), although P-PDSs with SP, ASP, and OVDP
have the same computational complexity per iteration in O-
notation, P-PDS with ASP took longer than P-PDSs with SP
and OVDP. When computing the analytic solutions of the
proximity operators, P-PDSs with SP and OVDP require the
multiplication of a scalar and a vector, while P-PDS with ASP
requires the element-wise multiplication of two vectors. Since
the latter takes longer to run than the former, P-PDS with
ASP was longer in running time. P-PDSs with PDP were very
slow because they require the iterative algorithm to calculate
the skewed proximity operator.

Fig. 2 shows the denoising results and the MPSNR values
[dB] obtained by P-PDS with SP (γ1 = 0.1), ASP, PDP
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gr
as

s
ro

of

(a) SNR [dB] (b) 11.19 [dB] (c) 11.43 [dB] (d) 11.18 [dB] (e) 11.22 [dB] (f) 11.46 [dB] (g) 11.45 [dB]

Fig. 4. Abundance maps of HS unmixing results. (a): The ground truth abundance maps. (b): The abundance maps estimated by P-PDS with SP [3]
(γ1 = 0.001). (c): The abundance maps estimated by P-PDS with ASP [15]. (d): The abundance maps estimated by P-PDS with PDP [18] (τ = 0.01). (e):
The abundance maps estimated by P-PDS with OVDP1 (Ours). (f): The abundance maps estimated by P-PDS with OVDP2 (Ours). (g): The abundance maps
estimated by P-PDS with OVDP3 (Ours).

(τ = 0.1), OVDP1, OVDP2, and OVDP3. The algorithm was
run until satisfying the stopping criterion or reaching 10000
iterations. We can see that all results are almost the same in
terms of the MPSNR and the visual qualities.

C. Application to Hyperspectral Unmixing

An HS image is a three-dimensional data cube that consists
of two-dimensional spatial information and one-dimensional
spectral information. Compared to grayscale or RGB images,
HS images offer more than several hundred bands, each of
which contains specific unique wavelength characteristics of
materials such as minerals, soils, and liquids. Due to the trade-
off between spatial resolution and wavelength resolution, HS
sensors do not have a sufficient spatial resolution, resulting
in containing multiple components (called endmembers) in
a pixel [50], which refers to as a mixel. The process of
decomposing the mixels into endmembers and their abundance
maps is called unmixing. Unmixing has been actively studied
in the remote sensing field because of its indispensability for
analyzing HS images [34], [51]. One of the popular unmixing
methods is the constrained collaborative sparse regression
problem [52], which has attracted attention as an optimization-
based strategy for HS unmixing [53]–[55].

1) Problem Formulation: Let vi ∈ RN3×1 represent an
N3-dimensional ith pixel vector of an HS image with N3

spectral bands and E = [e1, . . . , eNe
] ∈ RN3×Ne be an

endmember matrix that denotes a spectral library with Ne

spectral signatures. The pixel vi can be modeled as the
following form of linear combination:

vi = Eai + ni, (52)

where ai ∈ RN3×1 is an abundance map. Introducing
the extended endmember matrix Ẽ = diag(E, . . . ,E) ∈
RN1N2N3×N1N2Ne , we can express an observed HS image
v = [v⊤

1 , . . . ,v
⊤
N1N2

]⊤ as

v = Ẽa+ n. (53)

Based on the above model, the constrained collaborative sparse
regression problem of unmixing is formulated as the following
convex optimization problem:

min
a
∥a∥1,2 s.t. Ẽa ∈ Bv

2,ε,a ∈ RN1N2N3
+ . (54)

TABLE IV
THE PRECONDITIONERS BY OVDP FOR UNMIXING.

Γ1,1 Γ2,1 Γ2,2

OVDP1 1

∥Ẽ∥2op+12
I I I

OVDP2 1

∥Ẽ∥op+1
I 1

∥Ẽ∥op
I I

OVDP3 1
2
I 1

∥Ẽ∥2op
I I

The first term is the mixed ℓ1,2 norm, which is defined by

∥a∥1,2 =

Ne∑
e=1

√√√√N1N2∑
i=1

[ai]2e. (55)

The first constraint serves as data-fidelity with the v-centered
ℓ2-ball of the radius ε > 0.5 The second constraint enforces a
to belong to the nonnegative orthant RN1N2N3

+ .
By using the indicator functions (see Eq. (6)) of Bv

2,ε and
RN1N2N3

+ , Prob. (54) is reduced to Prob. (1) via the following
reformulation:

min
a,z1,z2

∥a∥1,2 + ιBv
2,ε

(z1) + ιRN1N2N3
+

(z2)

s.t.

{
z1 = Ẽa,

z2 = a.
(56)

Applying Algorithm 1 to Prob. (56), we can obtain an optimal
solution of Prob. (54). Since the functions ∥ · ∥1,2 and ιBv

2,ε

are not separable for each element of the input variable,
an iterative algorithm is needed for the calculation of their
skewed proximity operators relative to the metric induced by
the preconditioners of ASP and PDP. Here, the preconditioners
designed by OVDP are as in Tab. IV.

2) Experimental Results and Discussion: For SP, µSP

in (17) was set as

µSP =

√
∥Ẽ∥2op + 1, (57)

5The original constrained collaborative sparse regression formulation pro-
posed in [52] incorporates an ℓ2 data-fidelity term as a part of the objective
function, whereas the formulation in (54) imposes data fidelity as an ℓ2-
ball constraint. The reason is similar to the case of the mixed noise removal
experiment.
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(a1) Iteration vs RMSE (b1) Iteration vs Residual (c1) Iteration vs PSNR

(a2) Computational time vs RMSE (b2) Computational time vs Residual (c2) Computational time vs PSNR

Fig. 5. Convergence profiles of the graph singal recovery experiments. (a): Iterations/computational time versus RMSE. (b): Iterations/computational time
versus Residual. (c): Iterations/computational time versus PSNR.

because the following inequality holds due to the inequality
of the operator norms of block matrices [48]:∥∥∥∥[ẼI

]∥∥∥∥2
op

≤ ∥Ẽ∥2op + ∥I∥2op = ∥Ẽ∥2op + 1. (58)

For PDP, the preconditioners in (21) were used since the
number of dual variables is two.

As the ground truth HS image, we used the urban dataset6,
which has been widely used in the field of HS unmixing.
The image consists of 307 × 307 pixels with 210 spectral
bands. In the image, six main endmembers can be observed
in the scene: asphalt road, grass, tree, roof, metal, and dirt.
The observed data was generated by adding white Gaussian
noise with the standard deviation σ = 0.05. The parameter ε
was set to 0.9σ

√
N1N2N3. For the quantitative evaluation of

image qualities, we used the Signal-to-Noise Ratio (SNR) 7:

SNR(a(t)) := 10 log10

(
∥ā∥2

∥a(t) − ā∥2

)
, (59)

where a(t) and ā are the estimated and ground true abundance
maps, respectively.

Fig. 3 plots iterations versus RMSE, Residual, and SNR
and computational time versus RMSE, Residual, and SNR,
respectively. In terms of iterations (Figs. 3 (a1), (b1), and (c1)),
P-PDS with PDP was very slow in all parameter cases. P-PDSs
with SP (γ1 = 1), OVDP2, and OVDP3 were slightly slow,
but P-PDSs with SP (γ1 = 0.1) and ASP were not. P-PDSs

6http://www.tec.army.mil/Hypercube
7This evaluation metric is often referred to as the signal to reconstruction

error in the leterature of HS unmixing (e.g., [52], [54], [55]).

with SP (γ1 = 0.01), SP (γ1 = 0.001), and OVDP1 were fast.
In terms of computational time (Figs. 3 (a2), (b2), and (c2)),
P-PDS with SP and OVDP were similar to the results with
respect to iterations. P-PDSs with ASP and PDP were very
slow because they require the iterative algorithm to calculate
the skewed proximity operator in each iteration of P-PDS. At
first glance, the curves generated by P-PDSs with PDP (τ = 1,
0.1, and 0.001) may appear to converge to different SNRs. This
is because they take enormous amounts of time to converge
(in fact, the convergence times are too enormous to measure).
Therefore, they do not converge to different SNRs.

Fig. 4 shows the unmixing results and the SNR values
[dB] obtained by P-PDS with SP (γ1 = 0.001), ASP, PDP
(τ = 0.01), OVDP1, OVDP2, and OVDP3. The algorithm was
run until satisfying the stopping criterion or reaching 10000
iterations. We can see that all results are almost the same in
terms of the SNR and the visual qualities.

D. Application to Graph Signal Recovery

Graphs explicitly represent the irregular structures of
data [56]–[58], such as traffic and sensor network data, ge-
ographical data, mesh data, and biomedical data. The signals
on the irregular structures are called graph signals. Similar to
classical signal processing, sampling of graph signals [59] is
a leading research topic due to its numerous promising appli-
cations, for example, sensor placement, filter bank designs,
traffic monitoring, and semi-supervised learning. In graph
signal recovery, which reconstructs original graph signals from
sampled graph signals, it is assumed that graph signals have
some properties, such as smoothness. The smoothness of
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(a) (b) PSNR=5.72 [dB] (c) PSNR=21.13 [dB] (d) PSNR=21.12 [dB]

(e) PSNR=21.12 [dB] (f) PSNR=21.14 [dB] (g) PSNR=21.12 [dB] (h) PSNR=21.12 [dB]
Fig. 6. Graph signal recovery results. (a): The ground truth signal. (b): The observed graph signal. (c): The graph signal estimated by P-PDS with SP [3]
(γ1 = 0.1). (d): The graph signal estimated by P-PDS with ASP [15]. (e): The graph signal estimated by P-PDS with PDP [18] (τ = 1). (f): The graph
signal estimated by P-PDS with OVDP1 (Ours). (g): The graph signal estimated by P-PDS with OVDP2 (Ours). (h): The graph signal estimated by P-PDS
with OVDP3 (Ours).

graph signals can be captured by graph total variation type
regularizations [60]–[62], which have been applied to various
graph signal processing tasks [63], [64].

1) Problem Formulation: We consider signals on weighted
directed graphs G = (V, E ,W) with a vertex set V =
{1, . . . , NG}, an edge set E ⊆ V × V , and a weighted matrix
W ∈ RNG×NG . The value Wi,j is designed to be large if the
relation between vertices i and j is strong. Graph signals are
typically assumed to be smooth with respect to the graph G.
Based on the assumption, graph signal recovery methods often
adopt the graph total variation (GTV) [57], [62]:

∥x∥GTV := ∥DGx∥1,2 =

NG∑
i=1

∥yi∥2, (60)

where DG is the graph difference operator defined as follows.
Let DGx = [y⊤

1 , . . . ,y
⊤
NG

], then each yi consists of the
weighted differences between the graph signal value xi at an
ith vertex and the graph signal values xj (∀j ∈ N (i) := {k ∈
V |Wi,k ̸= 0}) at its connected vertices N (i), i.e.,

[yi]j := (xj − xi)Wi,j , (∀j ∈ N (i)). (61)

By weighting the difference between xi and xj by Wi,j , GTV
can capture the graph signal smoothness that the difference of
graph signal values is small as the relation of their vertices is
strong.

Consider that an observed graph signal v ∈ RMG is modeled
by

v = Φū+ n, (62)

where ū ∈ RNG , n ∈ RMG , and Φ ∈ {0, 1}MG×NG are
the true graph signal of interest, random additive noise, and
the sampling matrix, respectively. Based on this observation

TABLE V
THE PRECONDITIONERS BY OVDP FOR GRAPH SIGNAL RECOVERY.

Γ1,1 Γ2,1 Γ2,2

OVDP1 1

∥DG∥2
op

+12
I I I

OVDP2 1

∥DG∥op
+1

I 1

∥DG∥op

I I

OVDP3 1
2
I 1

∥DG∥2
op

I I

model, the GTV regularized graph signal recovery problem is
formulated as the following convex optimization problem [62]:

min
u
∥DGu∥GTV s.t.Φu ∈ Bv

2,ε. (63)

The hard constraint guarantees the ℓ2 data fidelity to the
observed signal v with the radius ε.

By using the indicator function (see Eq. (6)) of Bv
2,ε,

Prob. (63) is reduced to Prob. (1) via the following reformu-
lation:

min
u,z1,z2

∥z1∥1,2 + ιBv
2,ε

(z2)

s.t.

{
z1 = DGu,

z2 = Φu.
(64)

Applying Algorithm 1 to Prob. (64), we can compute an
optimal solution of Prob. (63). Since the function ∥ · ∥1,2
is not separable for each element of the input variable, an
iterative algorithm is needed for the computation of their
skewed proximity operators relative to the metric induced
by the preconditioners of ASP and PDP in (18). Here, the
preconditioners designed by OVDP are given as in Tab. V.
According to [62], an upper bound of the operator norm
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TABLE VI
THE NUMBER OF ITERATIONS TO MEET THE STOPPING CRITERIA. XXX* MEANS THAT THE METHOD REQUIRES MORE THAN XXX ITERATIONS.

Methods

SP ASP PDP OVDP1 OVDP2 OVDP3

(γ1 = 1) (γ1 = 0.1) (γ1 = 0.01) (γ1 = 0.001) (τ = 1) (τ = 0.1) (τ = 0.01) (τ = 0.001)

Mixed noise removal 10000* 4736 10000* 10000* 3323 10000* 1552 10000* 10000* 5470 3325 9755
Unmixing 2943 395 350 349 300 10000* 10000* 10000* 10000* 350 525 4709

Graph signal recovery 3625 806 1937 10000* 448 194 396 4129 10000* 998 1846 3546
Average 5523* 1979 4096* 6783* 1357 6731* 3983* 8043* 10000* 2273 1899 6003

TABLE VII
RUNNING TIME [S] TO MEET THE STOPPING CRITERIA. XXX* MEANS THAT THE METHOD REQUIRES MORE THAN XXX [S].

Methods

SP ASP PDP OVDP1 OVDP2 OVDP3

(γ1 = 1) (γ1 = 0.1) (γ1 = 0.01) (γ1 = 0.001) (τ = 1) (τ = 0.1) (τ = 0.01) (τ = 0.001)

Mixed noise removal 1000* 111.86 333.72 1000* 230.40 1000* 1000* 1000* 1000* 130.70 79.35 231.78
Unmixing 3.52 3.97 3.60 3.60 64.44 1000* 1000* 1000* 1000* 11.38 5.44 46.13

Graph signal recovery 7.54 1.65 4.00 40.61 1000* 607.90 450.60 1000* 1000* 2.04 3.73 7.21

∥DG∥op can be derived by

∥DG∥op ≤ 2max
i∈V

∑
j∈V

(W 2
i,j +W 2

j,i). (65)

An upper bound of the norm of the sampling matrix is one,
i.e., ∥Φ∥op = 1.

2) Experimental Results: For SP, µSP in (17) was set as

µSP =
√
∥DG∥2op + 1, (66)

because the following inequality holds due to the inequality
of the operator norms of block matrices [48]:∥∥∥∥[DG

Φ

]∥∥∥∥2
op

≤ ∥DG∥2op + ∥Φ∥2op ≤ ∥DG∥2op + 1. (67)

The preconditioners by ASP in (18) for Prob. (63) are

[Γ1,1]i,i =
1∑NGNG

j=1 |Wi,j |+
∑MG

k=1 Φk,i

, (∀i = 1, . . . , NG),

[Γ2,1]i,i =
1

2
∑NG

j=1 |Wj,i|
, (∀i = 1, . . . , NGNG),

[Γ2,2]i,i = 1, (∀i = 1, . . . ,MG). (68)

For PDP, the preconditioners in (21) were used since the
number of dual variables is two.

We constructed a random sensor graph G by using GSP-
Box [65], then generated a noiseless piece-wise smooth graph
signal on the graph with NG = 2000 vertices. The observed
graph signal was obtained by adding white Gaussian noise
with 0.1 of the standard deviation σ and by sampling it with
0.2 of the sampling rate (MG = 0.2NG). The parameter ε
was set as ε = 0.9σ

√
MG . For the quantitative evaluation of

recovery qualities, we used the Peak Signal-to-Noise Ratio
(PSNR):

PSNR := 10 log10

(
NG

∥ū− u(t)∥22

)
, (69)

Fig. 5 plots iterations versus RMSE, Residual, and PSNR
and computational time versus RMSE, Residual, and PSNR,
respectively. In terms of iterations (Figs. 5 (a1), (b1), and (c1)),

P-PDSs with SP (γ1 = 0.001) and PDP (τ = 0.001) were very
slow. P-PDSs with SP (γ1 = 1), PDP (τ = 0.01), OVDP3
were not slow but not fast. P-PDSs with SP (γ1 = 0.1), SP
(γ1 = 0.01), ASP, PDP (τ = 1), PDP (τ = 0.1), OVDP1, and
OVDP2 were fast. In terms of computational time (Figs. 5 (a2),
(b2), and (c2)), P-PDS with SP and OVDP were similar to the
results with respect to iterations. P-PDSs with ASP and PDP
were very slow because they require the iterative algorithm to
calculate the skewed proximity operator.

Fig. 6 shows the recovery results and the PSNR values [dB]
obtained by P-PDS with SP (γ1 = 0.1), ASP, PDP (τ = 1),
OVDP1, OVDP2, and OVDP3. The algorithm was run until
satisfying the stopping criterion or reaching 10000 iterations.
We can see that all results are almost the same in terms of the
PSNR and the visual qualities.

E. Discussion

For discussion based on numerical values, we compare the
number of iterations (Tab. VI) and running time (Tab. VII) to
satisfy the stopping criteria in Tab. II.

The appropriate parameter for SP (γ1) varied depending
on the optimization problem and were 0.1 for mixed noise
removal, 0.01 and 0.001 for unmixing, and 0.1 and 0.01
for graph signal recovery. If γ1 is adjusted appropriately,
as in the case of the unmixing experiments (γ1 = 0.01 and
0.001), P-PDS with SP can converge faster than the automatic
preconditioner design methods (ASP and OVDP). However,
no parameter results in fast convergence for any optimization
problem, and the convergence might be extremely slow, such
as at 0.01 and 0.001 for mixed noise removal, at 1 for
unmixing, and at 0.001 for graph signal recovery. Therefore,
γ1 needs to be manually adjusted according to each problem.

P-PDS with ASP was the best in terms of the average
number of iterations, and P-PDS with PDP (τ is adjusted)
resulted in a small number of iterations to converge for both
graph signal recovery and mixed noise removal. However,
for the unmixing experiments, P-PDS with PDP required a
more significant number of iterations to converge than P-PDS
with SP (γ1 = 0.01 and 0.001) and OVDP. We speculate
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that this is because the optimization problem of unmixing
is relatively complicated; it involves an endmember matrix,
while the optimization problems of mixed noise removal and
graph signal recovery only include relatively simple difference
operators and random sampling matrices in their optimization
problems. Although P-PDSs with ASP and PDP were fast in
the number of iterations, they took a much longer running
time to converge. This is due to the fact that they require
iterative algorithms such as FISTA to compute the skewed
proximity operator in each iteration of P-PDS. Incidentally,
since the internal iterations of FISTA vary depending on the
task and parameters (e.g., τ ), the execution time of P-PDS may
be long relative to the number of iterations to convergence. For
example, P-PDS with PDP (τ = 1) required fewer iterations
but a longer running time than P-PDS with PDP (τ = 0.1).
In addition, P-PDS with ASP took a very long running time
per iteration in the graph signal recovery experiment, while it
took a short running time in the unmixing experiments.

P-PDSs with OVDP achieved good convergence speed in
both the number of iterations and the running time thanks to
a diagonal preconditioning technique based on the problem
structure. In addition, they maintain the proximability of the
functions, resulting in fast running time. P-PDS with OVDP2
was fast on average in the number of iterations. Moreover,
P-PDS with OVDP2 produced the fastest result in terms of
running time for the mixed noise removal experiment. P-
PDS with OVDP1 was faster than P-PDS with OVDP2 and
OVDP3 for the unmixing and graph signal recovery experi-
ments. Futhermore, the preconditioners of OVDP can be easily
calculated in the mixed noise removal case whose optimization
problem incorporates the linear operators implemented not as
explicit matrices.

These results indicate the following conclusions.
• SP and PDP are effective for cases where preconditioners

are easily adjusted. In particular, PDP is very effective for
the cases where the structure of an optimization problem
is simple and the calculation of an inner iteration is
efficient.

• ASP is applicable to the cases where the structure of
an optimization problem is simple, the calculation of an
inner iteration is efficient, and the optimization problem
only contains linear operators implemented as the repre-
sented matrix.

• Our OVDP can determine effective preconditioners re-
gardless of whether or not the above conditions are
satisfied. Specifically, for the signal estimation problem
that can be handled by ASP, our OVDP was several
hundred times faster than ASP.

• In addition, P-PDS with our OVDP required fewer iter-
ations on average than P-PDSs with SP or PDP, which
require manual adjustments.

V. CONCLUSION

We have proposed OVDP, which automatically and easily
designs preconditioners in a variable-wise manner when a
given optimization problem incorporates linear operators rep-
resented not as explicit matrices. We also proved the con-
vergence of P-PDS with OVDP. Applications of our method

to three signal estimation tasks have been provided with
experimental comparison, where we have shown that our
method achieved the fast convergence speed on average and
raised the examples of signal processing tasks that OVDP is
effective to be applied.

APPENDIX
PROOF OF LEMMA III.1

Proof. Let r be the rank of A and σ1(A), . . . , σr(A) be the
singular values of A. Then, A can be decomposed as

A = UΣV∗, (70)

where U ∈ Rm×r and V ∈ Rn×r satisfy U∗U = I and
V∗V = I. Then, we introduce an r×r unitary matrix W and
define B and C as

B = UΣ1−βW∗,C = WΣβV∗, (71)

where Σ1−β = diag(σ1(A)1−β , . . . , σr(A)1−β) and Σβ =
diag(σ1(A)β , . . . , σr(A)β). It is clear that A = BC. In turn,
we obtain from the definition that

∥Bx∥22 = ∥Σ1−βW∗x∥22
≤ σ1(A)2−2β∥W∗x∥22
= σ1(A)2−2β∥x∥22. (72)

Hence
∥B∥op = sup

x̸=0

∥Bx∥2
∥x∥2

= σ1(A)1−β . (73)

Arguing similarly, C satisfies ∥C∥op = σ1(A)β .

□
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[20] P. L. Combettes and B. C. Vṽ, “Variable metric quasi-fejér
monotonicity,” Nonlin. Anal., vol. 78, pp. 17–31, Feb. 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0362546X12003616

[21] S. Becker, J. Fadili, and P. Ochs, “On quasi-Newton forward-
backward splitting: Proximal calculus and convergence,” SIAM J.
Optim., vol. 29, no. 4, pp. 2445–2481, 2019. [Online]. Available:
https://doi.org/10.1137/18M1167152

[22] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock,
“An introduction to total variation for image analysis,” in Theoretical
foundations and numerical methods for sparse recovery. de Gruyter,
2010, pp. 263–340.

[23] K. Bredies and M. Holler, “Higher-order total variation approaches and
generalisations,” Inverse Problems, vol. 36, no. 12, p. 123001, Dec.
2020. [Online]. Available: https://doi.org/10.1088/1361-6420/ab8f80

[24] J. Kovacevic and A. Chebira, “Life beyond bases: The advent of frames
(part I),” IEEE Signal Process. Mag., vol. 24, no. 4, pp. 86–104, Jul.
2007.

[25] J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye, “Data-driven tight frame
construction and image denoising,” Appl. Comput. Harmon. Anal.,
vol. 37, no. 1, pp. 89–105, 2014.

[26] A. Parekh and I. W. Selesnick, “Convex denoising using non-convex
tight frame regularization,” IEEE Signal Process. Lett., vol. 22, no. 10,
pp. 1786–1790, Oct. 2015.

[27] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C.
Pesquet, “The proximity operator repository,” User’s guide
http://proximityoperator.net/download/guide.pdf (accessed October
3rd, 2021), 2020.

[28] K. Naganuma and S. Ono, “Operator-norm-based variable-wise diagonal
preconditioning for automatic stepsize selection of a primal-dual split-
ting algorithm,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Aug.
2022, pp. 2041–2045.

[29] P. L. Combettes and N. N. Reyes, “Moreau’s decomposition in banach
spaces,” Math. Program., vol. 139, pp. 103–114, Jun. 2013.

[30] A. Beck and T. M., “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183–202,
2009.

[31] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, T.-X. Jiang, T.-H. Ma, and T.-Y.
Ji, “Mixed noise removal in hyperspectral image via low-fibered-rank
regularization,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp.
734–749, Jan. 2020.

[32] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Y. Chen, and W. He, “Double-
factor-regularized low-rank tensor factorization for mixed noise removal
in hyperspectral image,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 12, pp. 8450–8464, Dec. 2020.

[33] L. Zhang, Y. Qian, J. Han, P. Duan, and P. Ghamisi, “Mixed noise
removal for hyperspectral image with l0-l1−2sstv regularization,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 5371–5387,
Jun. 2022.

[34] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and
A. Plaza, “Advances in hyperspectral image and signal processing: A
comprehensive overview of the state of the art,” IEEE Geosci. Remote
Sens. Mag., vol. 5, no. 4, pp. 37–78, 2017.

[35] N. Audebert, B. Le Saux, and S. Lefevre, “Deep learning for classifica-
tion of hyperspectral data: A comparative review,” IEEE Geosci. Remote
Sens. Mag., vol. 7, no. 2, pp. 159–173, 2019.

[36] H. Su, Z. Wu, H. Zhang, and Q. Du, “Hyperspectral anomaly detection:
A survey,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 1, pp. 64–90,
2022.

[37] H. K. Aggarwal and A. Majumdar, “Hyperspectral image denoising
using spatio-spectral total variation,” IEEE Geosci. Remote Sens. Lett.,
vol. 13, no. 3, pp. 442–446, Feb. 2016.

[38] H. Fan, C. Li, Y. Guo, G. Kuang, and J. Ma, “Spatial-spectral total
variation regularized low-rank tensor decomposition for hyperspectral
image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10,
pp. 6196–6213, Oct. 2018.

[39] W. He, H. Zhang, H. Shen, and L. Zhang, “Hyperspectral image
denoising using local low-rank matrix recovery and global spatial-
spectral total variation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 11, no. 3, pp. 713–729, Mar. 2018.

[40] T. Ince, “Hyperspectral image denoising using group low-rank and
spatial-spectral total variation,” IEEE Access, vol. 7, pp. 52 095–52 109,
Apr. 2019.

[41] M. Wang, Q. Wang, J. Chanussot, and D. Hong, “l0-l1 hybrid total
variation regularization and its applications on hyperspectral image
mixed noise removal and compressed sensing,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 9, pp. 7695–7710, Sep. 2021.

[42] K. Naganuma and S. Ono, “A general destriping framework for remote
sensing images using flatness constraint,” IEEE Trans. Geosci. and
Remote Sens., vol. 60, pp. 1–16, Feb. 2022, Art no. 5525016.

[43] S. Takemoto, K. Naganuma, and S. Ono, “Graph spatio-spectral total
variation model for hyperspectral image denoising,” IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1–5, Jul. 2022, Art no. 6012405.

[44] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented La-
grangian approach to the constrained optimization formulation of imag-
ing inverse problems,” IEEE Trans. Image Process., vol. 20, no. 3, pp.
681–695, Mar. 2011.

[45] G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu,
“Epigraphical projection and proximal tools for solving constrained
convex optimization problems,” Signal, Image Video Process., vol. 9,
no. 8, pp. 1737–1749, 2015.

[46] S. Ono, “Efficient constrained signal reconstruction by randomized
epigraphical projection,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP). IEEE, 2019, pp. 4993–4997.

[47] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imag. Vis., vol. 20, pp. 89–97, 2004.

[48] R. Bhatia and F. Kittaneh, “Norm inequalities for partitioned operators
and an application,” Math. Ann., vol. 287, no. 4, pp. 719–726, 1990.

[49] “AVIRIS,” https://aviris.jpl.nasa.gov/data/free data.html.
[50] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal

Process. Mag, vol. 19, no. 1, pp. 44–57, 2002.
[51] W. Ma, J. M. Bioucas-Dias, T. Chan, N. Gillis, P. Gader, A. Plaza,

A. Ambikapathi, and C. Chi, “A signal processing perspective on
hyperspectral unmixing: Insights from remote sensing,” IEEE Signal
Process. Mag., vol. 31, no. 1, pp. 67–81, 2013.

[52] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collaborative sparse
regression for hyperspectral unmixing,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, pp. 341–354, Jan. 2013.

[53] H. K. Aggarwal and A. Majumdar, “Hyperspectral unmixing in the
presence of mixed noise using joint-sparsity and total variation,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4257–
4266, Sep. 2016.

[54] J.-J. Wang, T.-Z. Huang, J. Huang, H.-X. Dou, L.-J. Deng, and X.-L.
Zhao, “Row-sparsity spectral unmixing via total variation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 12, pp. 5009–
5022, Dec. 2019.

[55] Y. Yuan, Z. Zhang, and Q. Wang, “Improved collaborative non-negative
matrix factorization and total variation for hyperspectral unmixing,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 998–
1010, Mar. 2020.

[56] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
2013.

[57] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular

https://www.hindawi.com/journals/mpe/2017/3694525/
https://proceedings.mlr.press/v108/ye20a.html
https://www.sciencedirect.com/science/article/pii/S0362546X12003616
https://www.sciencedirect.com/science/article/pii/S0362546X12003616
https://doi.org/10.1137/18M1167152
https://doi.org/10.1088/1361-6420/ab8f80
https://aviris.jpl.nasa.gov/data/free_data.html


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 20XX 15

domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May
2013.

[58] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
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